

Test report No. : 12266558H-B-R2
Page : 1 of 23
Issued date : August 9, 2018

FCC ID : OUCP54P0

RADIO TEST REPORT

Test Report No.: 12266558H-B-R2

Applicant : **OMRON** Automotive Electronics Co. Ltd.

Type of Equipment : Push Start Switch

Model No. : 37290-54P0

FCC ID : OUCP54P0

Test regulation : FCC Part 15 Subpart C: 2018

Test Result : Complied

1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.

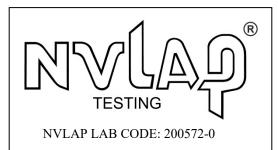
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with above regulation.
- 4. The test results in this report are traceable to the national or international standards.
- 5. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 6. The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- 7. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.
- 8. This report is a revised version of 12266558H-B-R1. 12266558H-B-R1 is replaced with this report.

Date of test:

May 14 to August 8, 2018

Representative test engineer:

Hiroyuki Furutaka Engineer


Consumer Technology Division

Approved by:

Shinichi Miyazono

Engineer

Consumer Technology Division

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation.

*As for the range of Accreditation in NVLAP, you may refer to the WEB address,

http://japan.ul.com/resources/emc accredited/

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan.

There is no testing item of "Non-accreditation".

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 12266558H-B-R2

 Page
 : 2 of 23

 Issued date
 : August 9, 2018

 FCC ID
 : OUCP54P0

REVISION HISTORY

Original Test Report No.: 12266558H-B

Revision	Test report No.	Date	Page revised	Contents
- (Original)	12266558Н-В	July 13, 2018	-	-
1	12266558H-B-R1	August 8, 2018	P.1	Correction of "Date of test"
1	12266558H-B-R1	August 8, 2018	P.4	Addition of "Receipt Date of Sample" in Clause 2.1
1	12266558H-B-R1	August 8, 2018	P.4	Addition of note sentences in Clause 2.2
1	12266558H-B-R1	August 8, 2018	P.8	Addition of "H' " in Configuration diagram of Clause 4.1.
1	12266558H-B-R1	August 8, 2018	P.9	Addition of item H' in "Description of EUT and Support equipment" table of Clause 4.2.
1	12266558H-B-R1	August 8, 2018	P.9	Addition of note sentence *1), *2) in Clause 4.2.
1	12266558H-B-R1	August 8, 2018	P.13 to 16	Addition of model number in caption of test item.
1	12266558H-B-R1	August 8, 2018	P.17, 18	Addition of Spot-check test data
1	12266558H-B-R1	August 8, 2018	P.20	Addition of test equipment (for tested on August 4, 2018).
1	12266558H-B-R1	August 8, 2018	P.22, 23	Replace of test setup photo
2	12266558H-B-R2	August 9, 2018	P.1	Correction of "Date of test"
2	12266558H-B-R2	August 9, 2018	P.11	Correction of "Date of test"
2	12266558H-B-R2	August 9, 2018	P.18	Correction of "Spot-check test data"
2	12266558H-B-R2	August 9, 2018	P.20	Correction of "test equipment"

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12266558H-B-R2 Page : 3 of 23

Issued date : August 9, 2018 FCC ID : OUCP54P0

CONTENTS	PAGE
SECTION 1: Customer information	4
SECTION 2: Equipment under test (E.U.T.)	
SECTION 2: Equipment under test (E.C.1.)	
SECTION 4: Operation of E.U.T. during testing	
SECTION 5: Radiated emission (Fundamental and Spurious Emission)	
SECTION 6: -26dB Bandwidth	
SECTION 7: 99% Occupied Bandwidth	
APPENDIX 1: Test data	
Radiated Emission below 30 MHz (Fundamental and Spurious Emission)	
Radiated Emission above 30MHz (Spurious Emission)	
-26dB Bandwidth and 99% Occupied Bandwidth	
Spot-check test for Radiated Emission below 30 MHz (Fundamental and Spurious	
Spot-check test for Radiated Emission above 30MHz (Spurious Emission)	
APPENDIX 2: Test instruments	
APPENDIX 3: Photographs of test setup	21
Radiated Emission	
Worst case position	23

 Test report No.
 : 12266558H-B-R2

 Page
 : 4 of 23

 Issued date
 : August 9, 2018

 FCC ID
 : OUCP54P0

SECTION 1: Customer information

Company Name : OMRON Automotive Electronics Co. Ltd.

