# **TEST REPORT**

## For FCC Part15B

| Report No:                         | CHTEW23090007                                                                              | Report verification:         |
|------------------------------------|--------------------------------------------------------------------------------------------|------------------------------|
| Project No:                        | SHT2307026501EW                                                                            |                              |
| FCC ID:                            | 2A6LY-0006                                                                                 |                              |
| Applicant's name::                 | Resvent Medical Technology                                                                 | Co., Ltd.                    |
| Address                            | BC601, BC602, Gaoxinqi Facto<br>Community,Xin'an Street, Bao'a<br>PEOPLE'S REPUBLIC OF CHI | n District, 518100 Shenzhen, |
| Product Name:                      | RXiBreeze PAP System                                                                       |                              |
| Trade Mark                         | -                                                                                          |                              |
| Model No:                          | RXiBreeze III APAP Pro                                                                     |                              |
| Listed Model(s)                    | RXiBreeze III CPAP, RXiBreeze III CPAP Pro, RXiBreeze III APAP                             |                              |
| Standard:                          | FCC CFR Title 47 Part 15 Subpart B                                                         |                              |
| Date of receipt of test sample     | Aug. 05, 2023                                                                              |                              |
| Date of testing                    | Aug. 06, 2023- Aug. 22, 2023                                                               |                              |
| Date of issue                      | Aug. 31, 2023                                                                              |                              |
| Result:                            | Pass                                                                                       |                              |
| Compiled by                        |                                                                                            | V. 1 51                      |
| (position+printed name+signature): | File administrators Xiaodong Zh                                                            | nao Xiaodong Zheo            |
| Supervised by                      |                                                                                            |                              |
| (position+printed name+signature): | Project Engineer Xiaodong Zha                                                              | o Xiaodong Zheo              |
| Approved by                        |                                                                                            | In . Jong                    |
| (position+printed name+signature): | Manager Xu Yang                                                                            | du, long                     |
| Testing Laboratory Name:           | Shenzhen Huatongwei International Inspection Co., Ltd.                                     |                              |
| Address:                           | 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao,                         |                              |

#### Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Gongming, Shenzhen, China

The test report merely corresponds to the test sample.

Report No.: CHTEW23090007 Page: 2 of 16 Date of issue: 2023-08-31

## **Contents**

| <u>1.</u> | TEST STANDARDS AND REPORT VERSION        | 3   |
|-----------|------------------------------------------|-----|
| 1.1.      | Test Standards                           | 3   |
| 1.2.      | Report version information               | 3   |
|           | Nopel Verein Internation                 | •   |
| <u>2.</u> | TEST DESCRIPTION                         | 4   |
|           |                                          |     |
| <u>3.</u> | SUMMARY                                  | 5   |
| 3.1.      | Client Information                       | 5   |
| 3.2.      | Product Description                      | 5   |
| 3.3.      | Testing Laboratory Information           | 5   |
| <u>4.</u> | TEST CONFIGURATION                       | 6   |
| 4.1.      | Descriptions of test mode                | 6   |
| 4.2.      | Configuration of Tested System           | 6   |
| 4.3.      | Support unit used in test configuration  | 7   |
| 4.4.      | Environmental conditions                 | 7   |
| 4.5.      | Statement of the measurement uncertainty | 7   |
| 4.6.      | Equipments Used during the Test          | 8   |
| <u>5.</u> | TEST CONDITIONS AND RESULTS              | 9   |
| 5.1.      | Conducted Emissions                      | 9   |
| 5.2.      | Radiated Emissions                       | 11  |
| <u>6.</u> | TEST SETUP PHOTOS OF THE EUT             | 15  |
| <b>-</b>  | EVTERNAL AND INTERNAL BUOTOS OF THE FUT  | 4.0 |
| 7.        | EXTERNAL AND INTERNAL PHOTOS OF THE EUT  | 16  |

Report No.: CHTEW23090007 Page: 3 of 16 Date of issue: 2023-08-31

## 1. TEST STANDARDS AND REPORT VERSION

#### 1.1. Test Standards

The tests were performed according to following standards:

FCC CFR Title 47 Part 15 Subpart B - Unintentional Radiators

<u>ANSI C63.4: 2014</u> – American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz

## 1.2. Report version information

| Revision No. | Date of issue | Description |
|--------------|---------------|-------------|
| N/A          | 2023-08-31    | Original    |
|              |               |             |
|              |               |             |
|              |               |             |
|              |               |             |

Report No.: CHTEW23090007 Page: 4 of 16 Date of issue: 2023-08-31

# 2. TEST DESCRIPTION

| Section                | Test Item           | Section in CFR 47 | Result #1   | Test Engineer |
|------------------------|---------------------|-------------------|-------------|---------------|
| 5.1                    | Conducted Emissions | 15.107(a)         | PASS        | JUNMAN.WANG   |
| 5.2                    | Padiated Emissions  | 15 100(a)         | PASS        | YIFAN,WANG    |
| 5.2 Radiated Emissions | 15.109(a)           | PASS              | JUNMAN.WANG |               |

Note:

#1: The test result does not include measurement uncertainty value

Report No.: CHTEW23090007 Page: 5 of 16 Date of issue: 2023-08-31

# 3. **SUMMARY**

## 3.1. Client Information

| Applicant:    | Resvent Medical Technology Co., Ltd.                                                                                                        |  |  |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Address:      | BC601, BC602, Gaoxinqi Factory, District 67, Xingdong Community,Xin'an Street, Bao'an District, 518100 Shenzhen, PEOPLE'S REPUBLIC OF CHINA |  |  |
| Manufacturer: | Resvent Medical Technology Co., Ltd.                                                                                                        |  |  |
| Address:      | BC601, BC602, Gaoxinqi Factory, District 67, Xingdong Community,Xin'an Street, Bao'an District, 518100 Shenzhen, PEOPLE'S REPUBLIC OF CHINA |  |  |
| Factory:      | Resvent Medical Technology Co., Ltd.                                                                                                        |  |  |
| Address:      | BC601, BC602, Gaoxinqi Factory, District 67, Xingdong Community,Xin'an Street, Bao'an District, 518100 Shenzhen, PEOPLE'S REPUBLIC OF CHINA |  |  |

## 3.2. Product Description

| Main unit information:      |                                                                |  |
|-----------------------------|----------------------------------------------------------------|--|
| Product Name:               | RXiBreeze PAP System                                           |  |
| Trade Mark:                 | -                                                              |  |
| Model No.:                  | RXiBreeze III APAP Pro                                         |  |
| Listed Model(s):            | RXiBreeze III CPAP, RXiBreeze III CPAP Pro, RXiBreeze III APAP |  |
| Power supply:               | DC 24.0V from adapter                                          |  |
| Hardware version:           | 1.0                                                            |  |
| Software version:           | V01.00.00                                                      |  |
| Accessory unit information: |                                                                |  |
|                             | Model: LXCP61(II)-024300                                       |  |
| Adapter information:        | Input:100-240Va.c., 50/60Hz 1.5Amax.                           |  |
|                             | Output:24.0Vd.c., 3.0A                                         |  |

# 3.3. Testing Laboratory Information

| Laboratory Name      | Shenzhen Huatongwei International Inspection Co., Ltd.                                       |                      |  |
|----------------------|----------------------------------------------------------------------------------------------|----------------------|--|
| Laboratory Location  | 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China |                      |  |
|                      | Tel: 86-755-26715499                                                                         |                      |  |
| Contact information: | E-mail: cs@szhtw.com.cn  http://www.szhtw.com.cn                                             |                      |  |
|                      |                                                                                              |                      |  |
| Qualifications       | Туре                                                                                         | Accreditation Number |  |
| Qualifications       | FCC                                                                                          | 762235               |  |

Report No.: CHTEW23090007 Page: 6 of 16 Date of issue: 2023-08-31

# 4. TEST CONFIGURATION

## 4.1. Descriptions of test mode

| Test mode | Description                                       |
|-----------|---------------------------------------------------|
| O1        | The EUT works continuously after being powered on |

| Test Item           | Test mode |
|---------------------|-----------|
| Conducted Emissions | 01        |
| Radiated Emissions  | O1        |

