

TEST REPORT

Applicant:	Shenzhen Joining Free Technology Co., Ltd.		
Address of Applicant:	16F, Block C, Qifengda Building, Taohuayuan Technology Park, Furong Rd., Songgang, Baoan Dist., Shenzhen 518105, China		
Manufacturer/Factory:	Shenzhen Joining Free Technology Co.,Ltd		
Address of Manufacturer/Factory:	Building A, No.6, Tianyang 7th Road, Dongfang Community, Songgang Street, Baoan District, Shenzhen, China		
Equipment Under Test (E	EUT)		
Product Name:	Mercury wireless headphones		
Model No.:	CS-H100W		
FCC ID:	2AR4QCS-H100W		
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247		
Date of sample receipt:	October 31, 2024		
Date of Test:	November 01-05, 2024		
Date of report issued:	November 05, 2024		
Test Result :	PASS *		

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 35

2 Version

Version No.	Date	Description		
00	November 05, 2024	Original		

Prepared By:

handlu

Date:

November 05, 2024

Project Engineer

Check By:

oppinson lund Reviewer

Date:

November 05, 2024

GTS

Report No.: GTS2024100307F01

3 Contents

		Pa	age
1	CO	VER PAGE	1
2	VE	RSION	2
3	со	NTENTS	3
4	TES	ST SUMMARY	. 4
5	GE	NERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	TEST MODE	
	5.3	DESCRIPTION OF SUPPORT UNITS	
	5.4	DEVIATION FROM STANDARDS	
	5.5	ABNORMALITIES FROM STANDARD CONDITIONS	7
	5.6	TEST FACILITY	7
	5.7	TEST LOCATION	7
	5.8	Additional Instructions	7
6	TES	ST INSTRUMENTS LIST	. 8
7	TES	ST RESULTS AND MEASUREMENT DATA	10
	7.1	ANTENNA REQUIREMENT	10
	7.2	CONDUCTED EMISSIONS	11
	7.3	CONDUCTED PEAK OUTPUT POWER	14
	7.4	20DB EMISSION BANDWIDTH	
	7.5	CARRIER FREQUENCIES SEPARATION	
	7.6	HOPPING CHANNEL NUMBER	
	7.7	DWELL TIME	
	7.8	SPURIOUS EMISSION IN NON-RESTRICTED & RESTRICTED BANDS	
	7.8.		-
	7.8.		1
8	TES	ST SETUP PHOTO	35
9	EU	CONSTRUCTIONAL DETAILS	35

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)(iii)	Pass
Dwell Time	15.247 (a)(1)(iii)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

No.	Item	Measurement Uncertainty		
1	Radio Frequency	±7.25×10 ⁻⁸		
2	Duty cycle	±0.37%		
3	Occupied Bandwidth	±3%		
4	RF conducted power	±0.75dB		
5	RF power density	±3dB		
6	Conducted Spurious emissions	±2.58dB		
7	AC Power Line Conducted Emission	±3.44dB (0.15MHz ~ 30MHz)		
		±3.1dB (9kHz-30MHz)		
		±3.8039dB (30MHz-200MHz)		
8	Radiated Spurious emission test	±3.9679dB (200MHz-1GHz)		
		±4.29dB (1GHz-18GHz)		
		±3.30dB (18GHz-40GHz)		
9	Temperature test	±1°C		
10	Humidity test	±3%		
11	Time	±3%		

5 General Information

5.1 General Description of EUT

Product Name:	Mercury wireless headphones
Model No.:	CS-H100W
Test sample(s) ID:	GTS2024100307-1
Sample(s) Status:	Engineer sample
S/N:	244500001
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK, 8-DPSK
Antenna Type:	PCB Antenna
Antenna gain:	1.3dBi(declare by applicant)
Power supply:	DC 3.7V, 400mAh for Li-ion battery
	The battery is charged via USB DC5V

Remark:

1. Antenna gain information provided by the customer

2. The relevant information of the sample is provided by the entrusting company, and the laboratory is not responsible for its authenticity.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

5.3 Description of Support Units

Manufacturer Description		Model	Serial Number
HUAWEI	Mobile Phone	MATE 30	N/A
Apple adapter	USB Charger	A1443	N/A

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.		
	None.	

