

Report No.: EED32L00160901 Page 1 of 63

EST REPORT

Product SLYPOD Trade mark **MOZA**

Model/Type reference MS-280, MS-580, MS-280S

Serial Number N/A

Report Number EED32L00160901 **FCC ID** : 2AMJR-SLYPOD Date of Issue Jul. 31, 2019

Test Standards 47 CFR Part 15Subpart C

Test result : PASS

Prepared for:

Shenzhen Gudsen Technology Co., Ltd 6/F,10th Building, Jiuxiang Ling Industrial Park, Ave Xili ,Nanshan District, Shenzhen, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Jay Zheng

Compiled by:

Alex Wu

Reviewed by:

More Xm

Jay Zheng

Ware Xin

Jul. 31, 2019 Date:

Kevin Yang

Check No.:3096310050

2 Version

Version No.	Date	Description
00	Jul. 31, 2019	Original
	25	(3)
	(5)	

Report No.: EED32L00160901 Page 3 of 63

3 Test Summary

1 cot Gaillinary		(41)		
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	N/A	
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS	
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS	
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

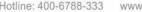

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

Model No.: MS-280, MS-580, MS-280S

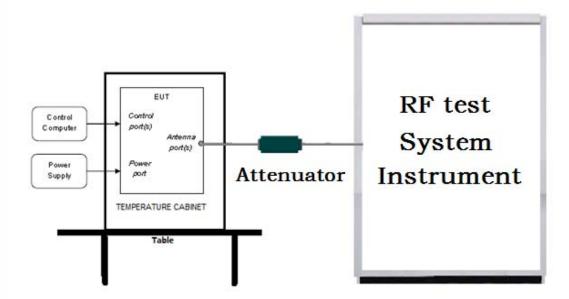
Only the model MS-280 was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, only the internal telescopic part of the telescopic length is different.



Report No.: EED32L00160901 Page 4 of 63

4 Content

1 (OVER PAGE			 1
2 \	/ERSION			 2
3 1	EST SUMMARY			 3
4 (ONTENT			 4
5 1	EST REQUIREMENT			 5
	5.1 TEST SETUP			5
	5.1.1 For Conducted test setup			 5
	5.1.2 For Radiated Emissions test setup			
	5.1.3 For Conducted Emissions test setup			
	5.2 TEST ENVIRONMENT5.3 TEST CONDITION			
	SENERAL INFORMATION			
	6.1 CLIENT INFORMATION			
	6.2 GENERAL DESCRIPTION OF EUT			
	6.4 DESCRIPTION OF SUPPORT UNITS			
	6.5 Test Location			
	6.6 DEVIATION FROM STANDARDS			
	6.7 ABNORMALITIES FROM STANDARD CONDITIONS			
	6.8 OTHER INFORMATION REQUESTED BY THE CUSTOM	ER		 8
	6.9 Measurement Uncertainty (95% confidence L	EVELS, K=2)		 9
7 E	QUIPMENT LIST			 10
8 F	RADIO TECHNICAL REQUIREMENTS SPECIFICA			
	Appendix A): 6dB Occupied Bandwidth	\	/15	15
	Appendix B): Conducted Peak Output Power			 18
	Appendix C): Band-edge for RF Conducted Emis	sions		 21
	Appendix D): RF Conducted Spurious Emissions			
	Appendix E): Power Spectral Density			
	Appendix F): Antenna Requirement			
	Appendix (J): Restricted hands ground fundamen			
	Appendix H): Restricted bands around fundamen Appendix I) Radiated Spurious Emissions	ital frequency (Rac		
.	OTOGRAPHS OF TEST SETUP			
				_
Y H	OTOGRAPHS OF EUT CONSTRUCTIONAL DETA	AILS		 50



Report No. : EED32L00160901 Page 5 of 63

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

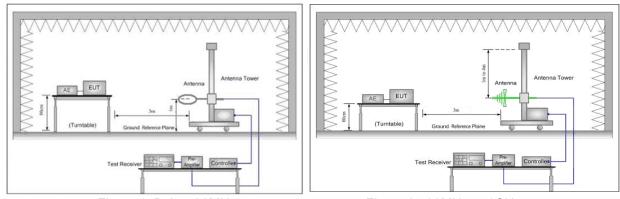


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

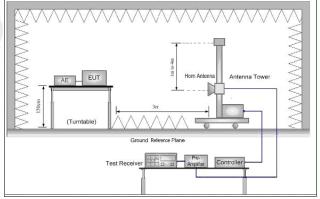
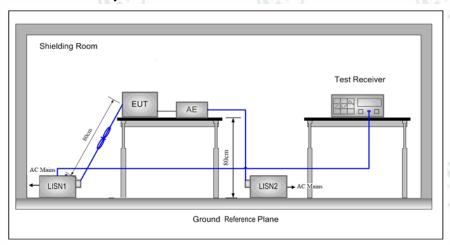
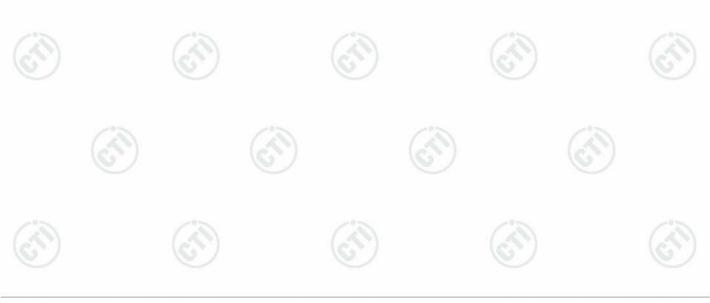



Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup


5.2 Test Environment

Operating Environment:			(6)
Temperature:	25.0 °C		
Humidity:	64 % RH	160	200
Atmospheric Pressure:	1010mbar		

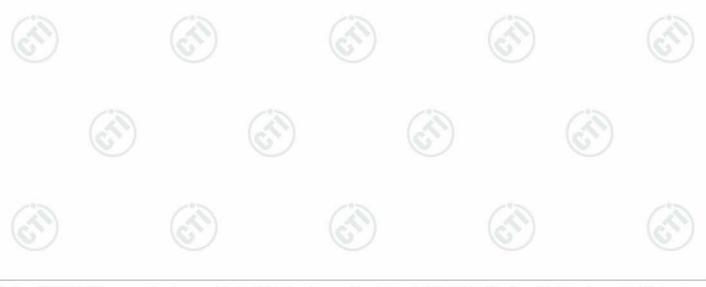
5.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel			
Test Mode		Low(L)	Middle(M)	High(H)	
05014			Channel 20	Channel 40	
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of dat rate.				

6 General Information

6.1 Client Information


Applicant: Shenzhen Gudsen Technology Co., Ltd					
Address of Applicant:	6/F,10th Building,Jiuxiang Ling Industrial Park,Ave Xili ,Nanshan District, Shenzhen, China				
Manufacturer:	Shenzhen Gudsen Technology Co., Ltd				
Address of Manufacturer:	6/F,10th Building,Jiuxiang Ling Industrial Park,Ave Xili ,Nanshan District, Shenzhen, China				

6.2 General Description of EUT

Product Name:	SLYPOD		(3)
Model No.(EUT):	MS-280, MS-580, MS-280S	(N)	(67.)
Test Model No.	MS-280		
Trade mark:	MOZA		
EUT Supports Radios application:	BT4.2 Single mode		(A)
Power Supply:	DC 5V		0
Sample Received Date:	Jun. 20, 2019		
Sample tested Date:	Jun. 20, 2019 to Jul. 31, 2019		

6.3 Product Specification subjective to this standard

Operation Frequency:	2402-2480MHz	
Modulation Type:	GFSK	
Number of Channel:	40	_0
Test Power Grade:	N/A	(6)
Test Software of EUT:	EMI_Test_Tool_v1.3 (manufacturer declare)	6
Antenna Type and Gain:	Internal Antenna and 0.08dBi	
Test Voltage:	5V	215

Report No. : EED32L00160901 Page 8 of 63

Operation	requency eac			(-4)	1		1
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions


None.

6.8 Other Information Requested by the Customer

None.

Report No. : EED32L00160901 Page 9 of 63

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE newer conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
2	Dedicted Courieus emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

7 Equipment List

_		RF test	system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-01-2019	02-28-2020
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-28-2020
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-28-2020
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002	(2)	01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-09-2019	01-08-2020
DC Power	Keysight	E3642A	MY54426035	03-01-2019	02-28-2020
PC-1	Lenovo	R4960d		03-01-2019	02-28-2020
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-2	15860006	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-1	15860004	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-4	158060007	03-01-2019	02-28-2020
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-01-2019	02-28-2020
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019

Report No. : EED32L00160901 Page 11 of 63

	3M S	emi/full-anecho	ic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-24-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-21-2018	12-20-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-30-2018	07-29-2019
Microwave Preamplifier	Agilent	8449B	3008A024 25	08-21-2018	08-20-2019
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-16-2019	01-15-2020
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D- 1869	04-25-2018	04-23-2021
Horn Antenna	ETS- LINDGREN	3117	00057410	06-05-2018	06-03-2021
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	374	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041.604 1	08-08-2018	08-07-2019
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-25-2021
Spectrum Analyzer	R&S	FSP40	100416	04-28-2019	04-26-2020
Receiver	R&S	ESCI	100435	05-20-2019	05-18-2020
Receiver	R&S	ESCI7	100938- 003	11-23-2018	11-22-2019
Multi device Controller	maturo	NCD/070/107 11112		01-09-2019	01-08-2020
Signal Generator	Agilent	E4438C	MY45095 744	03-01-2019	02-28-2020
Signal Generator	Keysight	E8257D	MY53401 106	03-01-2019	03-01-2020
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-12-2018	10-11-2019
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M) Fulai(3M)	SF106 SF106	5216/6A 5217/6A	01-09-2019 01-09-2019	01-08-2020 01-08-2020
Cable line High-pass filter	Sinoscite	FL3CX03WG 18NM12- 0398-002		01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F- 63029-4		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001	(4)	01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001		01-09-2019	01-08-2020

Page 12 of 63

3M full-anechoic Chamber					
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd- yyyy)	Cal. Due date (mm-dd- yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-18-2019	06-17-2020
Receiver	Keysight	N9038A	MY5729013 6	03-27-2019	03-25-2020
Spectrum Analyzer	Keysight	N9020B	MY5711111 2	03-27-2019	03-25-2020
Spectrum Analyzer	Keysight	N9030B	MY5714087 1	03-27-2019	03-25-2020
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-075	04-25-2018	04-23-2021
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018	04-23-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-23-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-23-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-829	04-25-2018	04-23-2021
Communication Antenna	Schwarzbeck	CLSA 0110L	1014	02-14-2019	02-13-2020
Biconical antenna	Schwarzbeck	VUBA 9117	9117-381	04-25-2018	04-23-202
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-08-202
Preamplifier	EMCI	EMC184055SE	980596	05-22-2019	05-22-2020
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020
Preamplifier	EMCI	EMC001330	980563	05-08-2019	05-08-2020
Preamplifier	Agilent	8449B	3008A0242 5	08-21-2018	08-20-2019
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	05-01-2019	04-30-2020
Signal Generator	KEYSIGHT	E8257D	MY5340110 6	03-01-2019	02-28-2020
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-15-202
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-08-202
Cable line	Times	SFT205- NMSM-2.50M	394812- 0001	01-09-2019	01-08-2020
Cable line	Times	SFT205- NMSM-2.50M	394812- 0002	01-09-2019	01-08-2020
Cable line	Times	SFT205- NMSM-2.50M	394812- 0003	01-09-2019	01-08-2020
Cable line	Times	SFT205- NMSM-2.50M	393495- 0001	01-09-2019	01-08-2020
Cable line	Times	EMC104- NMNM-1000	SN160710	01-09-2019	01-08-2020
Cable line	Times	SFT205- NMSM-3.00M	394813-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205- NMNM-1.50M	381964-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205- NMSM-7.00M	394815-0001	01-09-2019	01-08-2020
Cable line	Times	HF160-KMKM- 3.00M	393493-0001	01-09-2019	01-08-2020

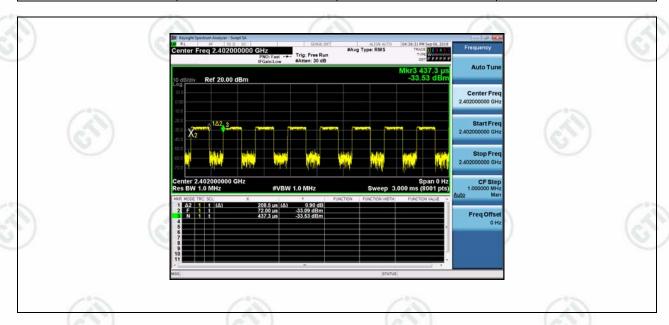
8 Radio Technical Requirements Specification

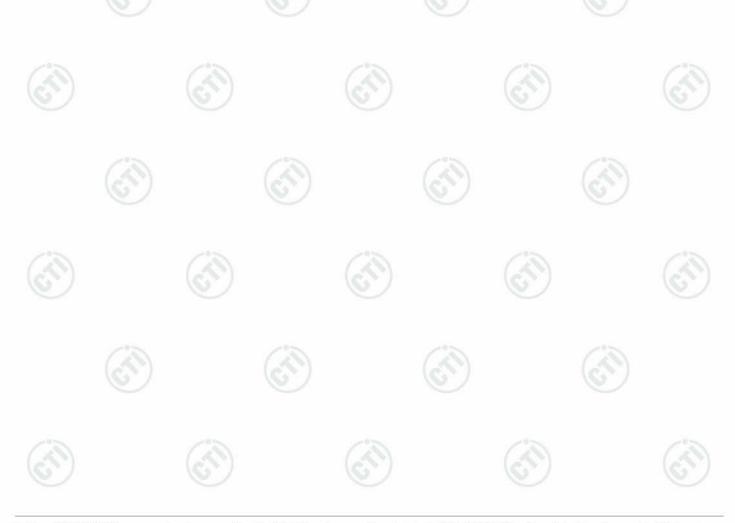
Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)




 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Report No. : EED32L00160901 Page 14 of 63

	Duty	Cycle	(20)
Configuration	TX ON(us)	TX ALL(us)	Duty Cycle(%)
BLE	208.5	365.3	57.08

Report No. : EED32L00160901 Page 15 of 63

Appendix A): 6dB Occupied Bandwidth

Test Limit

According to §15.247(a)(2) and RSS-247 section 5.2(a)

6 dB Bandwidth :

0 7	163	Care I I Ca
Limit	Shall be at least 500kHz	

Occupied Bandwidth(99%): For reporting purposes only.

Test Procedure


Test method Refer as KDB 558074 D01 v04, section 8.1 and ANSI 63.10:2013 clause 6.9.2 & 6.9.3.

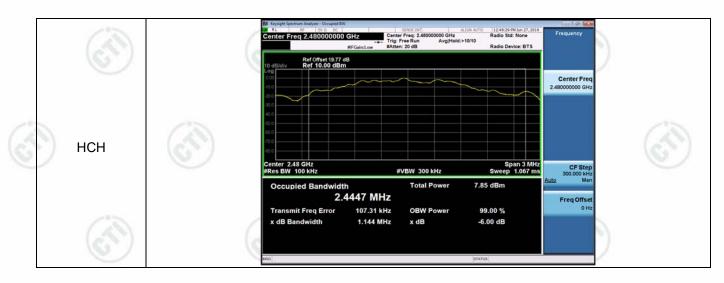
- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth and 99% Bandwidth.
- 4. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

Test Setup

Test Result

	Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
	BLE	LCH	1.329	2.5138	PASS
8	BLE	MCH	1.139	2.4600	PASS
1	BLE	НСН	1.144	2.4447	PASS

Test Graphs



Page 17 of 63

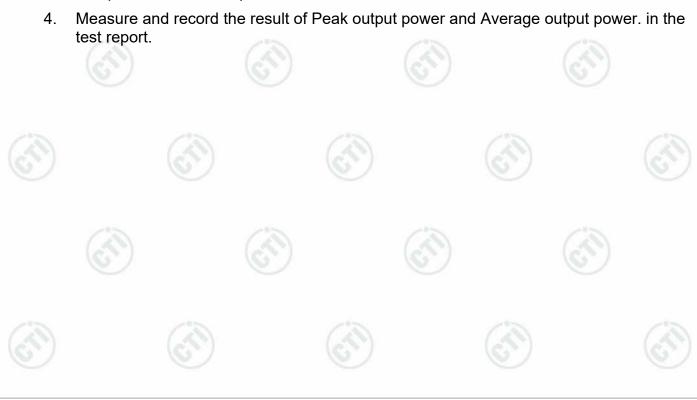
Report No.: EED32L00160901 Page 18 of 63

Appendix B): Conducted Peak Output Power

Test Limit

According to §15.247(b) and RSS-247 section 5.4(d)

Peak output power:

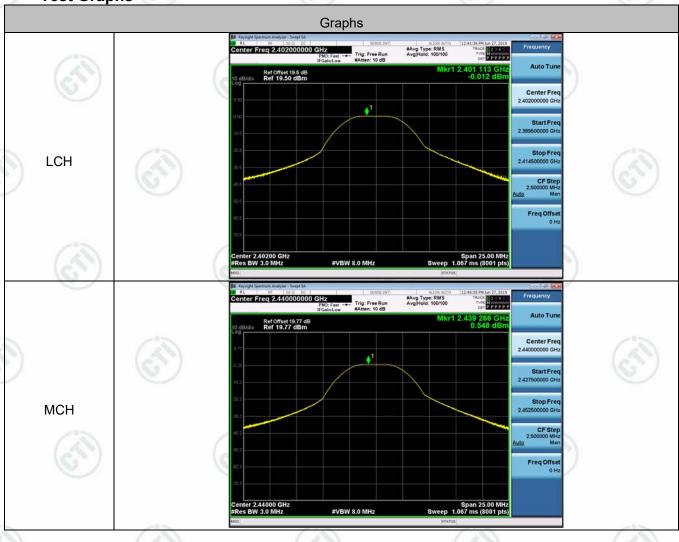

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

	1 20 0		
)			
Limit		Antenna with DG greater than 6 dBi [Limit = 30 – (DG – 6)]	
		Point-to-point operation	

Test Procedure

Test method Refer as KDB 558074 D01 v04, section 9.1.2.

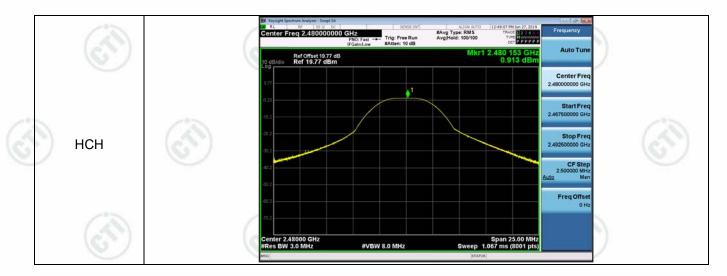
- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.



Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-0.012	PASS
BLE	MCH	0.548	PASS
BLE	HCH	0.913	PASS

Test Graphs



Report No. : EED32L00160901 Page 21 of 63

Appendix C): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 11.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup

Report No. : EED32L00160901 Page 22 of 63

Result Table

	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
6	BLE	LCH	-1.922	-52.468	-21.92	PASS
,	BLE	HCH	-0.002	-44.809	-20	PASS

Test Graphs

Report No. : EED32L00160901 Page 23 of 63

Appendix D): RF Conducted Spurious Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 11.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup

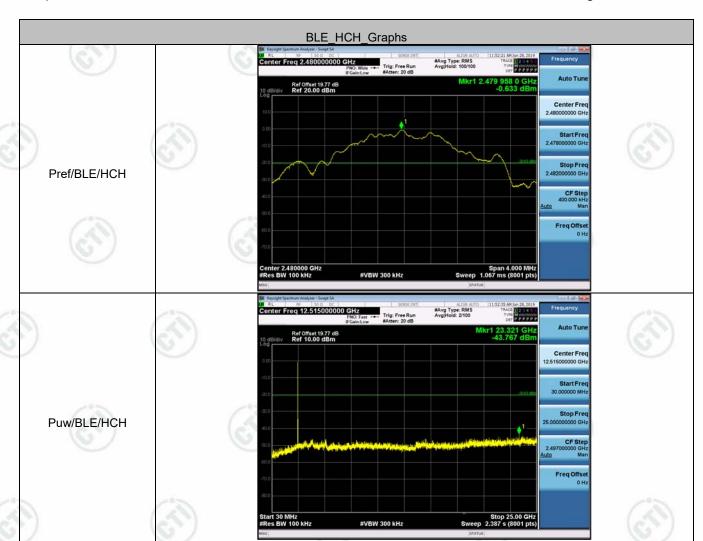


Report No. : EED32L00160901 Page 24 of 63

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-0.825	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-0.698	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	нсн	-0.633	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graphs



Report No. : EED32L00160901 Page 27 of 63

Appendix E): Power Spectral Density

Test Limit

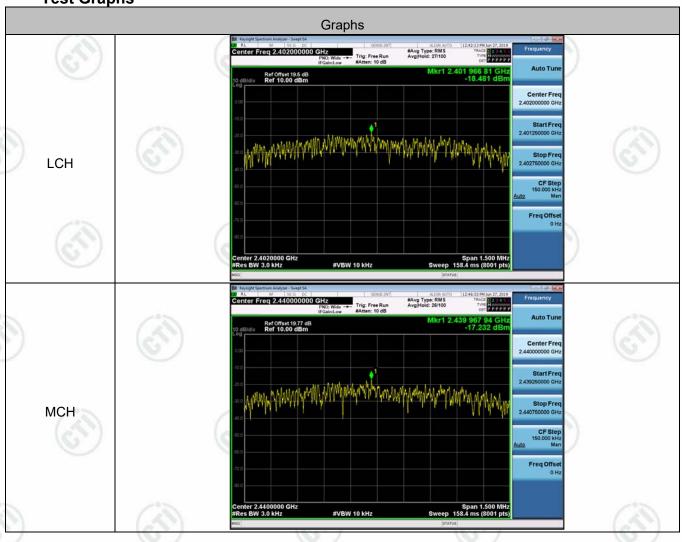
According to §15.247(e) and RSS-247 section 5.2(b)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 10.2

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 30kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- Mark the maximum level.
 Measure and record the result of power spectral density. in the test report.

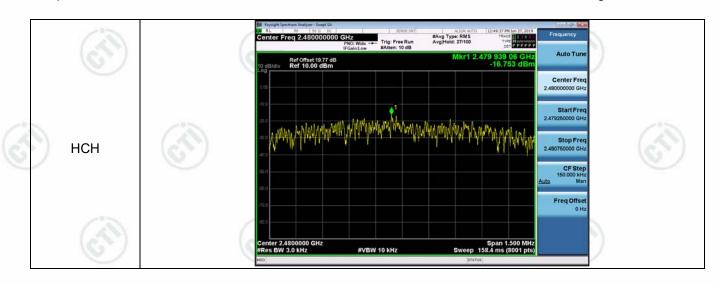


Report No. : EED32L00160901 Page 28 of 63

Result Table

Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-18.481	PASS
BLE	MCH	-17.232	PASS
BLE	нсн	-16.753	PASS

Test Graphs

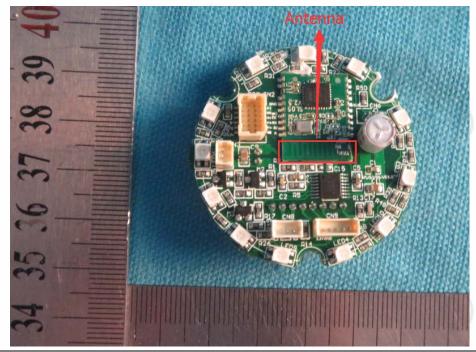


Page 29 of 63

Report No.: EED32L00160901 Page 30 of 63

Appendix F): Antenna Requirement

15.203 requirement:

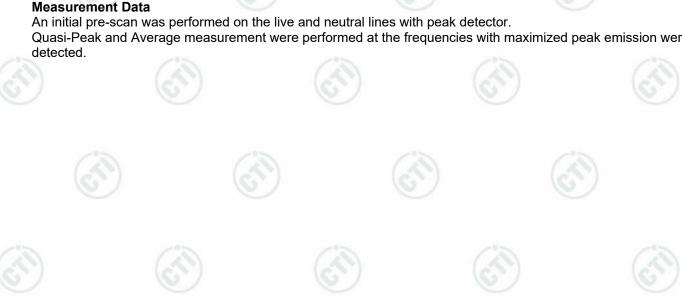

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

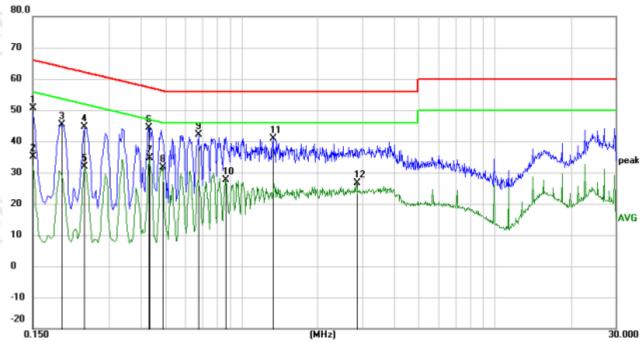
EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is –2.54dBi.



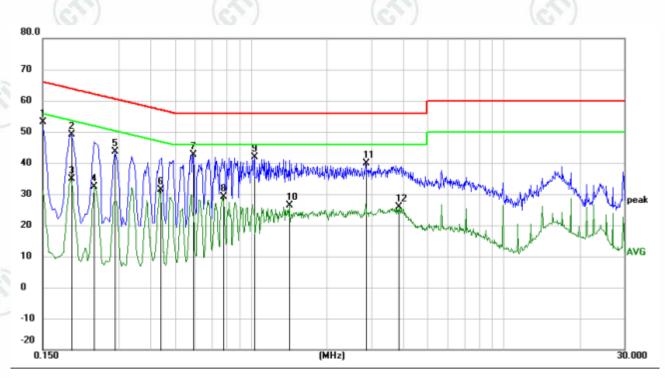
Report No.: EED32L00160901 Page 31 of 63

	Test frequency range :150KHz-	30MHz					
	1)The mains terminal disturbance voltage test was conducted in a shielded room.						
	2) The EUT was connected to						
	Stabilization Network) which		and the second s				
	power cables of all other ur						
	which was bonded to the graph for the unit being measured multiple power cables to a s	I. A multiple socket o	utlet strip was use	d to connec			
	exceeded.						
	3)The tabletop EUT was place reference plane. And for floo horizontal ground reference	or-standing arrangem					
	4) The test was performed with		eference plane. The	e rear of the			
	EUT shall be 0.4 m from the						
	reference plane was bonded						
	1 was placed 0.8 m from the	ne boundary of the u	nit under test and	bonded to a			
	ground reference plane fo						
	plane. This distance was be						
	All other units of the EUT ar	nd associated equipm	ent was at least 0.	8 m from the			
	LISN 2.						
	5) In order to find the maximum			ment and al			
	of the interface cables m	nust be changed a	ccording to ANSI				
	a a m di vata di ma a a a viva ma a m t		1,000	C63.10 or			
	conducted measurement.	(6.)	(6,	C63.10 or			
Limit:	conducted measurement.	Limit (d	BuV)	C63.10 or			
Limit:	conducted measurement. Frequency range (MHz)	Limit (d	· ,	C63.10 or			
Limit:		Limit (d Quasi-peak 66 to 56*	BμV) Average 56 to 46*	C63.10 or			
Limit:	Frequency range (MHz)	Quasi-peak	Average	C63.10 or			
Limit:	Frequency range (MHz) 0.15-0.5	Quasi-peak 66 to 56*	Average 56 to 46*	C63.10 or			
Limit:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Quasi-peak 66 to 56* 56 60	Average 56 to 46* 46 50	(cit)			
Limit:	Frequency range (MHz) 0.15-0.5 0.5-5	Quasi-peak 66 to 56* 56 60	Average 56 to 46* 46 50	(cit)			
Limit:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly was a second control of the contro	Quasi-peak 66 to 56* 56 60 with the logarithm of the	Average 56 to 46* 46 50 he frequency in the	(cit)			
	Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly v MHz to 0.50 MHz.	Quasi-peak 66 to 56* 56 60 with the logarithm of the	Average 56 to 46* 46 50 he frequency in the	(cit)			
Measurement Data	Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly v MHz to 0.50 MHz. NOTE: The lower limit is applic	Quasi-peak 66 to 56* 56 60 with the logarithm of the stable at the transition	Average 56 to 46* 46 50 he frequency in the	(cit)			
Measurement Data An initial pre-scan was Quasi-Peak and Avera	Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly v MHz to 0.50 MHz.	Quasi-peak 66 to 56* 56 60 with the logarithm of the transition the sable at the transition the sable at the detection the detection the sable at the detection the	Average 56 to 46* 46 50 he frequency in the frequency	e range 0.15			
Measurement Data An initial pre-scan was	Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly v MHz to 0.50 MHz. NOTE: The lower limit is applic	Quasi-peak 66 to 56* 56 60 with the logarithm of the transition the sable at the transition the sable at the detection the detection the sable at the detection the	Average 56 to 46* 46 50 he frequency in the frequency	e range 0.15			



Product : SLYPOD Model/Type reference : MS-280

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1500	40.72	9.91	50.63	66.00	-15.37	QP	
2	0.1500	25.12	9.91	35.03	56.00	-20.97	AVG	
3	0.1949	35.54	9.91	45.45	63.83	-18.38	QP	
4	0.2400	34.58	9.95	44.53	62.10	-17.57	QP	
5	0.2400	21.86	9.95	31.81	52.10	-20.29	AVG	
6	0.4290	34.50	9.89	44.39	57.27	-12.88	QP	
7 *	0.4335	24.79	9.89	34.68	47.19	-12.51	AVG	
8	0.4875	21.65	9.89	31.54	46.21	-14.67	AVG	
9	0.6765	32.24	9.87	42.11	56.00	-13.89	QP	
10	0.8655	17.75	9.81	27.56	46.00	-18.44	AVG	
11	1.3335	31.01	9.78	40.79	56.00	-15.21	QP	
12	2.8410	16.79	9.72	26.51	46.00	-19.49	AVG	



Neutral line:

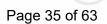
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1 *	0.1500	43.20	9.91	53.11	66.00	-12.89	QP		
2	0.1949	39.33	9.91	49.24	63.83	-14.59	QP		
3	0.1949	25.07	9.91	34.98	53.83	-18.85	AVG		
4	0.2400	22.44	9.95	32.39	52.10	-19.71	AVG		
5	0.2895	33.64	9.99	43.63	60.54	-16.91	QP		
6	0.4380	21.51	9.89	31.40	47.10	-15.70	AVG		
7	0.5910	32.49	10.04	42.53	56.00	-13.47	QP		
8	0.7755	19.42	9.80	29.22	46.00	-16.78	AVG		
9	1.0320	32.07	9.81	41.88	56.00	-14.12	QP		
10	1.4235	16.57	9.77	26.34	46.00	-19.66	AVG		
11	2.8410	30.18	9.72	39.90	56.00	-16.10	QP		
12	3.8445	16.09	9.73	25.82	46.00	-20.18	AVG		

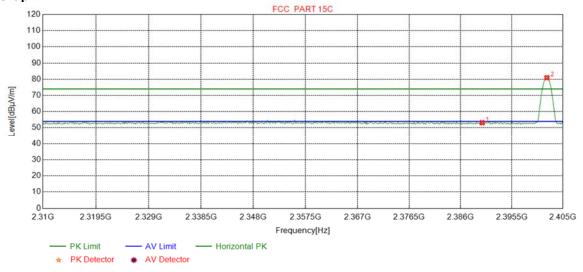
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Above 4011=	Peak	1MHz	3MHz	Peak	100
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	Below 1GHz test procedu	e as below:	6			
	Test method Refer as KDB a. The EUT was placed or at a 3 meter semi-anech determine the position of the EUT was set 3 met was mounted on the top c. The antenna height is v determine the maximum polarizations of the antend d. For each suspected em the antenna was tuned was turned from 0 degree. The test-receiver system	the top of a ronoic camber. The highest rates away from of a variable-faried from one of value of the fienna are set to ission, the EUT to heights from ees to 360 degrous and was set to Person is to Person was set to Person is Person is to	otating table the table was adiation. The interfer neight anter to found the make the nake the nake the nake to find the to frees to find	e 0.8 meter is rotated 3 ence-recei nna tower. our meters n. Both hor neasurement ged to its v 4 meters a the maxin	iving antennal above the grantal and vent. worst case are and the rotate and meading.	to , which ound to ertical and ther
	Bandwidth with Maximu f. Place a marker at the endergraph frequency to show complete bands. Save the spectru for lowest and highest complete frequency.	nd of the restric pliance. Also m um analyzer plo hannel	easure any	emission	s in the restri	
	f. Place a marker at the ending frequency to show complete bands. Save the spectrum for lowest and highest of the following for feet and the feet between above to fully Anechoic Chamber 18GHz the distance is 1 h. Test the EUT in the low i. The radiation measurem fransmitting mode, and	nd of the restrict plance. Also may manalyzer plant hannel re as below: e is the test site per change form meter and table west channel, ments are perfound the X axis.	e, change from table 0.8 le is 1.5 met the Highest rmed in X, kis positioni	remissions for each por form Semi- meter to 1 ter). t channel Y, Z axis p ng which i	s in the restriction of the control	dulatio ambe ove
Limit:	f. Place a marker at the ending frequency to show complete bands. Save the spectrum for lowest and highest of the following for lowest and highest of the following following for lowest and highest of the following following following frequency for the following following for the following following following for the following following for the following following for the following following following for the following following following for the following following for the following following for the following following following for the following following for the following foll	nd of the restrict plance. Also may manalyzer plant hannel re as below: the is the test site of the change form meter and table west channel, and the X axis as until all frequents are performents are performental properties.	e, change from table 0.8 le is 1.5 me the Highest rmed in X, kis positioniuencies me	remissions for each por rom Semi- meter to 1 ter). t channel Y, Z axis p ng which i	s in the restriction of the control	dulatio ambe ove
Limit:	f. Place a marker at the ending frequency to show complete bands. Save the spectrum for lowest and highest of the following for lowest and highest of the fully Anechoic Chamber 18GHz the distance is 1 h. Test the EUT in the lower in the radiation measurem fransmitting mode, and j. Repeat above procedur	nd of the restrict pliance. Also mum analyzer plothannel re as below: e is the test site per change formeter and tabwest channel, ments are performets are performed the X axes until all frequired.	e, change from table 0.8 le is 1.5 method in X, kis positioni uencies method.	rom Semi- meter to 1 ter). t channel Y, Z axis p ng which i	Anechoic Ch .5 meter(Abo positioning for it is worse cas as complete.	dulatio ambe ove
Limit:	f. Place a marker at the ending frequency to show complete bands. Save the spectrum for lowest and highest of the following for lowest and highest of the following following for lowest and highest of the following following following frequency for the following following for the following following following for the following following for the following following for the following following following for the following following following for the following following for the following following for the following following following for the following following for the following foll	nd of the restrict plance. Also may manalyzer plant hannel re as below: the is the test site of the change form meter and table west channel, and the X axis as until all frequents are performents are performental properties.	e, change from table 0.8 le is 1.5 met the Highest rmed in X, kis positioniquencies med (m @3m)	remissions for each por form Semi- meter to 1 ter). t channel Y, Z axis p ng which i easured wa Rer Quasi-pe	Anechoic Ch. 5 meter(Aboositioning for t is worse cases complete.	dulation nambe nove
Limit:	f. Place a marker at the ending frequency to show complete bands. Save the spectrum for lowest and highest of lowest and highest of lowest and highest of fully Anechoic Chamber 18GHz the distance is 1 h. Test the EUT in the lower in the radiation measurem that the second is the lower procedure. Transmitting mode, and j. Repeat above procedure. Frequency 30MHz-88MHz	nd of the restrict pliance. Also may manalyzer plothannel re as below: e is the test site per change form meter and table west channel, ments are performed the X axes until all frequential (dBµV).	easure any ot. Repeat for table 0.8 le is 1.5 method in X, kis positioni uencies med/m @3m)	remissions for each por for eac	Anechoic Ch .5 meter(Abo cositioning for t is worse cas as complete. mark eak Value	dulatio ambe ove
Limit:	f. Place a marker at the ending frequency to show complete bands. Save the spectrum for lowest and highest of lowest and highest of lowest and highest of fully Anechoic Chamber 18GHz the distance is 1 h. Test the EUT in the lower in the radiation measuren Transmitting mode, and j. Repeat above procedure Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	nd of the restrict pliance. Also mum analyzer plothannel re as below: e is the test site per change form meter and tab west channel, ments are performents are performent all frequential frequential (dBµV). Limit (dBµV). 40.0 43.9	e, change from table 0.8 le is 1.5 method in X, kis positioni uencies method (m. @3m)	remissions for each por for each por for each por form Semi- meter to 1 ter). t channel Y, Z axis p ng which ir easured was Rer Quasi-pe Quasi-pe Quasi-pe	Anechoic Ch. 5 meter (Above Stioning for tis worse cases complete. mark eak Value eak Value	dulatio ambe ove
_imit:	f. Place a marker at the ending frequency to show complete bands. Save the spectrum for lowest and highest of the following of the fully Anechoic Chamber 18GHz the distance is 14 h. Test the EUT in the lower in the radiation measured Transmitting mode, and j. Repeat above procedur. Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz	nd of the restrict plance. Also may manalyzer plant hannel re as below: e is the test site per change form meter and table west channel, ments are performed the X axes until all frequency. Limit (dBµV	e, change from table 0.8 le is 1.5 mer the Highest rmed in X, kis positioniquencies med (m @3m)	remissions for each portion of each portion of the control of the	Anechoic Ch.5 meter(Aboositioning for tis worse cases complete. mark eak Value eak Value eak Value	dulatio ambe ove
Limit:	f. Place a marker at the ending frequency to show complete bands. Save the spectrum for lowest and highest of lowest and highest of lowest and highest of fully Anechoic Chamber 18GHz the distance is 1 h. Test the EUT in the lower in the radiation measuren Transmitting mode, and j. Repeat above procedure Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	nd of the restrict pliance. Also mum analyzer plothannel re as below: e is the test site per change form meter and tab west channel, ments are performents are performent all frequential frequential (dBµV). Limit (dBµV). 40.0 43.9	e, change from table 0.8 le is 1.5 method in X, kis positioni uencies method in X (m @3m)	remissions for each portion of each portion of the control of the	Anechoic Ch. 5 meter (Above Stioning for tis worse cases complete. mark eak Value eak Value	dulatio ambe ove

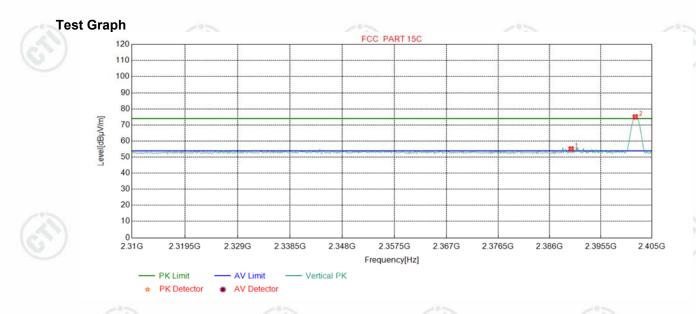


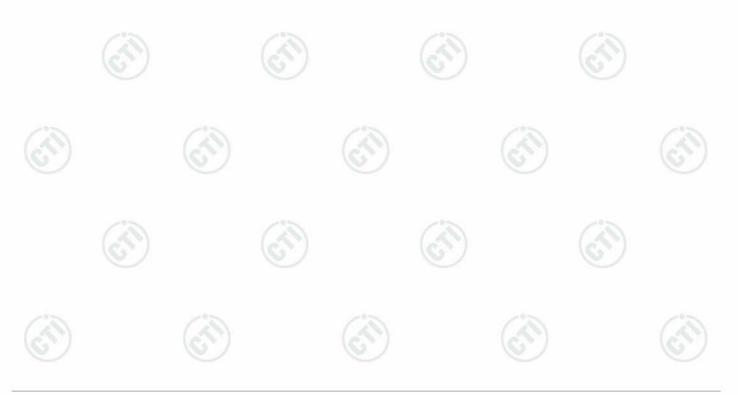


Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK	(1)	

Test Graph

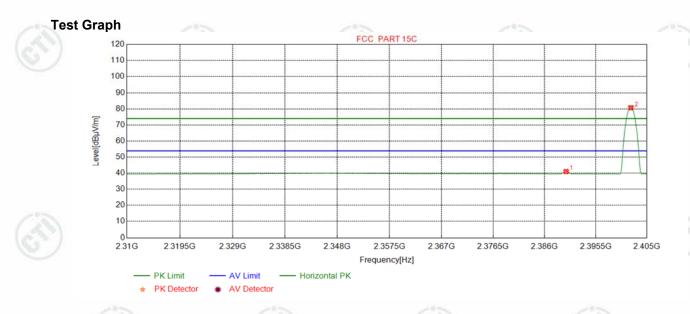
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.99	53.17	74.00	20.83	Pass	Horizontal
2	2402.0275	32.26	13.31	-42.43	77.82	80.96	74.00	-6.96	Pass	Horizontal

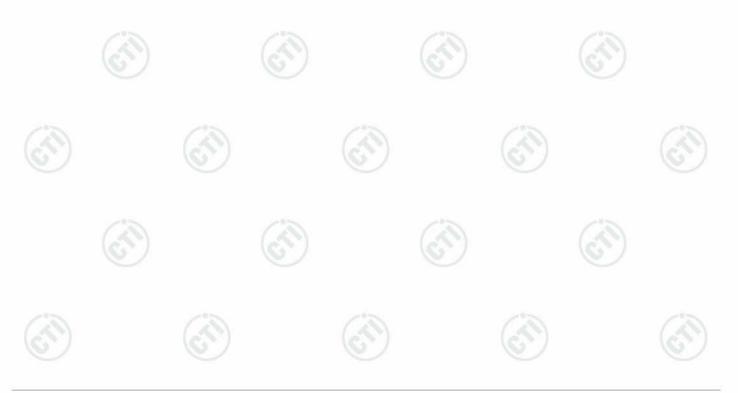




Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		

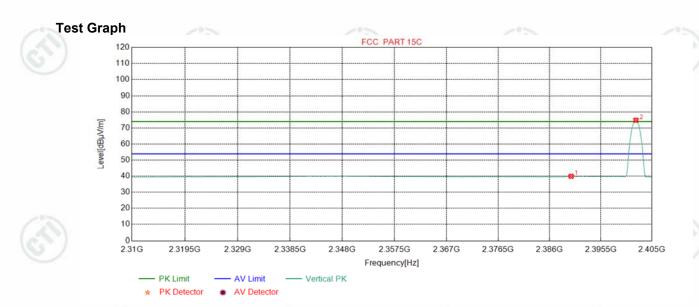
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	52.01	55.19	74.00	18.81	Pass	Vertical
2	2401.9086	32.26	13.31	-42.43	71.92	75.06	74.00	-1.06	Pass	Vertical





Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		

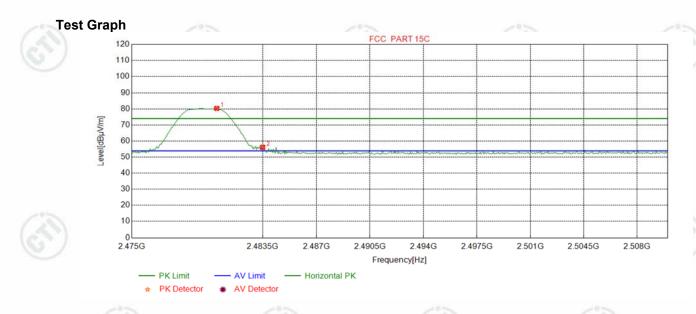
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	37.69	40.87	54.00	13.13	Pass	Horizontal
2	2402.0275	32.26	13.31	-42.43	77.60	80.74	54.00	-26.74	Pass	Horizontal



Page 38 of 63

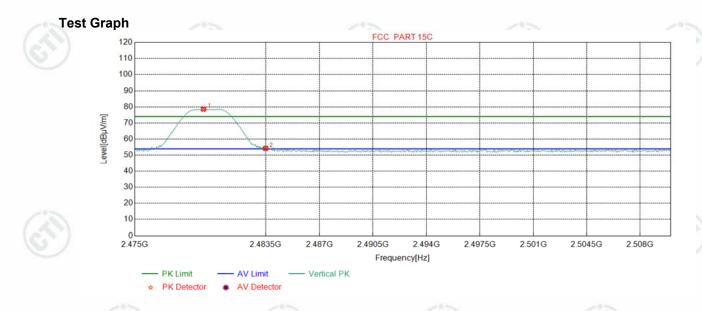
Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		

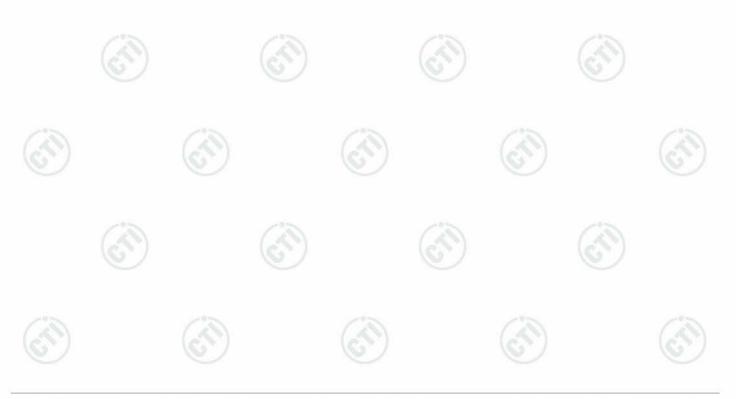
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	36.63	39.81	54.00	14.19	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	71.71	74.85	54.00	-20.85	Pass	Vertical



Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		

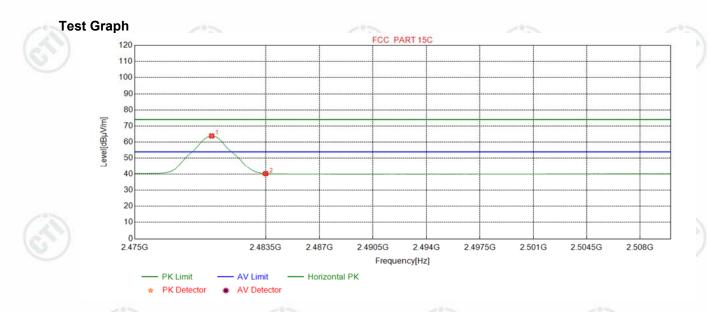
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.5194	32.37	13.39	-42.40	76.94	80.30	74.00	-6.30	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	52.91	56.27	74.00	17.73	Pass	Horizontal

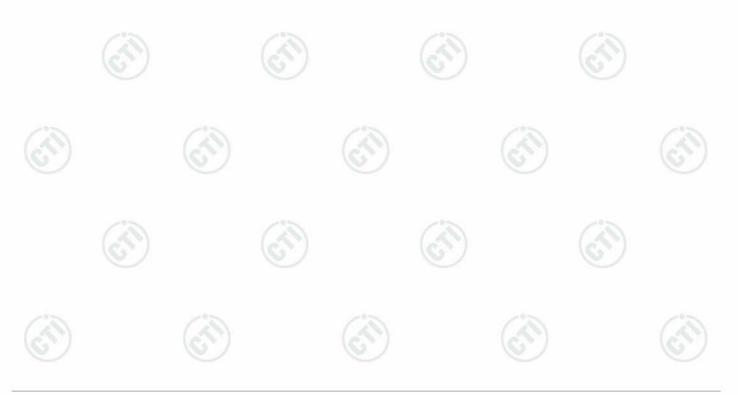




Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		

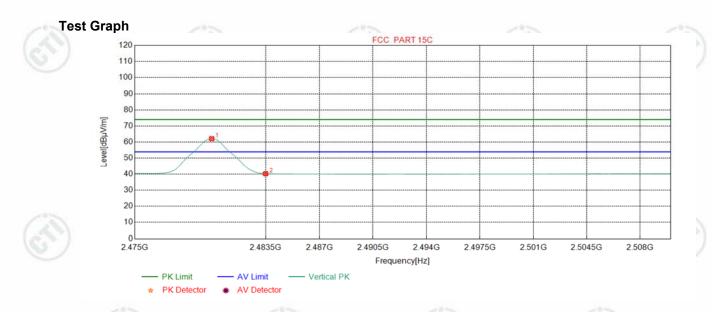
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.4681	32.37	13.39	-42.39	75.27	78.64	74.00	-4.64	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	50.95	54.31	74.00	19.69	Pass	Vertical





Mode:	BLE GFSK Transmitting	Channel:	2480	
Remark:	PK			

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9937	32.37	13.39	-42.39	60.51	63.88	54.00	-9.88	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	36.84	40.20	54.00	13.80	Pass	Horizontal



Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9937	32.37	13.39	-42.39	58.81	62.18	54.00	-8.18	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	36.78	40.14	54.00	13.86	Pass	Vertical

Note:

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I) Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	(0,
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	A1 40U-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	
		•		•	•	

Test Procedure:

Below 1GHz test procedure as below:

Test method Refer as KDB 558074 D01 v04, Section 12.1

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

Repeat above procedures until all frequencies measured was complete.

ı	11	Υ	١ı	t٠
ᆫ	11	ı	ш	ι.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m) Remark		Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	(3)	300
0.490MHz-1.705MHz	24000/F(kHz)	-	(0.2)	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Radiated Spurious Emissions test Data:

Transmitter Emission below 1GHz

Mode) :	BLE GF	SK Tran	smitting		Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	84.9075	8.23	1.06	-32.08	53.49	30.70	40.00	9.30	Pass	Н
2	127.9798	8.00	1.32	-32.02	56.78	34.08	43.50	9.42	Pass	Η
3	163.6794	8.10	1.49	-31.97	62.39	40.01	43.50	3.49	Pass	Н
4	192.0062	10.14	1.62	-31.96	56.32	36.12	43.50	7.38	Pass	Н
5	256.0326	12.32	1.90	-31.88	51.20	33.54	46.00	12.46	Pass	Н
6	600.0290	19.00	2.96	-31.99	42.80	32.77	46.00	13.23	Pass	Н
7	35.7236	10.93	0.66	-32.11	45.96	25.44	40.00	14.56	Pass	V
8	83.3553	7.87	1.05	-32.07	46.78	23.63	40.00	16.37	Pass	V
9	162.1272	8.02	1.48	-31.98	51.79	29.31	43.50	14.19	Pass	V
10	208.8859	11.13	1.71	-31.94	48.47	29.37	43.50	14.13	Pass	V
11	256.0326	12.32	1.90	-31.88	44.72	27.06	46.00	18.94	Pass	V
12	600.0290	19.00	2.96	-31.99	42.46	32.43	46.00	13.57	Pass	V

Mode:		BLE GF	SK Tran	smitting		Channel:		2441		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	84.8105	8.21	1.06	-32.08	54.08	31.27	40.00	8.73	Pass	Н
2	127.9798	8.00	1.32	-32.02	57.24	34.54	43.50	8.96	Pass	Н
3	162.0302	8.01	1.48	-31.97	62.38	39.90	43.50	3.60	Pass	Н
4	192.0062	10.14	1.62	-31.96	55.73	35.53	43.50	7.97	Pass	Н
5	249.8240	12.20	1.88	-31.91	50.64	32.81	46.00	13.19	Pass	Н
6	600.0290	19.00	2.96	-31.99	42.71	32.68	46.00	13.32	Pass	Н
7	89.2729	9.23	1.09	-32.08	45.76	24.00	43.50	19.50	Pass	V
8	168.0448	8.34	1.52	-31.96	51.70	29.60	43.50	13.90	Pass	V
9	208.8859	11.13	1.71	-31.94	48.66	29.56	43.50	13.94	Pass	V
10	255.8386	12.32	1.90	-31.88	43.53	25.87	46.00	20.13	Pass	V
11	600.0290	19.00	2.96	-31.99	43.12	33.09	46.00	12.91	Pass	V
12	844.9785	21.44	3.50	-31.82	36.77	29.89	46.00	16.11	Pass	V

Page 45 of 63

Mode:			BLE GF	SK Tran	smitting		Channel:		2480						
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity				
ſ	1	35.6266	10.90	0.66	-32.12	46.92	26.36	40.00	13.64	Pass	Н				
d	2	83.1613	7.83	1.05	-32.08	54.79	31.59	40.00	8.41	Pass	Н				
∢	3	160.4780	7.93	1.47	-31.98	63.31	40.73	43.50	2.77	Pass	Н				
	4	237.6008	11.88	1.83	-31.90	52.35	34.16	46.00	11.84	Pass	Н				
Ī	5	600.0290	19.00	2.96	-31.99	43.84	33.81	46.00	12.19	Pass	Н				
	6	879.7080	21.86	3.55	-31.66	36.76	30.51	46.00	15.49	Pass	Н				
Ī	7	35.7236	10.93	0.66	-32.11	46.53	26.01	40.00	13.99	Pass	V				
	8	87.6238	8.85	1.08	-32.08	47.05	24.90	40.00	15.10	Pass	V				
	9	163.3883	8.09	1.49	-31.98	52.89	30.49	43.50	13.01	Pass	V				
Ī	10	208.8859	11.13	1.71	-31.94	48.67	29.57	43.50	13.93	Pass	V				
Ī	11	600.0290	19.00	2.96	-31.99	43.32	33.29	46.00	12.71	Pass	V				
1	12	906.3856	22.14	3.60	-31.52	37.22	31.44	46.00	14.56	Pass	V				



Report No.: EED32L00160901 Page

Transmitter Emission above 1GHz

Mode:		BLE GF	SK Tran	smitting			Channel:		2402			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2790.3790	32.86	4.22	-42.23	52.08	46.93	74.00	27.07	Pass	Н	PK	
2	4804.0000	34.50	4.55	-40.66	52.22	50.61	74.00	23.39	Pass	Н	PK	
3	4879.1253	34.50	4.80	-40.60	49.24	47.94	74.00	26.06	Pass	Н	PK	
4	7206.0000	36.31	5.81	-41.02	45.71	46.81	74.00	27.19	Pass	Н	PK	
5	9608.0000	37.64	6.63	-40.76	46.74	50.25	74.00	23.75	Pass	Н	PK	
6	12010.0000	39.31	7.60	-41.21	43.25	48.95	74.00	25.05	Pass	Н	PK	
7	1596.8597	29.04	3.07	-42.90	59.50	48.71	74.00	25.29	Pass	V	PK	
8	4804.1203	34.50	4.55	-40.66	51.35	49.74	74.00	24.26	Pass	V	PK	
9	4880.1253	34.50	4.80	-40.60	52.11	50.81	74.00	23.19	Pass	V	PK	
10	7206.0000	36.31	5.81	-41.02	45.58	46.68	74.00	27.32	Pass	V	PK	
11	9608.0000	37.64	6.63	-40.76	45.52	49.03	74.00	24.97	Pass	V	PK	
12	12010.0000	39.31	7.60	-41.21	43.87	49.57	74.00	24.43	Pass	V	PK	

Mode	Mode:		SK Tran	smitting			Channel:		2441		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1792.6793	30.33	3.31	-42.71	59.54	50.47	74.00	23.53	Pass	Н	PK
2	2790.7791	32.87	4.22	-42.23	52.52	47.38	74.00	26.62	Pass	Н	PK
3	4879.1253	34.50	4.80	-40.60	54.84	53.54	74.00	20.46	Pass	Н	PK
4	7323.0000	36.42	5.85	-40.92	44.66	46.01	74.00	27.99	Pass	Н	PK
5	9764.0000	37.71	6.71	-40.62	41.95	45.75	74.00	28.25	Pass	Н	PK
6	12205.0000	39.42	7.67	-41.16	44.71	50.64	74.00	23.36	Pass	Н	PK
7	4880.7244	34.50	4.80	-40.60	48.51	47.21	54.00	6.79	Pass	Н	AV
8	1808.2808	30.43	3.33	-42.70	58.42	49.48	74.00	24.52	Pass	V	PK
9	2791.1791	32.87	4.22	-42.23	53.66	48.52	74.00	25.48	Pass	V	PK
10	4879.1253	34.50	4.80	-40.60	54.92	53.62	74.00	20.38	Pass	V	PK
11	7323.0000	36.42	5.85	-40.92	44.05	45.40	74.00	28.60	Pass	V	PK
12	9764.0000	37.71	6.71	-40.62	42.34	46.14	74.00	27.86	Pass	V	PK
13	12205.0000	39.42	7.67	-41.16	44.63	50.56	74.00	23.44	Pass	V	PK
14	4879.6843	34.50	4.80	-40.60	49.87	48.57	54.00	5.43	Pass	V	AV

PΚ

Pass

23.33

Report No.: EED32L00160901

Mode	e:	BLE GF	SK Tran	smitting			Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1999.0999	31.69	3.47	-42.61	58.57	51.12	74.00	22.88	Pass	Н	PK
2	4879.1253	34.50	4.80	-40.60	50.19	48.89	74.00	25.11	Pass	Н	PK
3	4960.0000	34.50	4.82	-40.53	49.69	48.48	74.00	25.52	Pass	Н	PK
4	7440.0000	36.54	5.85	-40.82	45.23	46.80	74.00	27.20	Pass	Н	PK
5	9920.0000	37.77	6.79	-40.48	42.60	46.68	74.00	27.32	Pass	Н	PK
6	12400.0000	39.54	7.86	-41.12	44.44	50.72	74.00	23.28	Pass	Н	PK
7	2199.9200	31.98	3.65	-42.52	57.55	50.66	74.00	23.34	Pass	V	PK
8	4879.1253	34.50	4.80	-40.60	51.36	50.06	74.00	23.94	Pass	V	PK
9	4960.0000	34.50	4.82	-40.53	48.37	47.16	74.00	26.84	Pass	V	PK
10	7440.0000	36.54	5.85	-40.82	43.74	45.31	74.00	28.69	Pass	V	PK
11	9920.0000	37.77	6.79	-40.48	42.40	46.48	74.00	27.52	Pass	V	PK

Note:

12400.0000

12

1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.

50.67

74.00

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

44.39

Final Test Level = Receiver Reading - Correct Factor

7.86

39.54

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

-41.12

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

