

ELEMENT WASHINGTON DC LLC

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.element.com

Part 96 MEASUREMENT REPORT

Applicant Name:

Skylark Wireless, LLC 4011 Garrott St. Houston, TX 77006 USA

Date of Testing: 11/29/2023-12/19/2024 Test Report Issue Date: 2/12/2025 Test Site/Location: Element Lab., Columbia, MD, USA Test Report Serial No.: 1M2401230005-01.2AS22

FCC ID:	2AS22-FLCOCH2
APPLICANT:	Skylark Wireless, LLC
Application Type:	Certification
Model:	FLCOCH2
ЕИТ Туре:	CBRS CPE

Category B Citizens Band Radio Service Devices (CBSD) 96

ANSI C63.26-2015, KDB 940660 D01 v03

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

FCC Classification:

FCC Rule Part(s):

Test Procedure(s):

RJ Ortanez Executive Vice President

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates: EUT Type:		Page 1 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 1 01 152
©2024 ELEMENT			V3.0 1/6/2022

TABLE OF CONTENTS

1.0	INTRO	OD UCTION	4			
	1.1	Scope	4			
	1.2	Element Test Location	4			
	1.3	Test Facility / Accreditations	4			
2.0	PROD	DUCT INFORMATION	5			
	2.1	Equipment Description	5			
	2.2	Device Capabilities	5			
	2.3	Test Configuration	5			
	2.4	Software and Firm ware	5			
	2.5	EMI Suppression Device(s)/Modifications	5			
3.0	DESC	CRIPTION OF TESTS	6			
	3.1	Measurement Procedure	6			
	3.2	Radiated Power and Radiated Spurious Emissions	6			
4.0	MEASUREMENT UNCERTAINTY					
5.0	TEST	EQUIPMENT CALIBRATION DATA	9			
6.0	SAMF	PLE CALCULATIONS				
7.0	TEST	RESULTS	11			
	7.1	Summary	11			
	7.2	Conducted Output Power/EIRP Data	13			
	7.3	Occupied Bandwidth	32			
	7.4	Conducted Power / EIRP Per 10MHz	50			
	7.5	Power Spectral Density	69			
	7.6	Peak-Average Ratio	88			
	7.7	Spurious and Harmonic Emissions at Antenna Terminal	106			
	7.8	Band Edge Emissions at Antenna Terminal	129			
	7.9	Radiated Spurious Emissions Measurements	143			
	7.10	Frequency Stability / Temperature Variation	149			
8.0	CON	CLUSION	152			

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 2 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 2 of 152
©2024 ELEMENT			V3.0 1/6/2022

MEASUREMENT REPORT FCC Part 96

ΜΙΜΟ					
			Ell	Emissien	
Bandwidth Mod	Modulation	Tx Frequency Range [MHz]	Max. Power [W]	Max. Power [dBm]	Emission Designator
	QPSK	3570.0 - 3680.0	11.567	40.63	36M6G7D
40 MHz	16QAM	3570.0 - 3680.0	11.451	40.59	36M6W7D
40 10112	64QAM	3570.0 - 3680.0	11.661	40.67	36M2W7D
	256QAM	3570.0 - 3680.0	11.522	40.62	36M2W7D
	QPSK	3565.0 - 3685.0	10.880	40.37	29M4G7D
30 MHz	16QAM	3565.0 - 3685.0	10.902	40.37	29M1W7D
30 IVIHZ	64QAM	3565.0 - 3685.0	10.867	40.36	29M3W7D
	256QAM	3565.0 - 3685.0	10.917	40.38	29M2W7D
	QPSK	3560.0 - 3690.0	10.776	40.32	19M6G7D
20 MHz	16QAM	3560.0 - 3690.0	10.538	40.23	19M7W7D
20 1011 12	64QAM	3560.0 - 3690.0	10.694	40.29	19M7W7D
	256QAM	3560.0 - 3690.0	10.655	40.28	19M6W7D
10 MHz	QPSK	3555.0 - 3695.0	4.290	36.32	9M08G7D
	16QAM	3555.0 - 3695.0	4.195	36.23	8M99W7D
	64QAM	3555.0 - 3695.0	4.258	36.29	9M07W7D
	256QAM	3555.0 - 3695.0	4.242	36.28	9M07W7D

EUT Overview

Note: EIRP levels shown in the table above are measured over the full channel bandwidth. These values will appear on the Grant of Authorization.

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates: EUT Type:		Page 3 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	29/23-9/3/2024 CBRS CPE	
©2024 ELEMENT	V3.0 1/6/2022		

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

1.2 Element Test Location

These measurement tests were conducted at the Element Laboratory located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at Element Lab located in Columbia, MD 21046, U.S.A.

- Element Washington DC LLC is a OnGo Alliance Approved Test Lab (ATL)
- Element Washington DC LLC is a WInnForum Approved Test Lab
- Element Washington DC LLC is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- Element Washington DC LLC TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- Element Washington DC LLC facility is a registered (2451B) test laboratory with the site description on file with ISED.
- Element Washington DC LLC is a Recognized U.S. Certification Assessment Body (CAB # US0110) for ISED Canada as designated by NIST under the U.S. and Canada Mutual Recognition Agreement.

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:		
1M2401230005-01.2A S22	11/29/23-9/3/2024		
02024 ELEMENT			V3.0 1/6/2022

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Skylark Wireless**, **LLC CBRS CPE FCC ID: 2AS22-FLCOCH2**. The test data contained in this report pertains only to the emissions due to the EUT's Band 48 operation in the CBRS band. Per FCC Part 96, this device is evaluated as a Category B CBSD (CBD).

Test Device Serial No.: FL2B000061, FL2B000036

2.2 Device Capabilities

This device contains the following capabilities:

Band 48

2.3 Test Configuration

The EUT was tested per the guidance of ANSI C63.26-2015. See Section 7.0 of this test report for a description of the radiated and antenna port conducted emissions tests.

This device operates with two antenna ports which produce two simultaneous, orthogonally polarized transmissions. The device utilizes a high power, narrow bandwidth pilot pulse. Under normal operation, this pilot pulse will operate on either antenna, but cannot operate on both antennas at the same time. To simplify conducted emission measurement, pilot operation was limited to a single antenna. Both antenna ports were investigated, and it was which antenna had the pilot pulse was found to have no effect on test results. For conducted emission measurements in this report, the pilot is operating on antenna 1.

2.4 Software and Firmware

Testing was performed on device(s) using software/firmware version 2023.07.01 installed on the EUT.

2.5 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates: EUT Type:		Dogo E of 152
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRSCPE	Page 5 of 152
©2024 ELEMENT			

3.0 DESCRIPTION OF TESTS

3.1 Measurement Procedure

The measurement procedures described in the "American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services" (ANSI C63.26-2015) were used in the measurement of the EUT.

Deviation from Measurement Procedure.....None

3.2 Radiated Power and Radiated Spurious Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. For measurements below 1GHz, the absorbers are removed. A raised turntable is used for radiated measurement. The turn table is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm tall test table made of Styrodur is placed on top of the turn table. A Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

The equipment under test was transmitting while connected to its integral antenna and is placed on a turntable 3 meters from the receive antenna. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer.

For radiated power measurements, substitution method is used per the guidance of ANSI C63.26-2015. For emissions below 1GHz, a half-wave dipole is substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer level previously recorded from the spurious emission from the EUT. The power of the emission is calculated using the following formula:

Pd [dBm] = Pg [dBm] - cable loss [dB] + antenna gain [dBd/dBi];

where P_d is the dipole equivalent power, P_g is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to P_{g [dBm]} – cable loss _[dB].

For radiated spurious emissions measurements, the field strength conversion method is used per the formulas in Section 5.2.7 of ANSI C63.26-2015. Field Strength (EIRP) is calculated using the following formulas:

 $E_{[dB\mu V/m]} = Measured amplitude level_{[dBm]} + 107 + Cable Loss_{[dB]} + Antenna Factor_{[dB/m]}$ And $EIRP_{[dBm]} = E_{[dB\mu V/m]} + 20log D - 104.8$; where D is the measurement distance in meters.

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 414788 D01 v01r01.

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:		
1M2401230005-01.2A S22	11/29/23-9/3/2024		
©2024 E LEMENT			

Radiated power and radiated spurious emission levels are investigated with the receive antenna horizontally and vertically polarized per ANSI C63.26-2015.

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 7 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 7 of 152
2024 E LEMENT			V3.0 1/6/2022

4.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 8 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 6 01 152
©2024 ELEMENT	•	·	V3.0 1/6/2022

5.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	MVG	EMC Cable and Switch System	4/14/2024	Annual	4/14/2025	MVG-001
-	ETS	EMC Cable and Switch System	4/2/2024	Annual	4/2/2025	ETS-001
-	WL40-1	Licensed Transmitter Cable Set	4/2/2024	Annual	4/2/2025	WL40-1
Agilent	N9030A	50GHz PXA Signal Analyzer	4/23/2024	Annual	4/23/2025	US51350301
Emco	3115	Horn Antenna (1-18GHz)	6/7/2024	Biennial	6/7/2026	9704-5182
Emco	3116	Horn Antenna (18-40GHz)	7/5/2023	Triennial	7/5/2025	9203-2178
Keysight Technologies	N9020A	MXA Signal Analyzer	4/11/2024	Annual	4/11/2025	MY54500644
Keysight Technologies	N9030A	PXA Signal Analyzer (44GHz)	8/26/2024	Annual	8/26/2025	MY54490576
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	9/25/2023	Annual	9/25/2024	100342
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	9/11/2023	Annual	9/11/2024	100348
Rohde & Schwarz	FSW67	Signal / Spectrum Analyzer	2/15/2024	Annual	2/15/2025	103200
Sunol	JB5	Bi-Log Antenna (30MHz - 5GHz)	8/30/2022	Biennial	8/30/2024	A051107
Sunol	JB6	Bi-Log Antenna (30MHz - 6GHz)	3/2/2023	Biennial	3/2/2025	A082816
Sunol	DRH-118	Horn Antenna (1-18GHz)	2/13/2024	Biennial	2/13/2026	A042511

Notes:

- 1. For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.
- 2. Equipment with a calibration date of "N/A" shown in this list was not used to make direct calibrated measurements.

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 9 of 152		
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 9 01 152		
©2024 ELEMENT	•		V3.0 1/6/2022		

6.0 SAMPLE CALCULATIONS

Emission Designator

QPSK Modulation

Emission Designator = 8M62G7D

BW = 8.62 MHz

G = Phase Modulation

7 = Quantized/Digital Info

D = Data transmission, telemetry, telecommand

QAM Modulation

Emission Designator = 8M45W7D

BW = 8.45 MHz W = Amplitude/Angle Modulated 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

Spurious Radiated Emission – Band 48

Example: Middle Channel 2nd Harmonic (7250 MHz)

The average spectrum analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the spectrum analzyer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 1564 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.501 dBm so this harmonic was 25.501 dBm -(-24.80).

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 10 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 10 01 152
©2024 ELEMENT			V3.0 1/6/2022

7.0 TEST RESULTS

7.1 Summary

Company Name:	Skylark Wireless, LLC
FCC ID:	2AS22-FLCOCH2
FCC Classification:	Category B Citizens Band Radio Service Devices (CBSD)
Mode(s):	Band 48

Test Condition	Test Description	FCC Part Section(s)	Test Limit	Test Result	Reference
	Conducted Power	2.1048(a), 2.1048(c)	NA	PASS	Section 7.2
	Occupied Bandwidth	2.1049(h)	NA	PASS	Section 7.3
	Peak-Average Ratio	96.41(g)	≤ 13dB	PASS	Section 7.6
	Conducted Band Edge / Spurious Emissions (CB SD)	2.1051, 96.41(e)(1)(i)	-13 dBm/MHz at frequencies within 0-10 MHz above the upper SAS-assigned channel edge and within 0-10MHz below the lower SAS-assigned channel edge -25 dBm/MHz at frequencies greater than 10 MHz above and below channel edge -emissions below 3530 MHz or above 3720 MHz shall not exceed -40dBm/MHz	PASS	Sections 7.7, 7.8
Icted	Frequency Stability	2.1055	Fundamental emissions stay within authorized frequency block	PASS	Section 7.10
Conducted	Category B CBSD Device Additional Requirements (CBSD Protocol)	96.45	Category B CBSDs must be professionally installed. In the 3550-3650MHz band, Category B CBSDs must be authorized consistent with information received from an ESC, as described in 96.15. Category B CBSDs are limited to outdoor operations. When registering with a SAS, Category B CBSDs must transist all information required under 96.39 plus the following additional information: antenna gain, beamwidth, azimuth, downtilt angle, and antenna height above ground level.	PASS	SAS Protocol Report
	Equivalent Isotropic Radiated Power (EIRP) (Catogory B CBSD)	96.41(b)	47 dBm/ 10MHz	PASS	Section 7.4
	Pow er Spectral Density (PSD) (Category B CBSD)	96.41(b)	37 dBm/ MHz	PASS	Section 7.5
Radiated	Radiated Spurious Emissions	96.41(e)	-40 dBm/MHz	PASS	Section 7.9

Notes:

Table 7-1 Summary of Test Results

1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.

FCC ID: 2AS22-FLCOCH2		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Deep 11 of 150	
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRSCPE	Page 11 of 152	
©2024 ELEMENT	•		V3.0 1/6/2022	

- 2) The analyzer plots were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables, directional couplers, and attenuators used as part of the system to maintain a link between the call box and the EUT at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is EMC Software Tool 1.1 and Chamber Control 1.6.4.

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:	Dage 42 of 452				
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 12 of 152				
©2024 ELEMENT							

7.2 Conducted Output Power/EIRP Data

Test Overview

The EUT is set up to transmit at maximum power for Band 48. All power levels are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst-case configuration. All modes of operation were investigated and the worst-case configuration results are reported in this section.

Measurement equipment was set up with triggering/gating on the spectrum analyzer such that powers were measured only during the on-time of the signal.

Test Procedure Used

ANSI C63.26-2015 - Section 5.2.4.4.1 ANSI C63.26-2015 - Section 6.4.3.2.3

Test Settings

- 1. Span = $2 \times OBW$ to $3 \times OBW$
- 2. RBW ≥ OBW
- 3. Number of measurement points in sweep $\geq 2 \times \text{span} / \text{RBW}$
- 4. Sweep = auto-couple (less than transmission burst duration)
- 5. Detector = RMS (power)
- 6. Trigger was set to enable power measurements only on full power bursts
- 7. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 13 of 152	
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE		
©2024 ELEMENT	•	·	V3.0 1/6/2022	

Test Notes

- 1. Conducted power measurements were evaluated using various combinations of modulation and channel bandwidth. Channel bandwidth data is shown in the tables below based only on the channel bandwidths that were supported in this device.
- 2. Per the guidance of KDB 662911 D02, only the maximum antenna gain from one antenna is applied to determine the MIMO EIRP due to the two antennas being cross-polarized

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dogo 14 of 152	
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 14 of 152	
©2024 ELEMENT			V3.0 1/6/2022	


Bandwidth	Modulation	Frequency [MHz]	Ch. A Conducted Power [dBm]	Ch. B Conducted Power [dBm]	Summed MIMO Conducted Power [dBm]	Ant Gain [dBi]	MIMO EIRP [dBm]	EIRP [Watts]
		3570.0	26.62	20.81	27.63	13.00	40.63	11.567
	QPSK	3625.0	26.38	21.13	27.51	13.00	40.51	11.258
		3680.0	25.84	20.85	27.04	13.00	40.04	10.083
		3570.0	26.51	21.01	27.59	13.00	40.59	11.451
N	THW 04 OAAM	3625.0	26.47	21.13	27.58	13.00	40.58	11.439
HN		3680.0	25.83	20.87	27.03	13.00	40.03	10.076
ų o		3570.0	26.56	21.19	27.67	13.00	40.67	11.661
4	64-QAM	3625.0	26.40	20.55	27.40	13.00	40.40	10.974
		3680.0	25.63	20.44	26.78	13.00	39.78	9.503
		3570.0	26.55	20.99	27.62	13.00	40.62	11.522
	256-QAM	3625.0	26.42	21.4	27.61	13.00	40.61	11.504
		3680.0	25.88	20.59	27.01	13.00	40.01	10.012
		3565.0	26.18	21.15	27.37	13.00	40.37	10.880
	QPSK	3625.0	26.09	21.15	27.30	13.00	40.30	10.710
		3685.0	25.25	20.97	26.63	13.00	39.63	9.178
		3565.0	25.93	20.95	27.13	13.00	40.13	10.299
N	16-QAM	3625.0	26.15	21.28	27.37	13.00	40.37	10.902
НИ		3685.0	25.28	20.84	26.61	13.00	39.61	9.151
30 MHz		3565.0	25.98	20.99	27.18	13.00	40.18	10.413
3	ଟ୍ଟ 64-QAM	3625.0	26.17	21.16	27.36	13.00	40.36	10.867
		3685.0	25.26	20.92	26.62	13.00	39.62	9.165
		3565.0	26.05	20.98	27.23	13.00	40.23	10.536
	256-QAM	3625.0	26.19	21.18	27.38	13.00	40.38	10.917
		3685.0	25.43	20.91	26.74	13.00	39.74	9.427
		3560.0	26.19	20.94	27.32	13.00	40.32	10.776
	QPSK	3625.0	26.07	21.07	27.26	13.00	40.26	10.625
		3690.0	25.15	20.8	26.51	13.00	39.51	8.930
		3560.0	26.09	20.73	27.20	13.00	40.20	10.470
N	16-QAM	3625.0	26.01	21.11	27.23	13.00	40.23	10.538
20 MHz		3690.0	25.30	20.89	26.64	13.00	39.64	9.210
0		3560.0	26.20	20.76	27.29	13.00	40.29	10.694
7	64-QAM	3625.0	25.94	21.04	27.16	13.00	40.16	10.369
		3690.0	25.24	20.78	26.57	13.00	39.57	9.056
		3560.0	26.03	20.96	27.21	13.00	40.21	10.487
	256-QAM	3625.0	26.07	21.12	27.28	13.00	40.28	10.655
		3690.0	25.10	20.79	26.47	13.00	39.47	8.850
		3555.0	26.72	21.18	27.79	13.00	36.32	4.290
	QPSK	3625.0	26.77	23.65	28.49	13.00	36.26	4.230
		3695.0	25.55	20.91	26.83	13.00	35.51	3.555
		3555.0	26.74	21.14	27.80	13.00	36.20	4.168
N	16-QAM	3625.0	26.82	21.76	28.00	13.00	36.23	4.195
ΗM	3695.0	25.57	20.83	26.83	13.00	35.64	3.667	
ZHW 01 64-QA		3555.0	26.63	21.13	27.71	13.00	36.29	4.258
	64-QAM	3625.0	26.90	21.63	28.03	13.00	36.16	4.128
		3695.0	25.36	20.64	26.62	13.00	35.57	3.605
		3555.0	26.69	21.21	27.77	13.00	36.21	4.175
	256-QAM	3625.0	26.80	22.05	28.05	13.00	36.28	4.242
		3695.0	25.36	20.87	26.68	13.00	35.47	3.523

 Table 7-2 Conducted Power / EIRP Measurements

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 15 of 150		
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 15 of 152		
©2024 ELEMENT			V3.0 1/6/2022		

Antenna 1 Conducted Power Measurements

Plot 7.1 – Conducted Power Measurement – 10MHz BW, Mid Channel, QPSK – ANT1 ACLRResults

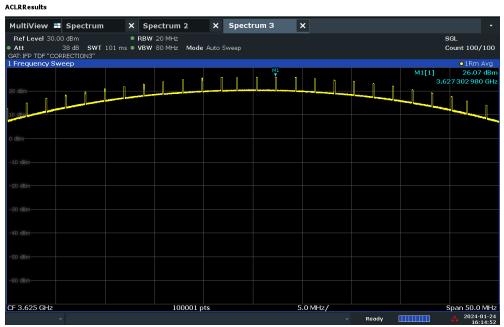
MultiView 🎟	Spectrum 2	× sp	ectrum 3	× Spec	trum 4	×			
Ref Level 30.00 Att SAT: IFP TDF "COR	36 dB SWT 1.01 r	● RBW 3 ms ● VBW 3		e Auto Sweep					GL Count 100/100
I Frequency Sw	еер								o1Rm Avg
	N	1						M1[1]	26.82 dBm 8.618 407 0 GHz
-50 dBm									
60 dBm									
ou asm									
CF 3.625 GHz			1001 pts	3	2	.5 MHz/			Span 25.0 MH
							Ready		2024-01-17 16:37:25

Plot 7.2 - Conducted Power Measurement - 10MHz BW, Mid Channel, 16QAM - ANT1

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 16 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 16 of 152
©2024 ELEMENT	•		V3.0 1/6/2022

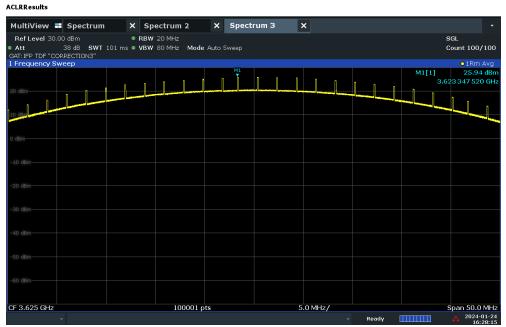
MultiView 🎫 Spe	ectrum 2 X	Spectrum 3	×s	pectrum 4	×		•
Ref Level 30.00 dBm		BW 50 MHz				s	
Att 36 dB GAT: IFP TDF "CORRECTI	SWT 1.01 ms • V ON3"	3W 80 MHz Mode	Auto Sweej			Co	ount 100/10
Frequency Sweep	Ng1						o 1Rm Avç
						M1[1] 3.	26.90 dB 618 407 0 G

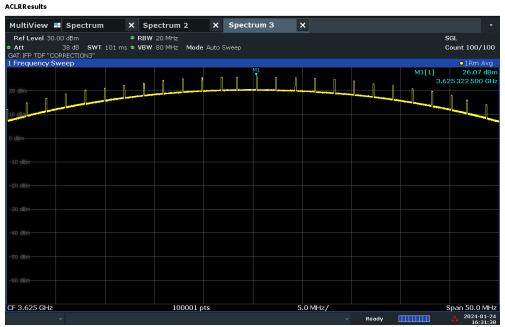
10 dBm							
-30 dBm							


Plot 7.3 – Conducted Power Measurement – 10MHz BW, Mid Channel, 64QAM – ANT1

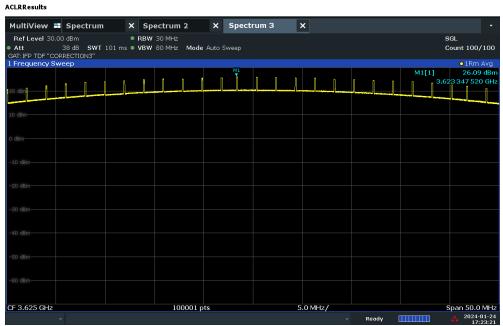
Plot 7.4 - Conducted Power Measurement - 10MHz BW, Mid Channel, 256QAM - ANT1

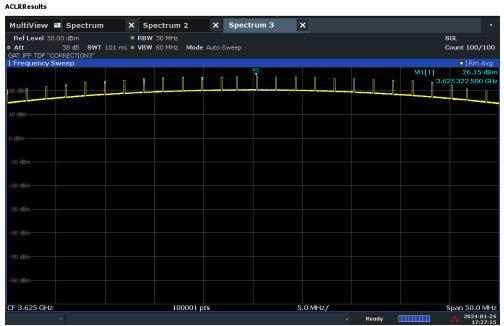
FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 17 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 17 01 152
©2024 ELEMENT	•		V3.0 1/6/2022


Plot 7.5 – Conducted Power Measurement – 20MHz BW, Mid Channel, QPSK – ANT1

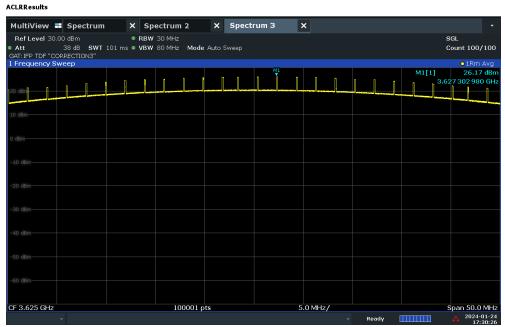

Plot 7.6 - Conducted Power Measurement - 20MHz BW, Mid Channel, 16QAM - ANT1

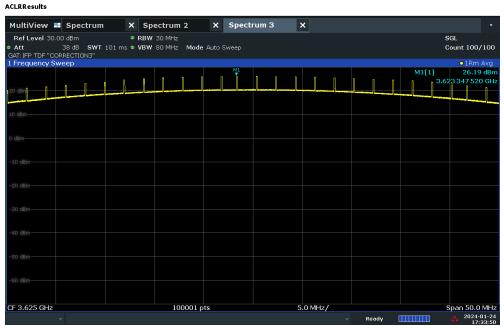
FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 18 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRSCPE	Page to 01 152
©2024 ELEMENT	•	•	V3.0 1/6/2022


Plot 7.7 – Conducted Power Measurement – 20MHz BW, Mid Channel, 64QAM – ANT1

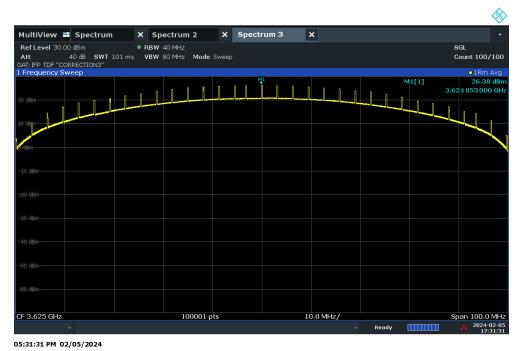

Plot 7.8 - Conducted Power Measurement - 20MHz BW, Mid Channel, 256QAM - ANT1

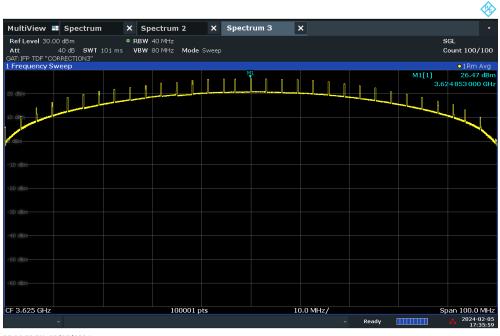
FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 19 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRSCPE	Page 19 01 152
©2024 ELEMENT	•	•	V3.0 1/6/2022


Plot 7.9 – Conducted Power Measurement – 30MHz BW, Mid Channel, QPSK – ANT1


Plot 7.10 - Conducted Power Measurement - 30MHz BW, Mid Channel, 16QAM - ANT1

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 20 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 20 01 152
©2024 ELEMENT	•		V3.0 1/6/2022


Plot 7.11 – Conducted Power Measurement – 30MHz BW, Mid Channel, 64QAM – ANT1

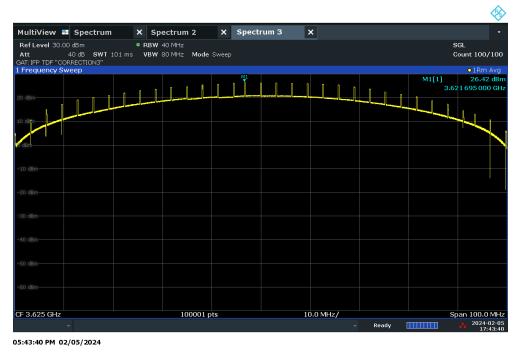

Plot 7.12 - Conducted Power Measurement - 30MHz BW, Mid Channel, 256QAM - ANT1

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 21 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRSCPE	Page 21 01 152
©2024 ELEMENT	•	•	V3.0 1/6/2022

Plot 7.13 - Conducted Power Measurement - 40MHz BW, Mid Channel, QPSK - ANT1



05:36:00 PM 02/05/2024


Plot 7.14 - Conducted Power Measurement - 40MHz BW, Mid Channel, 16QAM - ANT1

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 22 of 152
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 22 01 152
©2024 ELEMENT		·	V3.0 1/6/2022

Plot 7.15 – Conducted Power Measurement – 40MHz BW, Low Channel, 64QAM – ANT1

Plot 7.16 - Conducted Power Measurement - 40MHz BW, Mid Channel, 256QAM - ANT1

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 23 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 23 01 152
©2024 ELEMENT	•		V3.0 1/6/2022

Antenna 2 Conducted Power Measurements

ACLRResults

Ref Level 30.00 dBm	RBW 50 MHz		SGL
	s 🖷 VBW 80 MHz 🛛 Mode Auto Sweep		Count 100/100
AT: IFP_TDF "CORRECTION3" Frequency Sweep			•1Rm Avg
	M1		M1[1] 23.65 dBr
			3.622 403 0 GH
20 dBm			
30 dBm			
40 dBm			
50 dBm-			
3.625 GHz	1001 pts	2.5 MHz/	Span 25.0 MH
	pts		ady 2024-01-17 15:13:27

Plot 7.17 - Conducted Power Measurement - 10MHz BW, Mid Channel, QPSK - ANT2

Ref Level 30.00 dBm		RBW 50 MHz			SGL
Att 36 dB s	SWT 1.01 ms (VBW 80 MHz Mode	e Auto Sweep		Count 100/100
AT: IFP TDF "CORRECTION Frequency Sweep	3"				•1Rm Avg
			M1		M1[1] 21.76 dBn 3.623 926 0 GH
abm					
0 d8m-					
3.625 GHz		1001 pts		2.5 MHz/	Span 25.0 MH

Plot 7.18 - Conducted Power Measurement - 10MHz BW, Mid Channel, 16QAM - ANT2

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 24 of 152
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 24 01 152
©2024 ELEMENT			V3.0 1/6/2022

MultiView 🖿	Spectrum 2	×	Spectrum 3	×	Spectrum 4	<mark></mark> ★ ×		· ·
Ref Level 30.00 d			v 50 MHz					GL
Att 36 AT: IFP TDF "CORRE	5 dB SWT 1.01 m ECTION3"	s o VBV	80 MHz Mode	Auto Sv	reep		C	ount 100/10
Frequency Swee	ep							01Rm Avç
				M1			M1[1]	21.63 df .622 902 0 G
o dem						~~~~	 	
10 dBm								
20 dBm								
60 dBm								
F 3.625 GHz						2.5 MHz/		pan 25.0 M

Plot 7.19 – Conducted Power Measurement – 10MHz BW, Mid Channel, 64QAM – ANT2

MultiView 📰 Spe	ectrum 2	X Spectrum 3	X Spec	trum 4 🛛 😽 🗙		
Ref Level 30.00 dBm		RBW 50 MHz	A opec			SGL
	SWT 1.01 ms (VBW 80 MHz Mode	e Auto Sweep			Count 100/10
Frequency Sweep	UN3"					• 1Rm Avg
				M1		M1[1] 22.05 dB 3.626 324 0 GF
O dBm						
40 dBm						
F 3.625 GHz		1001 pt	s	2.5 MH	lz/	Span 25.0 MH

Plot 7.20 - Conducted Power Measurement - 10MHz BW, Mid Channel, 256QAM - ANT2

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 25 of 152	
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Fage 20 01 102	
©2024 ELEMENT	•		V3.0 1/6/2022	

MultiView 🎫 Spectrum 2	2 ×	Spectrum 3	× Spec	trum 4	×		
Ref Level 30.00 dBm		V 20 MHz				s	GL
Att 40 dB SWT 1.0 AT:IFP TDF "CORRECTION3"	Dims VBN	V 80 MHz Mode	Sweep			c	ount 100/10
Frequency Sweep							o 1Rm Avç
						M1[1]	21.07 dE
			M1			3	.6243510G
0 dBm							
0 dBa							- market
50 dBm-							
F 3.625 GHz		1001 pts		5.	0 MHz/	5	pan 50.0 Mł

12:03:45 PM 02/06/2024

Plot 7.21 – Conducted Power Measurement – 20MHz BW, Mid Channel, QPSK – ANT2

12:05:02 PM 02/06/2024

Plot 7.22 - Conducted Power Measurement - 20MHz BW, Mid Channel, 16QAM - ANT2

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dogo 26 of 152		
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 26 of 152		
©2024 ELEMENT		·	V3.0 1/6/2022		

MultiView 💶 Spectrum 2	×	Spectrum 3	×	Spectrum 4	×			
RefLevel 30.00 dBm Att 40 dB SWT 1.01		V 20 MHz V 20 MHz Mode	Swoon				sg	L unt 100/10
AT: IFP TDF "CORRECTION3"	. 1113	r oo minz mode	owcep					
Frequency Sweep								01Rm Av
							M1[1]	21.04 a
0 dBm-				······	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			2020000
) dBriennen and and and and and and and and and an								manne
LO dBm-								
3.625 GHz		1001 pts	-		5.0 MHz/		Sr	an 50.0 M
51025 GHZ		1001 pt:	,		010111127	- Ready		2024-02-

12:06:29 PM 02/06/2024

Plot 7.23 - Conducted Power Measurement - 20MHz BW, Mid Channel, 64QAM - ANT2

12:07:46 PM 02/06/2024

Plot 7.24 - Conducted Power Measurement - 20MHz BW, Mid Channel, 256QAM - ANT2

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 27 of 152	
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 27 of 152	
©2024 ELEMENT		·	V3.0 1/6/2022	

MultiView 🎫 Spectru	Spectrum 3	× Spectr	um 4 🗙			
RefLevel 30.00 dBm Att 40 dB SW1 AT: IFP TDF "CORRECTION3"	/ 30 MHz / 80 MHz Mode S	weep				SGL Count 100/10
Frequency Sweep						o1Rm Avg
		M1			M1[1] 21.15 dB 3.625 150 0 G
D dBm						
D dBar						
30 dBm						
F 3.625 GHz	1001 pts		7.5 MH	Z/		Span 75.0 MH

 $\mathbf{\Delta}$

12:25:00 PM 02/06/2024

Plot 7.25 - Conducted Power Measurement - 30MHz BW, Mid Channel, QPSK - ANT2

IultiView 🎫 Spectrum 2	X Spe	trum 3	× Spectrum	4 ×		
RefLevel 30.00 dBm Att 40 dB SWT 1.0 AT: IFP TDF "CORRECTION3"	 RBW 30 N 01 ms VBW 80 N 		ер			SGL Count 100/10
Frequency Sweep						• 1Rm Av
			M1			M1[1] 21.28 d 3.625 9740 d
) dBm					~~~~~	
daxa						
) dBm-						
3.625 GHz		1001 pts		7.5 MHz/		Span 75.0 M

Plot 7.26 - Conducted Power Measurement - 30MHz BW, Mid Channel, 16QAM - ANT2

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 28 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 20 01 152
©2024 ELEMENT			V3.0 1/6/2022

Ref Level 30.00 dBm • RBW 30 MHz Att 40 dB SWT 1.01 ms VBW 80 MHz Mode Sweep 30 dbm 10 ms 10	SGL Count 100/ •1Rm - M1[1] 21.16 3.625 225 0			Sweep		40 dB SWT 1.01	مر مر
Frequency Sweep 0 dBm M1 0 0 dBm 0 0 0 dBm 0 0 10 dBm 0 0 20 dBm 0 0 10 dBm	M1[1] 21.16						
0 dBm 0 dBm 10 dBm 20 dBm 20 dBm 40 dBm 40 dBm 40 dBm						еер	
0. (Base			V				
dim) dBm
) dBase
							20 dBm
							30 dBm
50 dBm							
	Span 75.0	7.5 MHz/			1001 pts		3.625 GHz

12:27:57 PM 02/06/2024

Plot 7.27 - Conducted Power Measurement - 30MHz BW, Mid Channel, 64QAM - ANT2

4ultiView 🎫 Spec	trum 2	X Spectrum 3	× Spectrum 4	×	
RefLevel 30.00 dBm Att 40 dB AT:IFP TDF "CORRECTIC	SWT 1.01 ms	RBW 30 MHz VBW 80 MHz Mode	Sweep		SGL Count 100/10
Frequency Sweep					• 1Rm Av
			M1		M1[1] 21.18 dl 3.626 798 0 d
) dBm					
_dBaa					
+0 d8m					
- 3.625 GHz		1001 pts		7.5 MHz/	Span 75.0 M

12:30:06 PM 02/06/2024


Plot 7.28 - Conducted Power Measurement - 30MHz BW, Mid Channel, 256QAM - ANT2

FCC ID: 2AS22-FLCOCH2		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 20 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 29 of 152
©2024 ELEMENT			V3.0 1/6/2022

1ultiView		Spectrum 3	× Spe				SGL
Att 40 dB SWT 1. AT:IFP TDF "CORRECTION3"	01 ms 🗢 VBM	80 MHz Mode	Sweep				Count 100/1
Frequency Sweep							• 1Rm Av
						M1[1]	21.13 d
							3.622 000 0 0
							
							~~
dBm							- manual and a second s
							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
dBm							
0 dBm							
0 dBm							
3.625 GHz		1001 pt	S	10	0.0 MHz/		Span 100.0 M

Plot 7.29 – Conducted Power Measurement – 40MHz BW, Mid Channel, QPSK – ANT2



Plot 7.30 - Conducted Power Measurement - 40MHz BW, Mid Channel, 16QAM - ANT2

FCC ID: 2AS22-FLCOCH2		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 30 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 30 01 152
©2024 ELEMENT			V3.0 1/6/2022



IultiView 📰 Spectrum Ref Level 30.00 dBm	 Spectrum 3	× Spec				SGL
	'80 MHz Mode					Count 100/1
AT: IFP TDF "CORRECTION3"	ou Minz Mode	oweep				Count 100/1
Frequency Sweep						o1Rm A∖
					M1[1]	21.19 d
		M1				3.62180000
dBm					the second se	man
						- man
0 dBm						
0 dBm						
3.625 GHz	1001 pt	s	10	0.0 MHz/		Span 100.0 N

Plot 7.31 – Conducted Power Measurement – 40MHz BW, Low Channel, 64QAM – ANT2



Plot 7.32 - Conducted Power Measurement - 40MHz BW, Mid Channel, 256QAM - ANT2

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 21 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 31 of 152
©2024 ELEMENT			V3.0 1/6/2022



## 7.3 Occupied Bandwidth

#### **Test Overview**

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

#### **Test Procedure Used**

ANSI C63.26-2015 - Section 5.4.4

#### **Test Settings**

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW  $\geq$  3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within

1-5% of the 99% occupied bandwidth observed in Step 7

#### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.



Figure 7-2. Test Instrument & Measurement Setup

#### **Test Notes**

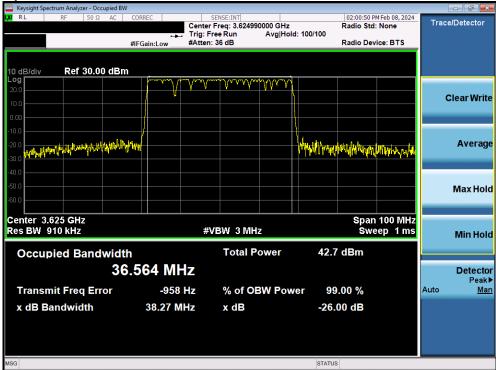
None

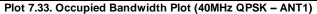
FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 22 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 32 of 152
©2024 ELEMENT	•		V3.0 1/6/2022

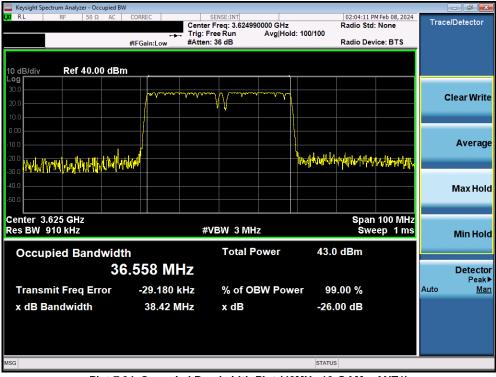


Bandwidth	Modulation	26dB BW [MHz]	OBW [MHz]
	QPSK	38.27	36.56
40 MHz	16QAM	38.42	36.56
40 10112	64QAM	38.22	36.16
	256QAM	38.54	36.18
	QPSK	30.95	29.42
30 MHz	16QAM	30.70	29.04
30 10112	64QAM	30.80	29.34
	256QAM	30.82	29.17
	QPSK	20.76	19.63
20 MHz	16QAM	20.88	19.68
20 1011 12	64QAM	20.83	19.66
	256QAM	20.72	19.60
	QPSK	10.32	9.08
10 MHz	16QAM	9.48	8.96
	64QAM	10.27	9.07
	256QAM	9.58	9.07

Table 7-3 Occupied Bandwidth Measurements - ANT1


Bandwidth	Modulation	26dB BW [MHz]	OBW [MHz]
	QPSK	38.15	35.91
40 MHz	16QAM	38.62	35.89
	64QAM	38.38	35.97
	256QAM	38.83	35.93
	QPSK	30.86	29.18
30 MHz	16QAM	30.95	29.12
30 IVIHZ	64QAM	31.09	29.14
	256QAM	30.83	29.16
	QPSK	20.72	19.40
20 MHz	16QAM	20.69	19.41
	64QAM	20.86	19.44
	256QAM	20.75	19.45
	QPSK	14.32	9.01
10 MHz	16QAM	10.30	8.99
	64QAM	10.04	8.98
	256QAM	9.95	9.01


Table 7-4 Occupied Bandwidth Measurements – ANT2


FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 33 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRSCPE	Page 33 01 152
©2024 ELEMENT	•	·	V3.0 1/6/2022

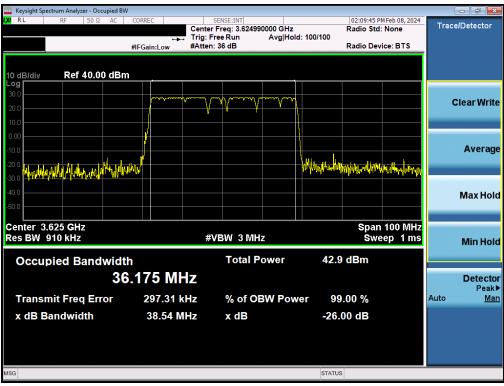


### Antenna 1 Occupied Bandwidth Measurements








Plot 7.34. Occupied Bandwidth Plot (40MHz 16-QAM – ANT1)

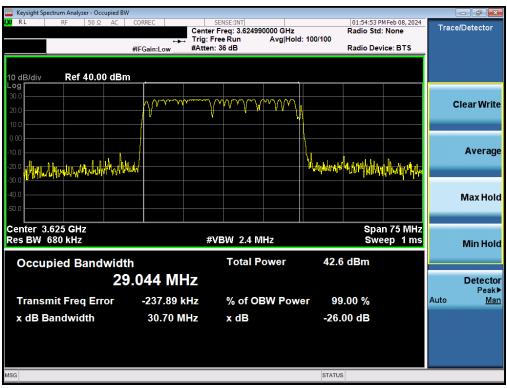
FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 34 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 34 01 152
©2024 ELEMENT	•		V3.0 1/6/2022



Keysight Spectrum Analyzer - Occu						[	
<b>LX RL RF 50 Ω</b>	AC CORREC		0000 GHz Avg Hold: 100/100	Radio Std		Trace	e/Detector
	#IFGain:Low	#Atten: 36 dB		Radio Dev	rice: BTS		
10 dB/div Ref 30.00	dBm						
Log 20.0 10.0						c	Clear Write
-10.0 -20.0 (45.4)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)	antruper le la		here a second	kan <mark>h</mark> irteda	glennanna		Average
-40.0 -50.0 -60.0							Max Hold
Center 3.625 GHz Res BW 910 kHz		#VBW 3 MHz		Swe	100 MHz ep 1 ms		Min Hold
Occupied Bandy	width	Total Po	ower 43.1	dBm			
	36.162 MH						Detector Peak▶
Transmit Freq Erro	or 36.916 kH	Hz % of OB	SW Power 99	.00 %		Auto	<u>Man</u>
x dB Bandwidth	38.22 MI	Hz x dB	-26.	00 dB			
MSG			STATUS	5			

Plot 7.35. Occupied Bandwidth Plot (40MHz 64-QAM - ANT1)




Plot 7.36. Occupied Bandwidth Plot (40MHz 256-QAM – ANT1)

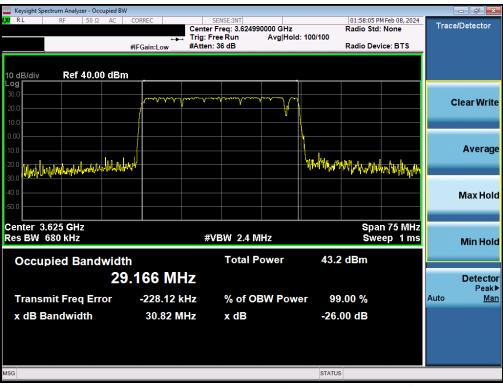
FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 25 of 152
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 35 of 152
©2024 ELEMENT	•		V3.0 1/6/2022



Keysight Spectrum Analyzer - Occupied I	BW							
02 RL RF 50 Ω AC CORREC SENSE:INT 01:53:23 PM Feb 08, 2024 Center Freq: 3.624990000 GHz Radio Std: None							Trac	e/Detector
	mac	enderector						
Trig: Free Run Avg Hold:>100/100 #IFGain:Low #Atten: 36 dB Radio Device: BTS						ice: BTS		
10 dB/div Ref 40.00 dB								
Log 30.0								
	المسعمكين	Author and	M					Clear Write
20.0								
10.0								
0.00								
								Average
-10.0				1.1.5		1		Average
					ught shipping	MAR WHY MUNA		
-30.0 ALLANALI. MALA AL MARA				1				
-40.0								
								Max Hold
-50.0							_	
Center 3.625 GHz					0	- 76 bill-		
Res BW 680 kHz	#VBW 2.4 MHz				n 75 MHz			
Res BW 080 KHZ	#VBW 2.4 MHZ S			SWE	ep 1 ms		Min Hold	
	141-	Total P	owor	42.2	dDm			
Occupied Bandwidth Total Power 43.2 dBm								
2			Detector					
	9.419 MHz							Peak▶
Transmit Freq Error	83.162 kHz	% of OE	<b>SW Powe</b>	r 99	.00 %		Auto	<u>Man</u>
				200				
x dB Bandwidth	30.95 MHz	x dB		-26.0	00 dB			
MSG				STATUS				

Plot 7.37. Occupied Bandwidth Plot (30MHz QPSK - ANT1)




Plot 7.38. Occupied Bandwidth Plot (30MHz 16-QAM – ANT1)

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 36 of 152	
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 30 01 152	
©2024 ELEMENT			V3.0 1/6/2022	



Keysight Spectrum Analyzer - Occupied BW	V				- đ <b>×</b>
<b>μα RL</b> RF 50Ω AC	Center	SENSE:INT Freq: 3.624990000 GHz Free Run Avg Hold I: 36 dB	Radio Std		Trace/Detector
10 dB/div Ref 40.00 dBm	n				
20.0	- Au Mu Mu Mu	V			Clear Write
10.0 0.00 -10.0 -20.0			Low here the providence	halanan	Average
-30.0 -40.0 -50.0					Max Hold
Center 3.625 GHz Res BW 680 kHz	#	VBW 2.4 MHz		n 75 MHz ep 1 ms	Min Hold
Occupied Bandwidt 29	^h 9.336 MHz	Total Power	43.0 dBm		Detector
Transmit Freq Error x dB Bandwidth	-69.169 kHz 30.80 MHz	% of OBW Powe x dB	er 99.00 % -26.00 dB		Peak▶ Auto <u>Man</u>
MSG			STATUS		

Plot 7.39. Occupied Bandwidth Plot (30MHz 64-QAM - ANT1)




Plot 7.40. Occupied Bandwidth Plot (30MHz 256-QAM - ANT1)

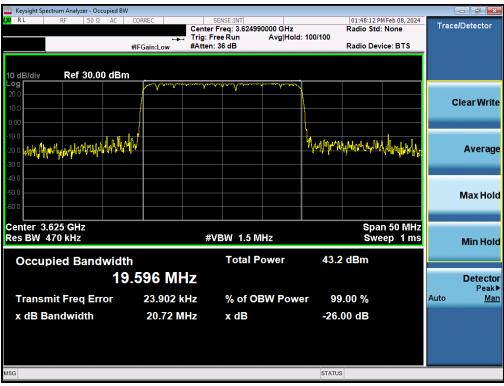
FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dogo 27 of 152	
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 37 of 152	
©2024 ELEMENT			V3.0 1/6/2022	



Keysight Spectrum Analyzer - Occupied BV	V							
<b>LX/ RL</b> RF 50Ω AC	CORREC	SENSE:INT				M Feb 08, 2024	Trac	e/Detector
		er Freq: 3.624990 Free Run	Avg Hold	· 100/100	Radio Std	: None	mao	
		en: 36 dB			Radio Dev	vice: BTS		
10 dB/div Ref 40.00 dBn	n							
30.0								
20.0	1 million		J. J				(	Clear Write
10.0								
	N ML			www.www.www.	world a sea le			
-10.0 WHILE AND THE WAR AND					III A MACHINE	and the second second		Average
-20.0								
-30.0								
-40.0								Max Hold
-50.0								
Center 3.625 GHz		43/D34/ 4 5 84				n 50 MHz		
Res BW 470 kHz		#VBW 1.5 M	ΠZ		SWG	eep 1 ms		Min Hold
Occupied Rendwidt	h	Total Po	wer	13.3	dBm			
Occupied Bandwidt		Fotar F		43.3				
19	9.632 MHz							Detector
							_	Peak▶
Transmit Freq Error	27.285 kHz	% of OE	W Powe	er 99	.00 %		Auto	<u>Man</u>
x dB Bandwidth	20.76 MHz	x dB		-26.	00 dB			
MSG				STATUS				

Plot 7.41. Occupied Bandwidth Plot (20MHz QPSK - ANT1)




Plot 7.42. Occupied Bandwidth Plot (20MHz 16-QAM – ANT1)

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 29 of 152
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 38 of 152
©2024 ELEMENT			V3.0 1/6/2022






Plot 7.43. Occupied Bandwidth Plot (20MHz 64-QAM - ANT1)



Plot 7.44. Occupied Bandwidth Plot (20MHz 256-QAM - ANT1)

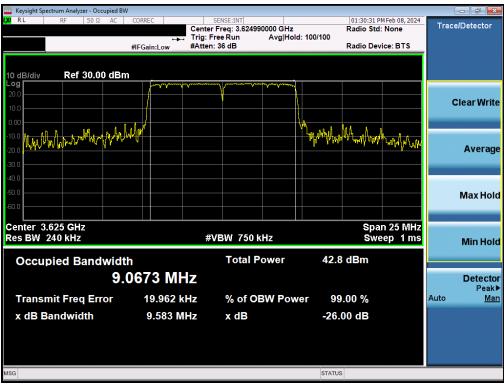
FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 20 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 39 of 152
©2024 ELEMENT	•		V3.0 1/6/2022





Plot 7.45. Occupied Bandwidth Plot (10MHz QPSK - ANT1)



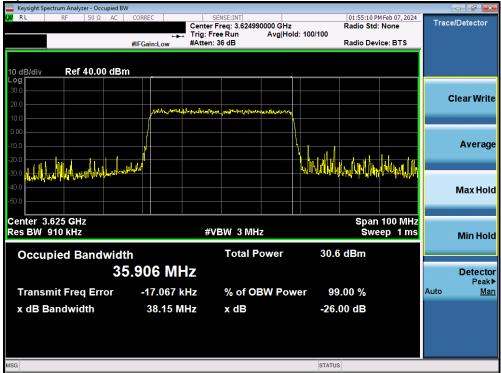

Plot 7.46. Occupied Bandwidth Plot (10MHz 16-QAM – ANT1)

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 40 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 40 01 152
©2024 ELEMENT	•		V3.0 1/6/2022

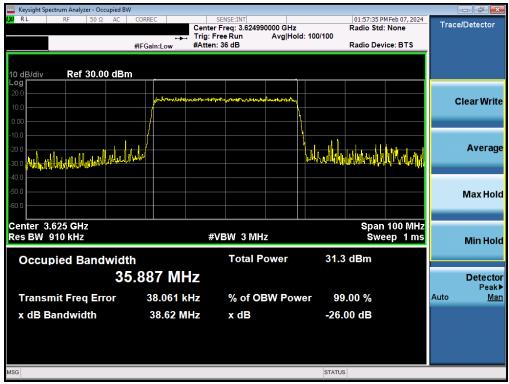




Plot 7.47. Occupied Bandwidth Plot (10MHz 64-QAM - ANT1)




Plot 7.48. Occupied Bandwidth Plot (10MHz 256-QAM – ANT1)


FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 41 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 41 01 152
©2024 ELEMENT		·	V3.0 1/6/2022



## Antenna 2 Occupied Bandwidth Measurements



Plot 7.49. Occupied Bandwidth Plot (40MHz QPSK – ANT2)



Plot 7.50. Occupied Bandwidth Plot (40MHz 16-QAM - ANT2)

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 42 of 152
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 42 of 152
©2024 ELEMENT			V3.0 1/6/2022



Keysight Spectrum Analyzer - Occupied BW	7				- đ <b>×</b>
<b>ιχ RL</b> RF 50 Ω AC	+++ Trig:	SENSE:INT er Freq: 3.624990000 GHz Free Run Avg Holo en: 36 dB	01:59:37 P Radio Std d: 100/100 Radio Dev		Trace/Detector
10 dB/div Ref 30.00 dBm	M Guilleow				
Log 20.0 10.0	to the second	holus _อ ละวงสุโซปรายกะเป็นคารบาตุโรกังกุ			Clear Write
-10.0 -20.0 -30.0 July			Horadal all Mag allow and a file	whythere	Average
-40.0 -50.0 -60.0					Max Hold
Center 3.625 GHz Res BW 910 kHz	#	¥VBW 3 MHz	Śwe	100 MHz ep 1 ms	Min Hold
Occupied Bandwidt	^h 5.967 MHz	Total Power	30.9 dBm		Detector Peak▶
Transmit Freq Error x dB Bandwidth	41.328 kHz 38.38 MHz	% of OBW Pow x dB	ver 99.00 % -26.00 dB		Auto <u>Man</u>
MSG			STATUS		

Plot 7.51. Occupied Bandwidth Plot (40MHz 64-QAM - ANT2)



Plot 7.52. Occupied Bandwidth Plot (40MHz 256-QAM – ANT2)

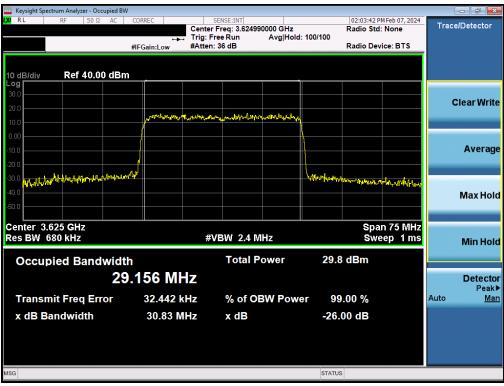
FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 43 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 45 01 152
©2024 ELEMENT			V3.0 1/6/2022



Keysight Spectrum Analyzer - Occupied	BW				- d ×
<b>μα RL</b> RF 50Ω AC	Cen →→ Trig	SENSE:INT Inter Freq: 3.624990000 GHz g: Free Run Avg Hold ten: 36 dB	Radio Std:		Trace/Detector
10 dB/div Ref 40.00 dE	Bm				
Log 30.0 20.0					Clear Write
10.0	unikil Courselinikisteranikister	wenter advanter when the contraction of			
0.00 -10.0 -20.0 -20.0	nwhan		h harden for the standard and stand	udut n .	Average
			All the second second second		
-30.0					Max Hold
Center 3.625 GHz Res BW 680 kHz		#VBW 2.4 MHz		n 75 MHz ep 1 ms	Min Hold
Occupied Bandwig	dth	Total Power	30.3 dBm		
2	29.178 MHz				Detector Peak▶
Transmit Freq Error	24.113 kHz	% of OBW Powe	er 99.00 %		Auto <u>Man</u>
x dB Bandwidth	30.86 MHz	x dB	-26.00 dB		
MSG			STATUS		

Plot 7.53. Occupied Bandwidth Plot (30MHz QPSK - ANT2)




Plot 7.54. Occupied Bandwidth Plot (30MHz 16-QAM - ANT2)

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 44 of 152
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 44 01 152
©2024 ELEMENT			V3.0 1/6/2022



Keysight Spectrum Analyzer - Occupied BW					
LXX RL RF 50Ω AC	🛶 Trig: I	SENSE:INT r Freq: 3.624990000 GHz Free Run Avg Hold n: 36 dB	Radio Std		Trace/Detector
10 dB/div Ref 40.00 dBm					
20.0	a L Annull Mitch - L D - and a set	- Gorden a gereil brant i fan br			Clear Write
10.0	And the second second second	mall and a set of the			
0.00					Average
-200 -30.0 Muthematic after anylayer bracket			hand and a second and a second and a second a se	histhytor	Max Hold
Center 3.625 GHz Res BW 680 kHz	#	VBW 2.4 MHz		n 75 MHz eep 1 ms	Min Hold
Occupied Bandwidth	<b>n</b>	Total Power	29.8 dBm		
	.135 MHz				Detector Peak▶
Transmit Freq Error	35.598 kHz	% of OBW Powe	er 99.00 %		Auto <u>Man</u>
x dB Bandwidth	31.09 MHz	x dB	-26.00 dB		
MSG			STATUS		

Plot 7.55. Occupied Bandwidth Plot (30MHz 64-QAM - ANT2)

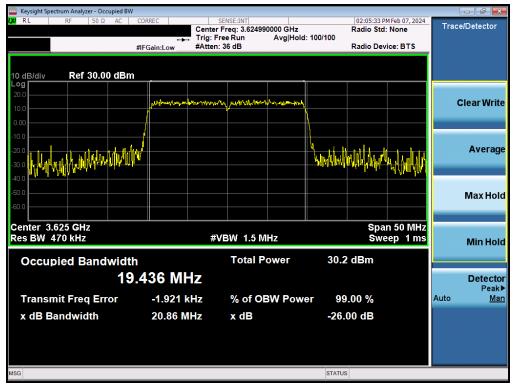



Plot 7.56. Occupied Bandwidth Plot (30MHz 256-QAM - ANT2)

FCC ID: 2AS22-FLCOCH2		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 45 of 152
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 45 of 152
©2024 ELEMENT	•	·	V3.0 1/6/2022



020     RL     RF     50 Ω     AC     CORREC     SENSE:INT     02:04:35 PM Feb 07, 2024       Center Freq:     3.624990000 GHz     Radio Std: None       Trig: Free Run     Avg Hold:     100/100       #IFGain:Low     #Atten:     36 dB
#IFGain:Low #Atten: 36 dB Radio Device: BTS
10 dB/div Bef 30 00 dBm
10 dB/div Bof 30 00 dBm
20.0
Clear Write
Max Ho
Center 3.625 GHz Span 50 MHz
Res BW 470 KHZ #VBW 1.5 MHZ Sweep 1 ms Min Ho
Occupied Bandwidth Total Power 30.3 dBm
19.401 MHz Detect
Peal
Transmit Freq Error 10.866 kHz % of OBW Power 99.00 % Auto M
x dB Bandwidth 20.72 MHz x dB -26.00 dB
MSG STATUS


Plot 7.57. Occupied Bandwidth Plot (20MHz QPSK - ANT2)



Plot 7.58. Occupied Bandwidth Plot (20MHz 16-QAM – ANT2)

FCC ID: 2AS22-FLCOCH2		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 46 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 40 01 152
©2024 ELEMENT	•	·	V3.0 1/6/2022





Plot 7.59. Occupied Bandwidth Plot (20MHz 64-QAM - ANT2)



Plot 7.60. Occupied Bandwidth Plot (20MHz 256-QAM – ANT2)

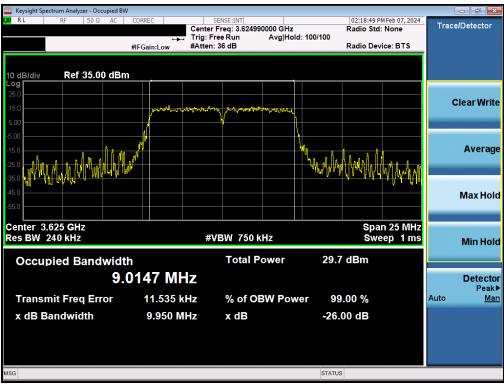
FCC ID: 2AS22-FLCOCH2		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 47 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 47 of 152
©2024 ELEMENT	•		V3.0 1/6/2022





Plot 7.61. Occupied Bandwidth Plot (10MHz QPSK - ANT2)




Plot 7.62. Occupied Bandwidth Plot (10MHz 16-QAM - ANT2)

FCC ID: 2AS22-FLCOCH2		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 48 of 152
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 40 01 152
©2024 ELEMENT	•		V3.0 1/6/2022





Plot 7.63. Occupied Bandwidth Plot (10MHz 64-QAM - ANT2)



Plot 7.64. Occupied Bandwidth Plot (10MHz 256-QAM – ANT2)

FCC ID: 2AS22-FLCOCH2		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 49 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 49 01 152
©2024 ELEMENT			V3.0 1/6/2022



# 7.4 Conducted Power / EIRP Per 10MHz Test Overview

The spectrum analyzer was connected to the antenna terminal while the EUT was operating at its maximum power control level, as defined in ANSI C63.26-2015, and at the appropriate frequencies. The EUT transmits with a duty cycle of approximately 71.95%; the spectrum analyzer was gate as to only measure during on periods.

## The e.i.r.p./10MHz for a Category B CBSD must be less than 47dBm/10MHz.

## **Test Procedure Used**

ANSI C63.26-2015 - Section 5.2.4.4.1 ANSI C63.26-2015 - Section 5.2.4.5 ANSI C63.26-2015 - Section 6.4.3.2.3

## Test Settings

- 1. Span = 2x to 3X the OBW
- 2. RBW = 10MHz
- 3. VBW  $\geq$  3 x RBW
- 4. Set number of sweep points  $\geq 2 \times \text{span} / \text{RBW}$
- 5. Sweep Time = auto couple
- 6. Detector = RMS
- 7. Trace mode = average
- 8. Trigger = Level

### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.



Figure 7-3. Test Instrument & Measurement Setup

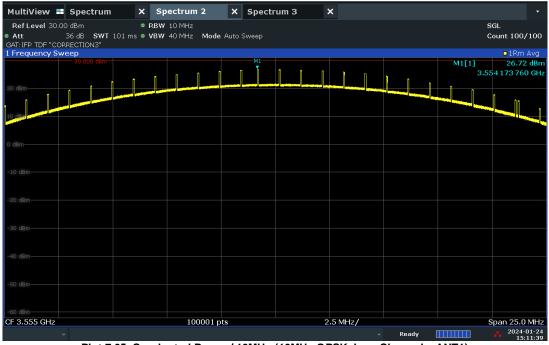
# Test Notes

None

FCC ID: 2AS22-FLCOCH2	PART 96 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 50 of 450
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 50 of 152
©2024 ELEMENT	•	·	V3.0 1/6/2022

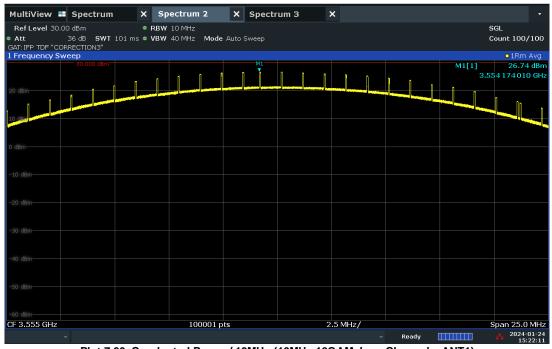


Bandwidth	Modulation	Frequency [MHz]	Ch. A Conducted Power [dBm/10MHz]	Ch. B Conducted Power [dBm/10MHz]	Summed MIMO Conducted Power [dBm/10MHz]	Ant Gain [dBi]	EIRP [dBm/10MHz]	EIRP [Watts/10MHz]	EIRP Limit [dBm/10MHz]	Margin [dB]
		3570.0	22.34	16.65	23.38	13.00	36.38	4.34	47.00	-10.62
	QPSK	3625.0	22.43	16.62	23.44	13.00	36.44	4.41	47.00	-10.56
		3680.0	21.13	15.99	22.29	13.00	35.29	3.38	47.00	-11.71
		3570.0	22.27	16.51	23.29	13.00	36.29	4.26	47.00	-10.71
N	16-QAM	3625.0	21.98	16.74	23.12	13.00	36.12	4.09	47.00	-10.88
Η		3680.0	21.85	16.29	22.92	13.00	35.92	3.90	47.00	-11.08
40 MHz		3570.0	23.04	16.74	23.95	13.00	36.95	4.96	47.00	-10.05
4	64-QAM	3625.0	22.01	16.52	23.09	13.00	36.09	4.06	47.00	-10.91
		3680.0	21.59	16.69	22.81	13.00	35.81	3.81	47.00	-11.19
		3570.0	22.17	16.58	23.23	13.00	36.23	4.20	47.00	-10.77
	256-QAM	3625.0	22.96	16.95	23.93	13.00	36.93	4.93	47.00	-10.07
		3680.0	21.89	16.05	22.90	13.00	35.90	3.89	47.00	-11.10
		3565.0	22.63	17.60	23.82	13.00	36.82	4.80	47.00	-10.18
	QPSK	3625.0	22.42	17.56	23.65	13.00	36.65	4.62	47.00	-10.35
		3685.0	22.46	17.39	23.64	13.00	36.64	4.61	47.00	-10.36
		3565.0	23.12	17.59	24.19	13.00	37.19	5.24	47.00	-9.81
N	16-QAM	3625.0	22.64	17.74	23.86	13.00	36.86	4.85	47.00	-10.14
30 MHz		3685.0	21.84	17.44	23.19	13.00	36.19	4.15	47.00	-10.81
20		3565.0	22.35	17.50	23.58	13.00	36.58	4.55	47.00	-10.42
ĕ	64-QAM	3625.0	23.26	17.62	24.31	13.00	37.31	5.38	47.00	-9.69
		3685.0	21.63	17.40	23.02	13.00	36.02	4.00	47.00	-10.98
		3565.0	23.29	17.60	24.33	13.00	37.33	5.40	47.00	-9.67
	256-QAM	3625.0	23.13	17.64	24.21	13.00	37.21	5.26	47.00	-9.79
		3685.0	22.20	17.40	23.44	13.00	36.44	4.41	47.00	-10.56
		3560.0	25.02	18.92	25.97	13.00	38.97	7.89	47.00	-8.03
	QPSK	3625.0	24.23	19.29	25.44	13.00	38.44	6.98	47.00	-8.56
		3690.0	23.47	18.91	24.77	13.00	37.77	5.99	47.00	-9.23
		3560.0	24.68	18.87	25.69	13.00	38.69	7.40	47.00	-8.31
N	16-QAM	3625.0	24.07	19.23	25.30	13.00	38.30	6.76	47.00	-8.70
20 MHz		3690.0	23.49	19.01	24.81	13.00	37.81	6.05	47.00	-9.19
2		3560.0	24.15	19.02	25.31	13.00	38.31	6.78	47.00	-8.69
м М	64-QAM	3625.0	24.69	18.92	25.71	13.00	38.71	7.43	47.00	-8.29
		3690.0	23.55	18.94	24.84	13.00	37.84	6.08	47.00	-9.16
		3560.0	24.20	18.75	25.29	13.00	38.29	6.74	47.00	-8.71
	256-QAM	3625.0	24.19	19.30	25.41	13.00	38.41	6.93	47.00	-8.59
		3690.0	23.53	18.78	24.78	13.00	37.78	6.00	47.00	-9.22
		3555.0	26.72	21.18	27.79	13.00	40.79	11.99	47.00	-6.21
	QPSK	3625.0	26.53	21.28	27.66	13.00	40.66	11.65	47.00	-6.34
		3695.0	25.55	20.91	26.83	13.00	39.83	9.62	47.00	-7.17
		3555.0	26.74	21.14	27.80	13.00	40.80	12.01	47.00	-6.20
N	16-QAM	3625.0	26.47	21.28	27.62	13.00	40.62	11.53	47.00	-6.38
10 MHz		3695.0	25.57	20.83	26.83	13.00	39.83	9.61	47.00	-7.17
0		3555.0	26.63	21.13	27.71	13.00	40.71	11.77	47.00	-6.29
	64-QAM	3625.0	26.58	21.09	27.66	13.00	40.66	11.64	47.00	-6.34
		3695.0	25.36	20.64	26.62	13.00	39.62	9.17	47.00	-7.38
		3555.0	26.69	21.21	27.77	13.00	40.77	11.95	47.00	-6.23
	256-QAM	3625.0	26.45	21.40	27.63	13.00	40.63	11.56	47.00	-6.37
200 QAW	3695.0	25.36	20.87	26.68	13.00	39.68	9.29	47.00	-7.32	


Table 7-5 E.I.R.P. / 10MHz Measurements

FCC ID: 2AS22-FLCOCH2		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 51 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Fage 51 01 152
©2024 ELEMENT			V3.0 1/6/2022

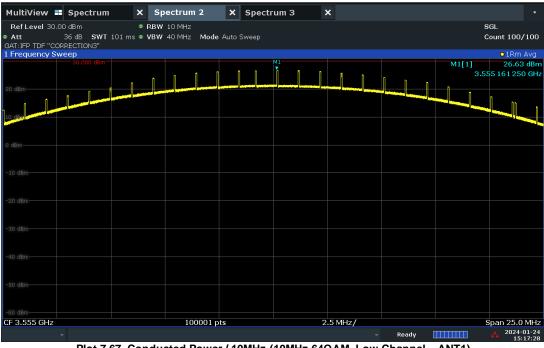



# Antenna 1 Conducted Power / 10MHz

### ACLRResults

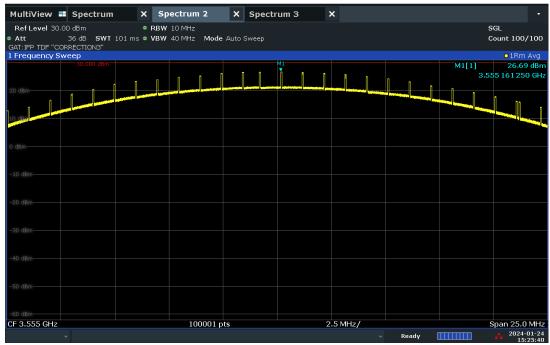


Plot 7.65. Conducted Power / 10MHz (10MHz QPSK, Low Channel – ANT1)


#### ACLRResults



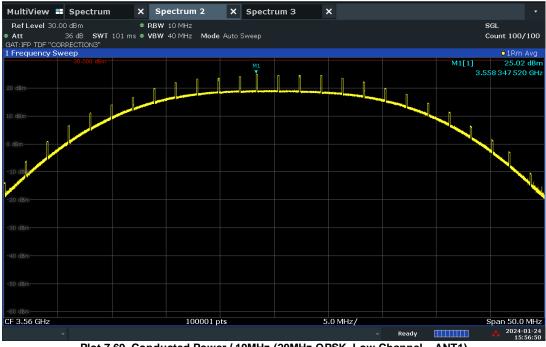
Plot 7.66. Conducted Power / 10MHz (10MHz 16QAM, Low Channel – ANT1)


FCC ID: 2AS22-FLCOCH2		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 52 of 152
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 52 01 152
©2024 ELEMENT			V3.0 1/6/2022



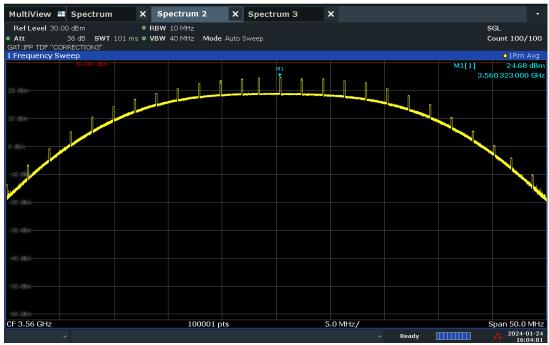


Plot 7.67. Conducted Power / 10MHz (10MHz 64QAM, Low Channel – ANT1)


#### ACLRResults



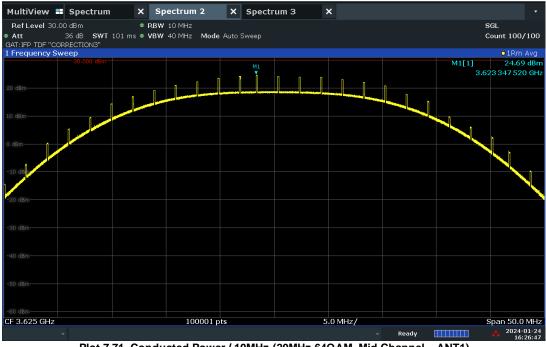
Plot 7.68. Conducted Power / 10MHz (10MHz 256QAM, Low Channel - ANT1)


FCC ID: 2AS22-FLCOCH2		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 52 of 152
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRSCPE	Page 53 of 152
©2024 E LEMENT			V3.0 1/6/2022



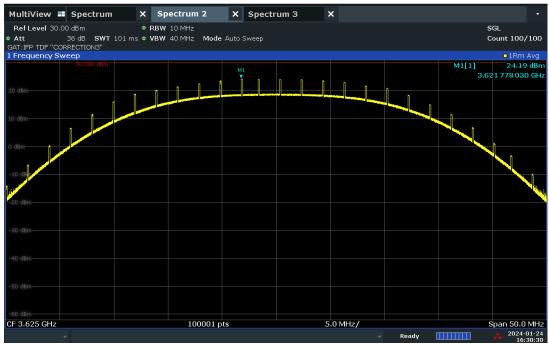


Plot 7.69. Conducted Power / 10MHz (20MHz QPSK, Low Channel – ANT1)


#### ACLRResults



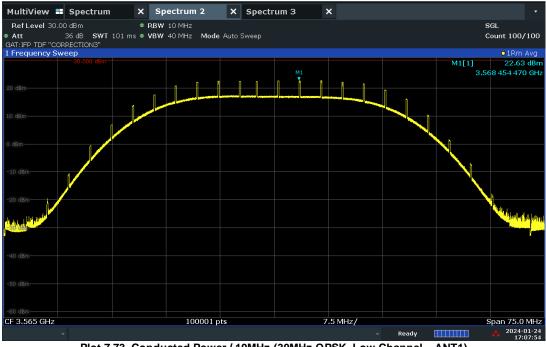
Plot 7.70. Conducted Power / 10MHz (20MHz 16QAM, Mid Channel – ANT1)


FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dogo 54 of 152		
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRSCPE	Page 54 of 152		
©2024 E LEMENT			V3.0 1/6/2022		



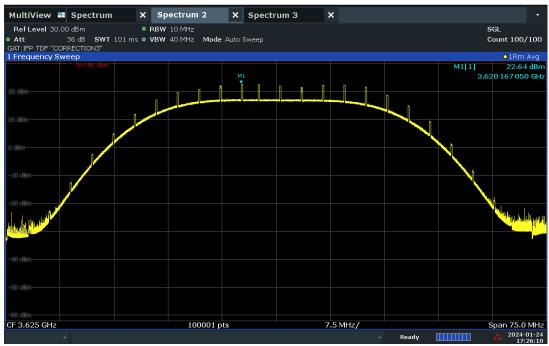


Plot 7.71. Conducted Power / 10MHz (20MHz 64QAM, Mid Channel – ANT1)


#### ACLRResults



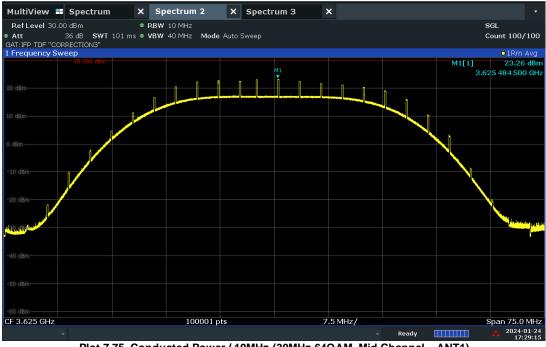
Plot 7.72. Conducted Power / 10MHz (20MHz 256QAM, Mid Channel - ANT1)


FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dogo FE of 152		
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRSCPE	Page 55 of 152		
©2024 E LEMENT			V3.0 1/6/2022		



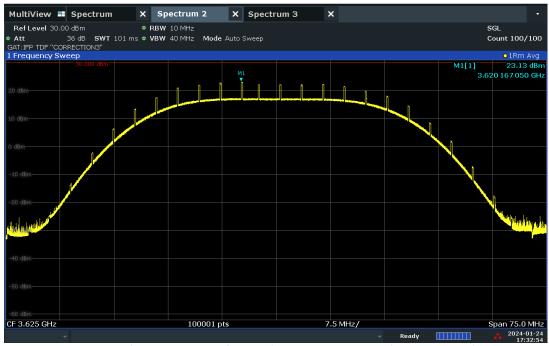


Plot 7.73. Conducted Power / 10MHz (30MHz QPSK, Low Channel – ANT1)


#### ACLRResults



Plot 7.74. Conducted Power / 10MHz (30MHz 16QAM, Mid Channel – ANT1)


FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dogo FC of 152		
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRSCPE	Page 56 of 152		
©2024 E LEMENT			V3.0 1/6/2022		



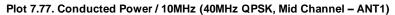


Plot 7.75. Conducted Power / 10MHz (30MHz 64QAM, Mid Channel – ANT1)

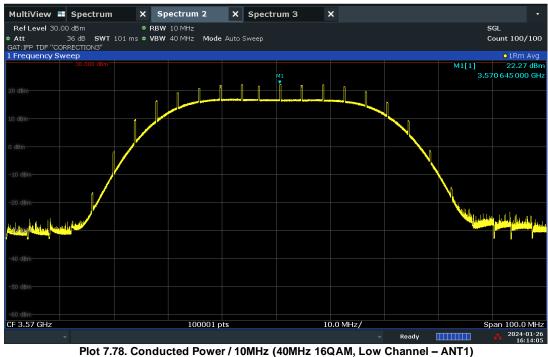
#### ACLRResults



Plot 7.76. Conducted Power / 10MHz (30MHz 256QAM, Low Channel - ANT1)


FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dogo 57 of 152		
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 57 of 152		
©2024 E LEMENT			V3.0 1/6/2022		




∙ultiView	= Spectrum	×s	pectrum 2	X Sp	ectrum 3	×	
Ref Level 30 Att	.00 dBm 40 dB <b>SWT</b> 101 CORRECTION3"		V 10 MHz V 40 MHz Mod	e Sweep			SGL Count 100,
Frequency							 • 1 Rm
				M	.   f(		M1[1] 22.43 3.621 695 00
andread a state and	d mark and a second second						and a second public of the second
⁼ 3.625 GHz	,		100001	nts		10.0 MHz/	Span 100.0

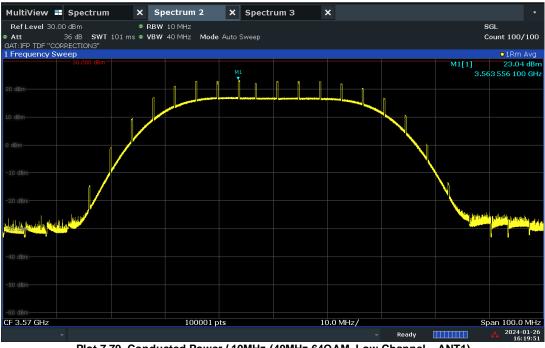
~

05:30:01 PM 02/05/2024

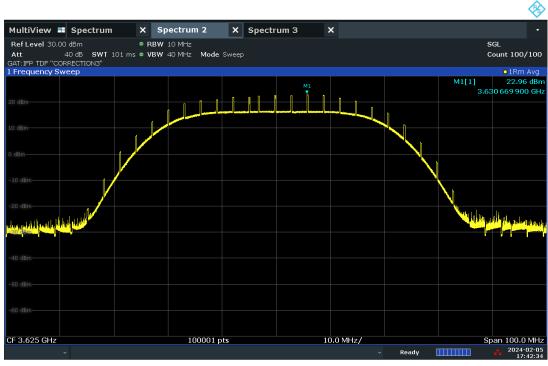


### ACLRResults




 
 FCC ID: 2AS22-FLCOCH2
 PART 96 MEASUREMENT REPORT
 Approved by: Technical Manager

 Test Report S/N:
 Test Dates:
 EUT Type:
 Page 58 of 152


 1M2401230005-01.2AS22
 11/29/23-9/3/2024
 CBRS CPE
 Page 58 of 152

 ©2024 ELEMENT
 V3.0 1/6/2022
 V3.0 1/6/2022



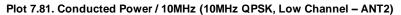


Plot 7.79. Conducted Power / 10MHz (40MHz 64QAM, Low Channel – ANT1)



05:42:35 PM 02/05/2024

Plot 7.80. Conducted Power / 10MHz (40MHz 256QAM, Mid Channel – ANT1)


FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dogo 50 of 152		
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRSCPE	Page 59 of 152		
©2024 ELEMENT			V3.0 1/6/2022		



# Antenna 2 Conducted Power / 10MHz

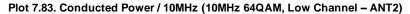
MultiView 🗧	Spectrum	X Sp	ectrum 2	×	Spectru	m 3 🛛 💥	×			
Ref Level 30.0	00 dBm	● RBW	10 MHz							SGL
Att	40 dB SWT 1.01 ms	s o VBW	40 MHz Mod	e Sweep						Count 100/10
AT: IFP TDF "CC Frequency Sv										•1Rm Ave
Trequency 3	weep								M1[1]	21.18 df
						M1				3.556 174 0 G
		Jungan			·····			muna		
									And and a second	
0 dam	and comments									
50 dBm										
F 3.555 GHz			1001 p	ts			2.5 MHz/			Span 25.0 M
								- Ready		2024-02- 11:36:

11:36:43 AM 02/06/2024



MultiView 🎫 Spectrum	× s	pectrum 2	× Spec	trum 3 🛛 🕇	×		
Ref Level 30.00 dBm	● RBW	10 MHz					SGL
Att 40 dB SWT 1.0	Dims 🗢 VBW	40 MHz Mode	e Sweep				Count 100/10
AT: IFP TDF "CORRECTION3" Frequency Sweep							• 1Rm Avg
							M1[1] 21.14 dB
				M1			3.555 050 0 G
	and the second					man and a second second	
a north and a start a start a start a start a start a start a st							man man
D dBm							- mannen -
20 dBm							
30 dBm							
40 dBm							
F 3.555 GHz		1001 pt	te		2.5 MHz/		Span 25.0 Mł

11:37:54 AM 02/06/2024


### Plot 7.82. Conducted Power / 10MHz (10MHz 16QAM, Low Channel – ANT2)

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 60 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 60 01 152
©2024 ELEMENT			V3.0 1/6/2022



MultiView	Spectrum	× s	pectrum 2	×	Spectrum 3	<mark>∗</mark> ×			
Ref Level 30	.00 dBm	● RBW	/ 10 MHz						SGL
Att	40 dB SWT 1.01	ms 🗢 VBVA	40 MHz Mod	e Sweep					Count 100/10
Frequency	CORRECTION3" Sween								●1Rm Av
in equency.								M1[1]	21.13 dl
					M1				3.556 074 0 0
		and proved and							
dBm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								man
10 dBm									
20 dBm									
			1001				au 1- 7		0
F 3.555 GHz			1001 p	ts		2.5 N	/IHZ/		Span 25.0 M

11:38:41 AM 02/06/2024



~

MultiView 🎫 Sp			ectrum 2	~ ³ P	ectrum 3	<b>★</b> ×			
Ref Level 30.00 dBm Att 40 dB	<b>SWT</b> 1.01 ms			sween					SGL Count 100/10
AT: IFP TDF "CORRECT		- 1011	1011112 11100	. oncep					
Frequency Sweep									• 1Rm Av
					M1			M1[	1] 21.21 dE 3.555 075 0 G
0 dBm					¥	******			3.33307300
0 dBmartan	~~~~							and the second sec	man and a more that a second
O UBIQUAR									many
50 dBm									
60 dBm									
F 3.555 GHz			1001 p	s		2.5 MHz	1		Span 25.0 Mi

11:39:52 AM 02/06/2024

### Plot 7.84. Conducted Power / 10MHz (10MHz 256QAM, Low Channel – ANT2)

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 61 of 152
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Fage 01 01 152
©2024 ELEMENT			V3.0 1/6/2022



MultiView 📰 Spectr	um 2 🗙 🗙	Spectrum 3	× Spec	trum 4	×			•
Ref Level 30.00 dBm	• RBW	10 MHz					5	GL
Att 40 dB SW GAT: IFP TDF "CORRECTIONS"		40 MHz Mode S	weep				c	ount 100/100
I Frequency Sweep								o1Rm Avg
							M1[1]	18.92 dBr
							3	.559 600 0 GH
						All and a second se		
10 dBm	and the second states of the s						Non Non	
-10 dBm								
-10 dBm								North Market
-30 dBm								
CF 3.56 GHz		1001 pts		5.	0 MHz/		5	Span 50.0 MH

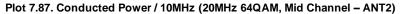
11:59:24 AM 02/06/2024



MultiView 🎫 Sj	pectrum 2	× Sp	ectrum 3	×	Spectrum 4	×		
Ref Level 30.00 dBm		● RB₩ 10						GL
Att 40 dE GAT: IFP TDF "CORREC	3 <b>SWT</b> 1.01 ms TION3"	• VBW 40	MHz Mode	Sweep			(	Count 100/10
Frequency Sweep								o1Rm Av
							M1[1]	19.23 dl 8.623 402 0 G
					M1 T			1023 <del>1</del> 02 0 C
0 dBm	warden all and a second and							
dBm								The second s
10 dBm w								- NA
F 3.625 GHz			1001 pts			5.0 MHz/		Span 50.0 Ml

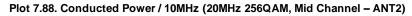
12:04:49 PM 02/06/2024

### Plot 7.86. Conducted Power / 10MHz (20MHz 16QAM, Mid Channel – ANT2)


FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 62 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRSCPE	Page 62 of 152
©2024 ELEMENT	-		V3.0 1/6/2022



	Spectrum 2		Spectrum 3	× Spe	trum 4	×			
Ref Level 30.0 Att	00 dBm 40 dB <b>SWT</b> 1.0		10 MHz 40 MHz Mode	Sween					SGL Count 100/10
AT: IFP TDF "CC	RRECTION3"								
Frequency Sv	weep								IRm Avg
								M1[1]	18.92 dE
0 dBm					M1				3.625 500 0 G
JUBIN									
		Jun and and a start of the star	T				and the second of the second o		
	مستنهر						- mark	morene	
	A Company of the							- mar	
	/ www.								w.
and the second									~
LO dBm									- m
1 and the second									June Market
20 dBm									
i0 dBm									
F 3.625 GHz			1001 pts	; ;	5	.0 MHz/			Span 50.0 MI

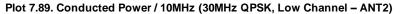

 $\mathbf{\Delta}$ 

12:06:46 PM 02/06/2024



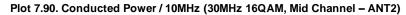


12:07:09 PM 02/06/2024




FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 63 of 152	
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 63 01 152	
©2024 ELEMENT		·	V3.0 1/6/2022	




- and the second	Spectrum 2	× sp	ectrum 3	× Spe	ctrum 4	×			
Ref Level 30.00 Att AT: IFP TDF "COF	40 dB <b>SWT</b> 1.01	• RBW 1 ms • VBW 4		weep					GL ount 100/10
Frequency Sw									o 1Rm Avg
								M1[1] 3	17.60 dE .560 205 0 G
				M1			and the second sec		
							and the second s	4	
0 dBm								No.	
0 dBm									
Sale Marthant									Mar Marker

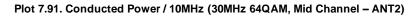
12:19:55 PM 02/06/2024





12:26:31 PM 02/06/2024




FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 64 of 152	
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 64 of 152	
©2024 ELEMENT		·	V3.0 1/6/2022	



MultiView	Spectrum 2	×s	pectrum 3	×	Spectrum 4	×			
RefLevel 30.00 Att GAT: IFP TDF "COF	40 dB <b>SWT</b> 1.01	● RBW ms ● VBW		Sweep					GL ount 100/10
Frequency Sw									•1Rm Avg
0 dBm					M1			M1[1] 3	17.62 dE .6240260 G
0 dBm-		and the second			•		- market		
								Ny	
10 dBm-									
20 dBm									
Red Brog & war									hautur
40 dBm									
F 3.625 GHz			1001 pts			7.5 MHz/			Span 75.0 M

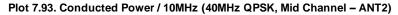
 $\mathbf{\Delta}$ 

12:28:11 PM 02/06/2024





12:29:44 PM 02/06/2024


### Plot 7.92. Conducted Power / 10MHz (30MHz 256QAM, Low Channel – ANT2)


FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 65 of 152	
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 65 of 152	
©2024 ELEMENT			V3.0 1/6/2022	



MultiView 🚥	Spectrum 2	×s	pectrum 3	×	Spectrum 4	×			
Ref Level 30.00 Att 4 GAT: IFP TDF "COR	10 dB <b>SWT</b> 1.01	● RBW ms ● VBW ≪		Sweep					GL punt 100/100
1 Frequency Swe									o1Rm Avg
								M1[1] 3	16.62 dBr 622 400 0 GH
					M1 ▼				
						`			
	/	/							
-10 dBm									
20. dBm	Norman and a second							hadread	montheam
40 dBm									
CF 3.625 GHz			1001 pts	3		10.0 MHz/		Sp	an 100.0 MH
~						<del></del>	Ready		2024-02-06 12:59:19

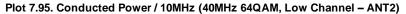
12:59:20 PM 02/06/2024





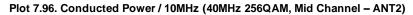
12:54:57 PM 02/06/2024

### Plot 7.94. Conducted Power / 10MHz (40MHz 16QAM, Low Channel – ANT2)


FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 66 of 152	
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 66 of 152	
©2024 ELEMENT			V3.0 1/6/2022	



	Spectrum		Spectrum 3	× Sp	ectrum 4	×			
Ref Level 30.0			10 MHz						SGL
Att AT: IFP_TDF "CO		1.01 ms 🗢 VBVV	40 MHz Mode	Sweep					Count 100/10
Frequency S									o 1Rm Ave
								M1[1]	16.74 dE
									3.561 510 0 G
				M1					
			and the second s						
							and a second sec		
		1							
		/					`	<u>\</u>	
								$\lambda$	
								N.	
adenie war	and the second sec							"When	hundernes
40 dBm									
F 3.57 GHz			1001 pt			10.0 MHz/			Span 100.0 M


 $\mathbf{\Delta}$ 

12:56:51 PM 02/06/2024





01:02:26 PM 02/06/2024



FCC ID: 2AS22-FLCOCH2		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dece (7 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 67 of 152
©2024 ELEMENT	-		V3.0 1/6/2022



Note:

Per ANSI C63.26-2015 Section 5.2.5.3 and KDB 662911 v02r01 Section E)2), the power spectral density at Channel A and Channel B were first measured separately as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Per ANSI C63.26-2015 Section 6.4.6 and KDB 662911 v02r01 Section F.2.c, since the transmissions are orthogonally polarized, the directional gain is equal to the single transmission gain of 9.00 dBi

## Sample MIMO Calculation:

At 3625 MHz in QPSK, 20MHz BW mode, the average conducted power per 10MHz was measured to be 25.02 dBm/10MHz for Ant1 and 18.92 dBm/10MHz for Ant2.

Ant1 + Ant2 = 
$$MIMO$$

(25.02 dBm/10MHz + 18.92 dBm/10MHz) = (317.687 mW/10MHz + 77.983 mW/10MHz) = 395.67 mW/10MHz = 25.97 dBm/10MHz

## Sample e.i.r.p / 10MHz Calculation:

At 3625 MHz in QPSK, 20MHz BW mode, the average MIMO power density was calculated to be 25.97 dBm with directional gain of 13 dBi.

e.i.r.p. Power Spectral Density(dBm) = Power Spectral Density (dBm) + Ant gain (dBi)

25.07 dBm/10MHz + 13.00 dBi = 38.97 dBm/10MHz

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Daga (0. at 152		
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 68 of 152		
©2024 ELEMENT	-	•	V3.0 1/6/2022		



# 7.5 Power Spectral Density Test Overview

The spectrum analyzer was connected to the antenna terminal while the EUT was operating at its maximum power control level, as defined in ANSI C63.26-2015, and at the appropriate frequencies. The EUT transmits with a duty cycle of approximately 71.95%; the spectrum analyzer was gate as to only measure during on periods.

## The power spectral density for a Category B CBSD must be less than 37dBm/1MHz e.i.r.p.

### **Test Procedure Used**

ANSI C63.26-2015 - Section 5.2.4.4.1 ANSI C63.26-2015 - Section 5.2.4.5 ANSI C63.26-2015 - Section 6.4.3.2.3

## **Test Settings**

- 1. Span = 2x to 3X the OBW
- 2. RBW = 1MHz
- 3. VBW  $\ge$  3 x RBW
- 4. Set number of sweep points  $\geq 2 \times \text{span} / \text{RBW}$
- 5. Sweep Time = auto couple
- 6. Detector = RMS
- 7. Trace mode = average
- 8. Trigger = Level

### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.



Figure 7-4. Test Instrument & Measurement Setup

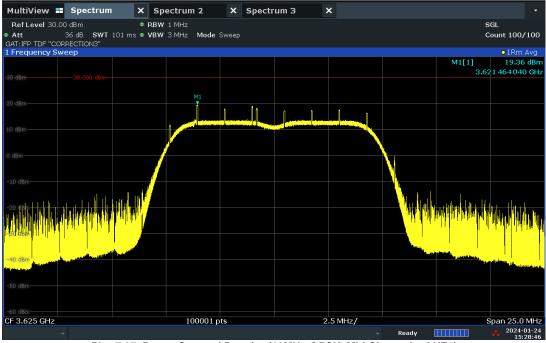
# Test Notes

None

FCC ID: 2AS22-FLCOCH2		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage (0 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 69 of 152
©2024 ELEMENT	•	·	V3.0 1/6/2022

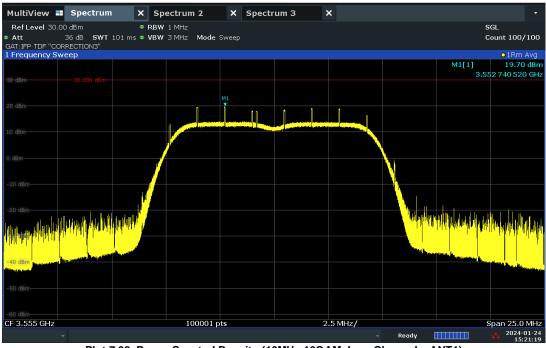


Bandwidth	Modulation	Frequency [MHz]	Ch. A Conducted PSD [dBm/MHz]	Ch. B Conducted PSD [dBm/MHz]	Summed MIMO Conducted PSD [dBm/MHz]	Ant Gain [dBi]	EIRP PSD [dBm/MHz]	EIRP PSD [Watts/MHz]	EIRP PSD Limit [dBm/MHz]	Margin [dB]
		3570.0	14.31	6.84	15.03	13.00	28.03	0.635	37.00	-8.97
	QPSK	3625.0	14.59	5.27	15.07	13.00	28.07	0.641	37.00	-8.93
		3680.0	14.94	6.01	15.46	13.00	28.46	0.702	37.00	-8.54
		3570.0	15.22	6.63	15.78	13.00	28.78	0.756	37.00	-8.22
N	16-QAM	3625.0	14.11	5.12	14.63	13.00	27.63	0.579	37.00	-9.37
40 MHz		3680.0	14.72	4.88	15.15	13.00	28.15	0.653	37.00	-8.85
9		3570.0	15.68	6.52	16.18	13.00	29.18	0.827	37.00	-7.82
4	64-QAM	3625.0	14.36	5.90	14.94	13.00	27.94	0.622	37.00	-9.06
		3680.0	14.84	5.11	15.28	13.00	28.28	0.673	37.00	-8.72
		3570.0	14.18	5.37	14.72	13.00	27.72	0.591	37.00	-9.28
	256-QAM	3625.0	15.48	5.67	15.91	13.00	28.91	0.778	37.00	-8.09
		3680.0	14.71	6.56	15.33	13.00	28.33	0.681	37.00	-8.67
		3565.0	15.30	7.57	15.98	13.00	28.98	0.790	37.00	-8.02
	QPSK	3625.0	15.56	7.60	16.20	13.00	29.20	0.833	37.00	-7.80
		3685.0	13.89	7.45	14.78	13.00	27.78	0.600	37.00	-9.22
		3565.0	15.68	7.82	16.34	13.00	29.34	0.859	37.00	-7.66
N	16-QAM	3625.0	15.55	7.55	16.19	13.00	29.19	0.830	37.00	-7.81
H		3685.0	14.84	7.53	15.58	13.00	28.58	0.721	37.00	-8.42
30 MHz		3565.0	14.56	7.77	15.39	13.00	28.39	0.690	37.00	-8.61
e e e e e e e e e e e e e e e e e e e	64-QAM	3625.0	16.21	7.79	16.79	13.00	29.79	0.954	37.00	-7.21
		3685.0	14.04	7.61	14.93	13.00	27.93	0.621	37.00	-9.07
		3565.0	14.03	8.26	15.05	13.00	28.05	0.638	37.00	-8.95
	256-QAM	3625.0	13.49	7.55	14.48	13.00	27.48	0.559	37.00	-9.52
		3685.0	14.64	7.50	15.41	13.00	28.41	0.693	37.00	-8.59
		3560.0	15.78	9.33	16.67	13.00	29.67	0.926	37.00	-7.33
	QPSK	3625.0	16.53	9.50	17.32	13.00	30.32	1.075	37.00	-6.68
		3690.0	16.32	9.01	17.06	13.00	30.06	1.014	37.00	-6.94
		3560.0	15.37	9.13	16.30	13.00	29.30	0.850	37.00	-7.70
N	16-QAM	3625.0	16.91	9.73	17.67	13.00	30.67	1.167	37.00	-6.33
20 MHz		3690.0	14.19	9.04	15.35	13.00	28.35	0.684	37.00	-8.65
0		3560.0	16.06	9.49	16.92	13.00	29.92	0.983	37.00	-7.08
	64-QAM	3625.0	16.79	9.53	17.54	13.00	30.54	1.132	37.00	-6.46
		3690.0	15.03	9.50	16.10	13.00	29.10	0.813	37.00	-7.90
		3560.0	16.59	9.42	17.35	13.00	30.35	1.084	37.00	-6.65
	256-QAM	3625.0	15.63	9.59	16.60	13.00	29.60	0.911	37.00	-7.40
		3690.0	16.12	9.29	16.94	13.00	29.94	0.986	37.00	-7.06
		3555.0	19.13	13.04	20.09	13.00	33.09	2.035	37.00	-3.91
	QPSK	3625.0	19.36	13.34	20.33	13.00	33.33	2.152	37.00	-3.67
		3695.0	18.34	12.32	19.31	13.00	32.31	1.702	37.00	-4.69
	10.0111	3555.0	19.70	13.15	20.57	13.00	33.57	2.274	37.00	-3.43
P	16-QAM	3625.0	19.65	13.02	20.50	13.00	33.50	2.241	37.00	-3.50
10 MHz		3695.0	17.48	12.36	18.64	13.00	31.64	1.460	37.00	-5.36
9		3555.0	19.36	12.82	20.23	13.00	33.23	2.104	37.00	-3.77
	64-QAM	3625.0	19.66	13.16	20.54	13.00	33.54	2.258	37.00	-3.46
		3695.0	19.21	12.19	20.00	13.00	33.00	1.994	37.00	-4.00
	050 0411	3555.0	19.96	13.32	20.81	13.00	33.81	2.406	37.00	-3.19
	256-QAM	3625.0	19.53	13.02	20.41 19.49	13.00 13.00	33.41	2.191 1.772	37.00 37.00	-3.59
		3695.0	18.53	12.44	19.49		32.49	1.//2	37.00	-4.51


Table 7-6 Power Spectral Density Measurements

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 70 of 152		
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRSCPE	Page 70 01 152		
©2024 E LEMENT			V3.0 1/6/2022		




# Antenna 1 Power Spectral Density

## ACLRResults

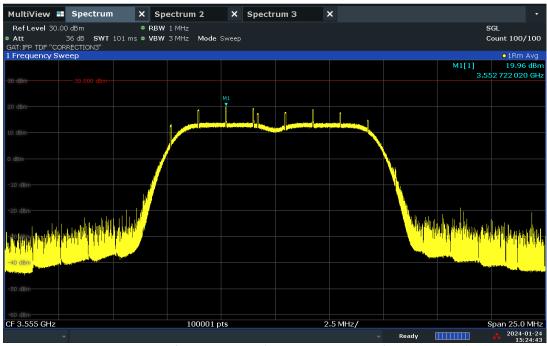


Plot 7.97. Power Spectral Density (10MHz QPSK, Mid Channel – ANT1)

### ACLRResults



Plot 7.98. Power Spectral Density (10MHz 16QAM, Low Channel – ANT1)


FCC ID: 2AS22-FLCOCH2		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 71 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page / 1 01 152
©2024 ELEMENT			V3.0 1/6/2022



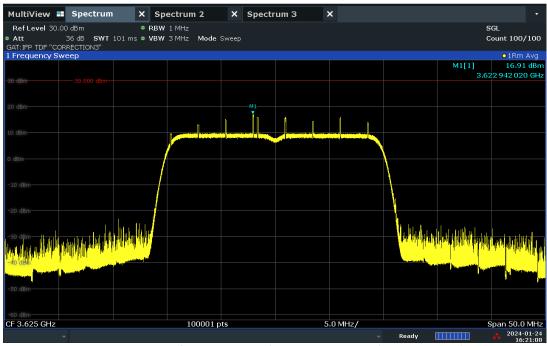
MultiView 🔳	Spectrum	×	Spectrum 2	×	Spectrum	3	×			-
Ref Level 30.00 c			3W 1 MHz							GL
Att 36 GAT: IFP TDF "CORRE		1 ms 🗢 VE	SW 3 MHz Mo	de Sweep					с	ount 100/100
Frequency Swee										o1Rm Avg
									M1[1]	19.66 dB
									3.62	24 182 760 GH
				Π	M1					
						and a local data				
			/					<u>\</u>		
			/					N		
								<b>⊢\</b> [		
								l Martin	1	
20 dBm	o label a contra d	tild d							hitoerking britest	
. a hadalah dalah da	Libit bi Libit	hall a 1							a har a maadalalihd	Main a kutu I.
alo dem		Ľ								1 1 1 1 1 1
	 							and the second		
40 dBm	and a state of the	180							And the second second second	6 Distance
Milding, Sep. 9										a sharest
F 3.625 GHz			10000	01 pts		2	.5 MHz/		5	Span 25.0 MH
								Ready		2024-01-2

Plot 7.99. Power Spectral Density (10MHz 64QAM, Mid Channel – ANT1)

#### ACLRResults



Plot 7.100. Power Spectral Density (10MHz 256QAM, Low Channel - ANT1)


FCC ID: 2AS22-FLCOCH2		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 72 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRSCPE	Page 72 01 152
©2024 ELEMENT			V3.0 1/6/2022



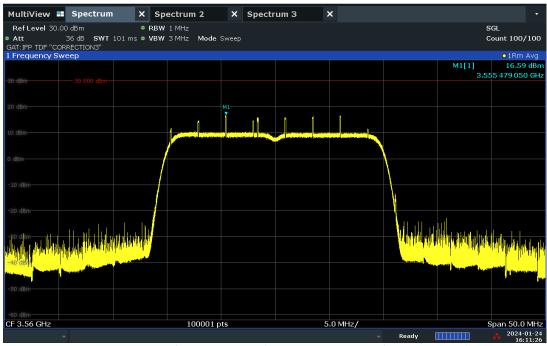


Plot 7.101. Power Spectral Density (20MHz QPSK, Mid Channel – ANT1)


#### ACLRResults



Plot 7.102. Power Spectral Density (20MHz 16QAM, Mid Channel - ANT1)


FCC ID: 2AS22-FLCOCH2		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 73 of 152
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 75 01 152
©2024 ELEMENT		•	V3.0 1/6/2022



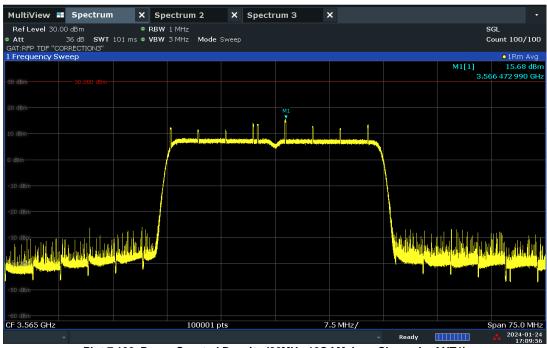


Plot 7.103. Power Spectral Density (20MHz 64QAM, Mid Channel – ANT1)

#### ACLRResults



Plot 7.104. Power Spectral Density (20MHz 256QAM, Low Channel - ANT1)


FCC ID: 2AS22-FLCOCH2		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 74 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 74 01 152
©2024 ELEMENT	•		V3.0 1/6/2022



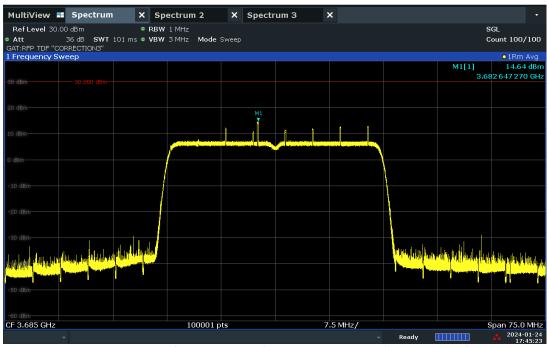
1ultiView 🖴	Spectrum	×	Spectrum	12 ×	Spect	rum 3	×				
Ref Level 30.0	0 dBm	•	RBW 1 MHz							ę	GL
	36 dB SWT	101 ms 🗢 1	/BW 3 MHz	Mode Swee	p					c	Count 100/10
AT:RFP TDF "CO Frequency Sw											o1Rm Av
riequency 54	icep									M1[1]	15.56 d
											22 564 770 6
				1.1		<u> </u>					
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	e (national spin				a a construction of the second			
									\		
			- /'								
			- <mark> </mark>						-  <mark> </mark>		
			. <mark>)</mark>								
0 dBm-Manan Aller	as to be a finite of the second second	a haili dhi ka	2						New Arte Arte	Latit La gand the low	a landi la da l
	Second Second									معر أثلاث تصدرا أتثلتن	
0 dB m											11
i0 dBm											
0 dBm				0001				41.1/			
3.625 GHz			10	0001 pts			7.5 N	1HZ/			Span 75.0 M
									Ready		17:20

Plot 7.105. Power Spectral Density (30MHz QPSK, Mid Channel – ANT1)

#### ACLRResults



Plot 7.106. Power Spectral Density (30MHz 16QAM, Low Channel – ANT1)


FCC ID: 2AS22-FLCOCH2		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 75 of 152
1M2401230005-01.2AS22	11/29/23-9/3/2024	CBRS CPE	Page 75 01 152
©2024 ELEMENT	•		V3.0 1/6/2022

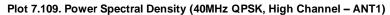


MultiView	Spectrum	×	Spectrum 2	2 ×	Spectr	um 3	×				
Ref Level 30			BW 1 MHz								GL
Att GAT:RFP TDF "C	36 dB SWT	101 ms 🗢 VI	BW/3 MHz N	lode Sweep						c	ount 100/10
Frequency S											o 1Rm Avg
										M1[1]	16.21 dB
										3.6	21 942 280 GH
					Ĭ.						
					inter a state	a instantin					
			_						\		
									N .		
10 dBm											
20 dBm											
30 dBm											
		, Luca							aha Miria In		
lete ander de hat h									Contraction in the second	andala da kasar kang da b	a dada <u>yi kuluka da</u>
Transferration of the second second	Instant Instanti								and the second second	وعر ألتقاديط أتلات	and the second
50 10.0											
60 dBm F 3.625 GHz			100	001 pts			7.5	MHz/			Span 75.0 MH
Children Child			100	o o z peo			7.0		Ready	Ň	2024-01-2

Plot 7.107. Power Spectral Density (30MHz 64QAM, Mid Channel – ANT1)

#### ACLRResults




Plot 7.108. Power Spectral Density (30MHz 256QAM, High Channel – ANT1)

FCC ID: 2AS22-FLCOCH2		PART 96 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 76 of 152	
1M2401230005-01.2A S22	11/29/23-9/3/2024	CBRS CPE	Page 76 01 152	
©2024 ELEMENT	•		V3.0 1/6/2022	



MultiView	Spectrum	×	Spectrum 2	<b>★</b> ×	Spectrum 3	<mark></mark> ★ ×			
Ref Level 20 Att	30 dB SWT 101		3WIIMHz 3WI3MHz Mode	e Sweep					SGL Count 100/10
	CORRECTION3"								• 1Rm Av
Frequency :	sweep			h	1	Mi	,	м	11[1] 14.94 di 3.689 428 900 G
			_						
			_						
50 dBm									
F 3.68 GHz			10000	Inte		10.0 MF			Span 100.0 M

05:45:15 PM 02/05/2024



ACLRResults



 
 FCC ID: 2AS22-FLCOCH2
 PART 96 MEASUREMENT REPORT
 Approved by: Technical Manager

 Test Report S/N:
 Test Dates:
 EUT Type:
 Page 77 of 152

 1M2401230005-01.2AS22
 11/29/23-9/3/2024
 CBRS CPE
 Page 77 of 152

 ©2024 ELEMENT
 V3.0 1/6/2022
 V3.0 1/6/2022