

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE200602903V01

FCC REPORT

Applicant:	Shenzhen Mediafly Technology CO., LTD
Address of Applicant:	1/F, Building A, WeiXing Science And Technology Park, No. 268-3, BaoShi East Rd, ShuiTian Community, ShiYan Street, BaoAn District, ShenZhen, China
Equipment Under Test (E	EUT)
Product Name:	Tablet PC
Model No.:	P7
Trade mark:	haovm
FCC ID:	2ASQ8P7
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	10 Jun., 2020
Date of Test:	11 Jun., to 28 Jun., 2020
Date of report issued:	03 Jul., 2020
Test Result:	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	28 Jun., 2020	Original
01	03 Jul., 2020	Update 7 page

Tested by:

Iang

Test Engineer

Date: 03 Jul., 2020

Winner Thang

Reviewed by:

Project Engineer

Date:

03 Jul., 2020

CCIS

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	
3		ITENTS	
			-
4		T SUMMARY	
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST ENVIRONMENT AND TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5		
	5.6	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
	5.7 5.8	LABORATORY FACILITY	
	5.8 5.9	Test Instruments list	
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT:	8
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	-
	6.6	BAND EDGE	
	6.6.1 6.6.2		
	6.7	SPURIOUS EMISSION	-
	6.7.1		
	6.7.2		
7	TEO	Т ЅЕТИР РНОТО	
1			
8	EUT	CONSTRUCTIONAL DETAILS	33

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass
the customer).	ential requirements in the standard. Output Power" and other conduction measu	rement items is 0.5dB (provided by
ANSI C63.4-2014		

Test Method:

ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	Shenzhen Mediafly Technology CO., LTD
Address:	1/F, Building A, WeiXing Science And Technology Park, No. 268-3, BaoShi East Rd, ShuiTian Community, ShiYan Street, BaoAn District, ShenZhen, China
Manufacturer:	Shenzhen Mediafly Technology CO., LTD
Address:	1/F, Building A, WeiXing Science And Technology Park, No. 268-3, BaoShi East Rd, ShuiTian Community, ShiYan Street, BaoAn District, ShenZhen, China

5.2 General Description of E.U.T.

Product Name:	Tablet PC
Model No.:	P7
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0.71 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-2800mAh
AC adapter:	Model: FX2U-050200U
	Input: AC100-240V, 50/60Hz, 0.4A
	Output: DC 5.0V, 1.0A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and test mode

Operating Environment:

Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Additions to, deviations, or exclusions from the method

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd. Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info@ccis-cb.com, Website: <u>http://www.ccis-cb.com</u>

5.9 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	044	03-07-2020	03-06-2021
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021
Liene Antenne			4005	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2020	06-21-2021
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2019	11-17-2020
EMI Test Software	AUDIX	E3	١	/ersion: 6.110919t)
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	

Conducted Emission:					
Test Equipment	Test Equipment Manufacturer Model No. Serial No.		Cal. Date	Cal. Due date	
	Manadaloi			(mm-dd-yy)	(mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2017	07-20-2020
Cable	HP	10503A	N/A	03-05-2020	03-04-2021
EMI Test Software	AUDIX	E3	Version: 6.110919b		

