

FCC TEST REPORT FCC ID: 2AV4T-QY-M3

Product	:	LED CONTROLLER
Model Name	:	QY-WM-F10/QY-W-F5
Brand	:	N/A
Report No.	:	PTC21102804702E-FC01V01

Prepared for

GAZE ART LIGHTING CO., LTD.

SHI XIA Road NO.48, SHI XIA Village, DA LANG Town, DONG GUAN City, GUANG DONG Province, CHINA

Prepared by

Dongguan Precise Testing & Certification Co., Ltd.

Building 1, No. 6, Tongxin Road, Dongcheng Street, Dongguan, Guangdong, China.

TEST RESULT CERTIFICATION

Applicant's name	:	GAZE ART LIGHTING CO., LTD.
Address	:	SHI XIA Road NO.48,SHI XIA Village , DA LANG Town,DONG GUAN City , GUANG DONG Province , CHINA
Manufacture's name	:	GAZE ART LIGHTING CO., LTD.
Address	:	SHI XIA Road NO.48,SHI XIA Village,DA LANG Town,DONG GUAN City,GUANG DONG Province,CHINA
Product name	:	LED CONTROLLER
Model name	:	QY-WM-F10/QY-W-F5
Standards	:	FCC CFR47 Part 15 Section 15.231
Test procedure	:	ANSI C63.10:2013
Test Date	:	Nov. 8, 2021 - Nov. 15, 2021
Date of Issue	:	Nov.15, 2021
Test Result	:	Pass

The above equipment has been tested by Dongguan Precise Testing & Certification Corp., Ltd. and found compliance with the requirements in the technical standards mentioned above. The test results presented in this report only relate to the product/system tested. The Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Test Engineer:

Aver Yu

Abel Yu / Engineer

Nu Wermin

Wu Weimin / Manager

Technical Manager:

Contents

Page

2	TES	T SUMMARY	4
3	GEN	ERAL INFORMATION	5
	3.1	GENERAL DESCRIPTION OF E.U.T.	5
	3.2	Test Mode	5
	3.3	TEST SITE	5
4	EQU	IPMENT DURING TEST	6
	4.1	EQUIPMENTS LIST	6
	4.2	Measurement Uncertainty	6
	4.3	DESCRIPTION OF SUPPORT UNITS	7
5	CON	DUCTED EMISSION	8
	5.1	E.U.T. OPERATION	8
	5.2	EUT SETUP	8
	5.3	TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	9
	5.4	Measurement Procedure:	9
	5.5	CONDUCTED EMISSION LIMIT	9
	5.6	MEASUREMENT DESCRIPTION	9
	5.7	CONDUCTED EMISSION TEST RESULT	9
6	PER	IODIC OPERATION	10
7	RAD	IATED SPURIOUS EMISSIONS	13
	7.1	EUT OPERATION	13
	7.2	TEST SETUP	14
	7.3	SPECTRUM ANALYZER SETUP	15
	7.4	TEST PROCEDURE	16
	7.5	SUMMARY OF TEST RESULTS	17
8	20DE	3 BANDWIDTH MEASUREMENT	19
	8.1	TEST PROCEDURE	19
	8.2	TEST RESULT	19
9	ANT	ENNA REQUIREMENT	20
10	TES	T SETUP	21

2 Test Summary

Test Items	Test Requirement	Result
Conducted Emissions	15.207	N/A
Radiated Emission	15.231(b) 15.209 15.205(b)	PASS
Periodic Operation	15.231(a)(1)	PASS
Outside of Band Emission	15.231(b) 15.205 15.209	PASS
20dB Bandwidth	15:231(c)	PASS
Antenna Requirement	15.203	PASS
Remark: N/A: Not Applicable	· · · · ·	

3 General Information

3.1 General Description of E.U.T.

:	LED CONTROLLER
:	QY-WM-F10
:	QY-W-F5
:	433.92MHz
:	Integrated Antenna
:	0dBi
:	FSK
:	433.92MHz
:	DC 3V from CR2025 battery
	: : : :

3.2 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Modulation	Test mode	Low channel	Middle channel	High channel
ASK	continuously Transmitting	433.92MHz	١	١

3.3 Test Site

Precise Testing & Certification Co., LTD.