Address : 6368 NENJOZAKA OKUSA KOMAKI AICHI, 485-0802 JAPAN

Telephone Number : +81-568-78-6159 Facsimile Number : +81-568-78-7659 Contact Person : Takashi Betsui

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : Push Start Switch Model No. : 37290-54P0 Serial No. : Refer to Clause 4.2

Rating : DC 12.0 V

Receipt Date of Sample : May 9, 2018 and August 3, 2018

Country of Mass-production : China

Condition of EUT : Production model

Modification of EUT : No Modification by the test lab

2.2 Product Description

Model: 37290-54P0 (referred to as the EUT in this report) is a Push Start Switch.

Radio Specification

Radio Type : Transceiver
Frequency of Operation : 125 kHz
Modulation : ASK

Antenna type : Coil Antenna (built-in)

Clock Frequency (maximum) : 8 MHz

Thus they are completely identical in Radio and EMC characteristics.

The test was performed with Model No.37290-79M0 (FCC ID: OUCP79M0) as representative, and the spot-check test was performed with Model No.37290-54P0.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Model No. 37290-79M0 and Model No. 37290-54P0 have the same circuit and parts; except for colors of LED.

 Test report No.
 : 12266558H-B-R2

 Page
 : 5 of 23

 Issued date
 : August 9, 2018

 FCC ID
 : OUCP54P0

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C

FCC Part 15 final revised on March 12, 2018 and effective April 11, 2018

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.207 Conducted limits

Section 15.209 Radiated emission limits; general requirements.

3.2 Procedures and results

No.	Item	Test Procedure	Specification	Remarks	Deviation	Worst margin	Results
1	Conducted Emission	<fcc> ANSI C63.10:2013 6 Standard test methods <ic> RSS-Gen 8.8</ic></fcc>	<fcc> Section 15.207 <ic> RSS-Gen 8.8</ic></fcc>	-	N/A	N/A *1)	N/A
2	Electric Field Strength of Fundamental Emission	<fcc> ANSI C63.10:2013 6 Standard test methods <ic> RSS-Gen 6.4, 6.12</ic></fcc>	<fcc> Section 15.209 <ic> RSS-210 4.4 RSS-Gen 8.9</ic></fcc>	Radiated	N/A	19.6 dB 0.12500 MHz 0 deg., PK with Duty factor	Complied
3	Electric Field Strength of Spurious Emission	<fcc> ANSI C63.10:2013 6 Standard test methods <ic> RSS-Gen 6.4, 6.13</ic></fcc>	<fcc> Section 15.209 <ic> RSS-210 4.4 RSS-Gen 8.9</ic></fcc>	Radiated	N/A	17.1 dB 156.016 MHz, Vertical, QP	Complied
4	-26dB Bandwidth	<fcc> ANSI C63.10:2013 6 Standard test methods <ic></ic></fcc>	<fcc> Reference data <ic></ic></fcc>	Radiated	N/A	N/A	N/A

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

FCC 15.31 (e)

This EUT provides stable voltage constantly to RF Module regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line.

 Test report No.
 : 12266558H-B-R2

 Page
 : 6 of 23

 Issued date
 : August 9, 2018

 FCC ID
 : OUCP54P0

3.3 Addition to standard

No.	Item	Test Procedure	Specification	Remarks	Deviation	Worst margin	Results
1	99 % Occupied	RSS-Gen 6.6	-	Radiated	N/A	N/A	N/A
	Band Width						

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor k=2.

Test distance	Radiated emission (+/-)		
	9 kHz to 30 MHz		
3 m	3.8 dB		
10 m	3.6 dB		

^{*}Measurement distance

	Radiated emission (Below 1 GHz)					
Polarity	(3 m*)(+/-)		(10 m*)(+/-)			
	30 MHz to 200 MHz	200 MHz to 1000 MHz	30 MHz to 200 MHz	200 MHz to 1000 MHz		
Horizontal	4.8 dB	5.2 dB	4.8 dB	5.0 dB		
Vertical	5.0 dB	6.3 dB	4.9 dB	5.0 dB		

Radiated emission test(3 m)

The data listed in this test report has enough margin, more than the site margin.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12266558H-B-R2 Page : 7 of 23 Issued date : August 9, 2018

FCC ID : OUCP54P0

3.5 **Test Location**

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

NVLAP Lab. code: 200572-0 / FCC Test Firm Registration Number: 199967

Test site	IC Registration Number	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	2973C-1	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	2973C-2	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	2973C-3	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	-	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	2973C-4	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	-	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	-	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.6 shielded room	-	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	-	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	-	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	-	3.1 x 5.0 x 2.7	N/A	-	-
No.9 measurement room	-	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.11 measurement room	-	6.2 x 4.7 x 3.0	4.8 x 4.6	-	-

