

TEST REPORT

Applicant Name: FCC: VTech Telecommunications Ltd

ISEDC: VTECH TELECOMMUNICATIONS LIMITED

Address: FCC: 23/F Tai Ping Ind Center Block 1 57 Ting Kok Rd Tai Po

NT, Hong Kong

ISEDC: BL.1 23/F Tai Ping Industr Ctr. 57 Ting Kok Road Tai

Robert li

Po, NT Hongkong

Report Number: SZNS220311-08472E-RFA

FCC ID: EW780-1960-00B IC: 1135B-80196000B

Test Standard (s)

FCC PART 15.247; RSS-GEN ISSUE 5, FEBRUARY 2021 AMENDMENT 2; RSS-247, ISSUE 2,

FEBRUARY 2017

Sample Description

Product Type: Video Baby Monitor

Model No.: VM3254 BU

Multiple Model(s) No.: VM3254-2 BU (Please refer to DOS for Model difference)

Trade Mark: vtech

Date Received: 2022/03/11 Report Date: 2022/06/02

Test Result: Pass*

Prepared and Checked By: Approved By:

Ting Lü Robert Li

EMC Engineer EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "* "

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China
Tel: +86 755-26503290 Fax: +86 755-26503396 Web: www.atc-lab.com

Version 30: 2021-11-09 Page 1 of 45 FCC&RSS-FHSS

^{*} In the configuration tested, the EUT complied with the standards above.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
OBJECTIVE	
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	6
EUT Exercise Software	
SPECIAL ACCESSORIES	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	10
FCC §15.247 (I) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	12
APPLICABLE STANDARD	
RESULT	
RSS-102 § 2.5.2 –EXEMPTION LIMITS FOR ROUTINE EVALUATION-RF EX	
APPLICABLE STANDARD	
FCC §15.203 & RSS-GEN §6.8– ANTENNA REQUIREMENT	14
APPLICABLE STANDARD	14
ANTENNA CONNECTOR CONSTRUCTION	14
FCC §15.207 (A) & RSS-GEN §8.8 – AC LINE CONDUCTED EMISSIONS	15
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE	
CORRECTED FACTOR & MARGIN CALCULATION	
TEST DATA	
FCC §15.205, §15.209 & §15.247(D) & RSS-247§ 5.5 – RADIATED EMISSIONS.	
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST PROCEDURE	
CORRECTED FACTOR & MARGIN CALCULATION	
FCC §15.247(A) (1) & RSS-247 § 5.1 (B)-CHANNEL SEPARATION TEST	
Applicable Standard	
TEST PROCEDURE TEST DATA	

FCC §15.247(A) (1) & RSS-GEN § 6.7 & RSS-247 § 5.1 (A)–99% OCCUPIED BANDWIDTH & 20 DB EMISSION BANDWIDTH	31
APPLICABLE STANDARD	31
Test Procedure	
Test Data	
FCC §15.247(A) (1) (III) & RSS-247 § 5.1 (D)-QUANTITY OF HOPPING CHANNEL TEST	36
APPLICABLE STANDARD	36
Test Procedure	
Test Data	
FCC §15.247(A) (1) (III) & RSS-247 § 5.1 (D) - TIME OF OCCUPANCY (DWELL TIME)	38
APPLICABLE STANDARD	38
Test Procedure	
TEST DATA	38
FCC §15.247(B) (1) & RSS-247§ 5.1(B) &§ 5.4(B) - PEAK OUTPUT POWER MEASUREMENT	40
APPLICABLE STANDARD	40
Test Procedure	
Test Data	
FCC §15.247(D) & RSS-247 § 5.5 - BAND EDGES TESTING	43
APPLICABLE STANDARD	43
Test Procedure	
TEST DATA	13

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

HVIN	35-201930BU
FVIN	VM3254BBUUS4225
Frequency Range	2405-2475MHz
Maximum conducted peak output power	15.05dBm
Modulation Technique	FSK
Antenna Specification*	0dBi(It is provided by the applicant)
Voltage Range	DC 6.0V from adapter
Sample number	SZNS220311-08472E-RF-S2 for Conducted and Radiation Emissions SZNS220311-08472E-RF-S4 for RF conducted (Assigned by ATC)
Sample/EUT Status	Good condition
Adapter information	Model: VT05EUS06040 Input: AC 100-240V~50/60Hz, 0.15A Output: DC 6.0V, 0.4A, 2.4W

Report No.: SZNS220311-08472E-RFA

Objective

This report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules and RSS-GEN issue 5, February 2021 amendment 2 and RSS-247, Issue 2, February 2017 of the Innovation, Science and Economic Development Canada rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

Version 30: 2021-11-09 Page 4 of 45 FCC&RSS-FHSS

Parameter		Uncertainty	
Occupied Cha	nnel Bandwidth	5%	
RF output po	wer, conducted	0.73dB	
Unwanted Em	ission, conducted	1.6dB	
AC Power Lines Conducted Emissions		2.72dB	
.	30MHz - 1GHz	4.28dB	
Emissions, Radiated	1GHz - 18GHz	4.98dB	
Radiated	18GHz - 26.5GHz	5.06dB	
Temperature		1℃	
Humidity		6%	
Supply	voltages	0.4%	

Report No.: SZNS220311-08472E-RFA

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

Listed by Innovation, Science and Economic Development Canada (ISEDC), the Registration Number is 5077A.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

Channel list:

Channel	TX Frequency (MHz)	RX Frequency (MHz)	Channel	TX Frequency (MHz)	RX Frequency (MHz)
1	2405	2403	17	2439	2437
2	2407	2405	18	2441	2439
3	2409	2407	19	2444	2442
4	2411	2409	20	2446	2444
5	2413	2411	21	2450	2448
6	2415	2413	22	2452	2450
7	2418	2416	23	2454	2452
8	2420	2418	24	2456	2454
9	2422	2420	25	2458.5	2456.5
10	2424	2422	26	2460.5	2458.5
11	2426	2424	27	2462.5	2460.5
12	2428	2426	28	2467	2465
13	2430	2428	29	2469	2467
14	2433	2431	30	2471	2469
15	2435	2433	31	2473	2471
16	2437	2435	32	2475	2473

Report No.: SZNS220311-08472E-RFA

EUT was tested with Channel 1, 17 and 32.

The frequency range of the system is operating from 2405MHz to 2475MHz. There are totally 32 non-overlapping channel, and 16 active channels out of the 32 channels at same time. The 16 active channels are selected in pseudo random manner by default. The remaining 16 channels are spare channels which will be exchanged with active channels one at a time when any one of the active channels jamming with noise. Once an active channel has noise jamming during frequency hopping, it will be marked as dirty channel and exchanged with a spare channel after a dwell time. The spare channel is selected randomly so that at any time the active channels are always equally used in a pseudo random manner. The dirty channel become part of spare channels and can be used in active channels again after all the other spare channels have been used.