Address: Building 1, No.6 Tongxin Road, Dongcheng Street, Dongguan, China

FCC Registration Number: 790290

A2LA Certificate No.: 4408.01

IC Registration Number: 12191A

4 Equipment During Test

4.1 Equipments List

Radiated Emissions							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	EMI Test Receiver	Rohde & Schwarz	ESCI	101417	Aug. 20, 2021	Aug. 19, 2022	1 year
2	EMC Analyzer (9k~26.5GH z)	Agilent	E4407B	MY45109572	Aug. 20, 2021	Aug. 19, 2022	1 year
3	Trilog Broadband Antenna	SCHWARZB ECK	VULB9160	9160-3355	Aug. 20, 2021	Aug. 19, 2022	1 year
4	Amplifier	EM	EM-30180	060538	Aug. 20, 2021	Aug. 19, 2022	1 year
5	Horn Antenna	SCHWARZB ECK	BBHA9120 D	9120D-1246	Aug. 20, 2021	Aug. 19, 2022	1 year
6	Coaxial Cable(below 1GHz)	LARGE	CALB1	-	Aug. 20, 2021	Aug. 19, 2022	1 year
7	Coaxial Cable(above 1GHz)	LARGE	CALB2	-	Aug. 20, 2021	Aug. 19, 2022	1 year
8	Spectrum Analyzer	Rohde & Schwarz	FSV40	101078	Aug. 20, 2021	Aug. 19, 2022	1 year

4.2 Measurement Uncertainty

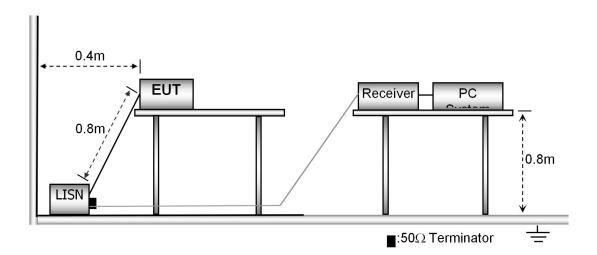
Parameter	Uncertainty
RF output power, conducted	±1.0dB
Power Spectral Density, conducted Radio Frequency	+2.2dB + 1 x 10 ⁻⁶
Bandwidth	± 1.5 x 10 ⁻⁶
Time	±2%
Duty Cycle	±2%
Temperature	±1°C
Humidity	±5%
DC and low frequency voltages	±3%
Conducted Emissions (150kHz~30MHz)	±3.64dB
Radiated Emission(30MHz~1GHz)	±5.03dB
Radiated Emission(1GHz~25GHz)	±4.74dB

4.3 Description of Support Units

Equipment	Model No.	Series No.
N/A	N/A	N/A

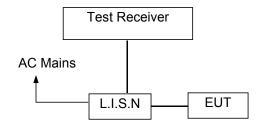
5 Conducted Emission

Test Requirement:	:	FCC CFR 47 Part 15 Section 15.207
Test Method:	:	ANSI C63.10:2013
Test Result:	:	PASS
Frequency Range:	:	150kHz to 30MHz
Class/Severity:	:	Class B
Detector:	:	Peak for pre-scan (9kHz Resolution Bandwidth)


5.1 E.U.T. Operation

Operating Environment :

Temperature:	:	23.2°C
Humidity:	:	51 % RH
Atmospheric Pressure:	:	101.12 kPa
Test Voltage	:	For RX: DC 5V come from adapter AC 120V/60Hz


5.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10: 2013

5.3Test SET-UP (Block Diagram of Configuration)

5.4 Measurement Procedure:

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured was complete.