^{*} Size of vertical conducting plane (for Conducted Emission test): 2.0 m x 2.0m for No.1, No.2, No.3, and No.4 semianechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

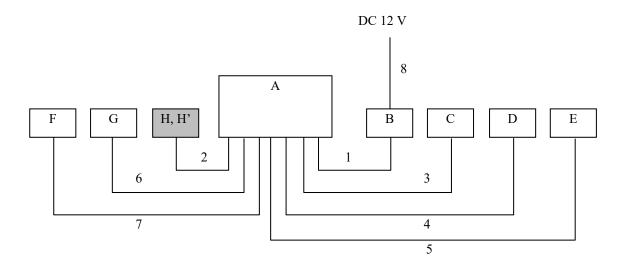
4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 12266558H-B-R2

 Page
 : 8 of 23

 Issued date
 : August 9, 2018

 FCC ID
 : OUCP54P0


SECTION 4: Operation of E.U.T. during testing

4.1 Operating Modes

Test mode	Remarks
Transmitting mode	-

Justification : The system was configured in typical fashion (as a user would normally use it) for testing.

4.2 Configuration and peripherals

^{*} Cabling and setup were taken into consideration and test data was taken under worse case conditions.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 12266558H-B-R2 Test report No. Page : 9 of 23 : August 9, 2018 : OUCP54P0 **Issued date**

FCC ID

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remark
A	Body Control Module	S79M0	S79YL1-180510-	OMRON Automotive	-
	-		001	Electronics Co. Ltd.	
В	Switch and Load Board	-	-	-	-
С	LF Antenna (DR)	CGF-S001-0010	CGF-S001-0010-	OMRON Automotive	-
			001	Electronics Co. Ltd.	
D	LF Antenna (AS)	CGF-S001-0010	CGF-S001-0010-	OMRON Automotive	-
			002	Electronics Co. Ltd.	
Е	LF Antenna (T/G)	CGF-S001-0040	CGF-S001-0040-	OMRON Automotive	-
			001	Electronics Co. Ltd.	
F	LF Antenna (InF)	CGF-S001-0020	CGF-S001-0020-	OMRON Automotive	-
			001	Electronics Co. Ltd.	
G	LF Antenna (InR)	CGF-S001-0030	CGF-S001-0030-	OMRON Automotive	-
			001	Electronics Co. Ltd.	
Н	Push Start Switch	37290-79M0	P79-180510-001	OMRON Automotive	EUT *1)
				Electronics Co. Ltd.	
H'	Push Start Switch	37290-54P0	P54-180802-001	OMRON Automotive	EUT *2)
				Electronics Co. Ltd.	

^{*1)} Used for all tests except for spot check test.

List of cables used

No.	Name	Length (m)	Shi	ield	Remark
			Cable	Connector	
1	DC & Signal Cable	2.4	Unshielded	Unshielded	-
2	DC & Signal Cable	2.4	Unshielded	Unshielded	-
3	LF Antenna Cable	2.7	Unshielded	Unshielded	-
4	LF Antenna Cable	2.7	Unshielded	Unshielded	-
5	LF Antenna Cable	2.7	Unshielded	Unshielded	-
6	LF Antenna Cable	2.7	Unshielded	Unshielded	-
7	LF Antenna Cable	2.7	Unshielded	Unshielded	-
8	DC Cable	2.0	Unshielded	Unshielded	-

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} Used for spot-check test only.

Test report No. : 12266558H-B-R2
Page : 10 of 23
Issued date : August 9, 2018
FCC ID : OUCP54P0

SECTION 5: Radiated emission (Fundamental and Spurious Emission)

Test Procedure

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

Frequency: From 9 kHz to 30 MHz

The EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity. The measurements were performed for vertical polarization (antenna angle: 0 deg., 45 deg., 90 deg., and 135 deg.) and horizontal polarization.

*Refer to Figure 1 about Direction of the Loop Antenna.

Frequency: From 30 MHz to 1 GHz

The measuring antenna height varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for both vertical and horizontal antenna polarization.