EUT Exercise Software

"ComTestSerial.exe"* exercise software was used and the power level is default*. The software and power level was provided by the applicant.

Special Accessories

No special accessory.

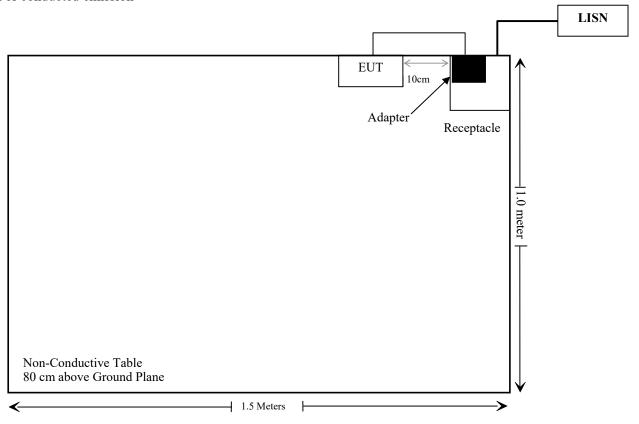
Version 30: 2021-11-09 Page 6 of 45 FCC&RSS-FHSS

Report No.: SZNS220311-08472E-RFA

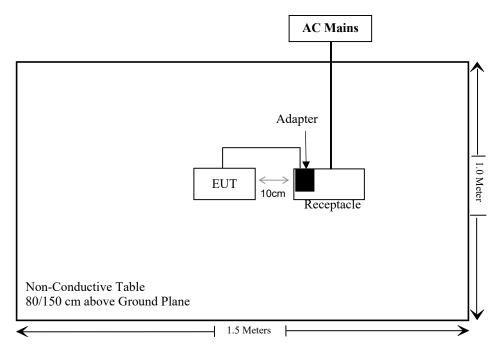
Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
/	/ /		/

External I/O Cable


Cable Description	Length (m)	From Port	То
Un-Shielding Un-detachable DC Cable	1.5	Adapter	EUT

Block Diagram of Test Setup

For conducted emission

For Radiated Emissions

SUMMARY OF TEST RESULTS

FCC Rules	ISEDC Rules	Description of Test	Result
§2.1091	RSS-102 § 2.5.2	MAXIMUM PERMISSIBLE EXPOSURE (MPE) & Exemption Limits For Routine Evaluation – RF Exposure Evaluation	Compliant
§15.203	RSS-Gen §6.8	Antenna Requirement	Compliant
§15.207(a)	§15.207(a) RSS-Gen §8.8 AC Line Conducted Emissions		Compliant
§15.205, §15.209 & §15.247(d)			Compliant
§15.247(a)(1)	RSS- Gen§6.7, 99% Occupied Bandwidth & 20 dB Emission Bandwidth		Compliant
§15.247(a)(1)	RSS-247 § 5.1 (b)	Channel Separation Test	Compliant
§15.247(a)(1)(iii)	RSS-247 § 5.1 (d)	Time of Occupancy (Dwell Time)	Compliant
§15.247(a)(1)(iii)	§15.247(a)(1)(iii) RSS-247 § 5.1 (d) Quantity of J		Compliant
§15.247(b)(1)	RSS-247 § 5.1(b) &§ 5.4(b)	Peak Output Power Measurement	Compliant
§15.247(d)	RSS-247 § 5.5	Band edges	Compliant

Report No.: SZNS220311-08472E-RFA

Version 30: 2021-11-09 Page 9 of 45 FCC&RSS-FHSS

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date			
Conducted Emissions Test								
Rohde& Schwarz	EMI Test Receiver	ESCI	100784	2021/12/13	2022/12/12			
Rohde & Schwarz	L.I.S.N.	ENV216	101314	2021/12/13	2022/12/12			
Anritsu Corp	50 Coaxial Switch	MP59B	6100237248	2021/12/13	2022/12/12			
Unknown	RF Coaxial Cable	No.17	N0350	2021/12/14	2022/12/13			
Conducted Emission	Test Software: e3 19821	b (V9)						
		Radiated Emissi	ons Test					
Rohde& Schwarz	Test Receiver	ESR	102725	2021/12/13	2022/12/12			
Rohde&Schwarz	Spectrum Analyzer	FSV40	101949	2021/12/13	2022/12/12			
SONOMA INSTRUMENT	Amplifier	310 N	186131	2021/11/09	2022/11/08			
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2021/11/09	2022/11/08			
Quinstar	Amplifier	QLW- 18405536-J0	15964001002	2021/11/11	2022/11/10			
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05			
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04			
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2020/01/05	2023/01/04			
Radiated Emission T	est Software: e3 19821b	(V9)						
Unknown	RF Coaxial Cable	No.10	N050	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.11	N1000	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.12	N040	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.13	N300	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.14	N800	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.15	N600	2021/12/14	2022/12/13			
Unknown	RF Coaxial Cable	No.16	N650	2021/12/14	2022/12/13			
Wainwright	High Pass Filter	WHKX3.6/18 G-10SS	5	2021/12/14	2022/12/13			

Report No.: SZNS220311-08472E-RFA

Version 30: 2021-11-09 Page 10 of 45 FCC&RSS-FHSS

Manufacturer	Description	Model Serial Number		Calibration Date	Calibration Due Date	
	RF Conducted Test					
Rohde & Schwarz	Spectrum Analyzer	FSV-40	101495	2021/12/13	2022/12/12	
SPECTRUM ANALYZER	Rohde & Schwarz	FSU26	200982	2021/07/06	2022/07/05	
WEINSCHEL	10dB Attenuator	5324	AU 3842	2021/12/14	2022/12/13	
Unknown	RF Cable	Unknown	Unknown	Each time		

^{*} Statement of Traceability: Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §15.247 (i) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247 (i) and subpart 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for General Population/Uncontrolled Exposure

Report No.: SZNS220311-08472E-RFA

Limits for General Population/Uncontrolled Exposure						
Frequency Range (MHz)	Electric Field Strength (V/m)	Power Density (mW/cm²)	Averaging Time (Minutes)			
0.3-1.34	614	1.63	*(100)	30		
1.34-30	824/f	2.19/f	$*(180/f^2)$	30		
30-300	27.5	0.073	0.2	30		
300-1500	/	/	f/1500	30		
1500-100,000	/	/	1.0	30		

f = frequency in MHz

Result

Calculated Formulary:

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Frequency	Antenna Gain		Tune up conducted power		Evaluation Distance	Power Density	MPE Limit
(MHz)	(dBi)	(dBi) (numeric) (dBm)		(mW)	(cm)	(mW/cm^2)	(mW/cm ²)
2405-2475	0	1.0	15.5	35.48	20	0.007	1

Note: To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliance

Version 30: 2021-11-09 Page 12 of 45 FCC&RSS-FHSS

^{* =} Plane-wave equivalent power density

RSS-102 § 2.5.2 –EXEMPTION LIMITS FOR ROUTINE EVALUATION-RF EXPOSURE EVALUATION

Report No.: SZNS220311-08472E-RFA

Applicable Standard

According to RSS-102 § (2.5.2):

RF exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm, except when the device operates as follows:

- below 20 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1 W (adjusted for tune-up tolerance);
- at or above 20 MHz and below 48 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than $4.49/f^{0.5}$ W (adjusted for tune-up tolerance), where f is in MHz;
- at or above 48 MHz and below 300 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 0.6 W (adjusted for tune-up tolerance);
- at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than $1.31 \times 10^{-2} f^{0.6834}$ W (adjusted for tune-up tolerance), where f is in MHz; at or above 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 5 W (adjusted for tune-up tolerance). In these cases, the information contained in the RF exposure technical brief may be limited to information that demonstrates how the e.i.r.p. was derived.