5.5 Conducted Emission Limit

Conducted Emission		
Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30.0	60	50

Note:

1. The lower limit shall apply at the transition frequencies

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

5.6 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

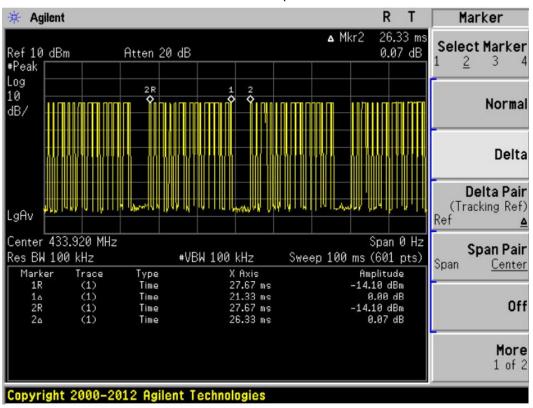
5.7 Conducted Emission Test Result

N/A

6 Periodic Operation

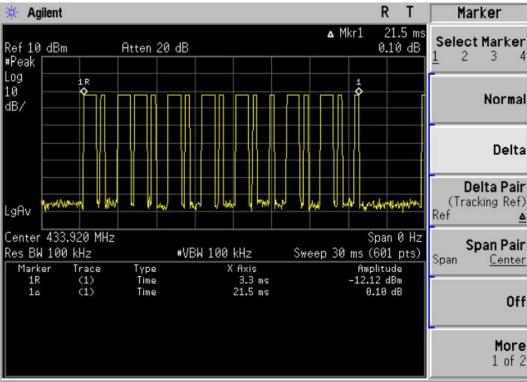
The duty cycle was determined by the following equation:

To calculate the actual field intensity, the duty cycle correction factor in decibel is needed for later use and can be obtained from following conversion


Duty Cycle(%)=Total On interval in a complete pulse train/ Length of a complete pulse train * % Duty Cycle Correction Factor (dB)=20 * Log₁₀(Duty Cycle(%))

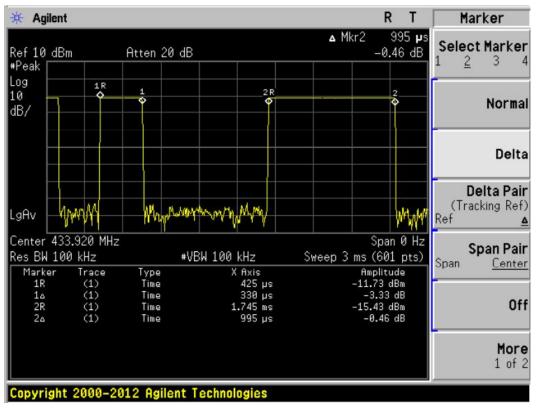
Total transmission time(ms)	0.33x9+0.995x8=2.97+7.96=10.93 (ms)
Length of a complete transmission period(ms)	26.33
Duty Cycle(%)	41.51
Duty Cycle Correction Factor(dB)	-7.64

Refer to the duty cycle plot (as below), This device meets the FCC requirement.


Length of a complete pulse train:

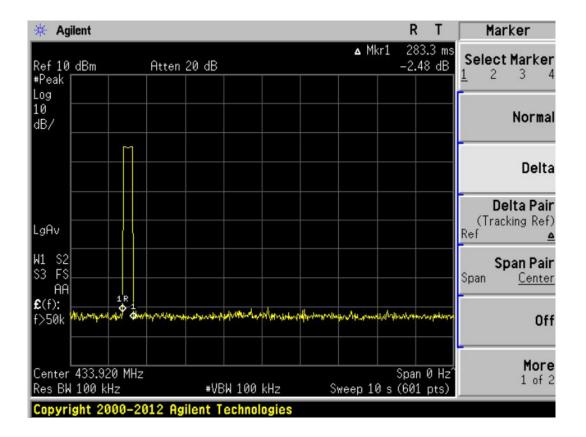
Remark: FCC part15.35(c) required that a complete pulse train is more than 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.