The test was made with the detector (RBW / VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

Frequency	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz
Antenna Type	Loop	Biconical	Logperiodic

Frequency	From 9 kHz to	From 90 kHz to	From 150 kHz to	From 490 kHz to	From 30 MHz to
	90 kHz	110 kHz	490 kHz	30 MHz	1 GHz
	and				
	From 110 kHz to				
	150 kHz				
Instrument used			Test Receiver		
Detector	PK / AV	QP	PK / AV	QP	QP
IF Bandwidth	200 Hz	200 Hz	9 kHz	9 kHz	120 kHz
Test Distance	3 m *1)	3 m *1)	3 m *1)	3 m *2)	3 m

^{*1)} Distance Factor: $40 \times \log (3 \text{ m} / 300 \text{ m}) = -80 \text{ dB}$

Although these tests were performed other than open field test site, adequate comparison measurements were confirmed against 30 m open field test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

These tests were performed in semi anechoic chamber. Therefore the measured level of emissions may be higher than if measurements were made without a ground plane.

However test results were confirmed to pass against standard limit.

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

This EUT has two modes which transponder key is inserted or not. The worst case was confirmed with and without transponder key, as a result, the test without transponder key was the worst case. Therefore the test without transponder key was performed only.

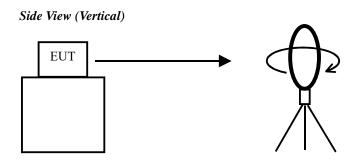
The test results and limit are rounded off to one decimal place, so some differences might be observed.

UL Japan, Inc. Ise EMC Lab.

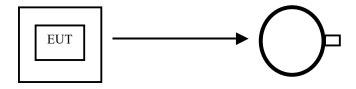
4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} Distance Factor: $40 \times \log (3 \text{ m} / 30 \text{ m}) = -40 \text{ dB}$

Test report No. : 12266558H-B-R2 : 11 of 23 Page Issued date : August 9, 2018 FCC ID : OUCP54P0

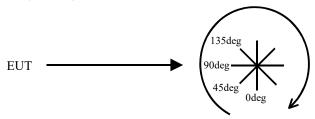

: 9 kHz - 1 GHz Measurement range Test data : APPENDIX 1

Test result : Pass


May 14 and 16, August 4, 2018 Test engineer: Hiroyuki Furutaka Date: Koji Yamamoto

August 8, 2018

Figure 1: Direction of the Loop Antenna


Top View (Horizontal)

Antenna was not rotated.

......

Top View (Vertical)

Front side: 0 deg.

Forward direction: clockwise

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12266558H-B-R2
Page : 12 of 23
Issued date : August 9, 2018
FCC ID : OUCP54P0

SECTION 6: -26dB Bandwidth

Test Procedure

The test was measured with a spectrum analyzer using a test fixture.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
-26 dB Bandwidth	100 kHz	1 kHz	3 kHz	Auto	Peak	Max Hold	Spectrum Analyzer

Test data : APPENDIX 1

Test result : Pass

SECTION 7: 99% Occupied Bandwidth

Test Procedure

The test was measured with a spectrum analyzer using a test fixture.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
99 % Occupied Bandwidth	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Peak hold was ap	plied as Worst-case measure	ement.					

Test data : APPENDIX 1

Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12266558H-B-R2
Page : 13 of 23
Issued date : August 9, 2018
FCC ID : OUCP54P0

APPENDIX 1: Test data

Radiated Emission below 30 MHz (Fundamental and Spurious Emission) (Model No. 37290-79M0)

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Order No. 12266558H Date 05/14/2018

Temperature/ Humidity
Engineer
Hiroyuki Furutaka
Mode
Tx 125kHz

PK or QP

Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
				Factor			Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0	0.12500	PK	92.3	19.8	-73.9	32.2	-	6.0	45.6	39.6	Fundamental
0	0.25000	PK	66.8	19.7	-73.9	32.2	-	-19.6	39.6	59.2	
0	0.37500	PK	53.5	19.7	-73.9	32.2	-	-32.9	36.1	69.0	
0	0.50000	QP	35.6	19.7	-33.9	32.1	-	-10.7	33.6	44.3	
0	0.62500	QP	42.4	19.7	-33.9	32.2	-	-4.0	31.7	35.7	
0	0.75000	QP	37.1	19.7	-33.8	32.2	-	-9.2	30.1	39.3	
0	0.87500	QP	37.7	19.7	-33.8	32.2	-	-8.6	28.7	37.3	
0	1.00000	QP	30.9	19.7	-33.8	32.2	-	-15.4	27.6	43.0	
0	1.25000	QP	35.1	19.7	-33.8	32.2	-	-11.2	25.6	36.8	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + D.Factor) - Gain(Amprifier)

PK with Duty factor

Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
				Factor			Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0	0.12500	PK	92.3	19.8	-73.9	32.2	0.0	6.0	25.6	19.6	
0	0.25000	PK	66.8	19.7	-73.9	32.2	0.0	-19.6	19.6	39.2	
0	0.37500	PK	53.5	19.7	-73.9	32.2	0.0	-32.9	16.1	49.0	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + D.Factor) - Gain(Amprifier) + Duty factor *

Result of the fundamental emission at 3m without Distance factor

PK or QP

I	Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
					Factor			Factor				
		[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
ı	0	0.12500	PK	92.3	19.8	6.1	32.2	-	86.0	-	-	Fundamental

Result = Reading + Ant Factor + Loss (Cable + Attenuator) - Gain(Amprifier)

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} Since the peak emission result satisfied the average limit, duty factor was omitted.