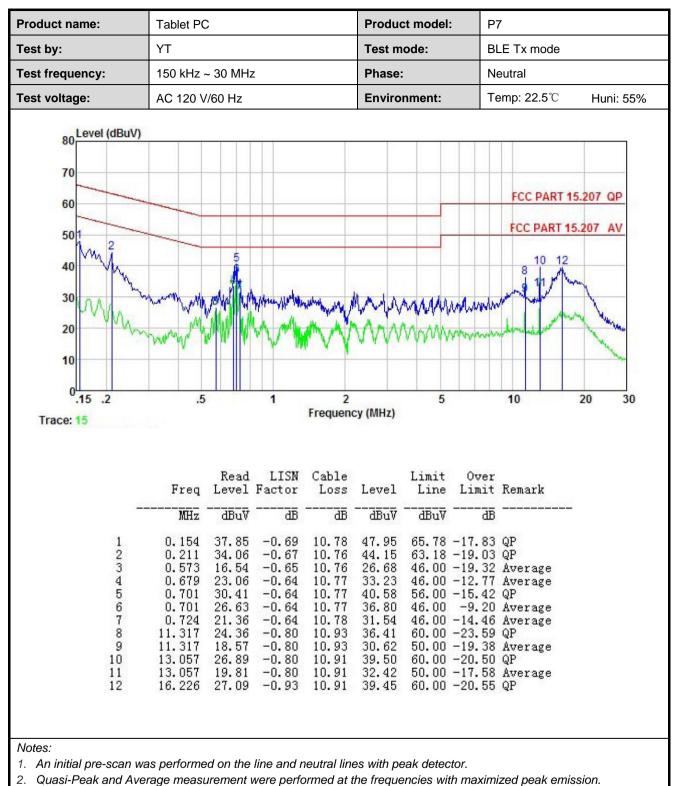
6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement:	FCC Part 15 C Section 15.203 /247(b)
15.203 requirement:	be designed to ensure that no entenne other than that furnished but the
	be designed to ensure that no antenna other than that furnished by the used with the device. The use of a permanently attached antenna or of an
	coupling to the intentional radiator, the manufacturer may design the unit
	an be replaced by the user, but the use of a standard antenna jack or
electrical connector is prohi	
15.247(b) (4) requirement:	
	ower limit specified in paragraph (b) of this section is based on the use of
	ains that do not exceed 6 dBi. Except as shown in paragraph (c) of this
	nnas of directional gain greater than 6 dBi are used, the conducted output
	radiator shall be reduced below the stated values in paragraphs $(b)(1)$,
antenna exceeds 6 dBi.	ction, as appropriate, by the amount in dB that the directional gain of the
E.U.T Antenna:	
	al antenna which cannot replace by end-user, the best-case gain of the
antenna is 0.71 dBi.	har antenna which cannot replace by che-user, the best-case gain of the
	BT&WIFI&GPS-ANT
	Note that the second
	And a second
1 Mar	
	A PARTICIPAL CONTRACTOR CONT
	H Store

<u>CCIS</u>

6.2 Conducted Emission

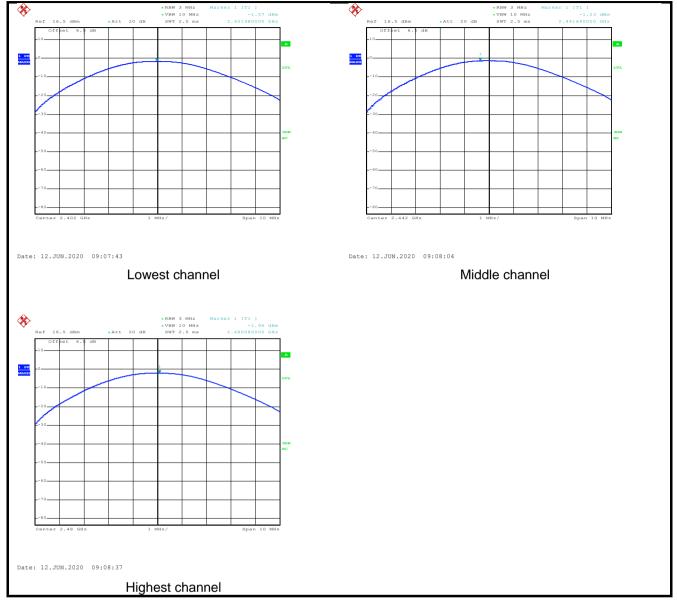

Test Requirement:	FCC Part 15 C Section 15.207						
Test Frequency Range:	150 kHz to 30 MHz						
Class / Severity:	Class B						
Receiver setup:							
Limit:		RBW=9kHz, VBW=30kHz					
	Frequency range (MHz)	Frequency range (MHz) Limit (dBuV) Quasi-peak Average					
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithm						
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement. 						
Test setup:	Reference	80cm Filter EMI Receiver	– AC power				
Test Instruments:	Refer to section 5.9 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Measurement Data:

Product name:	Tablet PC		Product model:		: P7	P7			
Test by:	YT	YTTest mode:150 kHz ~ 30 MHzPhase:		Test mode:		BL	BLE Tx mode		
Test frequency:	150 kHz ~ 30			Lir	ne				
Test voltage:	AC 120 V/60 H	Hz		Enviro	nment:	Те	emp: 22.5℃	Huni: 55%	
80 Level (dBuV 70 60 50 2 40 1 40 1 30 1 3 20 1 10					AMAMA MA	AWAAYAMAAAA Awaanaa	FCC PART	15.207 QP 15.207 AV	
0.15 .2 Trace: 13	.5	1	2 Frequen	cy (MHz)	5		10	20 30	
0.15 .2	Re Freq Lev		-	cy (MHz) Level dBuV	5 Limit Line dBuV	Over Limit	10 Remark	20 30	

3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

6.3 Conducted Output Power


Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

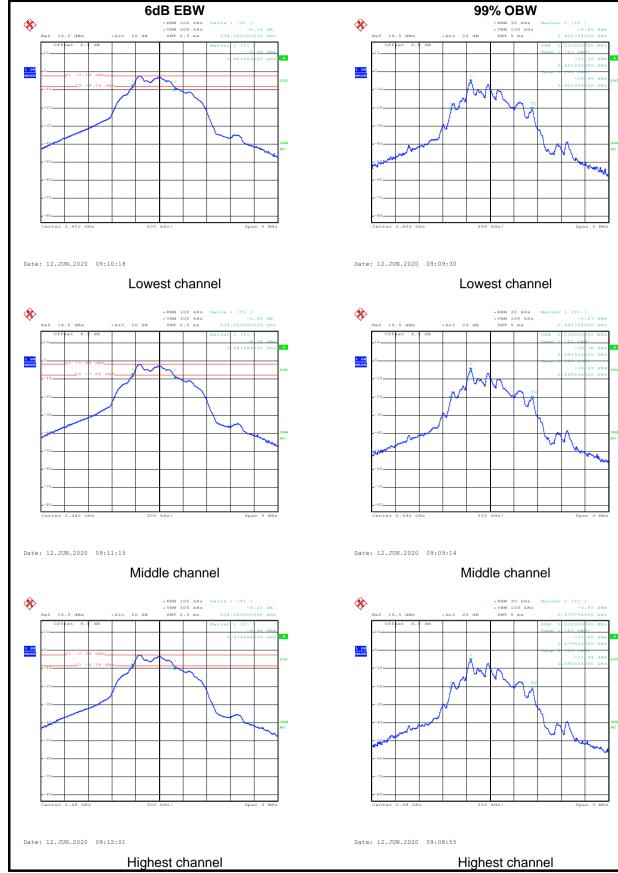
Measurement Data:

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-1.57		
Middle	-1.23	30.00	Pass
Highest	-1.96		

<u>CCIS</u>

Test plot as follows:

6.4 Occupy Bandwidth


Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)				
Limit:	>500kHz				
Test setup:	Spectrum Analyzer E-U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

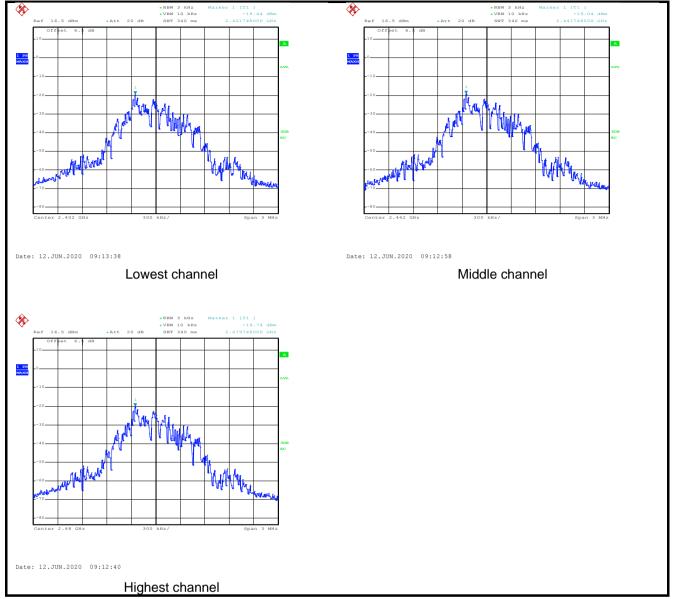
Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	0.534			
Middle	0.534	>500	Pass	
Highest	0.534			
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	1.026			
Middle	1.032	N/A	N/A	
Highest	1.032			

<u>CCIS</u>

Test plot as follows:

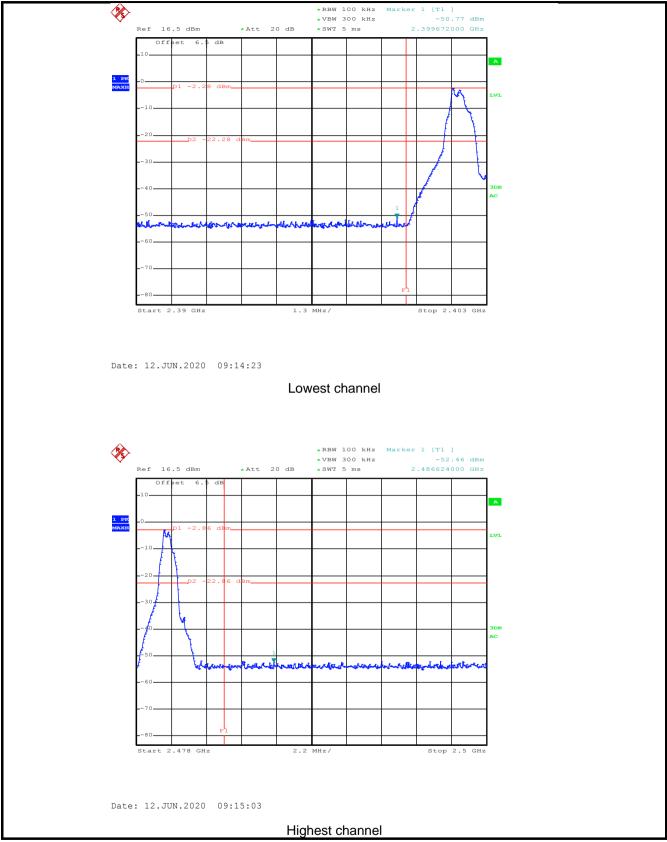
6.5 Power Spectral Density


Test Requirement:	FCC Part 15 C Section 15.247 (e)
Limit:	8 dBm/3kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

Test CH	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
Lowest	-19.44		
Middle	-19.04	8.00	Pass
Highest	-19.74		

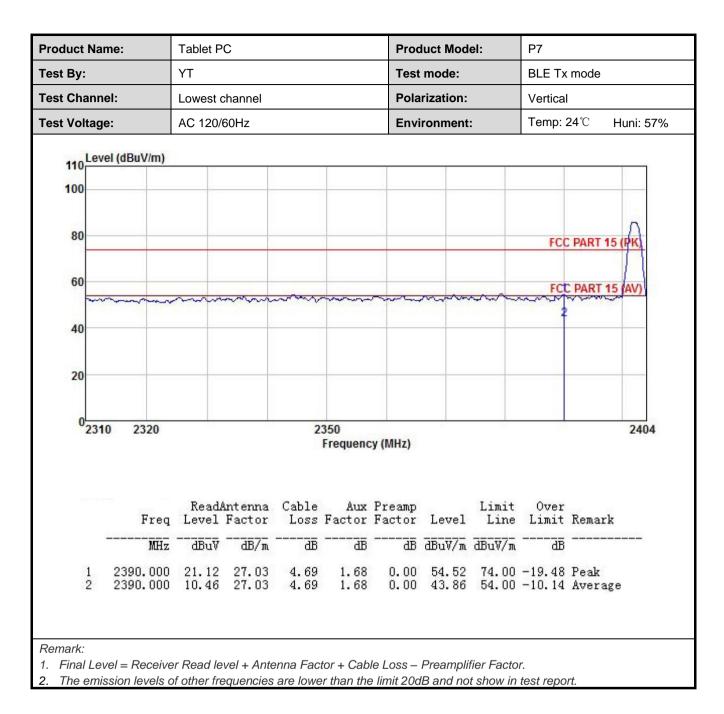
Test plots as follow:


6.6 Band Edge

6.6.1 Conducted Emission Method

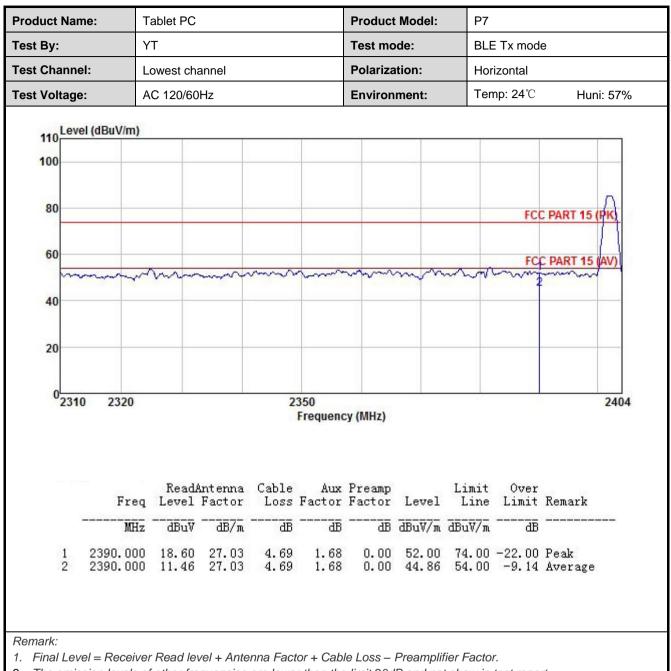
Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

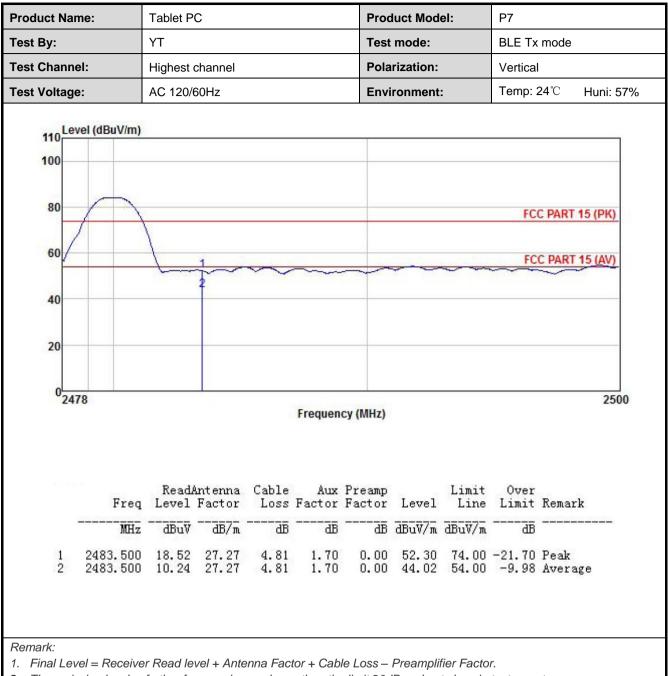
Test plots as follow:



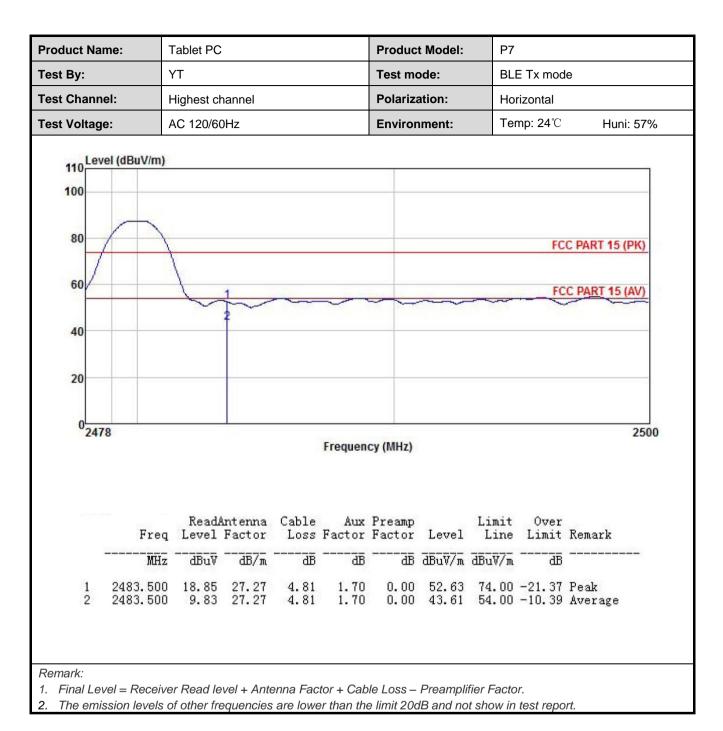
6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.205 and 15.209							
Test Frequency Range:	2310 MHz to 2390 MHz and 2483.5MHz to 2500 MHz							
Test Distance:	3m							
Receiver setup:	Frequency	Detector				/BW	Remark	
	Above 1GHz	Peak		1MHz		MHz	Peak Value	
	Eroquor	RMS	Lim	1MHz it (dBuV/m @3		MHz	Average Value Remark	
Limit:	Frequer	-		54.00	511)	A	Average Value	
						Peak Value		
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi- peak or average method as specified and then reported in a data 						ted 360 degrees ce-receiving e-height antenna meters above ield strength. nna are set to d to its worst m 1 meter to 4 s to 360 degrees nction and 0 dB lower than d the peak values ons that did not sing peak, quasi-	
Test setup:		LEUT (urntable) Gr Test Receiv		Р.	Antenna Tr	ower		
Test Instruments:	Refer to section	on 5.9 for de	tails					
Test mode:	Refer to section	on 5.3 for de	tails					
Test results:	Passed							

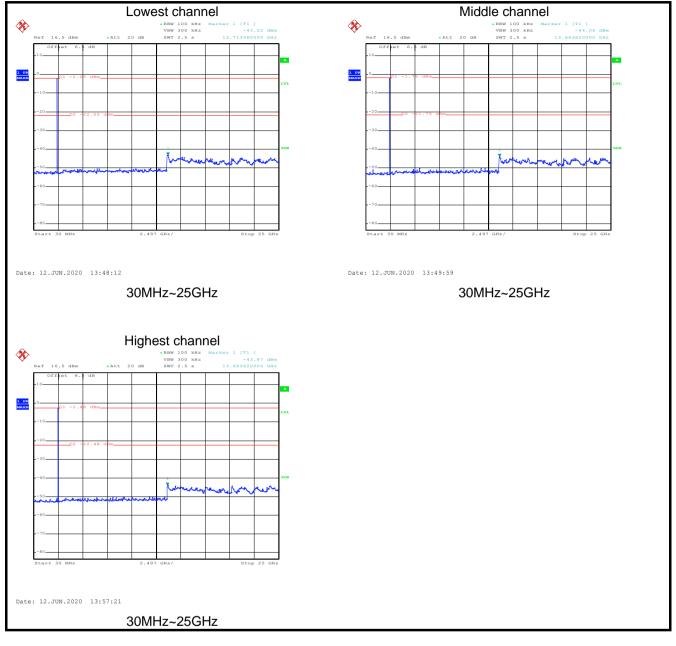




2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.



2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.


6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

<u>CCIS</u>

Test plot as follows:

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.205 and 15.209						
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	3m						
Receiver setup:	Frequency Detect		or RBW		VBW		Remark
·	30MHz-1GHz	Quasi-pea	ak	120KHz	300	〈 Hz	Quasi-peak Value
	Above 1GHz	Peak		1MHz	3M		Peak Value
		RMS		1MHz	3M	Hz	Average Value
Limit:	Frequency		Lin	nit (dBuV/m @	23m)		Remark
	30MHz-88M			40.0		Quasi-peak Value	
	88MHz-216M			43.5			Quasi-peak Value
	216MHz-960 960MHz-1G			46.0 54.0			Quasi-peak Value
	90010112-10			54.0			Quasi-peak Value Average Value
	Above 1GF	lz		74.0			Peak Value
Test Procedure:	 1GHz)/1.5r The table of highest rad The EUT antenna, w tower. The antenn the ground Both horize make the n For each s case and t meters and to find the n The test-re Specified E If the emiss the limit sp of the EUT have 10 dE 	n(above 1 was rotate liation. was set 3 hich was r ha height i to detern ontal and hen the ard hen the ard the rota to maximum r eceiver sy andwidth sion level of ecified, the would be margin w	IGH: ed 36 mou mou is va mine vert ent. em nten table reac vster with of th en te er rep voulo	z) above the 60 degrees t eters away inted on the t aried from o the maximu ical polarizat ission, the E ina was turned ing. m was set Maximum H be EUT in pe esting could b orted. Other d be re-tested	e groun o deter from th top of a ne met um valitions of EUT wated to he from 0 to Pea old Mo ak moo be stop wise th d one b	d at a mine inten- ne inten- varial er to f ue of the a as arra- eights degre de was ped ar e emis y one	table 0.8m(below a 3 meter camber. the position of the erference-receiving ble-height antenna four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 set to 360 degrees tect Function and a 10 dB lower than nd the peak values ssions that did not using peak, quasi- reported in a data
Test setup:	Below 1GHz	3m <				Antenna Search Antenn Test eiver —	