4.2. Configuration of Tested System

| 412. Comigaration of Toolog System |                |  |
|------------------------------------|----------------|--|
| Test mode                          | Configuration  |  |
| Other modes                        | AC Adapter EUT |  |

Report No.: CHTEW23090007 Page: 7 of 16 Date of issue: 2023-08-31

### 4.3. Support unit used in test configuration

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

| Whether su | Whether support unit is used? |            |           |  |
|------------|-------------------------------|------------|-----------|--|
| ✓          | No                            |            |           |  |
| Item       | Equipment                     | Trade Name | Model No. |  |
| 1          |                               |            |           |  |
| 2          |                               |            |           |  |
| 3          |                               |            |           |  |

#### 4.4. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

| Temperature:       | 15~35°C     |
|--------------------|-------------|
| Temperature:       | 15~55 C     |
| Relative Humidity: | 30~60 %     |
| Air Pressure:      | 950~1050mba |

## 4.5. Statement of the measurement uncertainty

| No. | Test Items            | Measurement Uncertainty |
|-----|-----------------------|-------------------------|
| 1   | AC Conducted Emission | 3.21dB                  |
| 2   | Radiated Emission     | 4.54dB for 30MHz-1GHz   |
| 2   | Nadiated Effication   | 5.10dB for above 1GHz   |

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No.: CHTEW23090007 Page: 8 of 16 Date of issue: 2023-08-31

# 4.6. Equipments Used during the Test

| •    | Conducted Emission    |              |               |                         |        |                              |                              |  |  |  |  |  |
|------|-----------------------|--------------|---------------|-------------------------|--------|------------------------------|------------------------------|--|--|--|--|--|
| Used | Test Equipment        | Manufacturer | Equipment No. | Equipment No. Model No. |        | Last Cal. Date<br>(YY-MM-DD) | Next Cal. Date<br>(YY-MM-DD) |  |  |  |  |  |
| •    | EMI Test<br>Receiver  | R&S          | HTWE0111      | ESCI                    | 101247 | 2022/8/30                    | 2023/8/29                    |  |  |  |  |  |
| •    | Artificial Mains      | SCHWARZBECK  | HTWE0113      | NNLK 8121               | 573    | 2022/8/29                    | 2023/8/28                    |  |  |  |  |  |
| •    | Protection<br>Network | SCHWARZBECK  | HTWE0567      | VTSD9561FN              | 00899  | 2022/8/29                    | 2023/8/28                    |  |  |  |  |  |
| •    | ISN                   | FCC          | HTWE0148      | FCC-TLISN-T2-<br>02     | 20371  | 2022/8/29                    | 2023/8/28                    |  |  |  |  |  |
| •    | ISN                   | FCC          | HTWE0150      | FCC-TLISN-T8-<br>02     | 20375  | 2022/8/29                    | 2023/8/28                    |  |  |  |  |  |
| •    | Test Software         | R&S          | N/A           | EMC32                   | N/A    | N/A                          | N/A                          |  |  |  |  |  |

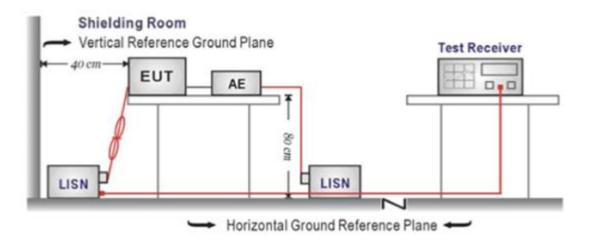
| •    | Radiated Emission - 30MHz~1GHz |                       |               |            |              |                              |                              |  |  |  |  |
|------|--------------------------------|-----------------------|---------------|------------|--------------|------------------------------|------------------------------|--|--|--|--|
| Used | Test Equipment                 | Manufacturer          | Equipment No. | Model No.  | Serial No.   | Last Cal. Date<br>(YY-MM-DD) | Next Cal. Date<br>(YY-MM-DD) |  |  |  |  |
| •    | Semi-Anechoic<br>Chamber       | Albatross<br>projects | HTWE0127      | SAC-3m-02  | C11121       | 2023/4/6                     | 2026/4/5                     |  |  |  |  |
| •    | EMI Test<br>Receiver           | R&S                   | HTWE0099      | ESCI 7     | 100900       | 2022/8/30                    | 2023/8/29                    |  |  |  |  |
| •    | Ultra-Broadband<br>Antenna     | SCHWARZBEC<br>K       | HTWE0119      | VULB9163   | VULB9163 546 |                              | 2026/2/21                    |  |  |  |  |
| •    | Pre-Amplifer                   | SCHWARZBEC<br>K       | HTWE0295      | BBV 9742 / |              | 2023/5/25                    | 2024/5/24                    |  |  |  |  |
| •    | Test Software                  | R&S                   | N/A           | EMC32      | N/A          | N/A                          | N/A                          |  |  |  |  |

| •    | Radiated emission-Above 1GHz |                       |               |               |             |                              |                              |  |  |  |  |  |
|------|------------------------------|-----------------------|---------------|---------------|-------------|------------------------------|------------------------------|--|--|--|--|--|
| Used | Test Equipment               | Manufacturer          | Equipment No. | Model No.     | Serial No.  | Last Cal. Date<br>(YY-MM-DD) | Next Cal. Date<br>(YY-MM-DD) |  |  |  |  |  |
| •    | Semi-Anechoic<br>Chamber     | Albatross<br>projects | HTWE0122      | SAC-3m-01     | C11121      | 2023/4/17                    | 2026/4/16                    |  |  |  |  |  |
| •    | Spectrum<br>Analyzer         | R&S                   | HTWE0098      | FSP40         | 100597      | 2022/8/25                    | 2023/8/24                    |  |  |  |  |  |
| •    | Horn Antenna                 | SCHWARZBE<br>CK       | HTWE0126      | BBHA<br>9120D | 1011        | 2023/2/14                    | 2026/2/13                    |  |  |  |  |  |
| •    | Horn Antenna                 | SCHWARZBE<br>CK       | HTWE0103      | BBHA9170      | BBHA9170472 | 2023/2/20                    | 2026/2/19                    |  |  |  |  |  |
| •    | Broadband Pre-<br>amplifier  | SCHWARZBE<br>CK       | HTWE0201      | BBV 9718      | 9718-248    | 2023/5/25                    | 2024/5/24                    |  |  |  |  |  |
| •    | Test Software                | R&S                   | N/A           | EMC32         | N/A         | N/A                          | N/A                          |  |  |  |  |  |

Report No.: CHTEW23090007 Page: 9 of 16 Date of issue: 2023-08-31

## 5. TEST CONDITIONS AND RESULTS

#### 5.1. Conducted Emissions


#### **LIMIT**

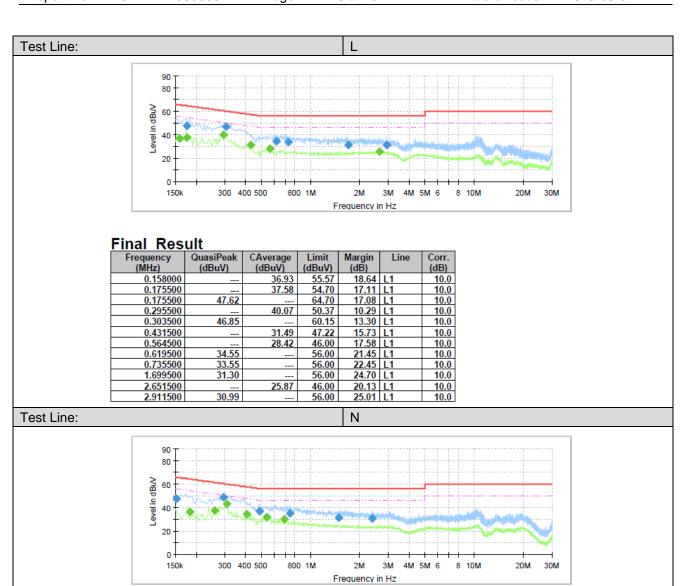
FCC CFR Title 47 Part 15 Subpart B Section 15.107:

| Frequency range (MHz)   | Limit (dBuV) |           |  |  |  |
|-------------------------|--------------|-----------|--|--|--|
| Frequency range (wiriz) | Quasi-peak   | Average   |  |  |  |
| 0.15-0.5                | 66 to 56*    | 56 to 46* |  |  |  |
| 0.5-5                   | 56           | 46        |  |  |  |
| 5-30                    | 60           | 50        |  |  |  |

<sup>\*</sup> Decreases with the logarithm of the frequency.

#### **TEST CONFIGURATION**




#### **TEST PROCEDURE**

- 1. The EUT was setup according to ANSI C63.4:2014
- 2. The EUT was placed on a plat form of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50ohm / 50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor,was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

#### **TEST MODE:**

Please refer to the clause 3.3

#### **TEST RESULTS**

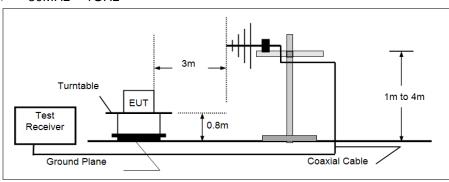


| _ |      | _ |    |   |   |
|---|------|---|----|---|---|
|   | inal |   | 00 |   | ٠ |
|   |      |   |    | u |   |

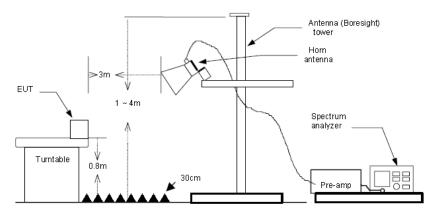
| Frequency | QuasiPeak | CAverage | Limit  | Margin | Line | Corr. |
|-----------|-----------|----------|--------|--------|------|-------|
| (MHz)     | (dBuV)    | (dBuV)   | (dBuV) | (dB)   | Line | (dB)  |
| 0.151500  | 47.68     |          | 65.92  | 18.24  | N    | 10.0  |
| 0.183500  |           | 36.27    | 54.33  | 18.06  | N    | 10.0  |
| 0.259500  |           | 37.44    | 51.45  | 14.00  | N    | 10.0  |
| 0.295500  | 48.65     |          | 60.37  | 11.72  | N    | 10.0  |
| 0.307500  | -         | 43.20    | 50.04  | 6.84   | N    | 10.0  |
| 0.407500  |           | 34.29    | 47.70  | 13.41  | N    | 10.0  |
| 0.487500  | 36.94     |          | 56.21  | 19.27  | N    | 10.0  |
| 0.543500  |           | 31.76    | 46.00  | 14.24  | N    | 10.0  |
| 0.691500  |           | 29.88    | 46.00  | 16.12  | N    | 10.0  |
| 0.747500  | 35.27     |          | 56.00  | 20.73  | N    | 10.0  |
| 1.491500  | 31.45     |          | 56.00  | 24.55  | N    | 10.0  |
| 2.391500  | 30.34     |          | 56.00  | 25.66  | N    | 10.0  |

Report No.: CHTEW23090007 Page: 11 of 16 Date of issue: 2023-08-31

#### 5.2. Radiated Emissions


#### LIMIT

FCC CFR Title 47 Part 15 Subpart B Section 15.109


| 00 01 11 1110 11 1 1111 10 0000 000 1011 101100 |                    |            |  |  |  |  |  |  |
|-------------------------------------------------|--------------------|------------|--|--|--|--|--|--|
| Frequency                                       | Limit (dBuV/m @3m) | Value      |  |  |  |  |  |  |
| 30MHz-88MHz                                     | 40.00              | Quasi-peak |  |  |  |  |  |  |
| 88MHz-216MHz                                    | 43.50              | Quasi-peak |  |  |  |  |  |  |
| 216MHz-960MHz                                   | 46.00              | Quasi-peak |  |  |  |  |  |  |
| 960MHz-1GHz                                     | 54.00              | Quasi-peak |  |  |  |  |  |  |
| Above 1GHz                                      | 54.00              | Average    |  |  |  |  |  |  |
| Above 10112                                     | 74.00              | Peak       |  |  |  |  |  |  |

#### **TEST CONFIGURATION**

#### ➢ 30MHz ~ 1GHz

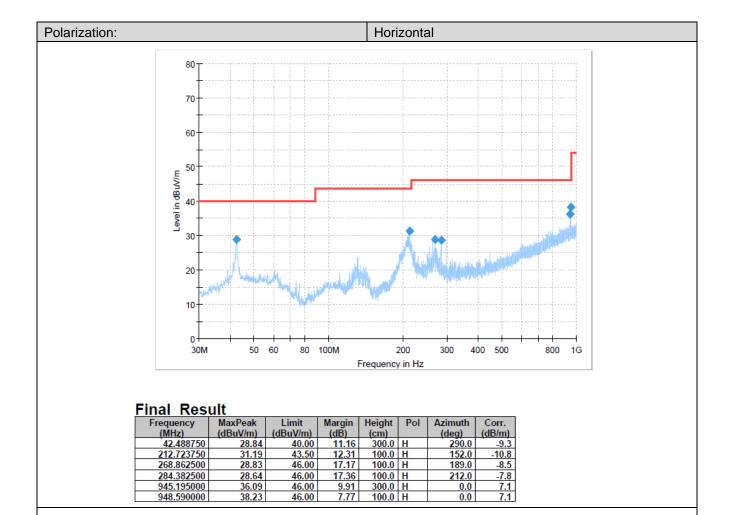


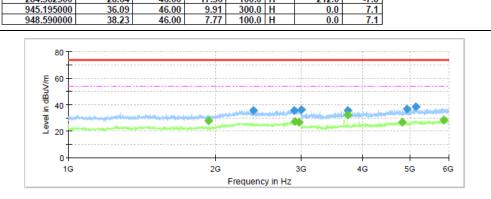
#### Above 1GHz



#### **TEST PROCEDURE**

- 1. The EUT was tested according to ANSI C63.4:2014.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground.
- 3. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 4. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 5. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna.
- 6. Use the following spectrum analyzer settings
  - (1) Span shall wide enough to fully capture the emission being measured;
  - (2) Below 1GHz,
    - RBW=120KHz, VBW=300KHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, theemission measurement will be repeated using the quasi-peak detector and reported.
  - (3) From 1GHz to 5th harmonic, RBW=1MHz, VBW=3MHz


Report No.: CHTEW23090007 Page: 12 of 16 Date of issue: 2023-08-31


#### **TEST MODE:**

Please refer to the clause 3.3

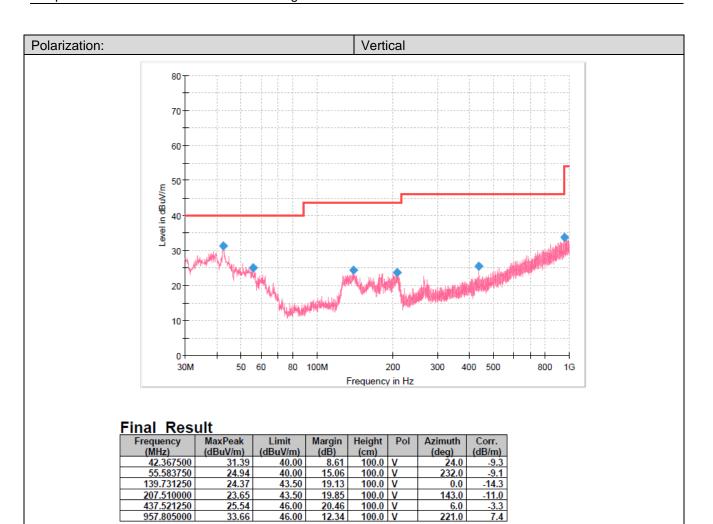
#### **TEST RESULTS**

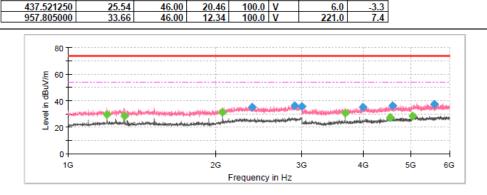
Note: Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor The emission levels of frequency above 6GHz are very lower than limit and not show in test report.





212.0


| F | inal | Res   | uľ | t |
|---|------|-------|----|---|
|   | Frea | uencv | M  | a |


284.382500

28.64

46.00

| Frequency   | MaxPeak  | Average  | Limit    | Margin | Height | Pol | Azimuth | Соп.   |
|-------------|----------|----------|----------|--------|--------|-----|---------|--------|
| (MHz)       | (dBuV/m) | (dBuV/m) | (dBuV/m) | (dB)   | (cm)   |     | (deg)   | (dB/m) |
| 1937.500000 |          | 27.82    | 54.00    | 26.18  | 150.0  | Н   | 61.0    | -8.6   |
| 2391.250000 | 35.43    |          | 74.00    | 38.57  | 150.0  | Н   | 70.0    | -5.7   |
| 2900.000000 | 35.83    |          | 74.00    | 38.17  | 150.0  | Н   | 0.0     | -4.4   |
| 2912.500000 |          | 27.29    | 54.00    | 26.71  | 150.0  | Н   | 107.0   | -4.4   |
| 2966.875000 | -        | 26.85    | 54.00    | 27.15  | 150.0  | Н   | 107.0   | -4.4   |
| 2998.750000 | 36.24    |          | 74.00    | 37.76  | 150.0  | Н   | 135.0   | -4.1   |
| 3730.625000 | 35.83    |          | 74.00    | 38.17  | 150.0  | Н   | 211.0   | -2.4   |
| 3730.625000 | -        | 31.95    | 54.00    | 22.05  | 150.0  | Н   | 211.0   | -2.4   |
| 4827.500000 | -        | 26.74    | 54.00    | 27.26  | 150.0  | Н   | 248.0   | 1.4    |
| 4926.875000 | 36.66    |          | 74.00    | 37.34  | 150.0  | Н   | 183.0   | 1.5    |
| 5143.125000 | 38.14    |          | 74.00    | 35.86  | 150.0  | Н   | 126.0   | 2.8    |
| 5864.375000 |          | 28.08    | 54.00    | 25.92  | 150.0  | Н   | 192.0   | 3.8    |





# Final Result

| Frequency   | MaxPeak  | Average  | Limit    | Margin | Height | Pol | Azimuth | Corr.  |
|-------------|----------|----------|----------|--------|--------|-----|---------|--------|
| (MHz)       | (dBuV/m) | (dBuV/m) | (dBuV/m) | (dB)   | (cm)   |     | (deg)   | (dB/m) |
| 1200.000000 |          | 29.45    | 54.00    | 24.55  | 150.0  | V   | 0.0     | -9.4   |
| 1300.000000 |          | 28.09    | 54.00    | 25.91  | 150.0  | V   | 345.0   | -8.4   |
| 2062.500000 |          | 30.90    | 54.00    | 23.10  | 150.0  | V   | 204.0   | -7.5   |
| 2370.000000 | 35.28    |          | 74.00    | 38.72  | 150.0  | V   | 317.0   | -5.8   |
| 2891.875000 | 36.29    |          | 74.00    | 37.71  | 150.0  | V   | 111.0   | -4.4   |
| 2997.500000 | 35.46    |          | 74.00    | 38.54  | 150.0  | ٧   | 262.0   | -4.1   |
| 3668.750000 |          | 30.56    | 54.00    | 23.44  | 150.0  | V   | 299.0   | -2.8   |
| 3993.125000 | 34.86    |          | 74.00    | 39.14  | 150.0  | ٧   | 241.0   | -1.6   |
| 4543.125000 |          | 27.41    | 54.00    | 26.59  | 150.0  | V   | 308.0   | 0.6    |
| 4589.375000 | 36.13    |          | 74.00    | 37.87  | 150.0  | V   | 317.0   | 0.8    |
| 5052.500000 |          | 28.57    | 54.00    | 25.43  | 150.0  | V   | 7.0     | 2.4    |
| 5592.500000 | 37.28    |          | 74.00    | 36.72  | 150.0  | V   | 130.0   | 2.9    |

Report No.: CHTEW23090007 Page: 15 of 16 Date of issue: 2023-08-31

# 6. TEST SETUP PHOTOS OF THE EUT

Conducted Emissions (AC Mains)



Radiated Emissions (30MHz-1GHz)



Radiated Emissions (Above 1GHz)



Report No.: CHTEW23090007 Page: 16 of 16 Date of issue: 2023-08-31

# 7. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Refer to the test report No.: CHTEW23090006

-----End of Report-----