Calculated Data:

The max tune-up conducted output power is 15.5 dBm, antenna gain is 0 dBi. Time-averaged maximum e.i.r.p. of the device is 15.5 dBm + 0 dBi = 15.5 dBm = 0.035W

The worst case is f = 2405MHz: The limit is $1.31 \times 10^{-2} f^{0.6834} W = 2.68W$

0.035W<2.68W

So the RF Exposure evaluation can be exempted.

Version 30: 2021-11-09 Page 13 of 45 FCC&RSS-FHSS

FCC §15.203 & RSS-GEN §6.8– ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Report No.: SZNS220311-08472E-RFA

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer.

The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

For licence-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location:

This radio transmitter [enter the device's ISED certification number] has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device. Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type.

Antenna Connector Construction

The EUT has one internal antenna arrangement which was permanently attached and the gain is 0dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Туре	Antenna Gain	Impedance
Monopole	0dBi	50 Ω

Result: Compliant.

FCC §15.207 (a) & RSS-GEN §8.8 – AC LINE CONDUCTED EMISSIONS

Report No.: SZNS220311-08472E-RFA

Applicable Standard

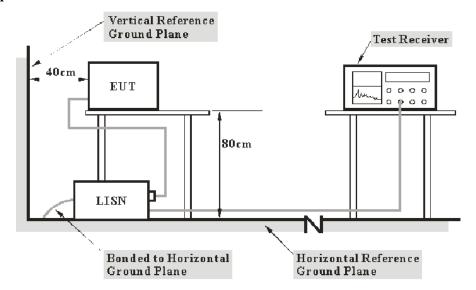
FCC §15.207(a) & RSS-Gen §8.8

Unless stated otherwise in the applicable RSS, for radio apparatus that are designed to be connected to the public utility AC power network, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the range 150 kHz to 30 MHz shall not exceed the limits in table 4, as measured using a 50 μH / 50 Ω line impedance stabilization network. This requirement applies for the radio frequency voltage measured between each power line and the ground terminal of each AC power-line mains cable of the EUT.

For an EUT that connects to the AC power lines indirectly, through another device, the requirement for compliance with the limits in table 4 shall apply at the terminals of the AC power-line mains cable of a representative support device, while it provides power to the EUT. The lower limit applies at the boundary between the frequency ranges. The device used to power the EUT shall be representative of typical applications.

Table 4 - AC Power Lines Conducted Emission Limits							
Frequency range	Conducted limit (dBμV)						
(MHz)	Quasi-Peak	Average					
0.15 - 0.5	66 to 56 ¹	56 to 46 ¹					
0.5 - 5	56	46					
5 – 30	60	50					

Note 1: The level decreases linearly with the logarithm of the frequency.


For an EUT with a permanent or detachable antenna operating between 150 kHz and 30 MHz, the AC power-line conducted emissions must be measured using the following configurations:

- (a) Perform the AC power-line conducted emissions test with the antenna connected to determine compliance with the limits of table 4 outside the transmitter's fundamental emission band.
- (b) Retest with a dummy load instead of the antenna to determine compliance with the limits of table 4 within the transmitter's fundamental emission band. For a detachable antenna, remove the antenna and connect a suitable dummy load to the antenna connector. For a permanent antenna, remove the antenna and terminate the RF output with a dummy load or network that simulates the antenna in the fundamental frequency band.

Version 30: 2021-11-09 Page 15 of 45 FCC&RSS-FHSS

Report No.: SZNS220311-08472E-RFA

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207 and RSS-Gen limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W		
150 kHz – 30 MHz	9 kHz		

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Version 30: 2021-11-09 Page 16 of 45 FCC&RSS-FHSS

Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss. The basic equation is as follows:

Report No.: SZNS220311-08472E-RFA

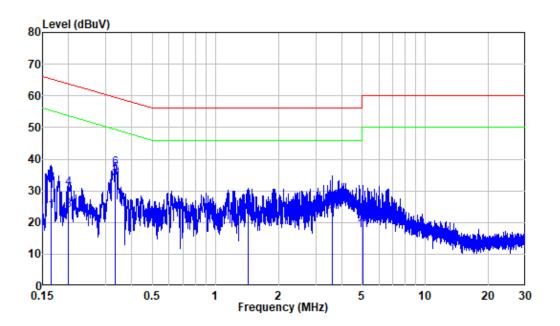
Factor = LISN VDF + Cable Loss

The "Over limit" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a over limit of -7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Over limit = Level – Limit Level= read level + factor

Test Data

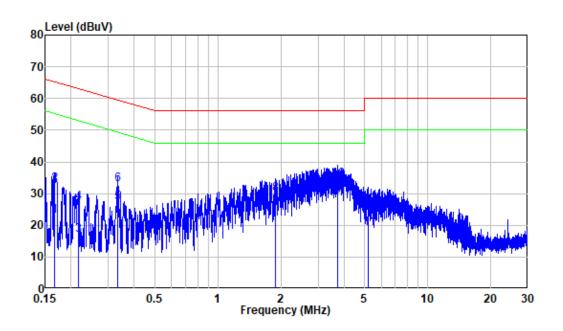
Environmental Conditions


Temperature:	24 ℃
Relative Humidity:	48 %
ATM Pressure:	101.0 kPa

The testing was performed by Caro Hu on 2022-04-21.