Тр



Pulse 1

Copyright 2000–2012 Agilent Technologies


Pulse 2

FCC Part15.231 (a) (1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

(2)A transmitter activated automatically shall cease transmission within 5 seconds after activation.

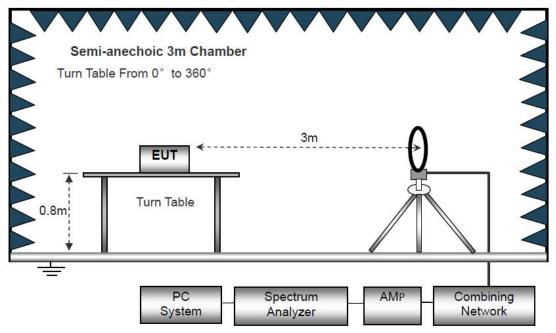
7 Radiated Spurious Emissions

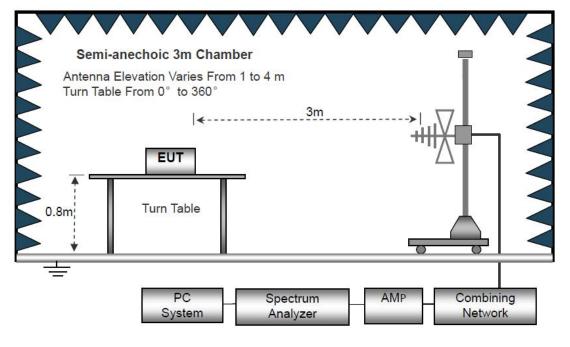
Test Requirement:	:	FCC CFR47 Part 15 Section 15.231 & 15.207 & 15.205
Test Method:	:	ANSI C63.10:2013
Test Result:	:	PASS
Measurement Distance:	:	3m
Limit:		See the follow table

	Field Strer	ngth	Field Strength Limit at 3m Measurement Dist		
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

7.1 EUT Operation

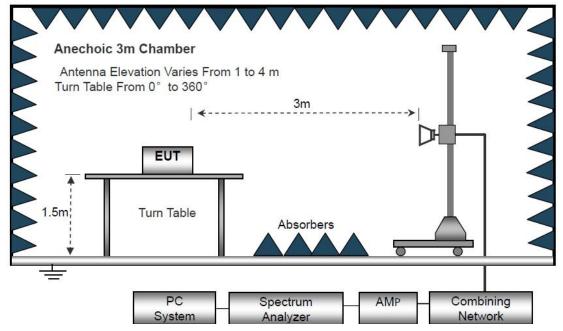
Operating Environment :


Temperature:	:	23.5 °C
Humidity:	:	51.1 % RH
Atmospheric Pressure:	:	101.2kPa
EUT Operation :	:	TX mode


7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site

The test setup for emission measurement below 30MHz



The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz

7.3 Spectrum Analyzer Setup

Below 30MHz		
IF Bandwidth	:	10kHz
Resolution Bandwidth	:	10kHz
Video Bandwidth	:	10kHz
30MHz ~ 1GHz		
Detector	:	PK
Resolution Bandwidth	:	100kHz
Video Bandwidth	:	300kHz
Detector	:	QP
Resolution Bandwidth	:	120kHz
Video Bandwidth	:	300kHz
Above 1GHz		
Detector	:	PK
Resolution Bandwidth	:	1MHz
Video Bandwidth	:	3MHz
Detector	:	AV
Resolution Bandwidth	:	1MHz
Video Bandwidth	:	10Hz

7.4 Test Procedure

1. The EUT is placed on a turntable, which is 0.8m or 1.5m above ground plane.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.

