

COMOHAC E-Field Probe Calibration Report

Ref: ACR.262.14.14.SATU.A

SHENZHEN STS TEST SERVICES CO., LTD. 1/F, BUILDING 2, ZHUOKE SCIENCE PARK, CHONGQING ROAD FUYONG, BAO' AN DISTRICT, SHENZHEN, CHINA SATIMO COMOHAC E-FIELD PROBE

SERIAL NO.: SN 06/14 EPH42

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

09/01/2015

Summary:

This document presents the method and results from an accredited COMOHAC E-Field Probe calibration performed in SATIMO USA using the CALIBAIR test bench, for use with a SATIMO COMOHAC system only. All calibration results are traceable to national metrology institutions.

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	9/19/2014	Jes
Checked by:	Jérôme LUC	Product Manager	9/19/2014	Jes
Approved by:	Kim RUTKOWSKI	Quality Manager	9/19/2014	them thethowski

1	Customer Name
Distribution :	Shenzhen STS Test Services Co., Ltd.

Date	Modifications	
9/19/2014	Initial release	
	NAME OF THE PARTY	

TABLE OF CONTENTS

1	Devi	ce Under Test4	
2	Prod	uct Description4	
	2.1	General Information	4
3	Mea	surement Method4	
	3.1	Linearity	4
	3.2	Sensitivity	4
	3.3	Isotropy	5
	3.4	Probe Modulation Response	5
4	Mea	surement Uncertainty5	
5	Calil	oration Measurement Results5	
	5.1	Sensitivity in air	6
	5.2	Linearity	7
	5.3	Isotropy	7
6	List	of Equipment8	

1 DEVICE UNDER TEST

Device Under Test			
Device Type COMOHAC E FIELD PROBE			
Manufacturer	Satimo		
Model	SCE		
Serial Number	SN 06/14 EPH42		
Product Condition (new / used)	new		
Frequency Range of Probe	0.7GHz-2.5GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.214 MΩ		
	Dipole 2: R2=0.213 MΩ		
	Dipole 3: R3=0.204 MΩ		

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

Satimo's COMOHAC E field Probes are built in accordance to the ANSI C63.19 and IEEE 1309 standards.

Figure 1 – Satimo COMOHAC E field Probe

Probe Length	330 mm
Length of Individual Dipoles	3.3 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	5 mm
Distance between dipoles / probe extremity	3 mm

3 MEASUREMENT METHOD

All methods used to perform the measurements and calibrations comply with the ANSI C63.19 and IEEE 1309 standards.

3.1 LINEARITY

The linearity was determined using a standard dipole with the probe positioned 10 mm above the dipole. The input power of the dipole was adjusted from -15 to 36 dBm using a 1dB step (to cover the range 2V/m to 1000A/m).

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using the waveguide method outlined in the fore mentioned standards.

Page: 4/8

3.3 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps.

3.4 PROBE MODULATION RESPONSE

The modulation factor was determined by illuminating the probe with a reference wave from a standard dipole 10 mm away, applying first a CW signal and then a modulated signal (both at same power level). The modulation factor is the ratio, in linear units, of the CW to modulated signal reading.

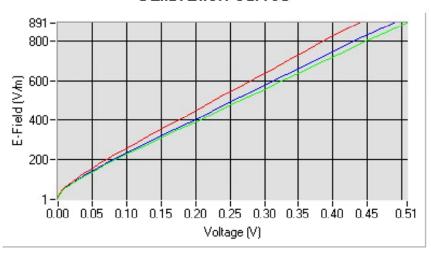
4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528 and IEC/CEI 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Reflected power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Field homogeneity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	Ĭ	1.732%
Combined standard uncertainty					4.509%
Expanded uncertainty 95 % confidence level k = 2					9.0%

5 CALIBRATION MEASUREMENT RESULTS

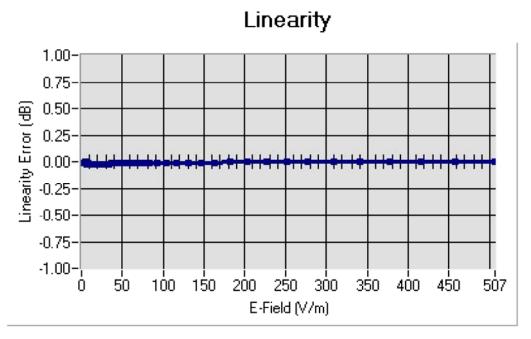
Calibration Parameters				
Lab Temperature	21 °C			
Lab Humidity	45 %			



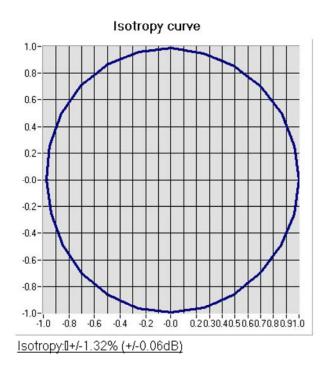
5.1 <u>SENSITIVITY IN AIR</u>

Normx dipole 1 $(\mu V/(V/m)^2)$	Normy dipole 2 $(\mu V/(V/m)^2)$	Normz dipole 3 $(\mu V/(V/m)^2)$
3.06	3.86	4.00

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
96	92	96


Calibration curves

Dipole 1
Dipole 2
Dipole 3



5.2 LINEARITY

Linearity: I+/-0.68% (+/-0.03dB)

5.3 ISOTROPY

Page: 7/8

6 LIST OF EQUIPMENT

Equipment Summary Sheet						
Equipment Description	1 Haentification No. 1					
HAC positioning ruler	Satimo	TABH12 SN 42/09	Validated. No cal required.	Validated. No cal required.		
COMOHAC Test Bench	Version 2	NA	Validated. No cal required.	Validated. No cal required.		
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2014	02/2017		
Reference Probe	Satimo	EPH28 SN 08/11	10/2014	10/2015		
Reference Probe	Satimo	HPH38 SN31/10	10/2014	10/2015		
Multimeter	Keithley 2000	1188656	12/2014	12/2017		
Signal Generator	Agilent E4438C	MY49070581	12/2014	12/2017		
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Power Meter	HP E4418A	US38261498	12/2014	12/2017		
Power Sensor	HP ECP-E26A	US37181460	12/2014	12/2017		
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.		
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.		
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.		
Temperature / Humidity Sensor	Control Company	11-661-9	8/2013	8/2016		

HAC Reference Dipole Calibration Report

Ref: ACR.262.17.14.SATU.A

SHENZHEN STS TEST SERVICES CO., LTD. 1/F, BUILDING 2, ZHUOKE SCIENCE PARK, CHONGQING ROAD

FUYONG, BAO' AN DISTRICT, SHENZHEN, CHINA SATIMO COMOHAC REFERENCE DIPOLE

FREQUENCY: 800-950MHZ SERIAL NO.: SN 13/14 DHA55

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

09/01/2015

Summary:

This document presents the method and results from an accredited HAC reference dipole calibration performed in SATIMO USA using the COMOHAC test bench. All calibration results are traceable to national metrology institutions.

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	9/19/2014	JES
Checked by:	Jérôme LUC	Product Manager	9/19/2014	JES
Approved by:	Kim RUTKOWSKI	Quality Manager	9/19/2014	thim Puthowski

E	Customer Name
Distribution :	Shenzhen STS Test Services Co., Ltd.

Date	Modifications	
9/19/2014	Initial release	
	NAME OF THE PARTY	

TABLE OF CONTENTS

1	Intro	oduction4	
2	Dev	ice Under TEst4	
3	Proc	duct Description4	
	3.1	General Information	4
4	Mea	surement Method	
	4.1	Return Loss Requirements	5
	4.2	Reference Dipole Calibration	5
5	Mea	surement Uncertainty5	
	5.1	Return Loss	5
	5.2	Validation Measurement	5
6	Cali	bration Measurement Results6	
	6.1	Return Loss	6
	6.2	Validation measurement	6
7	List	of Equipment	

1 INTRODUCTION

This document contains a summary of the requirements set forth by the ANSI C63.19 standard for reference dipoles used for HAC measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOHAC 800-950 MHz REFERENCE DIPOLE	
Manufacturer	Satimo	
Model	SIDB835	
Serial Number	SN 13/14 DHA55	
Product Condition (new / used)	New	

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOHAC Validation Dipoles are built in accordance to the ANSI C63.19 standard. The product is designed for use with the COMOHAC system only.

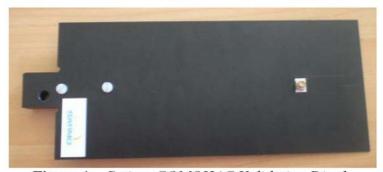


Figure 1 – Satimo COMOHAC Validation Dipole

4 MEASUREMENT METHOD

The ANSI C63.19 standard outlines the requirements for reference dipoles to be used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standard.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for HAC system validation measurements and checks must have a return loss of -10 dB or better. The return loss measurement shall be performed in free space.

4.2 <u>REFERENCE DIPOLE CALIBRATION</u>

The IEEE ANSI C63-19 standard states that the dipole used for validation measurements and checks must be scanned with the E and H field probe, with the dipole 10 mm below the probe. The E and H field strength plots are compared to the simulation results obtained by SATIMO.

5 MEASUREMENT UNCERTAINTY

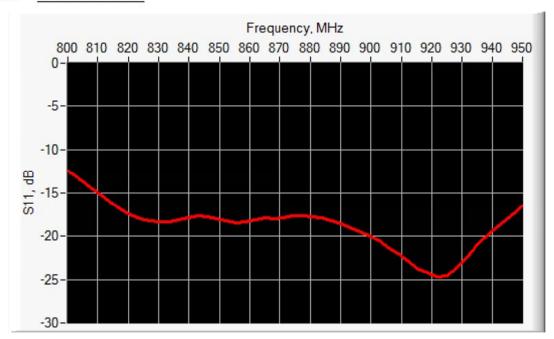
All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Gain
400-6000MHz	0.1 dB

5.2 VALIDATION MEASUREMENT


The guideline outlined in the IEEE ANSI C63.19 standard was followed to generate the measurement uncertainty for validation measurements.

Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	Uncertainty (dB)	Standard Uncertainty (%)
RF reflections	0.1	R	$\sqrt{3}$	0.06	
Field probe conv. Factor	0.4	R	$\sqrt{3}$	0.23	
Field probe anisotropy	0.25	R	$\sqrt{3}$	0.14	
Positioning accuracy	0.2	R	$\sqrt{3}$	0.12	
Probe cable placement	0.1	R	$\sqrt{3}$	0.06	
System repeatability	0.2	R	$\sqrt{3}$	0.12	
EUT repeatability	0.4	N	1	0.40	
Combined standard uncertainty				0.52	
Expanded uncertainty 95 % confidence level k = 2				1.00	13.0

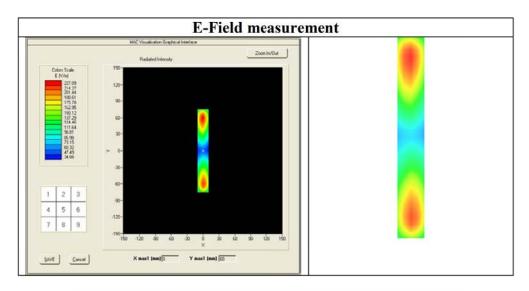
6 CALIBRATION MEASUREMENT RESULTS

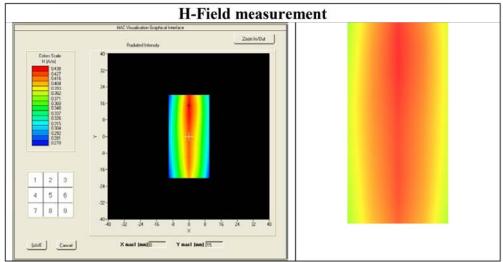
6.1 <u>RETURN LOSS</u>

Frequency (MHz)	Worst Case Return Loss (dB)	Requirement (dB)
800-950 MHz	-12.94	-10

6.2 VALIDATION MEASUREMENT

The IEEE ANSI C63.19 standard states that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss requirements. The system validations measurement results are then compared to SATIMO's simulated results.


Measurement Condition


Weasurement Condition	
Software Version	OpenHAC V2
HAC positioning ruler	SN 42/09 TABH12
E-Field probe	SN 08/11 EPH28
H-Field probe	SN 31/10 HPH38
Distance between dipole and sensor center	10 mm
E-field scan size	X=150mm/Y=20mm
H-field scan size	X=40mm/Y=20mm
Scan resolution	dx=5mm/dy=5mm
Frequency	835 MHz
Input power	20 dBm
Lab Temperature	21°C
Lab Humidity	45%

Measurement Result

	Measured	Internal Requirement
E field (V/m)	227.09	220.4
H field (A/m)	0.44	0.445

Page: 7/8

7 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
HAC positioning ruler	Satimo	TABH12 SN 42/09	Validated. No cal required.	Validated. No cal required.	
COMOHAC Test Bench	Version 2	NA	Validated. No cal required.	Validated. No cal required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2014	02/2017	
Reference Probe	Satimo	EPH28 SN 08/11	10/2014	10/2015	
Reference Probe	Satimo	HPH38 SN31/10	10/2014	10/2015	
Multimeter	Keithley 2000	1188656	12/2014	12/2017	
Signal Generator	Agilent E4438C	MY49070581	12/2014	12/2017	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	HP E4418A	US38261498	12/2014	12/2016	
Power Sensor	HP ECP-E26A	US37181460	12/2014	12/2016	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Temperature and Humidity Sensor	Control Company	11-661-9	8/2013	8/2015	

HAC Reference Dipole Calibration Report

Ref: ACR.262.18.14.SATU.A

SHENZHEN STS TEST SERVICES CO., LTD. 1/F, BUILDING 2, ZHUOKE SCIENCE PARK, CHONGQING ROAD

FUYONG, BAO' AN DISTRICT, SHENZHEN, CHINA SATIMO COMOHAC REFERENCE DIPOLE

FREQUENCY: 1700-2000MHZ SERIAL NO.: SN 13/14 DHB59

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

09/01/2015

Summary:

This document presents the method and results from an accredited HAC reference dipole calibration performed in SATIMO USA using the COMOHAC test bench. All calibration results are traceable to national metrology institutions.

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	9/19/2014	Jes
Checked by:	Jérôme LUC	Product Manager	9/19/2014	JES
Approved by:	Kim RUTKOWSKI	Quality Manager	9/19/2014	thim Puthowshi

1	Customer Name
Distribution :	Shenzhen STS Test Services Co., Ltd.

Date	Modifications	
9/19/2014	Initial release	
	NAME OF THE PARTY	

TABLE OF CONTENTS

1	Intro	duction4	
2	Dev	ice Under TEst4	
3	Prod	uct Description4	
	3.1	General Information	4
4	Mea	surement Method4	
	4.1	Return Loss Requirements	5
	4.2	Reference Dipole Calibration	5
5	Mea	surement Uncertainty5	
	5.1	Return Loss	5
	5.2	Validation Measurement	5
6	Cali	bration Measurement Results6	
	6.1	Return Loss	6
	6.2	Validation measurement	6
7	List	of Equipment8	

1 INTRODUCTION

This document contains a summary of the requirements set forth by the ANSI C63.19 standard for reference dipoles used for HAC measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOHAC 1700-2000 MHz REFERENCE DIPOLE	
Manufacturer	Satimo	
Model	SIDB1900	
Serial Number	SN 13/14 DHB59	
Product Condition (new / used)	New	

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOHAC Validation Dipoles are built in accordance to the ANSI C63.19 standard. The product is designed for use with the COMOHAC system only.

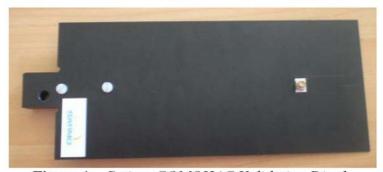


Figure 1 – Satimo COMOHAC Validation Dipole

4 MEASUREMENT METHOD

The ANSI C63.19 standard outlines the requirements for reference dipoles to be used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standard.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for HAC system validation measurements and checks must have a return loss of -10 dB or better. The return loss measurement shall be performed in free space.

4.2 <u>REFERENCE DIPOLE CALIBRATION</u>

The IEEE ANSI C63-19 standard states that the dipole used for validation measurements and checks must be scanned with the E and H field probe, with the dipole 10 mm below the probe. The E and H field strength plots are compared to the simulation results obtained by SATIMO.

5 MEASUREMENT UNCERTAINTY

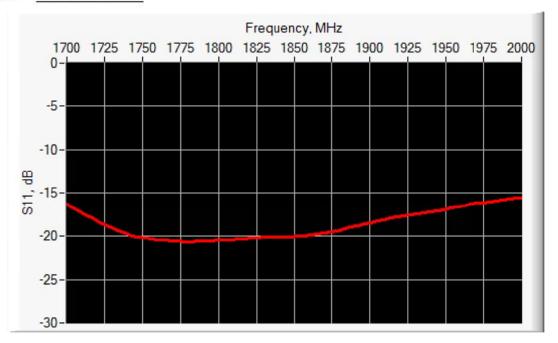
All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Gain
400-6000MHz	0.1 dB

5.2 VALIDATION MEASUREMENT


The guideline outlined in the IEEE ANSI C63.19 standard was followed to generate the measurement uncertainty for validation measurements.

Uncertainty analysis of the probe ca	Uncertainty analysis of the probe calibration in waveguide				
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	Uncertainty (dB)	Standard Uncertainty (%)
RF reflections	0.1	R	$\sqrt{3}$	0.06	
Field probe conv. Factor	0.4	R	$\sqrt{3}$	0.23	
Field probe anisotropy	0.25	R	$\sqrt{3}$	0.14	
Positioning accuracy	0.2	R	$\sqrt{3}$	0.12	
Probe cable placement	0.1	R	$\sqrt{3}$	0.06	
System repeatability	0.2	R	$\sqrt{3}$	0.12	
EUT repeatability	0.4	N	1 '	0.40	
Combined standard uncertainty				0.52	
Expanded uncertainty 95 % confidence level k = 2				1.00	13.0

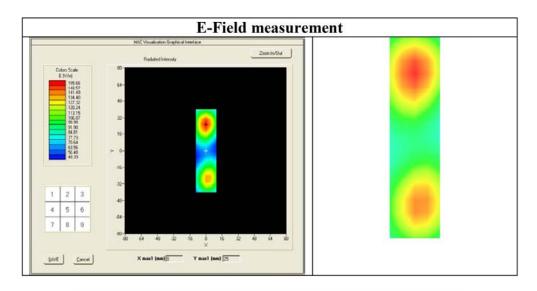
6 CALIBRATION MEASUREMENT RESULTS

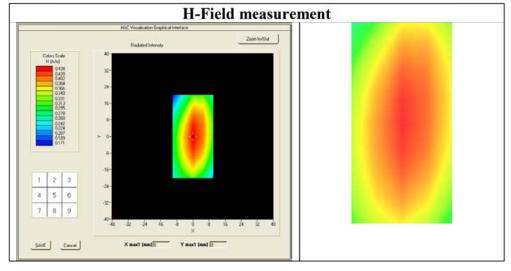
6.1 <u>RETURN LOSS</u>

Frequency (MHz)	Worst Case Return Loss (dB)	Requirement (dB)
1700-2000 MHz	-15.74	-10

6.2 VALIDATION MEASUREMENT

The IEEE ANSI C63.19 standard states that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss requirements. The system validations measurement results are then compared to SATIMO's simulated results.


Measurement Condition


Software Version	OpenHAC V2
HAC positioning ruler	SN 42/09 TABH12
E-Field probe	SN 08/11 EPH28
H-Field probe	SN 31/10 HPH38
Distance between dipole and sensor center	10 mm
E-field scan size	X=150mm/Y=20mm
H-field scan size	X=40mm/Y=20mm
Scan resolution	dx=5mm/dy=5mm
Frequency	1900 MHz
Input power	20 dBm
Lab Temperature	21°C
Lab Humidity	45%

Measurement Result

	Measured	Internal Requirement
E field (V/m)	155.66	153.4
H field (A/m)	0.44	0.445

7 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
HAC positioning ruler	Satimo	TABH12 SN 42/09	Validated. No cal required.	Validated. No cal required.	
COMOHAC Test Bench	Version 2	NA	Validated. No cal required.	Validated. No cal required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2014	02/2017	
Reference Probe	Satimo	EPH28 SN 08/11	10/2014	10/2015	
Reference Probe	Satimo	HPH38 SN31/10	10/2014	10/2015	
Multimeter	Keithley 2000	1188656	12/2014	12/2017	
Signal Generator	Agilent E4438C	MY49070581	12/2014	12/2017	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	HP E4418A	US38261498	12/2014	12/2017	
Power Sensor	HP ECP-E26A	US37181460	12/2014	12/2017	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Temperature and Humidity Sensor	Control Company	11-661-9	8/2013	8/2016	

COMOHAC TMFS Calibration Report

Ref: ACR.262.19.14.SATU.A

SHENZHEN STS TEST SERVICES CO., LTD. 1/F, BUILDING 2, ZHUOKE SCIENCE PARK, CHONGQING ROAD

FUYONG, BAO' AN DISTRICT, SHENZHEN, CHINA SATIMO COMOHAC MAGNETIC FIELD SIMULATOR

SERIAL NO.: SN 07/14 TMFS24

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

09/01/2015

Summary:

This document presents the method and results from an accredited COMOHAC TMFS calibration performed in SATIMO USA using the COMOHAC test bench, for use with a SATIMO COMOHAC system only. All calibration results are traceable to national metrology institutions.

-	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	9/19/2014	Jes
Checked by:	Jérôme LUC	Product Manager	9/19/2014	Jes
Approved by:	Kim RUTKOWSKI	Quality Manager	9/19/2014	thim thethowski

95	Customer Name
Distribution:	Shenzhen STS Test Services Co., Ltd.

Issue	Date	Modifications
A	9/19/2014	Initial release

TABLE OF CONTENTS

1	Devi	ice Under Test	4
2	Prod	uct Description	4
	2.1	General Information	
3	Mea	surement Method	4
	3.1	Maximum Axial and Radial Magnetic Field Values	
4	Mea	surement Uncertainty	4
5	Calil	bration Measurement Results	5
	5.1	Maximum Axial and Radial Magnetic Field Values	5
6	List	of Equipment	7

1 DEVICE UNDER TEST

Device Under Test			
Device Type	COMOHAC Magnetic Field Simulator		
Manufacturer	Satimo		
Model	STMFS		
Serial Number	SN 07/14 TMFS24		
Product Condition (new / used)	New		
Frequency Range	200-5000 Hz		

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

Satimo's COMOHAC T-coil Probes are built in accordance to the ANSI C63.19 and ANSI S3.22-2003 standards.

Figure 1 – Satimo COMOHAC Magnetic Field Simulator

3 MEASUREMENT METHOD

All methods used to perform the measurements and calibrations comply with the ANSI C63.19. All measurements were performed with the TMFS in the standard device test configuration, with the TMFS in free space, 10 mm below the coil center.

3.1 MAXIMUM AXIAL AND RADIAL MAGNETIC FIELD VALUES

An audio signal was fed into the TMFS and the magnetic field measured and recorded over an area scan with the T-coil probe in three orientations; axial and two radial. The maximum magnetic field is recorded for all three T-coil orientations.

4 MEASUREMENT UNCERTAINTY

The guideline outlined in the IEEE ANSI C63.19 standard was followed to generate the measurement uncertainty for validation measurements. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

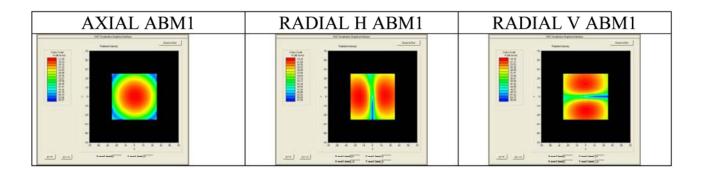
Uncertainty analysis of the probe calibration in Helmholtz Coil Tol. Del Birth Directainty Uncertainty Uncertainty					
Uncertainty Component	(± dB)	Prob. Dist.	Div.	(dB)	Uncertainty (%)
Reflections	0.1	R	$\sqrt{3}$	0.06	
Acoustic noise	0.1	R	$\sqrt{3}$	0.06	
Probe coil sensitivity	0.49	R	$\sqrt{3}$	0.28	
Reference signal level	0.25	R	$\sqrt{3}$	0.14	
Positioning accuracy	0.2	R	$\sqrt{3}$	0.12	
Cable loss	0.1	N	1	0.05	
Frequency analyzer	0.15	R	$\sqrt{3}$	0.09	
System repeatability	0.2	N	1	0.20	
Repeatability of the WD	0.1	N	1	0.10	
Combined standard uncertainty		N	1	0.43	
Expanded uncertainty 95 % confidence level k = 2		N	2	0.85	10.3%

5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters			
Software	OpenHAC V2		
HAC positioning ruler	SN 42/09 TABH12		
T-Coil probe	SN 47/10 TCP18		
Distance between TMFS and coil center	10 mm		
Frequency	1025 Hz		
Scan Size	X=70mm/Y=70mm		
Scan Resolution	dx=5mm/dy=5mm		
Output level	0.5 VAC		
Lab Temperature	21°C		
Lab Humidity	45%		

5.1 MAXIMUM AXIAL AND RADIAL MAGNETIC FIELD VALUES

Test Description	Measured Magnetic Field		
	Location	Intensity (dB A/m)	
Axial	Max	-12.06	
Radial H	Right side	-19.27	
	Left side	-19.03	


Page: 5/7

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

COMOHAC TMFS' PROBE CALIBRATION REPORT

Dadial W	Upper side	-19.12
Radial V	Lower side	-18.56

6 LIST OF EQUIPMENT

Equipment Summary Sheet							
Equipment Description	Manufacturer / Model	dentification No.		Next Calibration Date			
COMOHAC Test Bench	Version 2	NA	Validated. No cal required.	Validated. No cal required.			
HAC positioning ruler	Satimo	TABH12 SN 42/09	Validated. No cal required.	Validated. No cal required.			
Audio Generator	National Instruments	15222AE	01/2015	01/2018			
Reference Probe	Satimo	TCP 18 SN 47/10	10/2014	10/2015			
Multimeter	Keithley 2000	1188656	12/2014	12/2017			
Temperature / Humidity Sensor	Control Company	11-661-9	8/2013	8/2016			