EUT operation mode: Transmitting (worst case is low channel)

Version 30: 2021-11-09 Page 17 of 45 FCC&RSS-FHSS


AC 120V/60 Hz, Line

		Read		Limit	0ver	
Freq	Factor	Level	Level	Line	Limit	Remark
MHz	dB	dBuV	dBuV	dBuV	dB	
0.164	9.80	13.76	23.56	55.24	-31.68	Average
0.164	9.80	22.49	32.29	65.24	-32.95	QP
0.200	9.80	13.99	23.79	53.62	-29.83	Average
0.200	9.80	21.00	30.80	63.62	-32.82	QP
0.334	9.80	25.40	35.20	49.35	-14.15	Average
0.334	9.80	27.37	37.17	59.35	-22.18	QP
1.426	9.81	12.66	22.47	46.00	-23.53	Average
1.426	9.81	15.64	25.45	56.00	-30.55	QP
3.618	9.84	13.25	23.09	46.00	-22.91	Average
3.618	9.84	16.81	26.65	56.00	-29.35	QP
5.045	9.85	7.68	17.53	50.00	-32.47	Average
5.045	9.85	12.56	22.41	60.00	-37.59	QP
	MHz 0.164 0.164 0.200 0.200 0.334 0.334 1.426 1.426 3.618 3.618 5.045	MHz dB 0.164 9.80 0.164 9.80 0.200 9.80 0.200 9.80 0.334 9.80 0.334 9.80 1.426 9.81 1.426 9.81 3.618 9.84 3.618 9.84 5.045 9.85	MHz dB dBuV 0.164 9.80 13.76 0.164 9.80 22.49 0.200 9.80 13.99 0.200 9.80 21.00 0.334 9.80 25.40 0.334 9.80 27.37 1.426 9.81 12.66 1.426 9.81 15.64 3.618 9.84 13.25 3.618 9.84 16.81 5.045 9.85 7.68	MHz dB dBuV dBuV 0.164 9.80 13.76 23.56 0.164 9.80 22.49 32.29 0.200 9.80 13.99 23.79 0.200 9.80 21.00 30.80 0.334 9.80 25.40 35.20 0.334 9.80 27.37 37.17 1.426 9.81 12.66 22.47 1.426 9.81 15.64 25.45 3.618 9.84 13.25 23.09 3.618 9.84 16.81 26.65 5.045 9.85 7.68 17.53	MHz dB dBuV dBuV dBuV 0.164 9.80 13.76 23.56 55.24 0.164 9.80 22.49 32.29 65.24 0.200 9.80 13.99 23.79 53.62 0.200 9.80 21.00 30.80 63.62 0.334 9.80 25.40 35.20 49.35 0.334 9.80 27.37 37.17 59.35 1.426 9.81 12.66 22.47 46.00 1.426 9.81 15.64 25.45 56.00 3.618 9.84 13.25 23.09 46.00 3.618 9.84 16.81 26.65 56.00 5.045 9.85 7.68 17.53 50.00	MHz dB dBuV dB

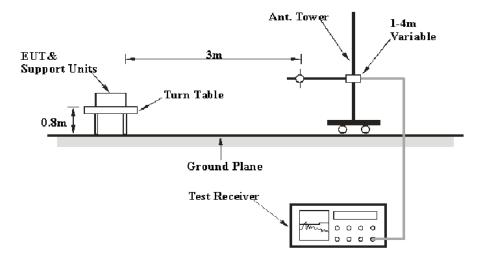
Report No.: SZNS220311-08472E-RFA

AC 120V/60 Hz, Neutral

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.166	9.80	13.13	22.93	55.15	-32.22	Average
2	0.166	9.80	23.19	32.99	65.15	-32.16	QP
3	0.217	9.80	6.96	16.76	52.91	-36.15	Average
4	0.217	9.80	17.49	27.29	62.91	-35.62	QP
5	0.333	9.80	17.28	27.08	49.38	-22.30	Average
6	0.333	9.80	23.15	32.95	59.38	-26.43	QP
7	1.883	9.82	15.66	25.48	46.00	-20.52	Average
8	1.883	9.82	20.13	29.95	56.00	-26.05	QP
9	3.707	9.84	19.37	29.21	46.00	-16.79	Average
10	3.707	9.84	24.57	34.41	56.00	-21.59	QP
11	5.211	9.90	9.02	18.92	50.00	-31.08	Average
12	5.211	9.90	16.45	26.35	60.00	-33.65	QP

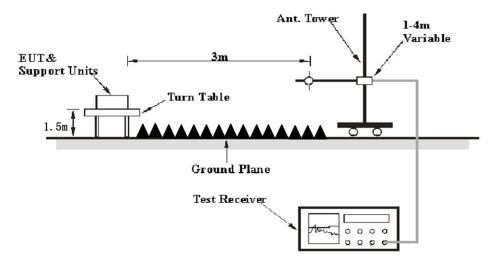
FCC §15.205, §15.209 & §15.247(d) & RSS-247§ 5.5 – RADIATED EMISSIONS

Applicable Standard


FCC §15.205; §15.209; §15.247(d) and RSS-247 §5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Report No.: SZNS220311-08472E-RFA


EUT Setup

Below 1 GHz:

Report No.: SZNS220311-08472E-RFA

Above 1GHz:

The radiated emission tests were performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, FCC 15.247 limits and RSS-247/RSS-Gen limits.

EMI Test Receiver & Spectrum Analyzer Setup

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	PK
Above I GHZ	1 MHz	10 Hz	/	Average

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

Corrected Factor & Margin Calculation

The Corrected Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Report No.: SZNS220311-08472E-RFA

Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

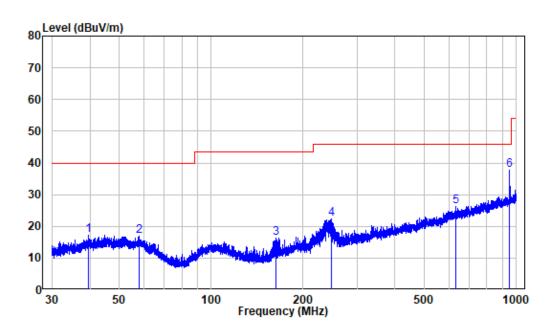
The "Over Limit/Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for Over Limit/margin calculation is as follows:

Over Limit = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

Test Data

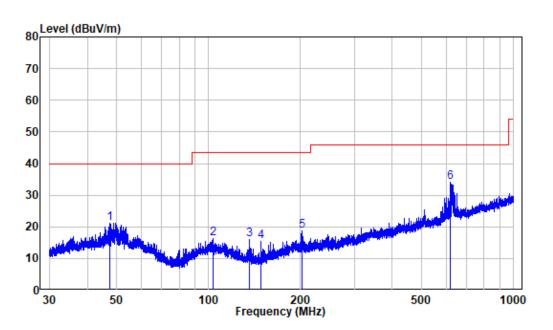
Environmental Conditions

Temperature:	25~26 ℃
Relative Humidity:	51~65 %
ATM Pressure:	101.0~101.2 kPa


The testing was performed by Nick Fang on 2022-04-22 for below 1GHz, on 2022-04-13 and 2022-04-22 for above 1GHz.