5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

6. Repeat above procedures until the measurements for all frequencies are complete.

7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

8. The test above 1GHz must be use the fully anechoic room, and the test below 1GHz use the half anechoic room

7.5 Summary of Test Results

Test Frequency: Below 30MHz

The amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Test Frequency: 30MHz ~ 5GHz

All applicable test modes have been tested with TX mode(433.92MHz)

Frequenc	Readin		Turn	RX An	tenna	Correcte	Correcte	FCC Part 15.231/209/205	
y	g	Detector	table Angle	Heigh t	Pola r	d Factor	d Amplitud e	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Av e)	Degre e	(m)	(H/V)	(dB/m)	(dBµV/m)	(dBµV/ m)	(dB)
87.418	37.6	QP	112	2.2	н	17.99	19.61	40	-20.39
49.014	41.66	QP	204	1.8	V	15.73	25.93	40	-14.07
112.524	36.07	QP	32	2.4	Н	15.41	20.66	40	-19.34
57.392	40.04	QP	117	1.4	V	15.72	24.32	40	-15.68
171.995	33.53	QP	205	2.2	Н	12.71	20.82	40	-19.18
88.342	45.22	QP	304	1.7	V	17.88	27.34	40	-12.66
300.367	29.53	QP	211	1.6	Н	11.95	17.58	46	-28.42
226.099	30.37	QP	320	2	V	13.36	17.01	46	-28.99

Froquency	РК	Turn table	RX Ar	ntenna	Duty	AV	FCC Part 15.231/209/205	
Frequency	FN	Angle	Height	Polar	cycle Factor	Av	Limit	Margin
(MHz)	(dBµV/m)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
433.92	82.36	111	2	Н	-7.64	74.72	80.83	-13.61
433.92	80.14	22	2.31	V	-7.64	72.5	80.83	-18.84
867.84	53.36	135	1.75	н	-7.64	45.72	60.83	-18.61
867.84	52.19	11	2	V	-7.64	44.55	60.83	-19.9
1301.76	50.04	152	1.5	н	-7.64	42.4	60.83	-21.69
1301.76	49.97	210	2.4	V	-7.64	42.33	60.83	-22.02
1735.68	44.68	182	1.2	н	-7.64	37.04	54.00	-16.44
1735.68	45.02	169	1.6	V	-7.64	37.38	54.00	-17.83

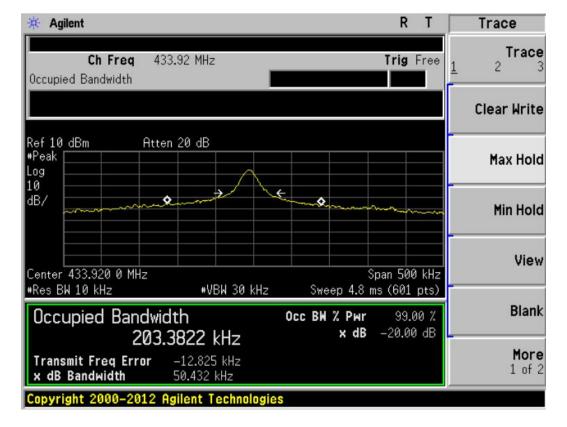
Frequency	РК	Turn table	RX Ar	itenna	FCC Part 15.231/209/205	
Trequency		Angle	Height	Polar	Limit	Margin
(MHz)	(dBµV/m)	Degree	(m)	(H/V)	(dBµV/m)	(dB)
433.92	82.36	111	2	Н	100.83	-18.47
433.92	80.14	22	2.3	V	100.83	-20.69
867.84	53.36	135	1.7	Н	80.83	-27.47
867.84	52.19	11	2	V	80.83	-28.64
1301.76	50.04	152	1.5	Н	80.83	-30.79
1301.76	49.97	210	2.4	V	80.83	-30.86
1735.68	44.68	182	1.2	Н	74	-29.32
1735.68	45.02	169	1.6	V	74	-28.98

Note:

- 1. All other emissions more than 20dB below the limit.
- 2. Average=Peak Value+20log(Duty Cycle).
- 3. The results above show only the worst case

8 20dB Bandwidth Measurement

Test Requirement	:	FCC Part15.231(c)
Test Method	:	FCC Part15.231(c)
Test Mode	:	Refer to section 3.3
Limit	:	The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency.