<u>CCIS</u>

	AE EUT Horn Antenna Tower Horn Antenna Tower Ground Reference Plane Test Receiver
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30MHz is lower than the limit 20dB, so only shows the data of above 30MHz in this report.

Measurement Data (worst case):

Below 1GHz:

Product Name:			Product Model:			P7			
est By:	ΥT	Test n	Test mode: Polarization: Environment:			BLE Tx mode Vertical Temp: 24°C Huni: 57%			
est Frequency:	30 MHz ~ 1 (Polari							
est Voltage:	AC 120/60Hz								Enviro
80 Level (dBuV/m) 70 60 50 40 30 20 10 0			3 4	56	- the start			PART 15.2	
3 0 5	0	100	Frequenc	200 cy (MHz)			500		1000
Freq	ReadAnte Level Fac		Aux Factor	Preamp Factor	Level	Limit Line	Over Limit	Remark	
		B/m dB	dB	dB	dBuy/m	dBuV/m	dB		
MHz	dBuV d		ш	ш	m a v v m	do di / m	37.6		

Product Name: Tablet PC					Product Model:			P7				
Test By: YT						Test r	Test mode:			BLE Tx mode		
est Freque	ency:	30 MHz ~ 1 GHz				Polar	Polarization:			Horizontal		
est Voltag	t Voltage: AC 120/60Hz			Envir	Environment:		Temp: 24°C Huni: 57%					
80 Lev	el (dBuV/m)			1								
70		_										
60												
50									FCC	PART 15.	247	
40						2						
30				-	1	2MM	5 6			_		
20		_		A.	1 march	1	mphilipping	al Mumph	With managers	an address for the	uputation .	
10	descent of the hast	hornor	warman when	w	the state of the							
030	50		1	00		200			500		1000	
	Freq		Antenna Factor	Cable		Preamp	Level	Limit Line	Over Limit	Remark		
-	MHz	dBuV		ā	āB	JB	dBuW/m	dBuV/m	dB			
	JULIZ	max	CTD) III	ι μ	ш	ш	mma a l m		120.00			

Above 1GHz

Test channel: Lowest channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	51.52	30.78	6.80	2.44	41.81	49.73	74.00	-24.27	Vertical	
4804.00	50.77	30.78	6.80	2.44	41.81	48.98	74.00	-25.02	Horizontal	
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	46.63	30.78	6.80	2.44	41.81	44.84	54.00	-9.16	Vertical	
4804.00	48.19	30.78	6.80	2.44	41.81	46.40	54.00	-7.60	Horizontal	
					el: Middle ch					
			0.11	1	or: Peak Val	ue	1		Γ	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	50.25	30.96	6.86	2.47	41.84	48.70	74.00	-25.30	Vertical	
4884.00	51.71	30.96	6.86	2.47	41.84	50.16	74.00	-23.84	Horizontal	
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	47.62	30.96	6.86	2.47	41.84	46.07	54.00	-7.93	Vertical	
4884.00	46.39	30.96	6.86	2.47	41.84	44.84	54.00	-9.16	Horizontal	
Test channel: Highest channel Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	50.52	31.11	6.91	2.49	41.87	49.16	74.00	-24.84	Vertical	
4960.00	49.37	31.11	6.91	2.49	41.87	48.01	74.00	-25.99	Horizontal	
				Detector:	Average Va	alue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	42.52	31.11	6.91	2.49	41.87	41.16	54.00	-12.84	Vertical	
4960.00	43.17	31.11	6.91	2.49	41.87	41.81	54.00	-12.19	Horizontal	
Remark: 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss + Aux Factor – Preamplifier Factor. 2. The emission levels of other frequencies are lever than the limit 20dB and not show in test report.										

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.