EUT operation mode: Transmitting (Pre-scan in the X,Y and Z axes of orientation, the worst case Y-axis of orientation was recorded)

Version 30: 2021-11-09 Page 22 of 45 FCC&RSS-FHSS


30MHz-1GHz: (worst case for Low channel)

Horizontal:

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	39.541	-10.45	27.61	17.16	40.00	-22.84	Peak
2	57.974	-9.90	26.85	16.95	40.00	-23.05	Peak
3	162.825	-14.29	30.61	16.32	43.50	-27.18	Peak
4	248.008	-10.68	32.93	22.25	46.00	-23.75	Peak
5	634.185	-2.01	28.14	26.13	46.00	-19.87	Peak
6	952.094	2.07	35.69	37.76	46.00	-8.24	Peak

Vertical

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	47.471	-10.00	31.23	21.23	40.00	-18.77	Peak
2	103.306	-11.68	27.92	16.24	43.50	-27.26	Peak
3	136.281	-15.11	30.99	15.88	43.50	-27.62	Peak
4	148.376	-15.36	30.80	15.44	43.50	-28.06	Peak
5	202.455	-11.62	30.24	18.62	43.50	-24.88	Peak
6	621.254	-2.48	36.59	34.11	46.00	-11.89	Peak

Above 1GHz:

	Re	eceiver		Rx An	itenna	Corrected	Corrected		Margin (dB)
Frequency (MHz)	Reading (dBµV)	PK/QP/AV	Turntable Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	
			L	ow Cha	nnel				
2310	70.91	PK	306	2.2	Н	-7.24	63.67	74	-10.33
2310	58.99	AV	306	2.2	Н	-7.24	51.75	54	-2.25
2310	71.62	PK	107	1.8	V	-7.24	64.38	74	-9.62
2310	60.12	AV	107	1.8	V	-7.24	52.88	54	-1.12
2390	71.43	PK	78	2.3	Н	-7.22	64.21	74	-9.79
2390	58.16	AV	78	2.3	Н	-7.22	50.94	54	-3.06
2390	71.81	PK	265	2	V	-7.22	64.59	74	-9.41
2390	59.37	AV	265	2	V	-7.22	52.15	54	-1.85
1202.54	71.96	PK	216	1.7	Н	-10.24	61.72	74	-12.28
1202.54	61.87	AV	216	1.7	Н	-10.24	51.63	54	-2.37
1202.54	70.01	PK	90	1.3	V	-10.24	59.77	74	-14.23
1202.54	57.81	AV	90	1.3	V	-10.24	47.57	54	-6.43
2309.04	68.27	PK	345	2.5	Н	-7.24	61.03	74	-12.97
2309.04	53.04	AV	345	2.5	Н	-7.24	45.80	54	-8.20
2309.04	67.96	PK	182	1.5	V	-7.24	60.72	74	-13.28
2309.04	52.83	AV	182	1.5	V	-7.24	45.59	54	-8.41
4810	55.90	PK	294	1.5	Н	-3.52	52.38	74	-21.62
4810	43.64	AV	294	1.5	Н	-3.52	40.12	54	-13.88
4810	55.21	PK	47	2.4	V	-3.52	51.69	74	-22.31
4810	42.04	AV	47	2.4	V	-3.52	38.52	54	-15.48
			Mi	iddle Ch	annel				
4878	55.58	PK	36	1.2	Н	-3.39	52.19	74	-21.81
4878	40.60	AV	36	1.2	Н	-3.39	37.21	54	-16.79
4878	55.21	PK	20	2.1	V	-3.39	51.82	74	-22.18
4878	40.64	AV	20	2.1	V	-3.39	37.25	54	-16.75
1219.25	67.03	PK	152	1.1	Н	-10.20	56.83	74	-17.17
1219.25	52.45	AV	152	1.1	Н	-10.20	42.25	54	-11.75
1219.25	66.51	PK	289	1.9	V	-10.20	56.31	74	-17.69
1219.25	51.28	AV	289	1.9	V	-10.20	41.08	54	-12.92
2298.80	68.13	PK	83	2.4	Н	-7.25	60.88	74	-13.12
2298.80	52.68	AV	83	2.4	Н	-7.25	45.43	54	-8.57
2298.80	68.39	PK	186	1.8	V	-7.25	61.14	74	-12.86
2298.80	52.81	AV	186	1.8	V	-7.25	45.56	54	-8.44

Report No.: SZNS220311-08472E-RFA

Reading

(dBµV)

68.74

54.94

68.68

54.72

68.80

55.49

68.88

55.96

66.25

52.10

66.20

51.19

67.75

52.56

67.47

53.23

53.22

39.44

53.82

39.85

Frequency

(MHz)

2483.5

2483.5

2483.5

2483.5

2500

2500

2500

2500

1237.38

1237.38

1237.38 1237.38

2241

2241

2241

2241

4950

4950

4950

4950

Receiver

PK/QP/AV

PK

ΑV

PK

ΑV

PK

ΑV

PK

ΑV

PK

ΑV

PK

AV

PK

ΑV

PK

ΑV

PK

ΑV

PK

ΑV

Turntable

Degree

156

156

360

360

318

318

7

7

273

273

73

73

277

277

137

137

163

163

185

185

1.7

1.7

1.7

1.7

1.8

1.8

2

2

Η

Η

V

V

Η

Η

V

-7.21

-7.21

-7.21

-7.21

-3.04

-3.04

-3.04

-3.04

60.54

45.35

60.26

46.02

50.18

36.40

50.78

36.81

74

54

74

54

74

54

74

54

-13.46

-8.65

-13.74

-7.98

-23.82

-17.60

-23.22

-17.19

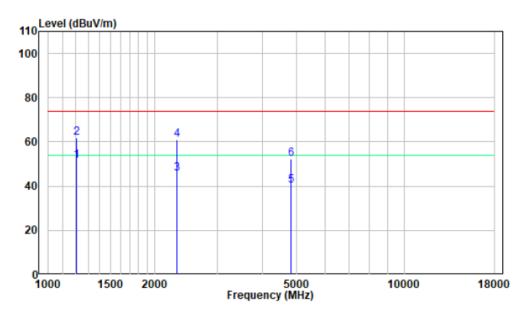
Report No.: SZNS220311-08472E-RFA									
Rx An	itenna	Corrected	Corrected	T,	3.6				
Height (m)	Polar (H/V)	Factor (dB/m) Amplitude (dBµV/m)		(dBµV/m)	Margin (dB)				
igh Cha	nnel								
2.3	Н	-7.20	61.54	74	-12.46				
2.3	Н	-7.20	47.74	54	-6.26				
2.1	V	-7.20	61.48	74	-12.52				
2.1	V	-7.20	47.52	54	-6.48				
2	Н	-7.18	61.62	74	-12.38				
2	Н	-7.18	48.31	54	-5.69				
2.3	V	-7.18	61.7	74	-12.30				
2.3	V	-7.18	48.78	54	-5.22				
2.4	Н	-10.15	56.10	74	-17.90				
2.4	Н	-10.15	41.95	54	-12.05				
1.2	V	-10.15	56.05	74	-17.95				
1.2	V	-10.15	41.04	54	-12.96				
	Height (m) igh Cha 2.3 2.3 2.1 2.1 2 2 2.3 2.3 2.4 2.4 1.2	(m) (H/V) igh Channel 2.3 H 2.3 H 2.1 V 2.1 V 2 H 2 H 2.3 V 2.3 V 2.4 H 2.4 H 1.2 V	Rx Antenna Corrected Factor (dB/m) igh Channel 2.3 H -7.20 2.1 V -7.20 2.1 V -7.20 2.1 V -7.20 2 H -7.18 2 H -7.18 2.3 V -7.18 2.3 V -7.18 2.4 H -10.15 2.4 H -10.15 1.2 V -10.15	Rx Antenna (m) Corrected (H/V) Corrected (dB/m) Corrected (dBμV/m) 2.3 H -7.20 61.54 2.3 H -7.20 47.74 2.1 V -7.20 61.48 2.1 V -7.20 47.52 2 H -7.18 61.62 2 H -7.18 48.31 2.3 V -7.18 48.78 2.4 H -10.15 56.10 2.4 H -10.15 41.95 1.2 V -10.15 56.05	Rx Antenna (m) Corrected (H/V) Corrected (dB/m) Corrected Amplitude (dBμV/m) Limit (dBμV/m) igh Channel 2.3 H -7.20 61.54 74 2.3 H -7.20 47.74 54 2.1 V -7.20 61.48 74 2.1 V -7.20 47.52 54 2 H -7.18 61.62 74 2.3 V -7.18 48.31 54 2.3 V -7.18 48.78 54 2.4 H -10.15 56.10 74 2.4 H -10.15 56.05 74				

Note:

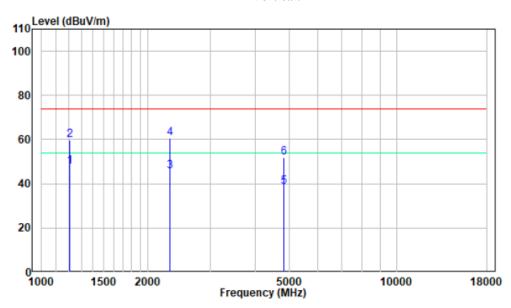
 $Corrected\ Factor = Antenna\ factor\ (RX) + Cable\ Loss - Amplifier\ Factor$

Corrected Amplitude = Corrected Factor + Reading

Margin = Corrected. Amplitude – Limit


The other spurious emission is in the noise floor level was not recorded.

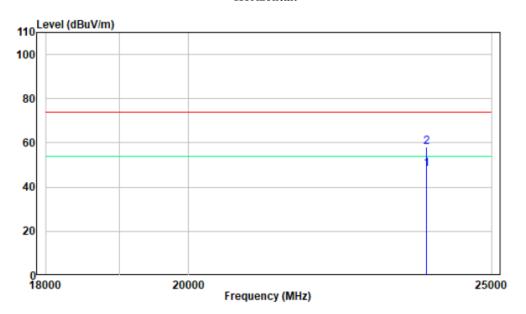
1-18GHz


Pre-scan for

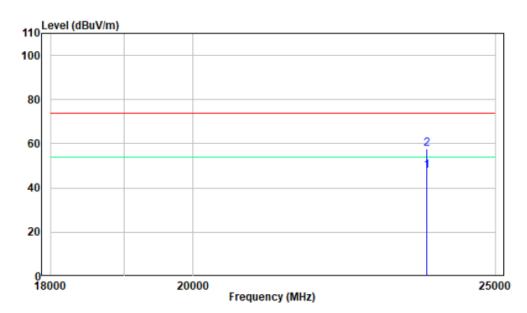
Low Channel

Horizontal:

Vertical:



18-25GHz

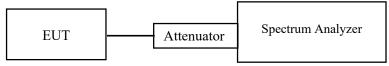

Pre-scan for

Low Channel

Horizontal:

Vertical:

FCC §15.247(a) (1) & RSS-247 § 5.1 (b)-CHANNEL SEPARATION TEST


Report No.: SZNS220311-08472E-RFA

Applicable Standard

Frequency hopping systems (FHSs) shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Test Procedure

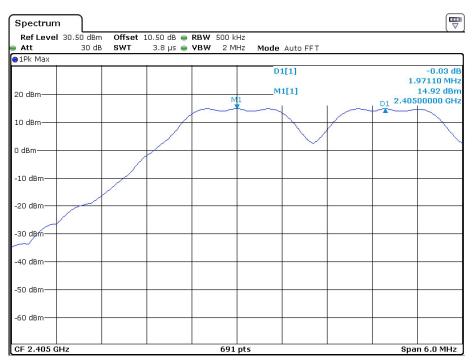
- 1. Set the EUT in transmitting mode, maxhold the channel and in Operating mode, RBW was set at 500 kHz, VBW ≥ RBW max-hold the channel.
- 2. Set the adjacent channel of the EUT and maxhold another trace.
- 3. Measure the channel separation.

Test Data

Environmental Conditions

Temperature:	25.8 °C
Relative Humidity:	57 %
ATM Pressure:	101.3 kPa

The testing was performed by Ting Lü on 2022-04-20.


EUT operation mode: Transmitting (Worst case)

Test Result: Compliant.

Note: According to frequency table at page 6 and inverstigating the hopping channel test at page 37, the minimum channel separation is the worst case which was recorded as below:

Channel	Channel Separation (MHz)	20 dBc BW (MHz)	Two-thirds of the 20 dB bandwidth (MHz)	Channel Separation Limit
Hopping	1.971	1.731	1.154	> two-thirds of the 20 dB bandwidth

Please refer to the below plots:

Date: 20.APR.2022 16:35:39

FCC §15.247(a) (1) & RSS-GEN § 6.7 & RSS-247 § 5.1 (a)–99% OCCUPIED BANDWIDTH & 20 dB EMISSION BANDWIDTH

Report No.: SZNS220311-08472E-RFA

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

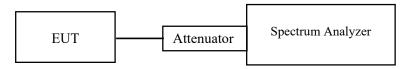
The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

In some cases, the "20 dB bandwidth" is required, which is defined as the frequency range between two points, one at the lowest frequency below and one at the highest frequency above the carrier frequency, at which the maximum power level of the transmitted emission is attenuated 20 dB below the maximum inband power level of the modulated signal, where the two points are on the outskirts of the in-band emission.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

The following conditions shall be observed for measuring the occupied bandwidth and 20 dB bandwidth:


- The transmitter shall be operated at its maximum carrier power measured under normal test conditions.
- The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.
- The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / 20 dB bandwidth if the device is not transmitting continuously.
- \bullet The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / 20 dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Version 30: 2021-11-09 Page 31 of 45 FCC&RSS-FHSS

Report No.: SZNS220311-08472E-RFA

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

Test Data

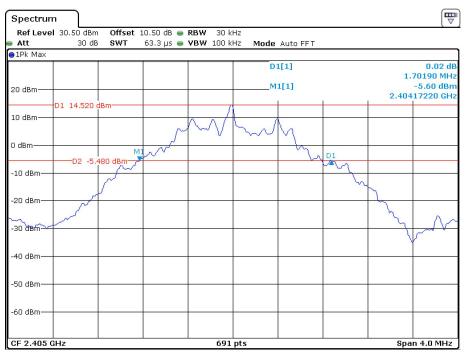
Environmental Conditions

Temperature:	25.8 ℃
Relative Humidity:	57 %
ATM Pressure:	101.3 kPa

The testing was performed by Ting Lü on 2022-04-20 and 2022-04-21.

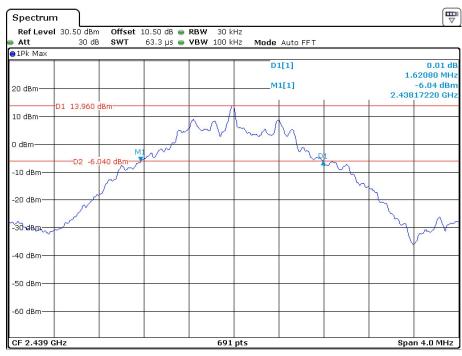
EUT operation mode: Transmitting

Test Result: Compliant.


Channel	Frequency (MHz)	20 dB Emission Bandwidth (MHz)	99% Emission Bandwidth (MHz)
Low	2405	1.702	1.847
Middle	2439	1.621	1.835
High	2475	1.731	1.812

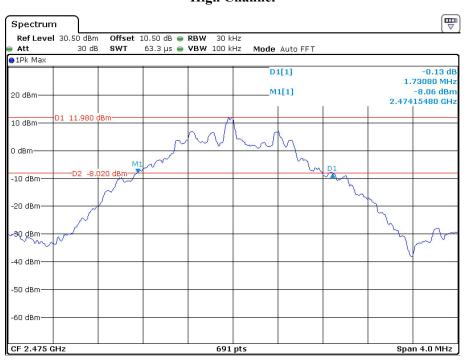
Please refer to the below plots:

Report No.: SZNS220311-08472E-RFA


20 dB Emission Bandwidth

Low Channel

Date: 20.APR.2022 12:22:46


Middle Channel

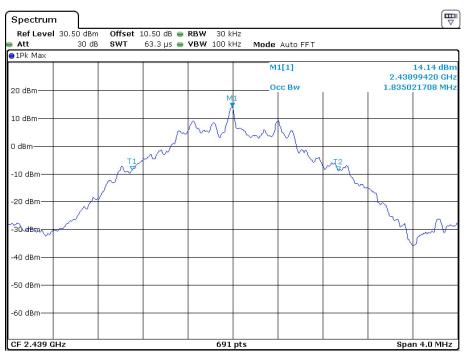
Date: 20.APR.2022 12:22:17

High Channel

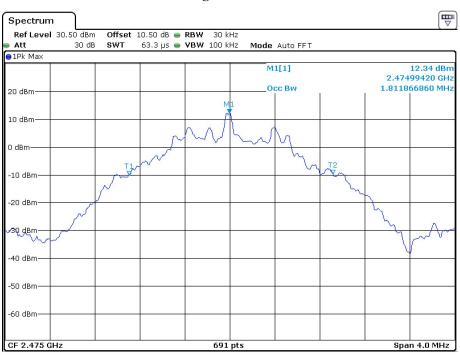

Report No.: SZNS220311-08472E-RFA

Date: 20.APR.2022 12:21:20

99% Emission Bandwidth


Low Channel

Date: 21.APR.2022 12:54:42


Middle Channel

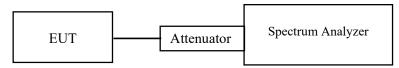
Report No.: SZNS220311-08472E-RFA

Date: 21.APR.2022 12:54:25

High Channel

Date: 21.APR.2022 12:54:07

FCC §15.247(a) (1) (iii) & RSS-247 § 5.1 (d)-QUANTITY OF HOPPING CHANNEL TEST


Applicable Standard

Frequency hopping systems (FHSs) in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Report No.: SZNS220311-08472E-RFA

Test Procedure

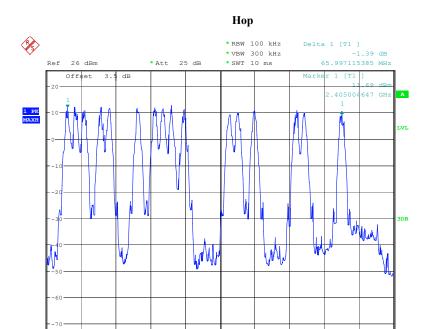
- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.

Test Data

Environmental Conditions

Temperature:	25.8 ℃
Relative Humidity:	57 %
ATM Pressure:	101.3 kPa

The testing was performed by Ting Lü on 2022-06-02.


EUT operation mode: Transmitting

Test Result: Compliant.

Frequency Range	Number of Hopping Channel	Limit
(MHz)	(CH)	(CH)
2400-2483.5	16	≥15

Version 30: 2021-11-09 Page 36 of 45 FCC&RSS-FHSS

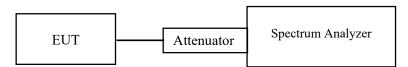
Stop 2.4835 GHz

8.35 MHz/

Date: 2.JUN.2022 15:39:31

Start 2.4 GHz

FCC §15.247(a) (1) (iii) & RSS-247 § 5.1 (d) - TIME OF OCCUPANCY (DWELL TIME)


Applicable Standard

Frequency hopping systems (FHSs) in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Report No.: SZNS220311-08472E-RFA

Test Procedure

- 1. The EUT was worked in channel hopping.
- 2. Set the RBW to: 1MHz.
- 3. Set the VBW \geq 3×RBW.
- 4. Set the span to 0Hz.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Recorded the time of single pulses

Test Data

Environmental Conditions

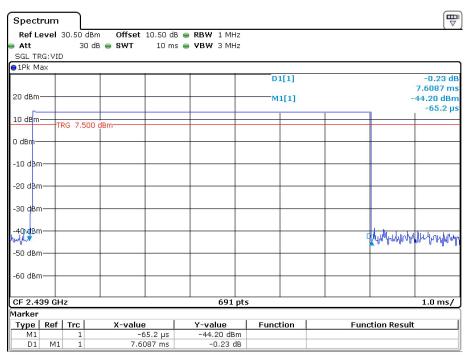
Temperature:	25.8 ℃
Relative Humidity:	57 %
ATM Pressure:	101.3 kPa

The testing was performed by Ting Lü on 2022-05-07.

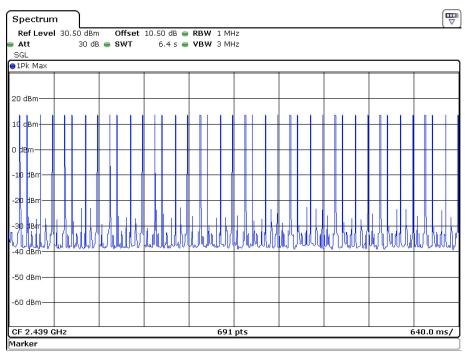
EUT operation mode: Transmitting

Test Result: Compliant.

Channel	Pulse Time [ms]	Total Hops [Num]	Result [s]	Limit [s]	Verdict
Нор	7.609	40	0.304	<=0.4	PASS


Note 1: A period time=0.4*16=6.4S, Result= Pulse Time *Total hops

Note 2: Total hops=Hopping Number in 6.4s


Note 3: Hopping Number in 6.4s=Total of highest signals in 6.4s (Second high signals were other channel)

Version 30: 2021-11-09 Page 38 of 45 FCC&RSS-FHSS

Hop

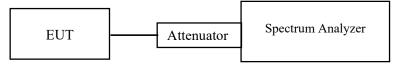
Date: 7.MAY.2022 18:33:14

Date: 7.MAY.2022 18:36:34

FCC §15.247(b) (1) & RSS-247§ 5.1(b) &§ 5.4(b) - PEAK OUTPUT POWER MEASUREMENT

Report No.: SZNS220311-08472E-RFA

Applicable Standard


According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

For frequency hopping systems (FHSs) operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channels. The e.i.r.p. shall not exceed 4 W (see Section 5.4(e) for exceptions).

Frequency hopping systems (FHSs) shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the -20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSs operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two thirds of the -20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W.

Test Procedure

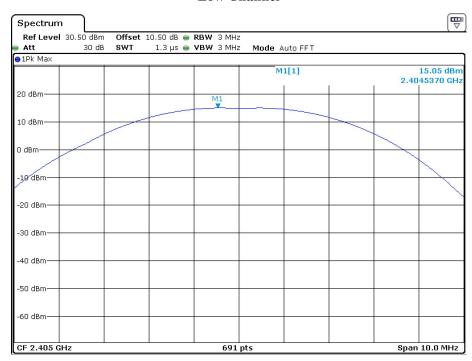
- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	25.8 ℃
Relative Humidity:	57 %
ATM Pressure:	101.3 kPa

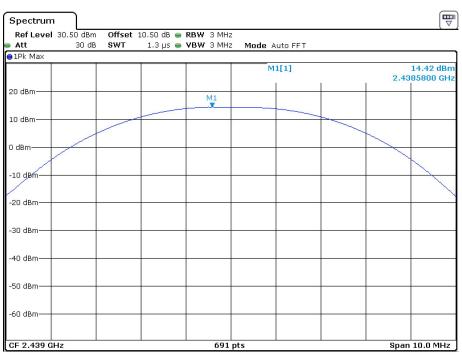
The testing was performed by Ting Lü on 2022-04-20.


EUT operation mode: Transmitting

Test Result: Compliant.

Channel	Frequency (MHz)	Conducted Peak Output Power (dBm)	Limit (dBm)
Low	2405	15.05	21
Middle	2439	14.42	21
High	2475	12.59	21

Note: the antenna gain is 0dBi, the maximum EIRP=15.05dBm+0dBi=15.05dBm<36dBm, so it's compliance with EIRP limit of ISEDC.


Low Channel

Date: 20.APR.2022 12:19:23

Middle Channel

Report No.: SZNS220311-08472E-RFA

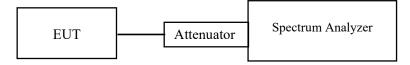
Date: 20.APR.2022 12:20:03

High Channel

Date: 20.APR.2022 12:20:16

FCC §15.247(d) & RSS-247 § 5.5 - BAND EDGES TESTING

Applicable Standard


According to FCC §15.247(d) & RSS-247 § 5.5.

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)) & RSS-Gen.

Report No.: SZNS220311-08472E-RFA

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

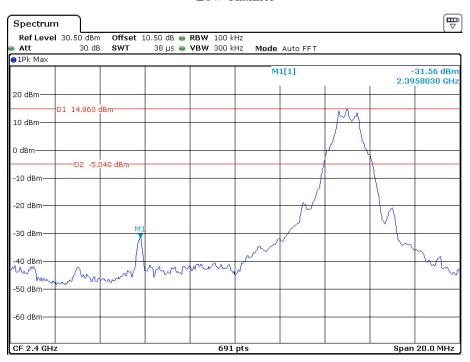
Test Data

Environmental Conditions

Temperature:	25.8 ℃
Relative Humidity:	57 %
ATM Pressure:	101.3 kPa

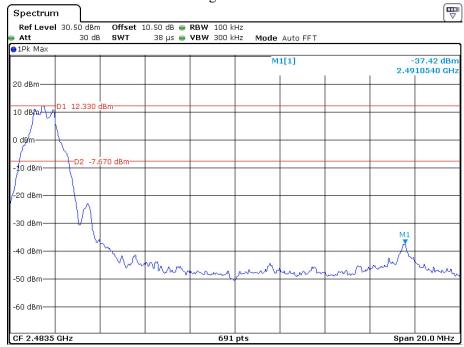
The testing was performed by Ting Lü on 2022-04-20 and 2022-05-07.

EUT operation mode: Transmitting

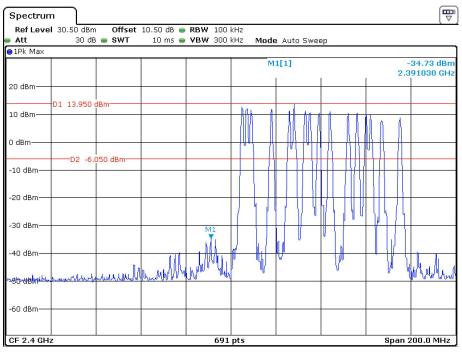

Test Result: Compliant.

Version 30: 2021-11-09 Page 43 of 45 FCC&RSS-FHSS

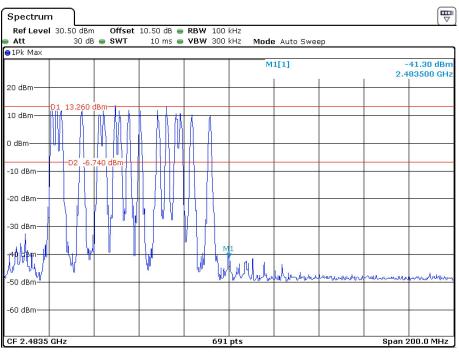
Report No.: SZNS220311-08472E-RFA


Conducted Band Edge Result:

Low Channel


Date: 20.APR.2022 12:23:58

High Channel


Date: 20.APR.2022 12:24:36

Hop_Low Channel

Date: 7.MAY.2022 18:41:20

Hop_High Channel

Date: 7.MAY.2022 18:42:45

***** END OF REPORT *****