^{*} All spurious emissions lower than this result.

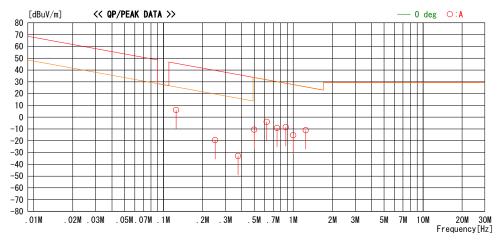
^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

 Test report No.
 : 12266558H-B-R2

 Page
 : 14 of 23

 Issued date
 : August 9, 2018

 FCC ID
 : OUCP54P0


Radiated Emission below 30 MHz (Fundamental and Spurious Emission) (Plot data, Worst case) (Model No. 37290-79M0)

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Order No. 12266558H Date 05/14/2018

Temperature/ Humidity
Engineer
Hiroyuki Furutaka
Mode
Tx 125kHz

LIMIT : FCC15.209(a), 9-90kHz:PK, 110-490kHz:PK, other:QP FCC15.209(a), 9-90kHz:AV, 110-490kHz:AV, other:QP

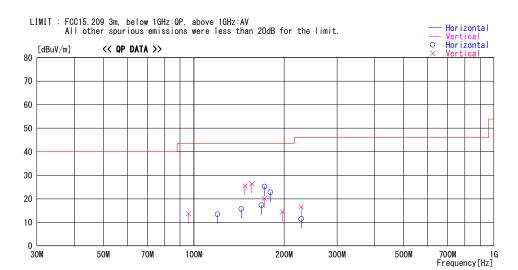
^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12266558H-B-R2
Page : 15 of 23
Issued date : August 9, 2018
FCC ID : OUCP54P0

Radiated Emission above 30MHz (Spurious Emission) (Model No. 37290-79M0)

