Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn man: curegenmati.com Client audix Certificate No: J23Z60244 ## **CALIBRATION CERTIFICATE** Object D2450V2 - SN: 862 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: May 18, 2023 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|---|-----------------------| | Power Meter NRP2 | 106277 | 22-Sep-22 (CTTL, No.J22X09561) | Sep-23 | | Power sensor NRP8S | 104291 | 22-Sep-22 (CTTL, No.J22X09561) | Sep-23 | | Reference Probe EX3DV4 | SN 3617 | 31-Mar-23(CTTL-SPEAG,No.Z23-60161) | Mar-24 | | DAE4 | SN 1556 | 11-Jan-23(CTTL-SPEAG,No.Z23-60034) | Jan-24 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 05-Jan-23 (CTTL, No. J23X00107) | Jan-24 | | NetworkAnalyzer E5071C | MY46110673 | 10-Jan-23 (CTTL, No. J23X00104) | Jan-24 | | | | | | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | | | Reviewed by: | Lin Hao | SAR Test Engineer | 外格 | | Approved by: | Qi Dianyuan | SAR Project Leader | 5:63 | Issued: May 24, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: J23Z60244 Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured ## Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: J23Z60244 Page 2 of 6 Add: No.52 Hua Yuan
Bei Road, Haidian District, Beijing, 100191, China Tel
: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | | 52.10.4 | |--------------------------|--| | Advanced Extrapolation | | | Triple Flat Phantom 5.1C | | | 10 mm | with Spacer | | dx, dy, dz = 5 mm | | | 2450 MHz ± 1 MHz | | | | Triple Flat Phantom 5.1C 10 mm dx, dy, dz = 5 mm | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.1 ± 6 % | 1.82 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | _ | | ### SAR result with Head TSL | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.5 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 53.9 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | * | | SAR measured | 250 mW input power | 6.29 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.2 W/kg ± 18.7 % (k=2) | Certificate No: J23Z60244 Page 3 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn ## Appendix (Additional assessments outside the scope of CNAS L0570) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 52.3Ω+ 2.34jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 29.9dB | | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) 1.067 ns | |---| |---| After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: J23Z60244 Page 4 of 6 Date: 2023-05-18 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn ## DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 862 Communication System: UID 0, CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.824$ S/m; $\varepsilon_r = 40.07$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY5** Configuration: - Probe: EX3DV4 SN3617; ConvF(7.68, 7.68, 7.68) @ 2450 MHz; Calibrated: 2023-03-31 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2023-01-11 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) **Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 87.75 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 27.7 W/kg SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.29 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 49.5% Maximum value of SAR (measured) = 22.5 W/kg 0 dB = 22.5 W/kg = 13.52 dBW/kg Certificate No: J23Z60244 Page 5 of 6 ## Impedance Measurement Plot for Head TSL Certificate No: J23Z60244 Page 6 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caic.ac.cn Client audix Certificate No: J23Z60245 ## **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN: 1102 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: May 19, 2023 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|---|-----------------------| | Power Meter NRP2 | 106277 | 22-Sep-22 (CTTL, No.J22X09561) | Sep-23 | | Power sensor NRP8S | 104291 | 22-Sep-22 (CTTL, No.J22X09561) | Sep-23 | | Reference Probe EX3DV4 | SN 3617 | 31-Mar-23(CTTL-SPEAG,No.Z23-60161) | Mar-24 | | DAE4 | SN 1556 | 11-Jan-23(CTTL-SPEAG,No.Z23-60034) | Jan-24 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 05-Jan-23 (CTTL, No. J23X00107) | Jan-24 | | NetworkAnalyzer E5071C | MY46110673 | 10-Jan-23 (CTTL, No. J23X00104) | Jan-24 | | | | | | Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: May 25, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: J23Z60245 Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: J23Z60245 Page 2 of 8 Add: No.52 Hua Yuan
Bei Road, Haidian District, Beijing, 100191, China Tel
: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caic.ac.cn #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.4 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz | | ## Head TSL parameters at 5250MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.7 ± 6 % | 4.73 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | _ | | ## SAR result with Head TSL at 5250MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.88 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 78.7 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.23 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.3 W/kg ± 24.2 % (k=2) | Certificate No: J23Z60245 Page 3 of 8 ## Head TSL parameters at 5600MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.1 ± 6 % | 5.11 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | _ | _ | ### SAR result with Head TSL at 5600MHz | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.20 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 81.8 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.32 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.1 W/kg ± 24.2 % (k=2) | ## Head TSL parameters at 5750MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.9 ± 6 % | 5.28 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | _ | _ | ### SAR result with Head TSL at 5750MHz | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.75 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 77.3 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 ${\it cm}^3$ (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.17 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 21.6 W/kg ± 24.2 % (k=2) | Certificate No: J23Z60245 Page 4 of 8 ## Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL at 5250MHz | Impedance, transformed to feed point | 50.4Ω- 4.07jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 27.8dB | | #### Antenna Parameters with Head TSL at 5600MHz | Impedance, transformed to feed point | 56.8Ω+ 0.61jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 23.9dB | | #### Antenna Parameters with Head TSL at 5750MHz | Impedance, transformed to feed point | 52.5Ω+ 1.21jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 31.2dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.115 ns | |----------------------------------|------------| | | 111.10.110 | After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. ## **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: J23Z60245 Page 5 of 8 Date: 2023-05-19 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caic.ac.cn **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1102 Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; σ = 4.73 S/m; ϵ_r = 35.7; ρ = 1000 kg/m³ Medium parameters used: f = 5600 MHz; σ = 5.112 S/m; ϵ_r = 35.1; ρ = 1000 kg/m³ Medium parameters used: f = 5750 MHz; σ = 5.277 S/m; ϵ_r = 34.88; ρ = 1000 kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(5.5, 5.5, 5.5) @ 5250 MHz; ConvF(5.01, 5.01, 5.01) @ 5600 MHz; ConvF(5.15, 5.15, 5.15) @ 5750 MHz; Calibrated: 2023-03-31 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2023-01-11 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 50.36 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 32.0 W/kg SAR(1 g) = 7.88 W/kg; SAR(10 g) = 2.23 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 64.8% Maximum value of SAR (measured) = 18.3 W/kg Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 50.96 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 36.3 W/kg SAR(1 g) = 8.2 W/kg; SAR(10 g) = 2.32 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 61.6% Maximum value of SAR (measured) = 19.6 W/kg Certificate No: J23Z60245 Page 6 of 8 Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 49.04 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 35.9 W/kg SAR(1 g) = 7.75 W/kg; SAR(10 g) = 2.17 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 60.5% Maximum value of SAR (measured) = 19.0 W/kg Certificate No: J23Z60245 Page 7 of 8 ## Impedance Measurement Plot for Head TSL Certificate No: J23Z60245 Page 8 of 8 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn **Audix** Client: Certificate No: 24J02Z000275 ### CALIBRATION CERTIFICATE Object DAE4 - SN: 899 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: June 06, 2024 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) **Primary Standards** ID# Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Process Calibrator 753 1971018 12-Jun-23 (CTTL, No.J23X05436) Jun-24 Calibrated by: Name **Function** Yu Zongying SAR Test Engineer Reviewed by: Lin Jun SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: June 09, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: 24J02Z000275 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 http://www.caict.ac.cn E-mail: emf@caict.ac.cn Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. # Methods Applied and Interpretation of Parameters: - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Certificate No: 24J02Z000275 Page 2 of 3 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 ## **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: 1LSB = $6.1\mu V$, full range = -100...+300 mVLow Range: 1LSB = 61nV, full range = -1......