8.1 Test Procedure

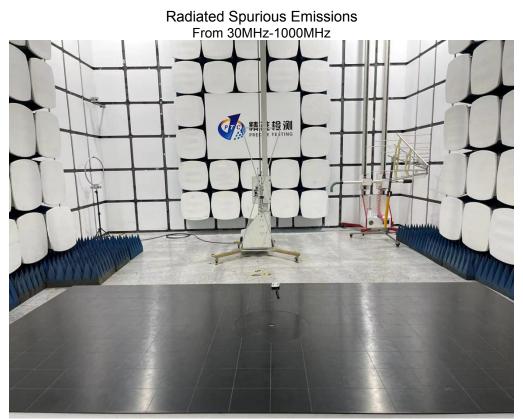
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

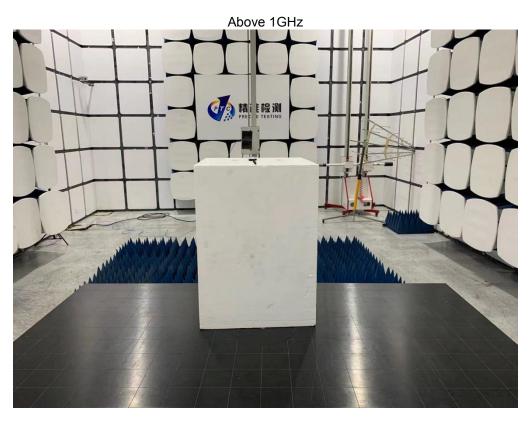
2. Set the spectrum analyzer: , RBW = 10 kHz, VBW = 30kHz,

8.2 Test Result

Test Frequency (MHz)	Bandwidth (kHz)	Limit (kHz)	Result
433.92	50.432	1084.80	pass

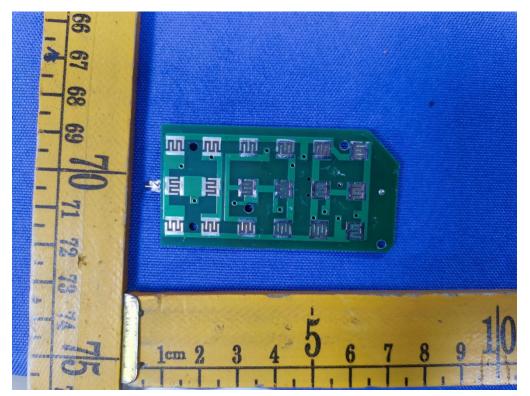
Test plots

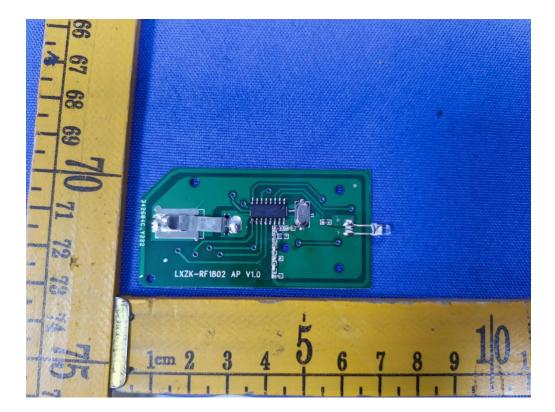



9 Antenna Requirement

According to the FCC part15.203, a transmitter can only be sold or operated with antennas with which it was approved. This product has an internal permanent antenna which meet the requirement of this section.

External Photos





*****THE END REPORT*****