Test place Ise EMC Lab. No.4 Semi Anechoic Chamber


Order No. 12266558H

Date 05/16/2018

Temperature/ Humidity 23 deg. C / 45 % RH

Engineer Hiroyuki Furutaka

Mode Tx 125kHz

Part				Antenna	Loss&							
MHz	Frequency	Reading	DET			Level	Angle	Height	Polar.	Limit	Margin	Comment
96.000 28.1 QP 9.5 -24.0 13.6 298 100 Vert. 43.5 29.9 119.981 24.3 QP 12.8 -23.7 13.4 153 271 Hori. 43.5 30.1 143.988 24.3 QP 14.8 -23.4 15.7 6 236 Hori. 43.5 27.8 148.014 33.8 QP 15.0 -23.3 25.5 305 100 Vert. 43.5 18.0 156.016 34.3 QP 15.4 -23.3 26.4 293 100 Vert. 43.5 17.1 167.978 24.5 QP 15.9 -23.1 17.3 206 199 Hori. 43.5 26.2 172.004 32.3 QP 16.0 -23.1 25.2 216 191 Hori. 43.5 18.3 172.004 27.3 QP 16.0 -23.1 20.2 262 100 Vert. 43.5 23.3 180.006 29.5 QP 16.3 -22.0 22.8 347 205 Hori. 43.5 20.7 197.275 21.0 QP 16.3 -22.9 14.4 35.9 100 Vert. 43.5 29.9 127.995 27.5 QP 11.7 -22.6 16.6 232 100 Vert. 43.5 29.9 1	[MHz]	[dBuV]				[dBuV/m]	[Deg]	[cm]		[dBuV/m]	[dB]	
143. 988	96. 000		QP		-24. 0			100	Vert.		29. 9	
148. 014 33. 8	119. 981	24. 3	QP	12. 8	-23. 7	13. 4	153	271	Hori.	43. 5	30. 1	
156,016	143. 988	24. 3	QP	14.8	-23. 4	15. 7	6	236	Hori.	43. 5	27. 8	
167. 978 24. 5 QP 15. 9 -23. 1 17. 3 206 199 Hori. 43. 5 26. 2 172. 004 32. 3 QP 16. 0 -23. 1 25. 2 216 191 Hori. 43. 5 18. 3 172. 004 27. 3 QP 16. 0 -23. 1 20. 2 262 100 Vert. 43. 5 23. 3 180. 006 29. 5 QP 16. 3 -23. 0 22. 8 347 205 Hori. 43. 5 20. 7 197. 275 21. 0 QP 16. 3 -22. 9 14. 4 359 100 Vert. 43. 5 29. 1 227. 995 27. 5 QP 11. 7 -22. 6 16. 6 232 100 Vert. 46. 0 29. 4	148. 014	33.8	QP	15.0	-23. 3	25. 5	305	100	Vert.	43. 5	18. 0	
172. 004 32. 3 QP 16. 0 -23. 1 25. 2 216 191 Hori. 43. 5 18. 3 172. 004 27. 3 QP 16. 0 -23. 1 20. 2 262 100 Vert. 43. 5 23. 3 180. 006 29. 5 QP 16. 3 -23. 0 22. 8 347 205 Hori. 43. 5 20. 7 197. 275 21. 0 QP 16. 3 -22. 9 14. 4 359 100 Vert. 43. 5 29. 1 227. 995 27. 5 QP 11. 7 -22. 6 16. 6 232 100 Vert. 46. 0 29. 4	156. 016	34. 3	QP	15.4	-23. 3	26. 4	293	100	Vert.	43. 5	17. 1	
172. 004 27. 3 QP 16. 0 -23. 1 20. 2 262 100 Vert. 43. 5 23. 3 180. 006 29. 5 QP 16. 3 -22. 9 22. 8 347 205 Hori. 43. 5 20. 7 27. 7 20.	167. 978	24. 5	QP	15.9	-23. 1	17. 3	206	199	Hori.	43. 5	26. 2	
180.006 29.5 QP 16.3 -23.0 22.8 347 205 Hori. 43.5 20.7 197.275 21.0 QP 16.3 -22.9 14.4 359 100 Vert. 43.5 29.1 227.995 27.5 QP 11.7 -22.6 16.6 232 100 Vert. 46.0 29.4	172. 004	32.3	QP	16.0	-23. 1	25. 2	216	191	Hori.	43. 5	18. 3	
197. 275 21. 0 QP 16. 3 -22. 9 14. 4 359 100 Vert. 43. 5 29. 1 227. 995 27. 5 QP 11. 7 -22. 6 16. 6 232 100 Vert. 46. 0 29. 4	172. 004	27. 3	QP	16.0		20. 2	262	100	Vert.	43. 5	23. 3	
227. 995 27. 5 QP 11. 7 -22. 6 16. 6 232 100 Vert. 46. 0 29. 4	180. 006	29. 5	QP	16.3	-23. 0	22. 8	347	205	Hori.	43. 5	20. 7	
	197. 275	21.0	QP	16.3	-22. 9	14. 4	359	100	Vert.	43. 5	29. 1	
227. 995 22. 3 QP 11. 7 -22. 6 11. 4 283 121 Hori. 46. 0 34. 6	227. 995	27. 5	QP	11.7	-22. 6	16. 6	232	100	Vert.	46. 0	29. 4	
	227. 995	22. 3	QP	11.7	-22. 6	11.4	283	121	Hori.	46. 0	34. 6	
	-											

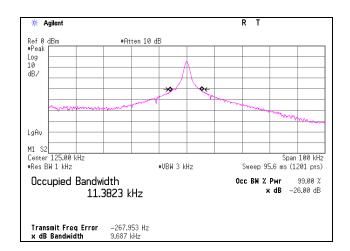
CHART: WITH FACTOR

ANT TYPE: - 30 MHz: LOOP, 30 MHz - 200 MHz: BICONICAL, 200 MHz - 1000 MHz: LOGPERIODIC, 1000 MHz -: HORN CALCULATION: RESULT = READING + ANT FACTOR + LOSS & GAIN (CABLE + ATT - GAIN(AMP))

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.


