FCC REPORT

Applicant: Azumi S.A

Address of Applicant: Avenida Aquilino de la Guardia con Calle 47, PH Ocean Plaza,

Piso 16 of. 16-01, Marbella, Ciudad de Panama, Panama

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: SA3

Trade mark: AZUMI

FCC ID: QRP-FP-008

Applicable standards: FCC CFR Title 47 Part 15 Subpart B

Date of sample receipt: 02Jul., 2019

Date of Test: 03 Jul., to 02 Aug., 2019

Date of report issued: 12 Aug., 2019

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Version

Version No.	Date	Description	
00	05 Aug., 2019 Original		
01	12 Aug., 2019	Update Page 13, 14	

Test Engineer Tested by: Date: 12 Aug., 2019

Winner thang Date: Reviewed by: 12 Aug., 2019

Project Engineer

3 Contents

			Page
1	C	OVER PAGE	1
2	V	ERSION	2
3	C	ONTENTS	3
4	T!	EST SUMMARY	4
5		ENERAL INFORMATION	
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST MODE	
	5.4	Measurement Uncertainty	
	5.5	DESCRIPTION OF SUPPORT UNITS	
	5.6	RELATED SUBMITTAL(S) / GRANT (S)	
	5.7	DESCRIPTION OF CABLE USED	
	5.8	LABORATORY FACILITY	6
	5.9	LABORATORY LOCATION	6
	5.10	TEST INSTRUMENTS LIST	7
6	T	EST RESULTS AND MEASUREMENT DATA	8
	6.1	CONDUCTED EMISSION	8
	6.2	RADIATED EMISSION	11
7	TI	EST SETUP PHOTO	17
Ω	E	LIT CONSTRUCTIONAL DETAILS	10

4 Test Summary

Test Item	Section in CFR 47	Result
Conducted Emission	Part 15.107	Pass
Radiated Emission	Part 15.109	Pass

Remark:

Pass: The EUT complies with the essential requirements in the standard.

N/A: The EUT not applicable of the test item.

5 General Information

5.1 Client Information

Applicant:	Azumi S.A
Address:	Avenida Aquilino de la Guardia con Calle 47, PH Ocean Plaza, Piso 16 of. 16-01, Marbella, Ciudad de Panama, Panama
Manufacturer:	AZUMI HK LTD
Address:	FLAT/RM 18 BLK 1 14/F GOLDEN INDUSTRIAL BUILDING 16-26 KWAI TAK STREET KWAI CHUNG, HK

5.2 General Description of E.U.T.

Product Name:	Mobile Phone
Model No.:	SA3
Power supply:	Rechargeable Li-ion Battery DC3.7V-800mAh
AC adapter :	Model: PA-5V550mA-012 Input: AC100-240V, 50/60Hz,150mA Output: DC 5.0V, 550mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

5.3 Test Mode

Operating mode	Detail description
PC mode	Keep the EUT in Downloading mode(Worst case)
Charging+Recording mode	Keep the EUT in Charging+Recording mode
Charging+Playing mode	Keep the EUT in Charging+Playing mode
FM mode	Keep the EUT in FM receiver mode

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.38 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 2311 8282 Fax: +86 (0) 755 2311 6366

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745	N/A	DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC
LENOVO	Laptop	SL510	2847A65	DoC

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Description of Cable Used

Cable Type	Description	Length	From	То
Detached USB Cable	Shielding	1.0m	EUT	PC

5.8 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

● ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.9 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

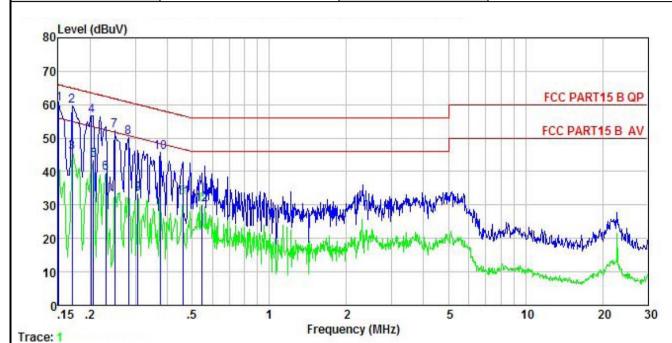
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 2311 8282 Fax: +86 (0) 755 2311 6366

5.10 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919	b
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019
Cable	HP	10503A	N/A	03-18-2019	03-17-2020
EMI Test Software	AUDIX	E3	Version: 6.110919b		b

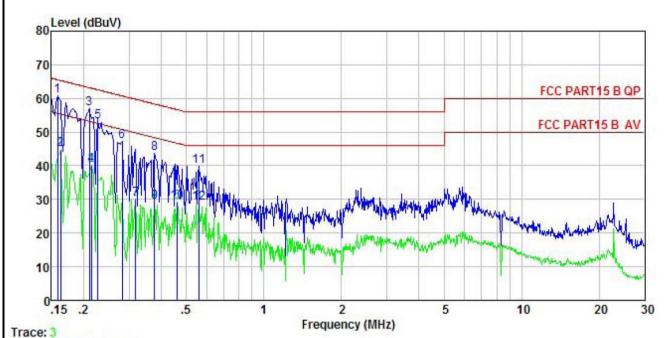
6 Test results and Measurement Data


6.1 Conducted Emission

Test Requirement:	FCC Part 15 B Section 15.107			
Test Method:	ANSI C63.4:2014			
Test Frequency Range:	150kHz to 30MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz			
Limit:	Frequency range (MHz)	Limi	it (dBµV)	
		Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	0.5-30 * Decreases with the logarith	60	50	
Test setup:	Reference Plan	, ,		
Took was as divise	LISN 40cm 80cm Filter AC power Equipment Equipment Test table/Insulation plane Remark: EU T Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m			
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 			
Test environment:	Temp.: 22.5 °C Humid.: 55% Press.: 101kPa			
Test Instruments:	Refer to section 5.10 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Pass			
	1			

Measurement data:

Product name:	Mobile Phone	Product model:	SA3
Test by:	Yaro	Test mode:	PC mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	₫B	₫B	dBu₹	dBu∀	₫₿	
1	0.151	49.88	-0.45	10.78	60.21	65.96	-5.75	QP
2	0.170	49.27	-0.43	10.77	59.61	64.94	-5.33	QP
1 2 3 4 5 6 7 8 9	0.170	35.28	-0.43	10.77	45.62	54.94	-9.32	Average
4	0.202	46.45	-0.41	10.76	56.80	63.54	-6.74	QP
5	0.206	33.08	-0.41	10.76	43.43	53.36	-9.93	Average
6	0.230	29.31	-0.40	10.75	39.66	52.44	-12.78	Average
7	0.249	41.90	-0.40	10.75	52.25	61.78	-9.53	QP
8	0.282	39.89	-0.39	10.74	50.24	60.76	-10.52	QP
9	0.307	23.03	-0.39	10.74	33.38	50.06	-16.68	Average
10	0.377	35.37	-0.37	10.72	45.72	58.34	-12.62	QP
11	0.459	21.89	-0.38	10.74	32.25	46.71	-14.46	Average
12	0.546	19.74	-0.39	10.76	30.11	46.00	-15.89	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	Mobile Phone	Product model:	SA3
Test by:	Yaro	Test mode:	PC mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

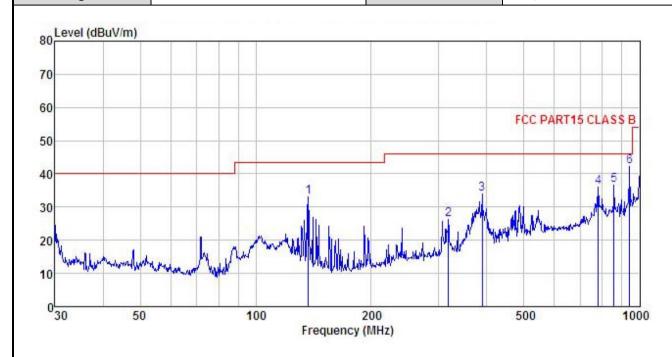
	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	₫BuV	₫B	₫B	dBu∀	dBu∀	<u>dB</u>	
1	0.158	50.64	-0.68	10.77	60.73	65.56	-4.83	QP
2	0.162	34.85	-0.68	10.77	44.94	55.34	-10.40	Average
3	0.211	46.92	-0.68	10.76	57.00	63.18	-6.18	QP
1 2 3 4 5 6 7 8 9	0.214	30.14	-0.68	10.76	40.22	53.05	-12.83	Average
5	0.227	43.12	-0.67	10.75	53.20	62.57	-9.37	QP
6	0.282	37.18	-0.64	10.74	47.28	60.76	-13.48	QP
7	0.318	20.13	-0.63	10.74	30.24	49.75	-19.51	Average
8	0.377	33.61	-0.64	10.72	43.69	58.34	-14.65	QP
9	0.377	19.25	-0.64	10.72	29.33	48.34	-19.01	Average
10	0.461	19.01	-0.65	10.74	29.10	46.67	-17.57	Average
11	0.558	29.87	-0.65	10.76	39.98	56.00	-16.02	QP
12	0.558	18.69	-0.65	10.76	28.80	46.00	-17.20	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.2 Radiated Emission

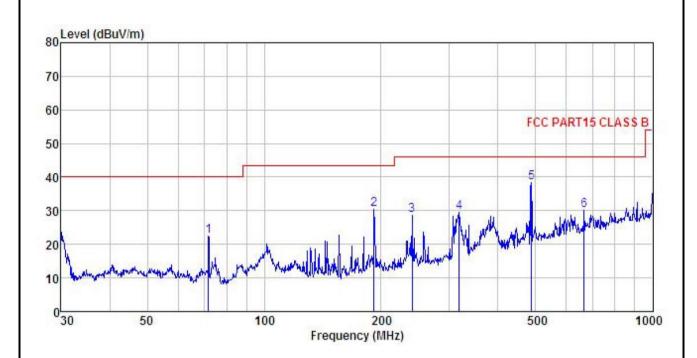
Test Requirement:	FCC Part 15 B Section 15.109							
Test Method:	ANSI C63.4:2014							
Test Frequency Range:	30MHz to 6000M							
, , ,			(0	-: A l:-	Ob 2 b 2	`		
Test site:	Measurement Dis							
Receiver setup:	Frequency 30MHz-1GHz	Detecto Quasi-pe		RBW	VBW	Remark		
	30IVITZ-1GTZ		120kHz 1MHz	300kHz 3MHz	Z Quasi-peak Value Peak Value			
	Above 1GHz	Peak RMS		1MHz	3MHz	Average Value		
Limit:	Frequenc			nit (dBuV/m		Remark		
Ellint.	30MHz-88N			40.0	<i>-</i>	Quasi-peak Value		
	88MHz-216I			43.5		Quasi-peak Value		
				46.0				
	960MHz-10	SHz		54.0		Quasi-peak Value		
	Above 1G	⊔ ₇		54.0		Average Value		
	Above 1GHz 74.0					Peak Value		
Test setup:	216MHz-960MHz 46.0 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value Above 1GHz 54.0 Average Value							


Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 							
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.							
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.							
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.							
Test environment:	Temp.:	24 °C	Humid.:	57%	Press.:	1 01kPa		
Test Instruments:	Refer to se	ection 5.10 fo	r details					
Test mode:	Refer to se	ection 5.3 for	details					
Test results:	Passed							
Remark:	All of the observed value above 6GHz ware the niose floor , which were no recorded							

Measurement Data:

Below 1GHz:

Product Name:	Mobile Phone	Product Model:	SA3
Test By:	Yaro	Test mode:	PC mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


				Cable Preamp Lin					S25 270
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∀			<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>db</u>	
1	136.939	50.41	9.69	2.36	29.29	33.17	43.50	-10.33	QP
1 2 3 4 5 6	317.701	37.76	13.98	3.00	28.49	26.25	46.00	-19.75	QP
3	389.355	44.36	15.15	3.08	28.73	33.86	46.00	-12.14	QP
4	779.607	38.71	21.16	4.35	28.31	35.91	46.00	-10.09	QP
5	857.025	37.82	22.59	4.12	27.99	36.54	46.00	-9.46	QP
6	942.131	43.07	22.67	4.13	27.75	42.12	46.00	-3.88	QP

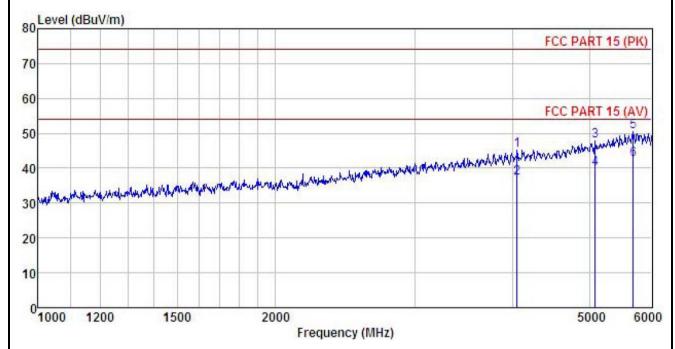
Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Mobile Phone	Product Model:	SA3
Test By:	Yaro	Test mode:	PC mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq				Cable Preamp Limit Ove Loss Factor Level Line Lim:				
2	MHz	dBu∀			<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	71.832	42.26	8.24	1.56	29.71	22.35	40.00	-17.65	QP
1 2 3 4 5	191.745	46.24	10.35	2.81	28.89	30.51	43.50	-12.99	QP
3	239.987	42.00	12.30	2.82	28.59	28.53	46.00	-17.47	QP
4	317.701	41.16	13.98	3.00	28.49	29.65	46.00	-16.35	QP
5	487.315	45.99	17.79	3.51	28.93	38.36	46.00	-7.64	QP
6	665.804	34.91	19.93	3.96	28.74	30.06	46.00	-15.94	QP

Remark:


^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz:

Product Name:	Mobile Phone	Product Model:	SA3
Test By:	Yaro	Test mode:	PC mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%
	·		•

	Freq		Antenna Factor				Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>d</u> B/π	<u>ab</u>	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
1 2 3 4 5	4045.367 4045.367 5088.167 5088.167 5685.998 5685.998	48.38 40.38 48.71 40.62 49.62 41.63	30.31 30.31 31.62 31.62 32.64 32.64	6.18 6.18 7.00 7.00 7.55 7.55	41.91 41.91 41.89	45. 27 37. 27 47. 95 39. 86 50. 62 42. 63	54.00 74.00 54.00 74.00	-26.05 -14.14 -23.38	Average Peak Average

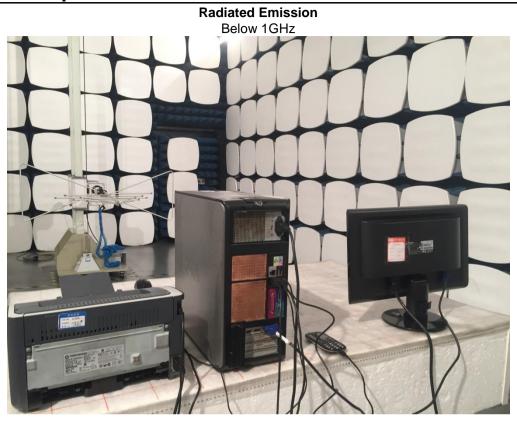
Remark:

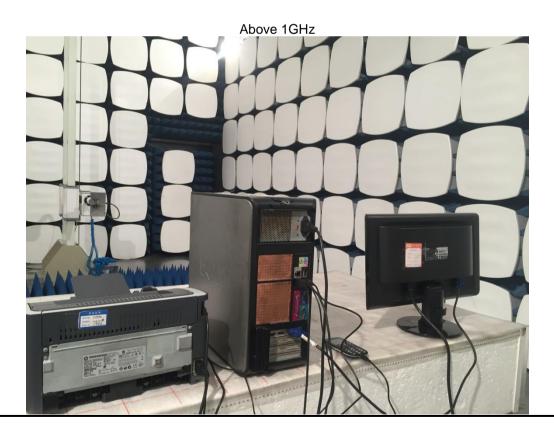
^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

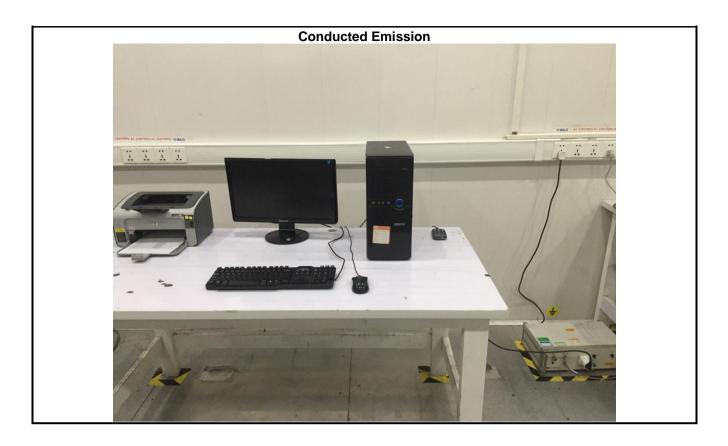
^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name: Mobile Phone Test By: Yaro			Product Model:		el:	SA3		
				Te	Test mode: Polarization: Environment:		PC mode	
Test Frequency:	~ 6 GHz	GHz		Horizontal				
Гest Voltage:	AC 120	AC 120/60Hz					Temp: 24℃	Huni: 57%
Level (dBuV/m)	e i							
80 Lever (dbdv/m)							FCC PART 15 (PK)	
70								
60							FCC	PART 15 (AV)
50							1	3 3 5
40						washaparand	manufatha	WAYING
30 Hall March Marc	and the second and	Manufacture and a stand	any today	hatty Jahrahadanha	WAR WAS A SING		1	
30 Marine Marine	and the same							
20								
10								
0 1000 1200	1500		2000					5000 600
1000 1200	1300			quency (Mi	łz)			3000 000
	ъ.		<i>a</i> 11	D.		T	^	
Fred		Antenna Factor	Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
MH ₂	: dBuV	dB/m	dB	ФÞ	dBuV/m	qpn//w	dВ	
1 4369.367			6.65				-28.61	
2 4369.367 3 5283.267		30.37 32.09	6.65 7.10	41.94	37.37 47.29		-16.63 -26.71	Average Peak
4 5283, 267	39.42	32.09	7.10	41.91	39.28	54.00	-14.72	Average
5 5819.996 6 5819.996			7.89 7.89	42.02 42.02	50.39 42.40		-23.61 -11.60	Peak Average
						~		

Remark:


^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.


^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.



7 Test Setup Photo

8 EUT Constructional Details

Reference to the test report No.: CCISE190700301

-----End of report-----