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations: FCC—Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• ISED—Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of ISED for radio equipment testing

NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.7 **Test Location**

All tests were performed at:

Global United Technology Services Co., Ltd. Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional Instructions

Test Software	Special test software provided by manufacturer	
Power level setup	Default	

6 Test Instruments list

Radia	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	Jun. 22, 2024	Jun. 21, 2027		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	Apr. 11, 2024	Apr. 10, 2025		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9168	GTS640	Mar. 19, 2023	Mar. 18, 2025		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	Apr. 17, 2023	Apr. 16, 2025		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
7	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	Apr. 11, 2024	Apr. 10, 2025		
8	Loop Antenna	ZHINAN	ZN30900A	GTS534	Nov. 13, 2023	Nov.12, 2024		
9	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	Apr. 11, 2024	Apr. 10, 2025		
10	Amplifier(1GHz-26.5GHz)	HP	8449B	GTS601	Apr. 11, 2024	Apr. 10, 2025		
11	Horn Antenna (15GH-40GHz)	SCHWARZBECK	01296	GTS691	Mar. 07, 2024	Mar. 06, 2025		
12	FSV-Signal Analyzer (10Hz-40GHz)	Keysight	FSV-40-N	GTS666	Mar. 12, 2024	Mar. 11, 2025		
13	Amplifier	1	LNA-1000-30S	GTS650	Apr. 11, 2024	Apr. 10, 2025		
14	CDNE M2+M3-16A	НСТ	30MHz-300MHz	GTS692	Nov. 08, 2023	Nov. 07, 2024		
15	Wideband Amplifier	1	WDA-01004000-15P35	GTS602	Apr. 11, 2024	Apr. 10, 2025		
16	Thermo meter	JINCHUANG	GSP-8A	GTS643	Apr. 18, 2024	Apr. 17, 2025		
17	RE cable 1	GTS	N/A	GTS675	Jul. 02, 2024	Jul. 01, 2025		
18	RE cable 2	GTS	N/A	GTS676	Jul. 02, 2024	Jul. 01, 2025		
19	RE cable 3	GTS	N/A	GTS677	Jul. 02, 2024	Jul. 01, 2025		
20	RE cable 4	GTS	N/A	GTS678	Jul. 02, 2024	Jul. 01, 2025		
21	RE cable 5	GTS	N/A	GTS679	Jul. 02, 2024	Jul. 01, 2025		
22	RE cable 6	GTS	N/A	GTS680	Jul. 02, 2024	Jul. 01, 2025		
23	RE cable 7	GTS	N/A	GTS681	Jul. 05, 2024	Jul. 04, 2025		
24	RE cable 8	GTS	N/A	GTS682	Jul. 05, 2024	Jul. 04, 2025		

Cond	Conducted Emission						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	Jul. 12, 2022	Jul. 11, 2027	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	Apr. 11, 2024	Apr. 10, 2025	
3	LISN	ROHDE & SCHWARZ	ENV216	GTS226	Apr. 11, 2024	Apr. 10, 2025	
4	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
6	Thermo meter	JINCHUANG	GSP-8A	GTS642	Apr. 18, 2024	Apr. 17, 2025	
7	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	Apr. 11, 2024	Apr. 10, 2025	
8	ISN	SCHWARZBECK	NTFM 8158	GTS565	Apr. 11, 2024	Apr. 10, 2025	
9	High voltage probe	SCHWARZBECK	TK9420	GTS537	Apr. 11, 2024	Apr. 10, 2025	
10	Antenna end assembly	Weinschel	1870A	GTS560	Apr. 11, 2024	Apr. 10, 2025	

RF Co	RF Conducted Test:					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	Apr. 13, 2024	Apr. 12, 2025
2	EMI Test Receiver	R&S	ESCI 7	GTS552	Apr. 13, 2024	Apr. 12, 2025
3	PSA Series Spectrum Analyzer	Agilent	E4440A	GTS536	Apr. 13, 2024	Apr. 12, 2025
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	Apr. 13, 2024	Apr. 12, 2025
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	Apr. 13, 2024	Apr. 12, 2025
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	Apr. 13, 2024	Apr. 12, 2025
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	Apr. 13, 2024	Apr. 12, 2025
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	Apr. 13, 2024	Apr. 12, 2025
9	Thermo meter	JINCHUANG	GSP-8A	GTS641	Apr. 18, 2024	Apr. 17, 2025

Ger	General used equipment:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Barometer	KUMAO	SF132	GTS647	Apr. 18, 2024	Apr. 17, 2025	

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement:	FCC Part15 C Section 15.203 /247(c)
-----------------------	-------------------------------------

15.203 requirement:

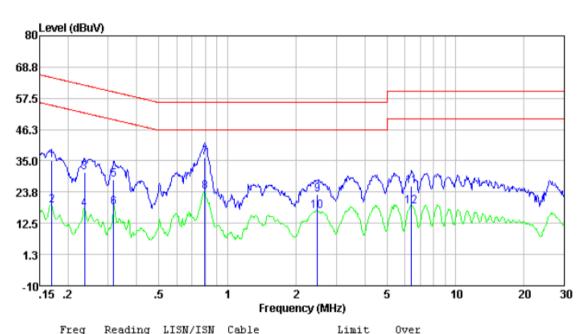
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

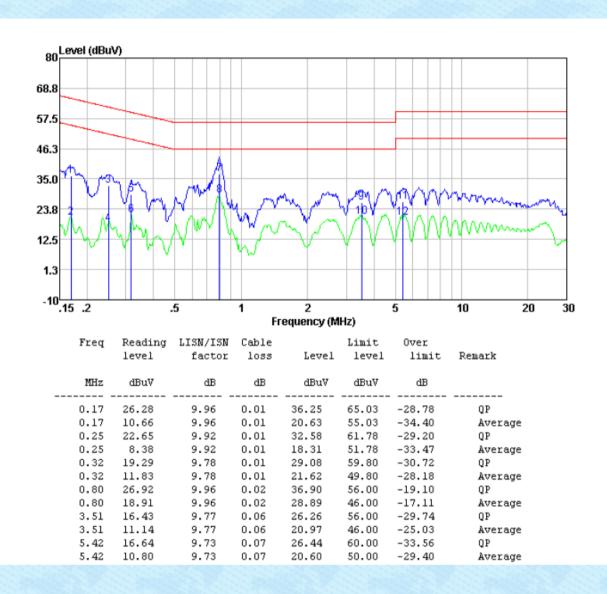
The antenna is PCB antenna, reference to the appendix II for details.


Report No.: GTS2024100307F01

7.2 Conducted Emission	S					
Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	150KHz to 30MHz					
Receiver setup:	RBW=9KHz, VBW=30KHz, S	weep time=auto				
Limit:	Frequency range (MHz)	Limit (dBuV)				
		Quasi-peak	Average			
	0.15-0.5	66 to 56* 56	56 to 46* 46			
	5-30	60	50			
	* Decreases with the logarithr					
Test setup:	Reference Plane					
Tast procedure:	AUX E.U.T Equipment E.U.T Test table/Insulation plane Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	EMI Receiver	AC power			
Test procedure:	 The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling impedance stabilization 50ohm/50uH coupling impedance 2. The peripheral devices are LISN that provides a 50ohr termination. (Please refer t photographs). Both sides of A.C. line are interference. In order to fin positions of equipment and according to ANSI C63.10: 	n network (L.I.S.N.). 1 edance for the measu also connected to the n/50uH coupling impe o the block diagram c checked for maximun d the maximum emiss I all of the interface ca	This provides a uring equipment. e main power through a edance with 50ohm of the test setup and n conducted sion, the relative ables must be changed			
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details	5				
Test environment:	Temp.: 25 °C Hur	nid.: 52%	Press.: 1012mbar			
Test voltage:	AC 120V, 60Hz					
Test results:	Pass					

Measurement data:

Pre-scan all test modes, found worst case at GFSK 2402MHz, and so only show the test result of it Line:



rred	Reading	PTOM/TOM	capie		PIMIC	OVEL	
	level	factor	loss	Level	level	limit	Remark
MHz	dBuV	dB	dB	dBuV	dBuV	dB	
0.17	25.32	9.88	0.01	35.21	64.99	-29.78	QP
0.17	8.84	9.88	0.01	18.73	54.99	-36.26	Average
0.24	21.41	9.58	0.01	31.00	62.22	-31.22	QP
0.24	7.97	9.58	0.01	17.56	52.22	-34.66	Average
0.32	18.56	9.65	0.01	28.22	59.80	-31.58	QP
0.32	8.73	9.65	0.01	18.39	49.80	-31.41	Average
0.80	26.39	9.77	0.02	36.18	56.00	-19.82	QP
0.80	14.19	9.77	0.02	23.98	46.00	-22.02	Average
2.47	13.24	9.66	0.05	22.95	56.00	-33.05	QP
2.47	7.04	9.66	0.05	16.75	46.00	-29.25	Average
6.42	15.91	9.73	0.08	25.72	60.00	-34.28	QP
6.42	8.88	9.73	0.08	18.69	50.00	-31.31	Average

GTS

Neutral:

Report No.: GTS2024100307F01

Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Cable Loss

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)		
Test Method:	ANSI C63.10:2013		
Limit:	GFSK:30dBm		
	π/4-DQPSK, 8-DPSK:20.97dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

7.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Limit:	N/A		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

7.4 20dB Emission Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013		
Receiver setup:	RBW=300KHz, VBW=300KHz, detector=Peak		
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

7.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii) ANSI C63.10:2013				
Test Method:					
Receiver setup:	RBW=VBW=300kHz, Frequency range=2398MHz-2485.5MHz, Detector=Peak				
Limit:	15 channels				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

7.6 Hopping Channel Number

7.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)		
Test Method:	ANSI C63.10:2013		
Receiver setup:	RBW=VBW=0.91MHz, Span=0Hz, Detector=Peak RBW=VBW=100kHz, Span=0Hz, Detector=Peak		
Limit:	0.4 Second		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

7.8 Spurious Emission in Non-restricted & restricted Bands

spectrum intentional radiator is operating, the radio frequency power that	7.0.1 Conducted Linission						
Receiver setup: RBW=100kHz, VBW=300kHz, Detector=Peak Limit: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Test setup: Spectrum Analyzer Image: Spectrum Analyzer Image: Spectrum Analyzer Image: Spectrum	Test Requirement:	FCC Part15 C Section 15.247 (d)					
Limit: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Test setup: Spectrum Analyzer Image: Non-Conducted Table Functional reference Plane Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details	Test Method:	ANSI C63.10:2013					
Spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Test setup: Spectrum Analyzer Image: Non-Conducted Table Image: Spectrum effective plane Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details	Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak					
Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details	Limit:	the desired power, based on either an RF conducted or a radiated					
Test mode: Refer to section 5.2 for details	Test setup:	Image: Constraint of the second se					
	Test Instruments:	Refer to section 6.0 for details					
Test results: Pass	Test mode:	Refer to section 5.2 for details					
	Test results:	Pass					

7.8.1 Conducted Emission Method

GTS

7.8.2 Radiated Emission N	lethou					
Test Requirement:	FCC Part15 C Section	on 15	5.209			
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	9kHz to 25GHz					
Test site:	Measurement Distar	nce: 3	3m			
Receiver setup:	Frequency	C	Detector		V VBW	Value
	9KHz-150KHz		uasi-peak	200	lz 600Hz	Quasi-peak
	150KHz-30MHz	Qu	lasi-peak	9KH	z 30KHz	Quasi-peak
	30MHz-1GHz	Qu	lasi-peak	120K	Hz 300KHz	2 Quasi-peak
	Above 1GHz		Peak	1MH	z 3MHz	Peak
			Peak	1MH	z 10Hz	Average
	Note: For Duty cyc cycle < 98%, avera			-		
Limit:	Frequency	Limit (u\	//m)	Value	Measurement Distance	
	0.009MHz-0.490M	2400/F(k	(Hz)	PK/QP/AV	300m	
	0.490MHz-1.705M	24000/F(KHz)	QP	30m	
	1.705MHz-30MH	30		QP	30m	
	30MHz-88MHz	100		QP		
	88MHz-216MHz	2	150		QP	
	216MHz-960MH	-	200	245	QP	- 3m
	960MHz-1GHz		500		QP	
	Above 1GHz				Average	
		5000) Peak			
Test setup:	For radiated emiss	ions	from 9kH	z to 30	MHz	
	< 80 cm >	and the second	< 3m >	Im	Test Antenna	

7.8.2 Radiated Emission Method

Report No.: GTS2024100307F01 For radiated emissions from 30MHz to1GHz < 3m Test Antenna 4m > < 1m EUT. Turn Table+ 80cm Receiver Preamplifier. For radiated emissions above 1GHz < 3m > Test Antenna-<1m...4m> EUT. Tum Table <150cm> 2 Receiver+ Preamplifier-Test Procedure: 1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, guasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details

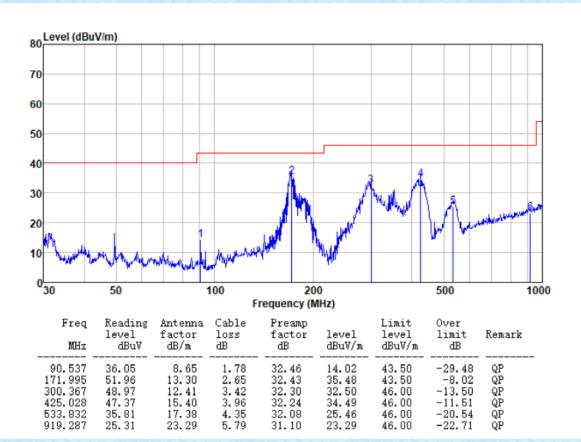
GTS

	.: GTS20241	00307F01				
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 6	0Hz				
Test results:	Pass					

Measurement data:

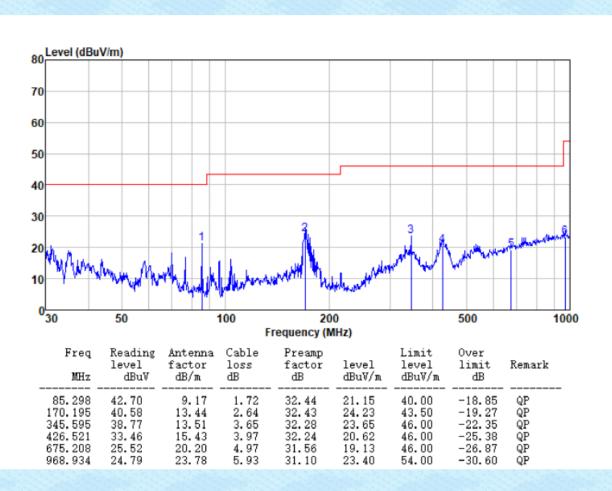
Remarks:

- 1. During the test, pre-scan the GFSK, π /4-DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

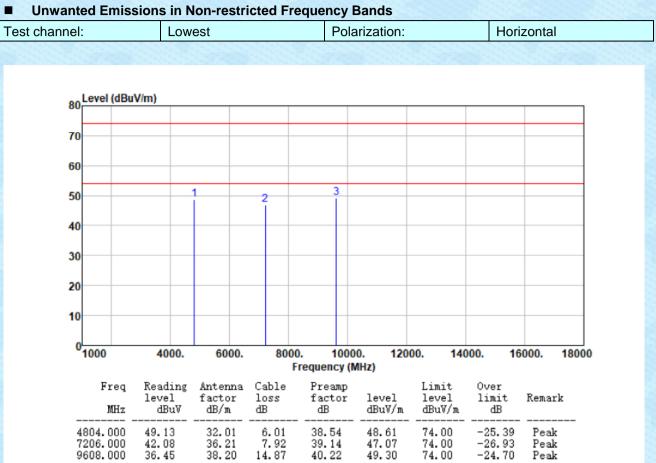

9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Below 1GHz


Pre-scan all test modes, found worst case at GFSK 2402MHz, and so only show the test result of it **Horizontal:**

Vertical:


Report No.: GTS2024100307F01

Above 1GHz

Report No.: GTS2024100307F01

t channel:	Low	est		Pola	ization:		Vertica	I
80 Level (dBuV/	m)							
70								
60								
50	1		2	3				
40								
30								
20								
10								
0 <mark></mark>	4000.	6000.	800)0. 1000 Frequency (N		00. 140	00. 16	000. 18000
	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBu∛/m	Limit level dBuV/m	Over limit dB	Remark
7206.000	49.90 41.61 36.66	32.01 36.21 38.20	6.01 7.92 14.87	38.54 39.14 40.22	49.38 46.60 49.51	74.00 74.00 74.00 74.00	-24.62 -27.40 -24.49	 Peak Peak Peak

Report No.: GTS2024100307F01

st channel:	Middle		Polarization:	Но	orizontal
80 Level (dBu	V/m)				
70					
60					
50	1	2	3		
40					
30					
20					
10					
0 ¹ 1000	4000. 6000.		10000. 1200 icy (MHz)	0. 14000.	16000. 18000
Freq MHz	Reading Antenna level factor dBuV dB/m	Cable Pre loss fac dB dB	tor level	Limit Over level limit dBuV/m dB	: Remark
4882.000 7323.000 9764.000	49.22 32.10 42.70 36.30 40.73 38.20	6.03 38. 8.04 39. 11.26 40.	23 47.81	74.00 -25.1 74.00 -26.1 74.00 -24.0	19 Peak

Report No.: GTS2024100307F01

Fest channel:	Middle		Polarizati	on:	Vertical	
Lovel (dDvV/m)						
80 Level (dBuV/m)						
70						
60						
50	1	2	3			
40						
30						
20						
10						
0	4000. 6000.	8000. Free	10000. Juency (MHz)	12000. 140	00. 16000. 1	18000
le	ading Antenna vel factor dBuV dB/m			Limit vel level uV/m dBuV/m	Over limit Remark dB	
7323.000 42	.08 32.10 .09 36.30 .51 38.20	8.04	39.23 47	.69 74.00 .20 74.00 .72 74.00	-24.31 Peak -26.80 Peak -24.28 Peak	

Report No.: GTS2024100307F01

Test channe	el:	Hig	hest		Po	larization:		Hor	izontal
	Lough (dDu)	11							
80	Level (dBu)	v/m)							
70)								
60									
50			1	2	3				
40)								
30)								
20)								
10)								
0	1000	4000.	6000.	800	0. 100	00. 120	00. 140	00 46	000. 18000
	1000	4000.	6000.		Frequency (00. 140	100. 10	1000. 10000
	Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV/m	Limit level dBuV/m	Over limit dB	Remark
7	4960.000 7440.000 9920.000	48.79 43.16 41.21	32.20 36.30 38.24	6.05 8.16 10.76	38.51 39.31 40.28	48.53 48.31 49.93	74.00 74.00 74.00 74.00	-25.47 -25.69 -24.07	Peak Peak Peak

GTS

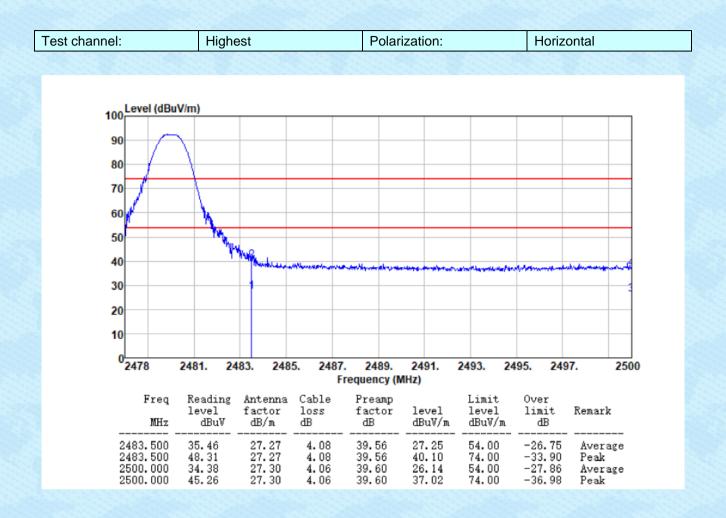
Report No.: GTS2024100307F01

Test channel:		High	est		Polar	ization:		Vertica	I
80 Level	(dBuV/m)								
70									
60									
50			1	2	3				
40									
30									
20		_							
10									
0 ^L 1000		4000.	6000.	8000 F). 1000 requency (N		00. 140	00. 16	000. 18000
F		ading	Antenna	Cable	Preamp		Limit	Over	D l
1		vel dBu∛	factor dB/m	loss dB	factor dB	level dBu∛/m	level dBu∛/m	limit dB	Remark
4960. 7440. 9920.	000 43	.73 .39 .24	32.20 36.30 38.24	6.05 8.16 10.76	38.51 39.31 40.28	50.47 48.54 49.96	74.00 74.00 74.00	-23.53 -25.46 -24.04	 Peak Peak Peak

Remarks:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

annel:	Lowest		Pola	rization:		Horiz	zontal
100 Level (dBuV	//m)						
							0
90							
80							
70							
60							-+
50							
40						. 4	
and a state of the	###\$\$#################################	har an horis and a started the	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*****************	~*************************************	Lakes Court	and the second s
30						3	
20							
10							
02310 232	0. 2330.	2340. 23	50. 236	0. 2370). 2380.	2390	. 2404
2310 232 °	0. 2000.		Frequency (N		J. ∠ 380.	2390	. 2404
Freq	Reading Anter		Preamp		Limit	Over	
	Reading Anter level fact dBuV dB/2	or loss	Preamp factor dB	level dBu∛/m	Limit level dBuV/m	Over limit dB	Remark
Freq MHz	level fact dBu∛ dB/2	or loss m dB 	factor dB	dBu∛/m 	level dBu∛/m	limit dB	
Freq	level fact	or loss m dB 00 4.13 00 4.13	factor		level	limit	Remark Average Peak Average


Unwanted Emissions in Restricted Frequency Bands

Report No.: GTS2024100307F01

channel:	Lowest		Pola	rization:		Vertic	cal
100 Level (dBuV	/m)						
							Λ
90							
80							
70							
60							-
50							
	northe Anglishes Parameter doubles of	hereber		ومنافر متحاصرو خايلوني	ينجيه المهماني ويعين	- channel and	and a state of the
30						t l	
20							
10							
0							
°2310 2320	0. 2330. 234		50. 236 requency (N		. 2380.	2390	. 2404
Freq	Reading Antenna		Preamp		Limit	Over	
MHz	level factor dBuV dB/m	loss dB	factor dB	level dBuV/m	level dBuV/m	limit dB	Remark
2310.000	34.75 27.00	4.13	39.14	26.74	54.00	-27.26	Average
2310.000 2310.000 2390.000	45.96 27.00 36.66 27.08	4.13 4.13 4.17	39.14 39.34	20.74 37.95 28.57	74.00 54.00	-36.05 -25.43	Peak Average

Report No.: GTS2024100307F01

Test channel:	Highoot		Polariza	tion		Vertical	
Test channel.	Highest		Polariza	alion.		venical	
100 Level (dBu)	V/m)						
90	, I I I I I I I I I I I I I I I I I I I						
	$\langle \rangle$						
80							
70							
60							
50	Mile I						
40	1914	Hank					
30				a construction of the second second	₩₩₩₽₩₽ ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	a tea basha a sa ta	A STATES OF A STATES
							3
20							
10							
0 <mark>2478</mark>	2481. 2483.	2485. 2487.	2489.	2491.	2493. 24	95. 249	7. 2500
		Fr	equency (MH	Z)			
Freq		ntenna Cable Actor loss	Preamp factor	level	Limit level	Over limit	Remark
MHz		1B/m dB		dBu∛/m	dBu∛/m	dB	TOSTILA
2483.500	36.68 2 47.43 2	27.27 4.08 27.27 4.08	39.56	28.47 39.22	54.00	-25.53	Average
	A7 A3 5	27.27 4.08	39.56	24 22	74.00	-34.78	Peak
2483.500 2500.000 2500.000	33.32 2	27.30 4.06 27.30 4.06	39.60	25.08 37.28	54.00 74.00	-28.92 -36.72	Average Peak

Remarks:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

GTS

Report No.: GTS2024100307F01

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----