Test report No. : 12266558H-B-R2
Page : 16 of 23
Issued date : August 9, 2018
FCC ID : OUCP54P0

-26dB Bandwidth and 99% Occupied Bandwidth (Model No. 37290-79M0)

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Order No. 12266558H
Date 05/14/2018
Temperature/ Humidity 23 deg. C / 45 % RH
Engineer Hiroyuki Furutaka
Mode Tx 125kHz

Frequency	-26dB	99% Occupied
	Bandwidth	Bandwidth
[kHz]	[kHz]	[kHz]
125	9.687	11.3823

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 12266558H-B-R2
Page : 17 of 23
Issued date : August 9, 2018
FCC ID : OUCP54P0

<u>Spot-check test for Radiated Emission below 30 MHz (Fundamental and Spurious Emission)</u> (Model No. 37290-54P0)

Test place Ise EMC Lab. No.2 Semi Anechoic Chamber

Order No. 12266558H Date 08/04/2018

Temperature/ Humidity
Engineer
Mode

23 deg. C / 56 % RH
Hiroyuki Furutaka
Tx 125kHz

PK or QP

Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
				Factor			Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0	0.12500	PK	92.3	19.8	-73.9	32.2	-	6.0	45.6	39.6	Fundamental
0	0.62500	OP	42.5	19.7	-33.9	32.2	_	-3.9	31.7	35.6	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + D.Factor) - Gain(Amprifier)

PK with Duty factor

Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
				Factor			Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0	0.12500	PK	92.3	19.8	-73.9	32.2	0.0	6.0	25.6	19.6	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + D.Factor) - Gain(Amprifier) + Duty factor *

Result of the fundamental emission at 3m without Distance factor

PK or QP

Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
				Factor			Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0	0.12500	PK	92.3	19.8	6.1	32.2	-	86.0	-	-	Fundamental

Result = Reading + Ant Factor + Loss (Cable + Attenuator) - Gain(Amprifier)

UL Japan, Inc. Ise EMC Lab.

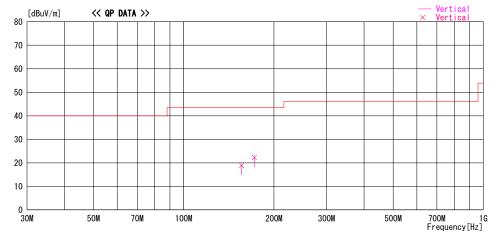
4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} Since the peak emission result satisfied the average limit, duty factor was omitted.

^{*} All spurious emissions lower than this result.

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

: 12266558H-B-R2 Test report No. Page : 18 of 23 Issued date : August 9, 2018 : OUCP54P0 FCC ID


Spot-check test for Radiated Emission above 30MHz (Spurious Emission) (Model No. 37290-54P0)

Test place Ise EMC Lab. No.4 Semi Anechoic Chamber

Order No. 12266558H Date 08/08/2018

Temperature/ Humidity 23 deg. C / 54 % RH Engineer Koji Yamamoto Mode Tx 125kHz

LIMIT : FCC15.209 3m, below 1GHz:QP, above 1GHz:AV $\,$ All other spurious emissions were less than 20dB for the limit.

Frequency	Reading	DET	Antenna Factor	Loss& Gain	Level	Angle	Height	Polar.	Limit	Margin	Comment
[MHz]	[dBuV]		[dB/m]	[dB]	[dBuV/m]	[Deg]	[cm]		[dBuV/m]	[dB]	
156. 016			15. 2	-23. 2	18. 9				43. 5		
172. 004	29. 4	QP	16.0	-23. 1	22. 3	309	100	Vert.	43. 5	21. 2	
										i i	
	l i		1								

CHART: WITH FACTOR

ANT TYPE: - 30 MHz: LOOP, 30 MHz - 200 MHz: BICONICAL, 200 MHz - 1000 MHz: LOGPERIODIC, 1000 MHz -: HORN CALCULATION: RESULT = READING + ANT FACTOR + LOSS & GAIN (CABLE + ATT - GAIN(AMP))

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test result is rounded off to one or two decimal places, so some differences might be observed.

 Test report No.
 : 12266558H-B-R2

 Page
 : 19 of 23

 Issued date
 : August 9, 2018

 FCC ID
 : OUCP54P0

APPENDIX 2: Test instruments

Test equipment (Tested on May 14 and 16, 2018)