+3mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | х | Y | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 402.479 ± 0.15% (k=2) | 403.066 ± 0.15% (k=2) | 403.057 ± 0.15% (k=2) | | Low Range | 3.97823 ± 0.7% (k=2) | 3.97596 ± 0.7% (k=2) | 3.98225 ± 0.7% (k=2) | ## **Connector Angle** | Connector Angle to be used in DASY system | 350.5° ± 1 ° | |-------------------------------------------|--------------| | | | Certificate No: 24J02Z000275 Page 3 of 3 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client BTL Guangdong Certificate No. EX-3809_Dec23 ### **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3809 Calibration procedure(s) QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6, QA CAL-25.v8 Calibration procedure for dosimetric E-field probes Calibration date December 18, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3) ℃ and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|-----------------------| | Power meter NRP2 | SN: 104778 | 30-Mar-23 (No. 217-03804/03805) | Mar-24 | | Power sensor NRP-Z91 | SN: 103244 | 30-Mar-23 (No. 217-03804) | Mar-24 | | OCP DAK-3.5 (weighted) | SN: 1249 | 05-Oct-23 (OCP-DAK3.5-1249_Oct23) | Oct-24 | | OCP DAK-12 | SN: 1016 | 05-Oct-23 (OCP-DAK12-1016_Oct23) | Oct-24 | | Reference 20 dB Attenuator | SN: CC2552 (20x) | 30-Mar-23 (No. 217-03809) | Mar-24 | | DAE4 | SN: 660 | 16-Mar-23 (No. DAE4-660_Mar23) | Mar-24 | | Reference Probe ES3DV2 | SN: 3013 | 06-Jan-23 (No. ES3-3013_Jan23) | Jan-24 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | | |-------------------------|------------------|-----------------------------------|------------------------|--|--| | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-22) | In house check: Jun-24 | | | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-22) | In house check: Jun-24 | | | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-22) | In house check: Jun-24 | | | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-22) | In house check: Jun-24 | | | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | Name Function Signature Calibrated by Joanna Lleshaj Laboratory Technician 5-/ Approved by Sven Kühn Technical Manager Issued: December 18, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX-3809_Dec23 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) Accreditation No.: SCS 0108 The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization ∂ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of Conv.E. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50 MHz to ±100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX-3809_Dec23 Page 2 of 21 EX3DV4 - SN:3809 December 18, 2023 ## Parameters of Probe: EX3DV4 - SN:3809 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k = 2) | | | |--------------------------|----------|----------|----------|-------------|--|--| | Norm $(\mu V/(V/m)^2)^A$ | 0.48 | 0.46 | 0.53 | ±10.1% | | | | DCP (mV) B | 99.4 | 99.2 | 99.1 | ±4.7% | | | ## **Calibration Results for Modulation Response** | UID | Communication System Name | | Α | В | С | D | VR | Max | Max | |----------------------|---------------------------------------|---|-------|------------------|-------|-------|-------|-------|------------------| | 1000000 | 5000000000000000000000000000000000000 | | dB | $dB\sqrt{\mu V}$ | | dB | mV | dev. | Unc ^E | | | | | | | | | | | k=2 | | 0 CW | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 140.4 | ±2.3% | ±4.7% | | | | Y | 0.00 | 0.00 | 1.00 | | 116.2 | | | | | | Z | 0.00 | 0.00 | 1.00 | | 118.4 | | | | 10352 | Pulse Waveform (200Hz, 10%) | X | 20.00 | 91.30 | 21.06 | 10.00 | 60.0 | ±2.6% | ±9.6% | | | 3000 | Y | 20.00 | 90.69 | 20.49 | | 60.0 | | | | | | Z | 20.00 | 91.56 | 21.38 | | 60.0 | | | | 10353 Pulse Waveform | Pulse Waveform (200Hz, 20%) | X | 20.00 | 93.15 | 21.04 | 6.99 | 80.0 | ±1.7% | ±9.6% | | | 100 | Y | 20.00 | 91.84 | 19.75 | | 80.0 | | | | | | Z | 20.00 | 92.52 | 20.94 | | 80.0 | | | | 10354 Pulse Wavefo | Pulse Waveform (200Hz, 40%) | X | 20.00 | 97.91 | 22.10 | 3.98 | 95.0 | ±1.2% | ±9.6% | | | 100 | Y | 20.00 | 93.68 | 19.07 | 1 | 95.0 | | | | | | Z | 20.00 | 96.03 | 21.44 | | 95.0 | | | | 10355 | Pulse Waveform (200Hz, 60%) | X | 20.00 | 103.90 | 23.62 | 2.22 | 120.0 | ±1.1% | ±9.6% | | | 60 300 May 1 | Y | 20.00 | 93.61 | 17.62 | 1 | 120.0 | 1 | | | | * | Z | 20.00 | 100.92 | 22.49 | | 120.0 | | | | 10387 | QPSK Waveform, 1 MHz | X | 1.63 | 65.38 | 14.61 | 1.00 | 150.0 | ±2.6% | ±9.6% | | | 888 | Y | 1.57 | 65.85 | 14.51 | 1 | 150.0 |] | | | | | Z | 1.66 | 65.39 | 14.73 | | 150.0 | | | | 10388 | QPSK Waveform, 10 MHz | X | 2.14 | 67.19 | 15.30 | 0.00 | 150.0 | ±0.9% | ±9.6% | | | 2000 | Y | 2.11 | 67.48 | 15.34 | 1 | 150.0 | 1 | | | | | Z | 2.20 | 67.44 | 15.43 | 1 | 150.0 | 1 | | | 10396 64-QAM Wa | 64-QAM Waveform, 100 kHz | X | 2.94 | 70.39 | 18.73 | 3.01 | 150.0 | ±0.8% | ±9.6% | | | VMDP | Y | 2.73 | 69.15 | 18.08 | 1 | 150.0 | 1 | | | | | Z | 3.10 | 70.78 | 18.87 | 1 | 150.0 | 1 | | | 10399 64-QAM \ | 64-QAM Waveform, 40 MHz | X | 3.45 | 66.73 | 15.55 | 0.00 | 150.0 | ±1.7% | ±9.6% | | | | Y | 3.45 | 66.94 | 15.63 | 1 | 150.0 | | | | | | Z | 3.49 | 66.83 | 15.62 | 1 | 150.0 | | | | 10414 | WLAN CCDF, 64-QAM, 40 MHz | X | 4.83 | 65.42 | 15.40 | 0.00 | 150.0 | ±3.5% | ±9.6% | | | 2 5 | Y | 4.82 | 65.64 | 15.52 | 1 | 150.0 | 1 | | | | | Z | 4.88 | 65.45 | 15.44 | 1 | 150.0 | 1 | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: EX-3809_Dec23 Page 3 of 21 A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5). E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.