Test item	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Calibration Due Date	Cal Int
RE	141254	Loop Antenna	Rohde & Schwarz	HFH2-Z2	100017	10/11/2017	10/31/2018	12
RE	141152	EMI measurement program	TSJ	TEPTO-DV	-	-	-	-
RE	141222	Coaxial Cable	FUJIKURA	3D-2W(12m)/ 5D-2W(5m)/ 5D-2W(0.8m)/5	-	2/23/2018	2/28/2019	12
RE	141203	Attenuator(6dB)	Weinschel Corp	2	BK7970	11/14/2017	11/30/2018	12
RE	142182	Measure	KOMELON	KMC-36	-	-	-	-
RE	141885	Spectrum Analyzer	AGILENT	E4448A	US44300523	11/14/2017	11/30/2018	12
RE	141556	Thermo- Hygrometer	CUSTOM	CTH-201	0003	12/21/2017	12/31/2018	12
RE	141942	Test Receiver	Rohde & Schwarz	ESCI	100300	8/21/2017	8/31/2018	12
RE	142004	AC2_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-06902	8/31/2017	8/31/2018	12
RE	141583	Pre Amplifier	SONOMA INSTRUMENT	11/5/1900	260833	2/27/2018	2/28/2019	12
RE	141413	Coaxial Cable	UL Japan	-	-	6/12/2017	6/30/2018	12
RE	141542	Digital Tester	Fluke Corporation	FLUKE 26-3	78030611	8/7/2017	8/31/2018	12
RE	142227	Measure	KOMELON	KMC-36	-	-	-	-
RE	141562	Thermo- Hygrometer	CUSTOM	CTH-180	1501	1/24/2018	1/31/2019	12
RE	142011	AC4_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	10/30/2017	10/31/2018	12
RE	148898	Attenuator	KEYSIGHT	8491A	MY52462282	10/12/2017	10/31/2018	12
RE	141951	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	1/30/2018	1/31/2019	12
RE	141545	DIGITAL HiTESTER	HIOKI	3805	51201148	1/9/2018	1/31/2019	12
RE	141397	Coaxial Cable	UL Japan	-	-	6/22/2017	6/30/2018	12
RE	141425	Biconical Antenna	Schwarzbeck	BBA9106	1302	11/23/2017	11/30/2018	12
RE	141267	Logperiodic Antenna(200- 1000MHz)	Schwarzbeck	VUSLP9111B	911B-192	12/10/2017	12/31/2018	12

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 12266558H-B-R2

 Page
 : 20 of 23

 Issued date
 : August 9, 2018

 FCC ID
 : OUCP54P0

Test equipment (Tested on August 4 and 8, 2018)

Test item	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Calibration Due Date	Cal Int
RE	141884	Spectrum Analyzer	AGILENT	E4448A	MY44020357	11/7/2017	11/30/2018	12
RE	141203	Attenuator(6dB)	Weinschel Corp	2	BK7970	11/14/2017	11/30/2018	12
RE	141413	Coaxial Cable	UL Japan	-	-	6/12/2018	6/30/2019	12
RE	141542	Digital Tester	Fluke Corporation	FLUKE 26-3	78030611	8/7/2017	8/31/2018	12
RE	141152	EMI measurement program	TSJ	TEPTO-DV	-	-	-	-
RE	141254	Loop Antenna	Rohde & Schwarz	HFH2-Z2	100017	10/11/2017	10/31/2018	12
RE	142228	Measure	KOMELON	KMC-36	-	-	-	-
RE	141583	Pre Amplifier	SONOMA INSTRUMENT	11/5/1900	260833	2/27/2018	2/28/2019	12
RE	142004	AC2_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-06902	8/31/2017	8/31/2018	12
RE	141942	Test Receiver	Rohde & Schwarz	ESCI	100300	8/21/2017	8/31/2018	12
RE	141556	Thermo- Hygrometer	CUSTOM	CTH-201	0003	12/21/2017	12/31/2018	12
RE	148898	Attenuator	KEYSIGHT	8491A	MY52462282	10/12/2017	10/31/2018	12
RE	141425	Biconical Antenna	Schwarzbeck	BBA9106	1302	6/1/2018	6/30/2019	12
RE	141397	Coaxial Cable	UL Japan	-	-	6/13/2018	6/30/2019	12
RE	141545	DIGITAL HiTESTER	HIOKI	3805	51201148	1/9/2018	1/31/2019	12
RE	141951	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	1/30/2018	1/31/2019	12
RE	141267	Logperiodic Antenna(200- 1000MHz)	Schwarzbeck	VUSLP9111B	911B-192	6/1/2018	6/30/2019	12
RE	142227	Measure	KOMELON	KMC-36	-	-	-	T -
RE	142011	AC4_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	6/28/2018	6/30/2020	24
RE	141562	Thermo- Hygrometer	CUSTOM	CTH-180	1501	1/24/2018	1/31/2019	12
RE	141222	Coaxial Cable	FUJIKURA	3D-2W(12m)/ 5D-2W(5m)/ 5D-2W(0.8m)/5	-	2/23/2018	2/28/2019	12

^{*}Hyphens for Last Calibration Date, Calibration Due Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test item:

RE: Spurious emission

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN