DECLARATION OF COMPLIANCE SAR ASSESSMENT for PCII Report Part 1 of 2 ## Motorola Solutions Inc. EME Test Laboratory Motorola Solutions Malaysia Sdn Bhd Plot 2A, Medan Bayan Lepas, Mukim 12 SWD 11900 Bayan Lepas Penang, Malaysia. **Date of Report:** 05/30/2022 **Report Revision:** C Responsible Engineer:Sin King Lee (EME Engineer)Report Author:Kin Kting Lee (EME Technician)Date/s Tested:03/29/2022-04/02/2022, 04/05/2022 Manufacturer: Motorola Solutions Inc. **DUT Description:** Handheld Portable – XPR 3300e 403-527 4W NKP CFS WiFi TIA4950 **Test TX mode(s):** CW (PTT), Bluetooth / Bluetooth LE, WLAN 802.11 b/g/n **Max. Power output:** Refer table 3 **Tx Frequency Bands:** LMR 403-527 MHz; Bluetooth / Bluetooth LE 2.402-2.480 GHz; WLAN 802.11 b/g/n 2.412-2.462 GHz Signaling type: FM (LMR), FHSS (Bluetooth / Bluetooth LE), 802.11 b/g/n (WLAN) Model(s) Tested: AAH02RDC9VA1AN (PMUE5778B); IC Model: PMUE5778AAANKA Model(s) Certified: AAH02RDC9VA1AN (PMUE5778B); IC Model: PMUE5778AAANKA AAH02RDH9VA1AN (PMUE5777B); IC Model: PMUE5777AABNKA AAH02RDH9VA1AN (PMUE5777B); IC Model: PMUE5777AABNKA AAH02RDC9VA1AN (PMUE3838E); IC Model: PMUE3838CAANKA AAH02RDH9VA1AN (PMUE3836E); IC Model: PMUE3836CABNKA AAH02RDH9VA1AN-AMA2 (PMUE3836E); IC Model: PMUE3836DABNKB AAH02RDH9VA7AN-AMA (PMUE3836C); IC Model: PMUE3836CABNNA Serial Number(s):446TYF7172, 446TYF7176Classification:Occupational/ControlledApplicant Name:Motorola Solutions Inc. **Applicant Address:** 8000 West Sunrise Boulevard, Fort Lauderdale, Florida 33322 FCC ID: AZ489FT7125; LMR 406.125-512 MHz, Bluetooth / Bluetooth LE 2.402-2.480 GHz, WLAN 802.11 b/g/n 2.412-2.462 GHz This report contains results that are immaterial for FCC equipment approval, which are clearly identified. 109U-89FT7125 IC: This report contains results that are immaterial for ISED equipment approval, which are clearly identified. **ISED Test Site registration:** 24843 FCC Test Firm Registration Number: 823256 The test results clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of 8 W/kg averaged over 1 gram per the requirements of FCC 47 CFR § 2.1093 and RSS-102 (Issue 5). Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 4.0 of this report (no deviation from standard methods). This report shall not be reproduced without written approval from an officially designated representative of the Motorola Solutions Inc EME Laboratory. I attest to the accuracy of the data and assume full responsibility for the completeness of these measurements. This reporting format is consistent with the suggested guidelines of the TIA TSB-150 December 2004. The results and statements contained in this report pertain only to the device(s) evaluated. Saw Sun Hock (Approved Signatory) Approval Date: 05/30/2022 ## Part 1 of 2 | 1.0 | Introduction | 4 | |------|--|----| | 2.0 | FCC SAR Summary | 4 | | 3.0 | Abbreviations / Definitions | 5 | | 4.0 | Referenced Standards and Guidelines | 5 | | 5.0 | SAR Limits | 6 | | 6.0 | Description of Device Under Test (DUT) | 7 | | 7.0 | Optional Accessories and Test Criteria | 8 | | | 7.1 Antennas | 8 | | | 7.2 Battery | 8 | | | 7.3 Body worn Accessories | 8 | | | 7.4 Audio Accessories | 8 | | 8.0 | Description of Test System | 9 | | | 8.1 Descriptions of Robotics/Probes/Readout Electronics | 9 | | | 8.2 Description of Phantom(s) | 10 | | | 8.3 Description of Simulated Tissue | 10 | | 9.0 | Additional Test Equipment | 10 | | 10.0 | SAR Measurement System Validation and Verification | 11 | | | 10.1 System Validation | | | | 10.2 System Verification | 12 | | | 10.3 Equivalent Tissue Test Results | 13 | | 11.0 | Environmental Test Conditions | 14 | | 12.0 | DUT Test Setup and Methodology | 15 | | | 12.1 Measurements | 15 | | | 12.2 DUT Configuration(s) | 15 | | | 12.3 DUT Positioning Procedures | 15 | | | 12.3.1 Body | 15 | | | 12.3.2 Head | 16 | | | 12.3.3 Face | | | | 12.4 DUT Test Channels | | | | 12.5 SAR Result Scaling Methodology | | | | 12.6 DUT Test Plan | | | 13.0 | DUT Test Data | | | | 13.1 Assessment for LMR Body | | | | 13.2 Assessment for LMR Face | | | | 13.3 Assessment for ISED, Canada | | | | 13.4 Assessment for FCC and ISED, Canada WLAN 2.4 GHz at Body and Face | | | | 13.5 Shortened Scan Assessment | | | | Simultaneous Transmission Exclusion for BT | | | | Simultaneous Transmission between LMR, WLAN and BT | | | | Results Summary | | | | Variability Assessment | | | 18.0 | System Uncertainty | 22 | ## **APPENDICES** | Α | Measurement Uncertainty Budget | . 23 | |---|---------------------------------|------| | В | Probe Calibration Certificates | 28 | | C | Dipole Calibration Certificates | 52 | ## Part 2 of 2 ## **APPENDICES** | D | System Verification Check Scans | 2 | |---|--|----| | | DUT Scans | | | F | Shorten Scan of Highest SAR Configuration | 13 | | | DUT Test Position Photos | | | Н | DUT, Body worn and audio accessories Photos. | 16 | ## **Report Revision History** | Date | Revision | Comments | | | |------------|----------|--|--|--| | 04/04/2022 | A | Release of C2PCPX results | | | | 05/13/2022 | В | Update Section 6.0 & Table 3 with BTLE 5.0 information | | | | 05/30/2022 | С | Update the additional model inside the cover page | | | #### 1.0 Introduction This report details the utilization, test setup, test equipment, and test results of the Specific Absorption Rate (SAR) measurements performed at the Motorola Solutions Inc. EME Test Laboratory for handheld portable model number AAH02RDC9VA1AN (PMUE5778B). This device is classified as Occupational/Controlled. The information herein is to show evidence of Class II Permissive Change compliance based on the SAR evaluation of BT/WiFi chipset redesign. ## 2.0 FCC SAR Summary Table 1 | Equipment Class | Rody | | Max Calc at
Face (W/kg) | |------------------------|-------------------------------------|--------|----------------------------| | | | 1g-SAR | 1g-SAR | | TNF | 406.125-512
(LMR) | 5.50 | 3.31 | | *DSS | 2402-2480
(Bluetooth) | N/A | N/A | | DTS | 2412-2462
(WLAN 802.11
b/g/n) | 0.034 | 0.051 | | Simultaneo | ous Results | 5.53 | 3.36 | #### Note: - 1) * Results not required per KDB (refer to original filing) - 2) No degradation observed for Body and Face, the current on filed SAR value at the Body and Face are 5.91W/kg and 3.63 W/kg, simultaneous at Body is 5.99 W/kg are remains the unchanged. Report ID: P17779-EME-00153/00154 ## FCC ID: AZ489FT7125 / IC: 109U-89FT7125 #### 3.0 Abbreviations / Definitions BT: Bluetooth CNR: Calibration Not Required CW: Continuous Wave DUT: Device Under Test EME: Electromagnetic Energy FM: Frequency Modulation LMR: Land Mobile Radio NA: Not Applicable PTT: Push to Talk RSM: Remote Speaker Microphone SAR: Specific Absorption Rate TNF: Licensed Non-Broadcast Transmitter Held to Face Audio accessories: These accessories allow communication while the DUT is worn on the body. Body worn accessories: These accessories allow the DUT to be worn on the body of the user. Maximum Power: Defined as the upper limit of the production line final test station. #### 4.0 Referenced Standards and Guidelines This product is designed to comply with the following applicable national and international standards and guidelines. - IEC62209-1 (2016) Procedure to determine the specific absorption rate (SAR) for handheld devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz) - Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, FCC, Washington, D.C.: 1997. - IEEE 1528 (2013), Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques - American National Standards Institute (ANSI) / Institute of Electrical and Electronics Engineers (IEEE) C95. 1-1992 - Institute of Electrical and Electronics Engineers (IEEE) C95.1-2005 - International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998 - Ministry of Health (Canada) Safety Code 6 (2015), Limits of Human Exposure to Radio frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz - RSS-102 (Issue 5) Radio Frequency (RF) Exposure Compliance of Radio communication Apparatus (All Frequency Bands) - Australian Communications Authority Radio communications (Electromagnetic Radiation -Human Exposure) Standard (2014) - ANATEL, Brazil Regulatory Authority, Resolution No. 303 of July 2, 2002 "Regulation of the limitation of exposure to electrical, magnetic, and electromagnetic fields in the radio frequency range between 9 kHz and 300 GHz." and "Attachment to resolution # 303 from July 2, 2002" - IEC62209-2 Edition 1.0 2010-03, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz). - IEC/IEEE 62209-1528 (Edition 1.0 2020-10) Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Part 1528: Human models, instrumentation, and procedures (Frequency range of 4 MHz to 10 GHz) - FCC KDB 643646 D01 SAR Test for PTT Radios v01r03 - FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 - FCC KDB 865664 D02 RF Exposure Reporting v01r02 - FCC KDB 447498 D01 General RF Exposure
Guidance v06 - FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02 #### 5.0 SAR Limits Table 2 | | SAR (W/kg) | | | | |---|-----------------------|---------------------|--|--| | EXPOSURE LIMITS | (General Population / | (Occupational / | | | | EAI OSURE LIVITIS | Uncontrolled Exposure | Controlled Exposure | | | | | Environment) | Environment) | | | | Spatial Average - ANSI - | | | | | | (averaged over the whole body) | 0.08 | 0.4 | | | | Spatial Peak - ANSI - | | | | | | (averaged over any 1-g of tissue) | 1.6 | 8.0 | | | | Spatial Peak – ICNIRP/ANSI - | | | | | | (hands/wrists/feet/ankles averaged over 10-g) | 4.0 | 20.0 | | | | Spatial Peak - ICNIRP - | | | | | | (Head and Trunk 10-g) | 2.0 | 10.0 | | | ## **6.0** Description of Device Under Test (DUT) These portable devices operate in the LMR bands using frequency modulation (FM). These devices also contain WLAN technology for data capabilities over 802.11 b/g/n wireless networks and Bluetooth technology for short range wireless devices. The LMR bands in these devices operate in a half duplex system. A half duplex system only allows the user to transmit or receive. These devices cannot transmit and receive simultaneously. The user must stop transmitting in order to receive a signal or listen for a response, regardless of PTT button or use of voice activated audio accessories. This type of operation, along with the RF safety booklet, which instructs the user to transmit no more than 50% of the time, justifies the use of 50% duty factor for this device. These devices also incorporate a Bluetooth v5.0, which include classis Bluetooth, Bluetooth high speed and Bluetooth low energy. It is Class 1 Bluetooth device with Frequency Hopping Spread Spectrum (FHSS) technology. The Bluetooth radio modem is used to wireless link audio accessories. The maximum actual transmission duty cycle is imposed by the Bluetooth standard. The maximum duty cycle for Bluetooth 4.0 is derived from 5-slots packet type operation which consists of receiving on 1-slot and transmitting on 5-slots, and thus maximum duty cycle = 77%, whereby the maximum duty cycle for Bluetooth 5.0 is 63.4%. WLAN 802.11 b/g/n operates using Direct Sequence Spread Spectrum (DSSS) and Orthogonal Frequency-Division Multiplexing (OFDM) accordance with the IEEE 802.11 b/g/n. Table 3 below summarizes the technologies, bands, maximum duty cycles and maximum output powers. Maximum output powers are defined as upper limit of the production line final test station. Table 3 | Radio Type | Band (MHz) | Transmission | Duty Cycle (%) | Max Power (W) | |------------|------------|--------------|-----------------------|---------------| | LMR | 403-512 | FM | *50 | 4.80 | | BT | 2402-2480 | FHSS | 77 | 0.0100 | | BT LE 4.0 | 2402-2480 | FHSS | < 77 | 0.0100 | | BT LE 5.0 | 2402-2480 | FHSS | 63.7 | 0.0100 | | WLAN | 2412-2462 | 802.11b | 99.8 | 0.0708 | | WLAN | 2412-2462 | 802.11g | 99.2 | 0.0200 | | WLAN | 2412-2462 | 802.11n | 99.1 | 0.0126 | Note - * includes 50% PTT operation The intended operating positions are "at the face" with the DUT at least 2.5cm from the mouth, and "at the body" by means of the offered body worn accessories. Body worn audio and PTT operation is accomplished by means of optional remote accessories that are connected to the radio. Operation at the body without an audio accessory attached is possible by means of BT accessories. ## 7.0 Optional Accessories and Test Criteria This device is offered with optional accessories. All accessories were individually evaluated during the test plan creation to determine if testing was required per the guidelines outlined in section 4.0 to assess compliance of these devices. The following sections identify the test criteria and details for each accessory category applicable for this PCII filing only. Detail listing of all approved offered accessories available in the original filing report #### 7.1 Antennas Below are the antennas applicable for this PCII filing. The Table below lists their descriptions. Table 4 | Anten
na
No. | Antenna
Models | Description | Selected
for test | Tested | |--------------------|-------------------|--|----------------------|--------------------| | 1 | PMAE4071A | Stubby, 470- 527 MHz, ¼ Wave, 1.15 dBi | Yes | Yes | | 2 | 85012026001 | Internal BT/WLAN, 2402-2484 MHz, ¹ / ₄ Wave, 0 dBi | Yes | Yes; for WLAN only | ## 7.2 Battery There are five batteries offered for this PCII filing. The Table below lists their descriptions. Table 5 | Battery No. | Battery Models | Battery Models Description | | Comments | |-------------|-----------------------|-------------------------------------|-----|----------| | 1 | PMNN4406BR | Standard IP67 Li-Ion 1600T 1500 mAh | Yes | | | 2 | PMNN4417B | Impress IP56 Li-Ion 1600T 1500 mAh | Yes | | | 3 | PMNN4491C | Impress Slim Battery 2050 mAh | Yes | | | 4 | PMNN4418BR | Impress IP56 Li-Ion 2250T 2150 mAh | Yes | | ## 7.3 Body worn Accessories There are two body worn applicable for this PCII filing. The Table below lists their descriptions. Table 6 | Body worn
No. | Body worn
Models | Description | Tested | Comments | |------------------|---------------------|---|--------|----------| | 1 | PMLN4651A | 2 Inch Belt Clip | Yes | | | 2 | RLN4570A | Break-a-way Chest Pack with radio holder, pen holder and velcro secured pouch | Yes | | #### 7.4 Audio Accessories Not Applicable for this PCII filing. ## 8.0 Description of Test System ## 8.1 Descriptions of Robotics/Probes/Readout Electronics Table 8 | Dosimetric System type | System version | DAE type | Probe Type | |--|----------------|----------|---------------------| | Schmid & Partner
Engineering AG
SPEAG DASY 5 | 52.10.4.1527 | DAE4 | EX3DV4
(E-Field) | The DASY5TM system is operated per the instructions in the DASY5TM Users Manual. The complete manual is available directly from SPEAGTM. All measurement equipment used to assess SAR compliance was calibrated according to ISO/IEC 17025 A2LA guidelines. Section 9.0 presents additional test equipment information. Appendices B and C present the applicable calibration certificates. The E-field probe first scans a coarse grid over a large area inside the phantom in order to locate the interpolated maximum SAR distribution. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The subsequent scan can directly use this position as reference for the cube evaluations. ## 8.2 Description of Phantom(s) Table 9 | Phantom Type | Phantom(s) Used | Material
Parameters | Phantom Dimensions LxWxD (mm) | Material
Thickness
(mm) | Support
Structure
Material | Loss
Tangent
(wood) | |--------------|-----------------|--|-------------------------------|-------------------------------|----------------------------------|---------------------------| | Triple Flat | NA | 200MHz -6GHz;
Er = 3-5,
Loss Tangent =
≤0.05 | 280x175x175 | | | | | SAM | NA | 300MHz -6GHz;
Er = < 5,
Loss Tangent =
≤0.05 | Human Model | 2mm
+/- 0.2mm | Wood | < 0.05 | | Oval Flat | V | 300MHz -6GHz;
Er = 4+/- 1,
Loss Tangent =
≤0.05 | 600x400x190 | | | | ## 8.3 Description of Simulated Tissue The sugar based simulate tissue is produced by placing the correct measured amount of De-ionized water into a large container. Each of the dried ingredients are weighed and added to the water carefully to avoid clumping. If the solution has a high sugar concentration the water is pre-heated to aid in dissolving the ingredients. For Diacetin and similar type simulates, sugar and HEC ingredients are not needed. The solution is mixed thoroughly, covered, and allowed to sit overnight prior to use. The simulated tissue mixture was mixed based on the Simulated Tissue Composition indicated in Table 10. During the daily testing of this product, the applicable mixture was used to measure the Di-electric parameters at each of the tested frequencies to verify that the Di-electric parameters were within the tolerance of the tissue specifications. #### **Simulated Tissue Composition (percent by mass)** Table 10 | | 450N | ИHz | 2450MHz | | | | |-------------------|------|-------|---------|------|--|--| | Ingredients | Head | Body | Head | Body | | | | Sugar | 56 | 46.5 | - | i | | | | Diacetin | ı | - | 51 | 34.5 | | | | De ionized –Water | 39.1 | 50.53 | 48.75 | 65.2 | | | | Salt | 3.8 | 1.87 | 0.15 | 0.2 | | | | HEC | 1.0 | 1 | - | - | | | | Bact. | 0.1 | 0.1 | 0.1 | 0.1 | | | ## 9.0 Additional Test Equipment The Table below lists additional test equipment used during the SAR assessment. Table 11 | Table 11 | | | | | | | | | | | |---------------------------|---------------------------|---------------|---------------------|----------------------|--|--|--|--|--|--| | Equipment Type | Model
Number | Serial Number | Calibration
Date | Calibration Due Date | | | | | | | | SPEAG PROBE | EXDV4 | 7486 | 06/18/2021 | 06/18/2022 | | | | | | | | SPEAG DAE | DAE4 | 1488 | 04/07/2021 | 04/07/2024 | | | | | | | | SPEAG DAE | DAE4 | 1483 | 08/04/2021 | 08/04/2022 | | | | | | | | POWER AMPLIFIER | 50W 1000A | 14715 | CNR | CNR | | | | | | | | POWER AMPLIFIER | 5S1G4 | 313326 | CNR | CNR | | | | | | | | VECTOR SIGNAL GENERATOR | E4438C | MY42081753 | 08/27/2021 | 08/27/2022 | | | | | | | | POWER METER | E4419B | MY45103725 | 06/29/2021 | 06/29/2022 | | | | | | | | POWER METER | E4418B | MY45107917 | 07/23/2021 | 07/23/2022 | | | | | | | | POWER SENSOR | E9301B | MY55210003 | 05/29/2021 | 05/29/2022 | | | | | | | | POWER SENSOR | E9301B | MY41495733 | 05/29/2021 | 05/29/2022 | | | | | | | | BI-DIRECTIONAL COUPLER | 3020A | 41931 | 07/27/2021 |
07/27/2022 | | | | | | | | BI-DIRECTIONAL COUPLER | 3022 | 77115 | 7/27/2021 | 7/27/2022 | | | | | | | | DATA LOGGER | DSB | 16398050 | 08/18/2021 | 08/18/2022 | | | | | | | | THERMOMETER | HH806AU | 080307 | 11/26/2021 | 11/26/2022 | | | | | | | | TEMPERATURE PROBE | 80PK-22 | 06032017 | 11/26/2021 | 11/26/2022 | | | | | | | | DIELECTRIC ASSESSMENT KIT | DAK-3.5 | 1120 | 10/06/2021 | 10/06/2022 | | | | | | | | DIGITAL THERMOMETER | 1523 | 3492108 | 09/28/2021 | 09/28/2022 | | | | | | | | TEMPERATURE PROBE | PR-10L-4-
100-1/4-6-BX | WNWR037791 | 09/17/2021 | 09/17/2022 | | | | | | | | NETWORK ANALYZER | E5071B | MY42403218 | 09/13/2021 | 09/13/2022 | | | | | | | | SPEAG DIPOLE | D450V3 | 1077 | 07/09/2021 | 07/09/2024 | | | | | | | | SPEAG DIPOLE | D2450V2 | 782 | 2/20/2020 | 2/20/2023 | | | | | | | | POWER METER | E9301B | MY55210006 | 05/07/2021 | 05/07/2022 | | | | | | | | POWER SENSOR | E4418B | GB40206480 | 11/24/2021 | 11/24/2022 | | | | | | | | POWER SENSOR | NRP-Z11 | 120907 | 8/19/2020 | 08/19/2022 | | | | | | | ## 10.0 SAR Measurement System Validation and Verification DASY output files of the probe/dipole calibration certificates and system verification test results are included in appendices B, C & D respectively. ## 10.1 System Validation The SAR measurement system was validated according to procedures in KDB 865664. The validation status summary Table is below. Table 12 | Dates | Probe Ca | | Probe
SN | | red Tissue
ameters | | Validation | | |------------|----------|------|-------------|------|-----------------------|-------------|------------|----------| | | Pol | IIIL | 511 | σ | $\epsilon_{ m r}$ | Sensitivity | Linearity | Isotropy | | | | | | | | | | | | 07/08/2021 | Body | 450 | | 0.97 | 54.90 | Pass | Pass | Pass | | 06/07/2021 | Head | 450 | 7486 | 0.88 | 44.20 | Pass | Pass | Pass | | 07/16/2021 | Body | 2450 | 7400 | 2.02 | 50.20 | Pass | Pass | Pass | | 07/13/2021 | Head | 2450 | | 1.81 | 36.10 | Pass | Pass | Pass | ## **10.2** System Verification System verification checks were conducted each day during the SAR assessment. The results are normalized to 1W. Appendix D includes DASY plots for each day during the SAR assessment. The Table below summarizes the daily system check results used for the SAR assessment. Table 13 | Probe
Serial # | Tissue Type | Dipole Kit / Serial # | Ref SAR @ 1W
(W/kg) | System Check
Results
Measured
(W/kg) | System Check Test
Results when
normalized to 1W
(W/kg) | Tested
Date | |-------------------|------------------|------------------------|------------------------|---|---|----------------| | | ECC Pody | | 4.64+/- 10% | 1.11 | 4.44 | 03/28/2022# | | | FCC Body | SPEAG D450V3 /
1077 | 4.04+/- 10% | 1.19 | 4.76 | 04/05/2022 | | 7486 | IEEE/IEC
Head | 1077 | 4.63+/- 10% | 1.16 | 4.64 | 03/30/2022 | | | FCC Body | SPEAG D2450V2 / | 51.90+/- 10% | 13.00 | 52.00 | 04/02/2022 | | | IEEE/IEC
Head | 782 | 54.40+/- 10% | 14.70 | 58.80 | 04/01/2022# | ## 10.3 Equivalent Tissue Test Results Simulated tissue prepared for SAR measurements is measured daily and within 24 hours prior to actual SAR testing to verify that the tissue is within +/- 5% of target parameters at the center of the transmit band. This measurement is done using the applicable equipment indicated in section 9.0. The Table below summarizes the measured tissue parameters used for the SAR assessment. Table 14 | Frequency (MHz) | Tissue Type | Conductivity
Target (S/m) | Dielectric Constant
Target | Conductivity
Meas. (S/m) | Dielectric
Constant
Meas. | Tested Date | |-----------------|-------------------|------------------------------|-------------------------------|-----------------------------|---------------------------------|--------------------| | | FCC Body | 0.94 | 56.7 | 0.93 | 55.7 | 03/28/2022# | | 450 | Tee Body | (0.89 - 0.99) | (53.9-59.5) | 0.94 | 57.7 | 04/05/2022 | | 150 | IEEE/
IEC Head | 0.87
(0.83-0.91) | 43.5
(41.3-45.7) | 0.85 | 42.5 | 03/30/2022 | | | ECC D 1 | 0.94 | 56.6 | 0.94 | 55.40 | 03/28/2022# | | 470 | FCC Body | (0.89 - 0.99) | (53.8-59.5) | 0.96 | 57.4 | 04/05/2022 | | 470 | IEEE/
IEC Head | 0.87
(0.83-0.91) | 43.4
(41.2-45.6) | 0.87 | 42.1 | 03/30/2022 | | 2412 | FCC Body | 1.91
(1.82-2.01) | 52.8
(47.5-58) | 1.84 | 50.7 | 04/02/2022 | | 2412 | IEEE/
IEC Head | 1.77
(1.68-1.86) | 39.3
(35.3-43.2) | 1.84 | 40.0 | 04/01/2022# | | 2437 | FCC Body | 1.94
(1.84-2.03) | 52.7
(47.4-58) | 1.86 | 50.6 | 04/02/2022 | | 2437 | IEEE/
IEC Head | 1.79
(1.7-1.88) | 39.2
(35.3-43.1) | 1.87 | 39.9 | 04/01/2022# | | 2450 | FCC Body | 1.95
(1.85-2.05) | 52.7
(47.4-58) | 1.88 | 50.6 | 04/02/2022 | | 2430 | IEEE/
IEC Head | 1.8
(1.71-1.89) | 39.2
(35.3-43.1) | 1.88 | 39.9 | 04/01/2022# | | 2462 | FCC Body | 1.97
(1.87-2.07) | 52.7
(47.4-58) | 1.89 | 50.6 | 04/02/2022 | | 2462 | IEEE/
IEC Head | 1.81
(1.72-1.9) | 39.2
(35.3-43.1) | 1.90 | 39.8 | 04/01/2022# | #### 11.0 Environmental Test Conditions The EME Laboratory's ambient environment is well controlled resulting in very stable simulated tissue temperature and therefore stable dielectric properties. Simulated tissue temperature is measured prior to each scan to insure it is within +/ - 2°C of the temperature at which the dielectric properties were determined. The liquid depth within the phantom used for measurements was at least 15cm. Additional precautions are routinely taken to ensure the stability of the simulated tissue such as covering the phantoms when scans are not actively in process in order to minimize evaporation. The lab environment is continuously monitored. The Table below presents the range and average environmental conditions during the SAR tests reported herein: Table 15 | | Target | Measured | |---------------------|----------|----------------------| | | | Range: 20.5 – 23.5°C | | Ambient Temperature | 18-25 °C | Avg. 22.0 °C | | | | Range: 19.4-21.9°C | | Tissue Temperature | 18-25 °C | Avg. 20.9°C | Relative humidity target range is a recommended target The EME Lab RF environment uses a Spectrum Analyzer to monitor for extraneous large signal RF contaminants that could possibly affect the test results. If such unwanted signals are discovered the SAR scans are repeated. ## 12.0 DUT Test Setup and Methodology #### 12.1 Measurements SAR measurements were performed using the DASY system described in section 8.0 using zoom scans. Oval flat phantoms filled with applicable simulated tissue were used for body and face testing. The Table below includes the step sizes and resolution of area and zoom scans per KDB 865664 requirements. Table 16 | Descr | iption | ≤3 GHz | > 3 GHz | | | |---|---|--|--------------------------------------|--|--| | Maximum distance from close (geometric center of probe ser | 1 | $5 \pm 1 \text{ mm}$ $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5$ | | | | | Maximum probe angle from probe angle from probe angle from probability and the measurement lost | <u>-</u> | 30° ± 1° | 20° ± 1° | | | | | | \leq 2 GHz: \leq 15 mm | $3-4$ GHz: ≤ 12 mm | | | | | | $2-3$ GHz: ≤ 12 mm | $4-6$ GHz: ≤ 10 mm | | | | | | When the x or y dimensi | on of the test device, in | | | | Maximum area coan enatial | resolution: ΔxArea, ΔyArea | the measurement plane orientation, is smaller | | | | | Maximum area sean spatiar | resolution. Axarea, Ayarea | than the above, the measurement resolution | | | | | | | must be \leq the corresponding x or y dimension | | | | | | | of the test device with at | least one measurement | | | | | | point on the test device. | | | | | Maximum zoom scan spatial | resolution: $\Delta xZoom$, $\Delta yZoom$ |
\leq 2 GHz: \leq 8 mm | $3-4$ GHz: ≤ 5 mm* | | | | | | $2-3 \text{ GHz: } \leq 5 \text{ mm*}$ | $4-6$ GHz: ≤ 4 mm* | | | | Maximum zoom scan | uniform grid: ΔzZoom(n) | | $3-4$ GHz: ≤ 4 mm | | | | spatial resolution, normal to | | ≤ 5 mm | $4-5 \text{ GHz:} \leq 3 \text{ mm}$ | | | | phantom surface | | | $5-6$ GHz: ≤ 2 mm | | | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. #### **12.2 DUT** Configuration(s) The DUT is a portable device operational at the body and face as described in section 6.0 while using the applicable accessories listed in section 7.0. All accessories listed in section 7.0 of this report were considered when implementing the guidelines specified in KDB 643646. #### 12.3 **DUT Positioning Procedures** The positioning of the device for each body location is described below and illustrated in Appendix G. ## 12.3.1 Body The DUT was positioned in normal use configuration against the phantom with the offered body worn accessory as well as with and without the offered audio accessories as applicable. ^{*} When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. #### 12.3.2 Head Not applicable. ## 12.3.3 Face The DUT was positioned with its' front sides separated 2.5cm from the phantom. #### **12.4 DUT Test Channels** The number of test channels was determined by using the following IEEE 1528 equation. The use of this equation produces the same or more test channels compared to the FCC KDB 447498 number of test channels formula. $$N_c = 2 * roundup[10 * (f_{high} - f_{low}) / f_c] + 1$$ Where N_c = Number of channels $F_{high} = Upper channel$ $F_{low} = Lower channel$ F_c = Center channel ## 12.5 SAR Result Scaling Methodology The calculated 1-gram and 10-gram averaged SAR results indicated as "Max Calc. 1g-SAR"in the data Tables is determined by scaling the measured SAR to account for power leveling variations and drift. Appendix F includes a shortened scan to justify SAR scaling for drift. For this device the "Max Calc. 1g-SAR" are scaled using the following formula: $$Max_Calc = SAR_meas \cdot 10^{\frac{-Drift}{10}} \cdot \frac{P_max}{P_int} \cdot DC$$ $P_{max} = Maximum Power (W)$ P_int = Initial Power (W) Drift = DASY drift results (dB) SAR_meas = Measured 1-g or 10-g Avg. SAR (W/kg) DC = Transmission mode duty cycle in % where applicable 50% duty cycle is applied for PTT operation Note: for conservative results, the following are applied: If $P_{int} > P_{max}$, then $P_{max}/P_{int} = 1$. Drift = 1 for positive drift Additional SAR scaling was applied using the methodologies outlined in FCC KDB 865664 using tissue sensitivity values. SAR was scaled for conditions where the tissue permittivity was measured above the nominal target and for tissue conductivity that was measured below the nominal target. Negative or reduced SAR scaling is not permitted. #### 12.6 DUT Test Plan The DUT was assessed at the body and face using the highest applicable configuration found during initial compliance assessment on filed with the FCC and ISED. All modes of operation identified in section 6.0 were considered during the development of the test plan. All tests were performed in CW and 50% duty cycle was applied to PTT configurations in the final results. #### 13.0 DUT Test Data The conducted power measurements for all test channels according to FCC allocated Frequency ranges (406.125 - 512.000 MHz) are listed in Table below. Table 17 | = ===================================== | | | | | | | | | |---|-----------|--|--|--|--|--|--|--| | Test Freq (MHz) | Power (W) | | | | | | | | | 406.1250 | 4.71 | | | | | | | | | 422.3000 | 4.80 | | | | | | | | | 435.4000 | 4.77 | | | | | | | | | 440.0000 | 4.72 | | | | | | | | | 441.4000 | 4.72 | | | | | | | | | 450.0000 | 4.70 | | | | | | | | | 457.9000 | 4.70 | | | | | | | | | 470.0000 | 4.70 | | | | | | | | | 475.0000 | 4.78 | | | | | | | | | 484.0000 | 4.80 | | | | | | | | | 490.0000 | 4.73 | | | | | | | | | 496.2000 | 4.72 | | | | | | | | | 512.0000 | 4.78 | | | | | | | | ## 13.1 Assessment for LMR Body The DUT was assessed at the highest applicable configuration at the body found during the previous compliance assessment on file with FCC. SAR plots of the highest results are presented in appendix E. Table 18 | | | Carry | Cable | Test Freq | Init
Pwr | SAR
Drift | Meas.
1g-SAR | Max
Calc.
1g-
SAR | | |-----------|----------------------------|-----------|-----------|-----------|-------------|--------------|-----------------|----------------------------|--| | Antenna | Battery | Accessory | Accessory | (MHz) | (W) | (dB) | (W/kg) | (W/kg) | Run# | | | Highest Body Configuration | | | | | | | | | | PMAE4071A | PMNN4417B | RLN4570A | None | 470.000 | 4.80 | -0.64 | 10.20 | 5.91 | Previous Highest
SAR at Body
ZZ-AB-190902-13 | | | | | | | 4.70 | -0.47 | 9.48 | 5.39 | BL-AB-220329-02# | #### 13.2 Assessment for LMR Face The DUT was assessed at the highest applicable configuration at the face found during the previous compliance assessment on file with FCC. SAR plots of the highest results are presented in appendix E. Table 19 | Antenna | Battery | Carry
Accessory | Cable
Accessory
Highest Fa | Test Freq
(MHz) | (W) | SAR
Drift
(dB) | Meas.
1g-SAR
(W/kg) | | Run# | |-----------|------------|--------------------|----------------------------------|--------------------|------|----------------------|---------------------------|---------------------|---| | PMAE4071A | PMNN4406BR | None | None | 470.000 | 4.80 | -0.76
-0.46 | 6.09
5.96 | 3.63
3.31 | Previous Highest SAR
at Face
LOH-FACE-190904-
01#
FZ-FACE-220330-03 | #### 13.3 Assessment for ISED, Canada As per ISED Notice 2020-DRS0022, spot check were required for the highest SAR configurations identified from the reference model for frequency band (406.1-430MHz, 450-470MHz). SAR plots of the highest results per Table (bolded) are presented in Appendix E. Table 20 | | B 44 | Carry | Cable | Test Freq | | SAR
Drift | Meas. | Max
Calc.
1g-
SAR | D 4 | |-----------|-------------|-----------|-----------|--------------|------------|--------------|--------|----------------------------|---| | Antenna | Battery | Accessory | Accessory | (MHz) | (W) | (dB) | (W/kg) | (W/kg) | Run# | | | | | Hig | shest Body (| Config | uration | | | | | PMAE4071A | PMNN4417B | RLN4570A | None | 470.000 | 4.80 | -0.64 | 10.20 | 5.91 | Previous Highest SAR at Body
ZZ-AB-190902-13 | | | | | 2.0222 | | 4.70 | -0.47 | 9.48 | 5.39 | BL-AB-220329-02# | | | | | Hiş | ghest Face C | Configu | ıration | | | | | PMAE4071A | PMNN4406B | None | None | 470.000 | 4.80 | -0.76 | 6.09 | 3.63 | Previous Highest SAR at Face
LOH-FACE-190904-01# | | | R | | | | 4.80 | -0.46 | 5.96 | 3.31 | FZ-FACE-220330-03 | ## 13.4 Assessment for FCC and ISED, Canada WLAN 2.4 GHz at Body and Face The tables below represent the output power measurements for WLAN 2.4 GHz 802.11b/g/n for all test channels according to FCC and ISED, Canada allocated frequency range (2412-2462 MHz) are listed in Table below. Table 21 | Band | Mode | Ch. BW | Ch. | Freq. (MHz) | Measured
conducted
power (W) | Antenna
max power
(W) | |---------|-----------|--------|-----|-------------|------------------------------------|-----------------------------| | | 802.11b | | 1 | 2412 | 0.0576 | | | | (1Mbps) | 20 | 6 | 2437 | 0.0583 | 0.0708 | | | (Twiops) | | 11 | 2462 | 0.0580 | | | | 902 11- | | 1 | 2412 | 0.0139 | | | 2.4 GHz | 802.11g | 20 | 6 | 2437 | 0.0141 | 0.0200 | | | (6Mbps) | | 11 | 2462 | 0.0142 | | | | 802.11n | | 1 | 2412 | 0.0092 | | | | | 20 | 6 | 2437 | 0.0094 | 0.0126 | | | (6.5Mbps) | | 11 | 2462 | 0.0094 | | Note: 802.11b was chosen over 802.11 g & n for testing because it has the highest max power. Table below indicated the SAR results that have performed based on previous highest configurations and across the frequencies bands. SAR plots of the highest results per Table (bolded) are presented in Appendix E. Table 22 | Antenna | Battery | Carry
Accessory | Cable
Accessory | Test
Freq
(MHz) | Init
Pwr
(W) | SAR
Drift
(dB) | Meas.
1g-
SAR
(W/kg) | Max
Calc.
1g-
SAR
(W/kg | Run# | | | | | | | | | | | | |-------------------------|------------|--------------------|--------------------|-----------------------|--------------------|----------------------|-------------------------------|-------------------------------------|--------------------|--|--|--|---|--|----------|--------|------|-------|-------|------------------| | | | | Asse | ssment at l | Body | 2412.000 | 0.0580 | 0.42 | 0.009 | 0.012 | BL-AB-220402-07 | | | | | | | | | | | | | 85012026001
WiFi Ant | PMNN4491C | PMLN4651A | None | 2437.000 | 0.0580 | 0.28 | 0.014 | 0.017 | BL-AB-220402-08 | | | | | | | | | | | | | WILLIAM | | | | | | | | | | | | | ļ | | 2462.000 | 0.0590 | 0.29 | 0.028 | 0.034 | MHI-AB-220402-09 | | | | | Asse | essment at F | Face | 2412.000 | 0.0580 | -0.06 | 0.031 | 0.038 | FZ-FACE-220401-14 | | | | | | | | | | | | | 85012026001
WiFi Ant | PMNN4418BR | None | None | 2437.000 | 0.0580 | -0.19 | 0.040 | 0.051 | FZ-FACE-220401-15 | | | | | | | | | | | | | ,, II I / WIII | | | | 2462.000 | 0.0580 | -0.18 | 0.035 | 0.045 | BL-FACE-220402-04# | | | | | | | | | | | | #### 13.5 Shortened Scan Assessment A
"shortened" scan using the highest SAR configuration overall from above was performed to validate the SAR drift of the full DASY5TM coarse and zoom scans. Note that the shortened scan represents the zoom scan performance result; this is obtained by first running a coarse scan to find the peak area and then, using a newly charged battery, a zoom scan only was performed. The results of the shortened cube scan presented in Appendix D demonstrate that the scaling methodology used to determine the calculated SAR results presented herein are valid. The SAR result from the Table below is provided in Appendix F. Table 23 | Antenna | Battery | Carry
Accessory | Cable
Accessory | Test Freq
(MHz) | Init
Pwr
(W) | Drift | Meas.
1g-SAR
(W/kg) | | Run# | |-----------|-----------|--------------------|--------------------|--------------------|--------------------|-------|---------------------------|------|-----------------| | PMAE4071A | PMNN4417B | RLN4570A | None | 470.000 | 4.80 | -0.41 | 10.00 | 5.50 | FZ-AB-220405-02 | #### 14.0 Simultaneous Transmission Exclusion for BT Per guidelines in KDB 447498, the following formula was used to determine the test exclusion to an antenna that transmits simultaneously with other antennas for test distances \leq 50mm: [(max. power of channel, including tune-up tolerance, mW)/ (min. test separation distance, mm)] *[\sqrt{F} (GHz)/X] = 0.32 W/kg, which is \leq 0.4 W/kg (1g) #### Where: X = 7.5 for 1g-SAR; 18.75 for 10g Max. Power = 7.7 mW (10mW*77% duty cycle) Min. test separation distance = 5mm for actual test separation < 5mm F (GHz) = 2.48 GHz Per the result from the calculation above, simultaneous exclusion is applied and therefore SAR results are not reported herein. #### 15.0 Simultaneous Transmission between LMR, WLAN and BT These devices use a single transmitter module and antenna for both WLAN and BT. WLAN and BT cannot transmit simultaneously. Simultaneous transmission for BT had been excluded as mentioned in section 14.0. The maximum sourced-based-time-averaged output power for 802.11 b is 70.8 mW while BT is 7.7mW. Therefore the measured SAR from 802.11b is used in conjunction with LMR for simultaneous results. ## 16.0 Results Summary Based on the test guidelines from section 4.0 and satisfying frequencies within FCC bands and ISED, Canada Frequency bands, the highest Operational Maximum Calculated 1-gram average SAR values found for this filing: Table 23 | Designator | Frequency
band
(MHz) | Max Calc at Body
(W/kg)
1g-SAR | Max Calc at Face
(W/kg)
1g-SAR | |------------|----------------------------|--------------------------------------|--------------------------------------| | | | FCC | J | | LMR | 406.125-512 | 5.50 | 3.31 | | WLAN | 2412-2462 | 0.034 | 0.051 | | | | ISED | | | LMR | 406.125-430;
450-470 | 5.50 | 3.31 | | WLAN | 2412-2462 | 0.034 | 0.051 | All results are scaled to the maximum output power. The highest combined 1g-SAR results for simultaneous is indicated in the following Table: Table 24 | Designator | Frequency bands | Combined 1g-
SAR
(W/kg) | |--------------------|--|-------------------------------| | | Body | | | FCC | LMR (406.125-512MHz)
and WLAN band | 5.53 | | Industry
Canada | LMR (406.125-430 MHz;
450-470 MHz) and WLAN
band | 5.53 | | | Face | | | FCC | LMR (406.125-512MHz)
and WLAN band | 3.36 | | Industry
Canada | LMR (406.125-430 MHz;
450-470 MHz) and WLAN
band | 3.36 | The test results clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of 8 W/kg averaged over 1 gram per the requirements of FCC 47 CFR § 2.1093 and RSS-102 (Issue 5). ## 17.0 Variability Assessment Per the guidelines in KDB 865664 SAR variability assessment is required because SAR results are above 4.0W/kg (Occupational) or 0.8W/kg (General population) Choose applicable condition. The Table below includes test results of the original measurement(s), the repeated measurement(s), and the ratio (SAR_{high}/SAR_{low}) for the applicable test configuration(s). Table 25 | Run# | Antenna | Battery | Carry
Accessory | Cable
Accessory | Test Freq. (MHz) | Adj Calc.
1g-SAR
(W/kg) | Ratio | Comments | |------------------|--------------|--------------|--------------------|--------------------|------------------|-------------------------------|-------|---| | BL-AB-220329-02# | DM AE 4071 A | DMANINI 417D | DI N4570 A | None | 470.000 | 5.28 | 1.04 | No additional repeated scans is required due to the | | FZ-AB-220405-02 | PMAE4071A | PMINN441/B | RLN43/0A | None | 470.000 | 5.50 | 1.04 | $Ratio (SAR_{high}/SAR_{low}) < 1.20$ | ## 18.0 System Uncertainty A system uncertainty analysis is not required for this report per KDB 865664 because the highest report SAR value for Occupational exposure is less than 7.5W/kg. Per the guidelines of ISO 17025 a reported system uncertainty is required and therefore measurement uncertainty budget is included in Appendix A. ## Appendix A Measurement Uncertainty Budget **Uncertainty Budget for Device Under Test, for 450 MHz** | Uncertainty Budget for Device | Chaci | I cst, I | 01 450 | 111117 | | | | | | |---|---------|----------|---------------------|------------|-------|--------|------------|------------|----------| | | | | | | | | <i>h</i> = | <i>i</i> = | | | | | | | <i>e</i> = | | | cxf/ | c x g / | | | a | b | С | d | f(d,k) | f | g | e | e | k | | | IEEE | Tol. | Prob | | c_i | c_i | 1 g | 10 g | | | | 1528 | (± % | | | (4.) | (10) | | | | | | section |) | Dist | 7. | (1 g) | (10 g) | u_i | u_i | | | Uncertainty Component | section | | | Div. | | | (±%) | (±%) | v_i | | Measurement System | | | | | | | | | | | Probe Calibration | E.2.1 | 6.7 | N | 1.00 | 1 | 1 | 6.7 | 6.7 | 8 | | Axial Isotropy | E.2.2 | 4.7 | R | 1.73 | 0.707 | 0.707 | 1.9 | 1.9 | ∞ | | Hemispherical Isotropy | E.2.2 | 9.6 | R | 1.73 | 0.707 | 0.707 | 3.9 | 3.9 | ∞ | | Boundary Effect | E.2.3 | 1.0 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | ∞ | | Linearity | E.2.4 | 4.7 | R | 1.73 | 1 | 1 | 2.7 | 2.7 | 8 | | System Detection Limits | E.2.5 | 1.0 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | 8 | | Readout Electronics | E.2.6 | 0.3 | N | 1.00 | 1 | 1 | 0.3 | 0.3 | 8 | | Response Time | E.2.7 | 1.1 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | 8 | | Integration Time | E.2.8 | 1.1 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | 8 | | RF Ambient Conditions - Noise | E.6.1 | 3.0 | R | 1.73 | 1 | 1 | 1.7 | 1.7 | 8 | | RF Ambient Conditions - Reflections | E.6.1 | 0.0 | R | 1.73 | 1 | 1 | 0.0 | 0.0 | 8 | | Probe Positioner Mech. Tolerance | E.6.2 | 0.4 | R | 1.73 | 1 | 1 | 0.2 | 0.2 | 8 | | Probe Positioning w.r.t Phantom | E.6.3 | 1.4 | R | 1.73 | 1 | 1 | 0.8 | 0.8 | 8 | | Max. SAR Evaluation (ext., int., | | | | | | | | | | | avg.) | E.5 | 3.4 | R | 1.73 | 1 | 1 | 2.0 | 2.0 | 8 | | Test sample Related | | | | | | | | | | | Test Sample Positioning | E.4.2 | 3.2 | N | 1.00 | 1 | 1 | 3.2 | 3.2 | 29 | | Device Holder Uncertainty | E.4.1 | 4.0 | N | 1.00 | 1 | 1 | 4.0 | 4.0 | 8 | | SAR drift | 6.6.2 | 5.0 | R | 1.73 | 1 | 1 | 2.9 | 2.9 | 8 | | Phantom and Tissue Parameters | | | | | | | | | | | Phantom Uncertainty | E.3.1 | 4.0 | R | 1.73 | 1 | 1 | 2.3 | 2.3 | 8 | | Liquid Conductivity (target) | E.3.2 | 5.0 | R | 1.73 | 0.64 | 0.43 | 1.8 | 1.2 | 8 | | Liquid Conductivity (measurement) | E.3.3 | 3.3 | N | 1.00 | 0.64 | 0.43 | 2.1 | 1.4 | 8 | | Liquid Permittivity (target) | E.3.2 | 5.0 | R | 1.73 | 0.6 | 0.49 | 1.7 | 1.4 | 8 | | Liquid Permittivity (measurement) | E.3.3 | 1.9 | N | 1.00 | 0.6 | 0.49 | 1.1 | 0.9 | 8 | | Combined Standard Uncertainty | | | RSS | | | | 12 | 11 | 482 | | Expanded Uncertainty (95% CONFIDENCE LEVEL) | | | k=2 | | | | 23 | 22 | | | (9370 CONTIDENCE LEVEL) | | | κ – Δ | | | | 23 | 22 | | - a) Column headings *a-k* are given for reference. - b) Tol. tolerance in influence quantity. - c) Prob. Dist. Probability distribution - d) N, R normal, rectangular probability distributions - e) Div. divisor used to translate tolerance into normally distributed standard uncertainty - f) *ci* sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR. - g) ui SAR uncertainty - h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty Uncertainty Budget for System Validation (dipole & flat phantom) for 450 MHz | Officertainty Dudget for System | , and | (42 | pore ee | mut pmu | 100111) | 101 100 | TVILLE | | | |--|-------------|------|----------|---------|---------|---------|--------------------|--------------------|----------| | | | | | | | | h = | <i>i</i> = | | | | | | | e = | | | cxf/ | $c \times g$ | | | a | b | c | <u>d</u> | f(d,k) | f | g | e | / e | k | | | | Tol. | Prob. | | c_i | c_i | 1 g | 10 g | | | | IEEE | (± % | | | | | | | | | | 1528 |) | Dist. | | (1 g) | (10 g) | \boldsymbol{u}_i | \boldsymbol{u}_i | | | Uncertainty Component | section | | | Div. | | | (±%) | (±%) | v_i | | Measurement System | | | | | | | | | | | Probe Calibration | E.2.1 | 6.7 | N | 1.00 | 1 | 1 | 6.7 | 6.7 | 8 | | Axial Isotropy | E.2.2 | 4.7 | R | 1.73 | 1 | 1 | 2.7 | 2.7 | 8 | | Spherical Isotropy | E.2.2 | 9.6 | R | 1.73 | 0 | 0 | 0.0 | 0.0 | ∞ | | Boundary Effect | E.2.3 | 1.0 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | ∞ | | Linearity | E.2.4 | 4.7 | R | 1.73 | 1 | 1 | 2.7 | 2.7 | ∞ | | System Detection Limits | E.2.5 | 1.0 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | ∞ | | Readout Electronics | E.2.6 | 0.3 | N | 1.00 | 1 | 1 | 0.3 | 0.3 | ∞ | | Response Time | E.2.7 | 1.1 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | 8 | | Integration Time | E.2.8 | 0.0 | R | 1.73 | 1 | 1 | 0.0 | 0.0 | ∞ | | RF Ambient Conditions - Noise | E.6.1 | 3.0 | R | 1.73 | 1 | 1 | 1.7 | 1.7 | ∞ |
| RF Ambient Conditions - Reflections | E.6.1 | 0.0 | R | 1.73 | 1 | 1 | 0.0 | 0.0 | ∞ | | Probe Positioner Mechanical Tolerance | E.6.2 | 0.4 | R | 1.73 | 1 | 1 | 0.2 | 0.2 | ∞ | | Probe Positioning w.r.t. Phantom | E.6.3 | 1.4 | R | 1.73 | 1 | 1 | 0.8 | 0.8 | ∞ | | Max. SAR Evaluation (ext., int., avg.) | E.5 | 3.4 | R | 1.73 | 1 | 1 | 2.0 | 2.0 | ∞ | | Dipole | | | | | | | | | | | Dipole Axis to Liquid Distance | 8,
E.4.2 | 2.0 | R | 1.73 | 1 | 1 | 1.2 | 1.2 | ∞ | | Input Power and SAR Drift Measurement | 8, 6.6.2 | 5.0 | R | 1.73 | 1 | 1 | 2.9 | 2.9 | ∞ | | Phantom and Tissue Parameters | <u> </u> | | | | | | | | | | Phantom Uncertainty | E.3.1 | 4.0 | R | 1.73 | 1 | 1 | 2.3 | 2.3 | ∞ | | Liquid Conductivity (target) | E.3.2 | 5.0 | R | 1.73 | 0.64 | 0.43 | 1.8 | 1.2 | ∞ | | Liquid Conductivity (measurement) | E.3.3 | 3.3 | R | 1.73 | 0.64 | 0.43 | 1.2 | 0.8 | 8 | | Liquid Permittivity (target) | E.3.2 | 5.0 | R | 1.73 | 0.6 | 0.49 | 1.7 | 1.4 | ∞ | | Liquid Permittivity (measurement) | E.3.3 | 1.9 | R | 1.73 | 0.6 | 0.49 | 0.6 | 0.5 | ∞ | | Combined Standard Uncertainty | | | RSS | | | | 10 | 9 | 99999 | | Expanded Uncertainty | | | | | | | | | | | (95% CONFIDENCE LEVEL) | | | k=2 | | | | 19 | 18 | | - a) Column headings *a-k* are given for reference. - b) Tol. Tolerance in influence quantity. - c) Prob. Dist. Probability distribution - d) N, R normal, rectangular probability distributions - e) Div. divisor used to translate tolerance into normally distributed standard uncertainty - f) *ci* sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR. - g) ui SAR uncertainty - h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty Uncertainty Budget for Device Under Test, for 2450 MHz | Uncertainty Budget for Device (| Jiiuci | 1 (31, 10 | 1 4750 | MIII | | | | | | |--|---------|-----------|--------|--------|-------|--------|--------------------|--------------------|----------| | | | | | | | | <i>h</i> = | <i>i</i> = | | | | | | | e = | | | cxf/ | c x g / | | | a | b | c | d | f(d,k) | f | g | e | e | k | | | IEEE | Tol. | Prob | | c_i | c_i | 1 g | 10 g | | | | 1528 | (± %) | Dist | | (1 g) | (10 g) | \boldsymbol{u}_i | \boldsymbol{u}_i | | | Uncertainty Component | section | | | Div. | | | (±%) | (±%) | v_i | | Measurement System | | | | | | | | | | | Probe Calibration | E.2.1 | 6.0 | N | 1.00 | 1 | 1 | 6.0 | 6.0 | 8 | | Axial Isotropy | E.2.2 | 4.7 | R | 1.73 | 0.707 | 0.707 | 1.9 | 1.9 | 8 | | Hemispherical Isotropy | E.2.2 | 9.6 | R | 1.73 | 0.707 | 0.707 | 3.9 | 3.9 | 8 | | Boundary Effect | E.2.3 | 1.0 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | 8 | | Linearity | E.2.4 | 4.7 | R | 1.73 | 1 | 1 | 2.7 | 2.7 | 8 | | System Detection Limits | E.2.5 | 1.0 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | 8 | | Readout Electronics | E.2.6 | 0.3 | N | 1.00 | 1 | 1 | 0.3 | 0.3 | 8 | | Response Time | E.2.7 | 1.1 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | 8 | | Integration Time | E.2.8 | 1.1 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | 8 | | RF Ambient Conditions - Noise | E.6.1 | 3.0 | R | 1.73 | 1 | 1 | 1.7 | 1.7 | ∞ | | RF Ambient Conditions - Reflections | E.6.1 | 0.0 | R | 1.73 | 1 | 1 | 0.0 | 0.0 | 8 | | Probe Positioner Mech. Tolerance | E.6.2 | 0.4 | R | 1.73 | 1 | 1 | 0.2 | 0.2 | ∞ | | Probe Positioning w.r.t Phantom | E.6.3 | 1.4 | R | 1.73 | 1 | 1 | 0.8 | 0.8 | 8 | | Max. SAR Evaluation (ext., int., avg.) | E.5 | 3.4 | R | 1.73 | 1 | 1 | 2.0 | 2.0 | 8 | | Test sample Related | | | | | | | | | | | Test Sample Positioning | E.4.2 | 3.2 | N | 1.00 | 1 | 1 | 3.2 | 3.2 | 29 | | Device Holder Uncertainty | E.4.1 | 4.0 | N | 1.00 | 1 | 1 | 4.0 | 4.0 | 8 | | SAR drift | 6.6.2 | 5.0 | R | 1.73 | 1 | 1 | 2.9 | 2.9 | ∞ | | Phantom and Tissue Parameters | | | | | | | | | | | Phantom Uncertainty | E.3.1 | 4.0 | R | 1.73 | 1 | 1 | 2.3 | 2.3 | ∞ | | Liquid Conductivity (target) | E.3.2 | 5.0 | R | 1.73 | 0.64 | 0.43 | 1.8 | 1.2 | ∞ | | Liquid Conductivity (measurement) | E.3.3 | 3.3 | N | 1.00 | 0.64 | 0.43 | 2.1 | 1.4 | 8 | | Liquid Permittivity (target) | E.3.2 | 5.0 | R | 1.73 | 0.6 | 0.49 | 1.7 | 1.4 | ∞ | | Liquid Permittivity (measurement) | E.3.3 | 1.9 | N | 1.00 | 0.6 | 0.49 | 1.1 | 0.9 | ∞ | | Combined Standard Uncertainty | | | RSS | | | | 11 | 11 | 419 | | Expanded Uncertainty | | | | | | | | | | | (95% CONFIDENCE LEVEL) | | | k=2 | | | | 22 | 22 | | - a) Column headings a-k are given for reference. - b) Tol. Tolerance in influence quantity. - c) Prob. Dist. Probability distribution - d) N, R normal, rectangular probability distributions - e) Div. divisor used to translate tolerance into normally distributed standard uncertainty - f) *ci* sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR. - g) ui SAR uncertainty - h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty Uncertainty Budget for System Validation (dipole & flat phantom) for 2450 MHz | Officertainty Dudget for System v | anaanon | (uipoi | c ex mat | phanton | 11) 101 2 | 150 IVI | | | | |--|-----------|--------|----------|------------|-----------|---------|--------------------|--------------------|----------| | | | | | | | | h = | <i>i</i> = | | | | | | | <i>e</i> = | | | cxf/ | c x g / | | | a | b | С | d | f(d,k) | f | g | e | e | k | | | | Tol. | Prob. | | c_i | c_i | 1 g | 10 g | | | | | (± % | | | | | | | | | | IEEE 1528 |) | Dist. | | (1 g) | (10 g) | \boldsymbol{u}_i | \boldsymbol{u}_i | | | Uncertainty Component | section | | | Div. | | | (±%) | (±%) | v_i | | Measurement System | | | | | | | | | | | Probe Calibration | E.2.1 | 6.0 | N | 1.00 | 1 | 1 | 6.0 | 6.0 | ∞ | | Axial Isotropy | E.2.2 | 4.7 | R | 1.73 | 1 | 1 | 2.7 | 2.7 | ∞ | | Spherical Isotropy | E.2.2 | 9.6 | R | 1.73 | 0 | 0 | 0.0 | 0.0 | ∞ | | Boundary Effect | E.2.3 | 1.0 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | ∞ | | Linearity | E.2.4 | 4.7 | R | 1.73 | 1 | 1 | 2.7 | 2.7 | ∞ | | System Detection Limits | E.2.5 | 1.0 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | ∞ | | Readout Electronics | E.2.6 | 0.3 | N | 1.00 | 1 | 1 | 0.3 | 0.3 | ∞ | | Response Time | E.2.7 | 1.1 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | ∞ | | Integration Time | E.2.8 | 0.0 | R | 1.73 | 1 | 1 | 0.0 | 0.0 | ∞ | | RF Ambient Conditions - Noise | E.6.1 | 3.0 | R | 1.73 | 1 | 1 | 1.7 | 1.7 | ∞ | | RF Ambient Conditions - Reflections | E.6.1 | 0.0 | R | 1.73 | 1 | 1 | 0.0 | 0.0 | ∞ | | Probe Positioner Mechanical Tolerance | E.6.2 | 0.4 | R | 1.73 | 1 | 1 | 0.2 | 0.2 | ∞ | | Probe Positioning w.r.t. Phantom | E.6.3 | 1.4 | R | 1.73 | 1 | 1 | 0.8 | 0.8 | ∞ | | Max. SAR Evaluation (ext., int., avg.) | E.5 | 3.4 | R | 1.73 | 1 | 1 | 2.0 | 2.0 | ∞ | | Dipole | | | | | | | | | | | Dipole Axis to Liquid Distance | 8, E.4.2 | 2.0 | R | 1.73 | 1 | 1 | 1.2 | 1.2 | ∞ | | Input Power and SAR Drift Measurement | 8, 6.6.2 | 5.0 | R | 1.73 | 1 | 1 | 2.9 | 2.9 | ∞ | | Phantom and Tissue Parameters | | | | | | | | | | | Phantom Uncertainty | E.3.1 | 4.0 | R | 1.73 | 1 | 1 | 2.3 | 2.3 | ∞ | | Liquid Conductivity (target) | E.3.2 | 5.0 | R | 1.73 | 0.64 | 0.43 | 1.8 | 1.2 | ∞ | | Liquid Conductivity (measurement) | E.3.3 | 3.3 | R | 1.73 | 0.64 | 0.43 | 1.2 | 0.8 | ∞ | | Liquid Permittivity (target) | E.3.2 | 5.0 | R | 1.73 | 0.6 | 0.49 | 1.7 | 1.4 | ∞ | | Liquid Permittivity (measurement) | E.3.3 | 1.9 | R | 1.73 | 0.6 | 0.49 | 0.6 | 0.5 | ∞ | | | | | | | | | | | 9999 | | Combined Standard Uncertainty | | | RSS | | | | 9 | 9 | 9 | | Expanded Uncertainty | | | | | | | | | | | (95% CONFIDENCE LEVEL) | | | k=2 | | | | 18 | 17 | | - a) Column headings a-k are given for reference. - b) Tol. Tolerance in influence quantity. - c) Prob. Dist. Probability distribution - d) N, R normal, rectangular probability distributions - e) Div. divisor used to translate tolerance into normally distributed standard uncertainty - f) ci sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR. - g) ui SAR uncertainty - h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty # Appendix B Probe Calibration Certificates Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Motorola Solutions MY Certificate No: EX3-7486_Jun21 ## CALIBRATION CERTIFICATE Object EX3DV4 - SN:7486 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v6, QA CAL-23.v5. QA CAL-25.v7 Calibration procedure for dosimetric E-field probes Calibration date: June 18, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID . | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power mater NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 |
SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: CC2552 (20x) | 09-Apr-21 (No. 217-03343) | Apr-22 | | DAE4 | SN: 660 | 23-Dec-20 (No. DAE4-660_Dec20) | Dec-21 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-20 (No. ES3-3013, Dec20) | Dec-21 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E44198 | SN: GB41293874 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-20) | In house check: Jun-22 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | | | | | | Calibrated by: Jeton Kastreti Laboratory Technician Approved by: Katja Pokovic Technical Manager Insued: June 21, 2021 Certificate No: EX3-7486_Jun21 Page 1 of 23 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A. B, C, D modulation dependent linearization parameters Polarization φ rotation around probe axis Polarization 3 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle; The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-7486_Jun21 Page 2 of 23 EX3DV4 - \$N:7486 June 18, 2021 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7486 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (µV/(V/m) ²) ^A | 0.38 | 0.47 | 0.49 | ± 10.1 % | | DCP (mV) ⁸ | 99.0 | 91.5 | 97.5 | | Calibration Results for Modulation Response | UID | Communication System Name | | dB | B
dB√μV | С | D
dB | VR
mV | Max
dev. | Max
Unc ^E
(k=2) | | |--------|-----------------------------|---|-------|------------|-------|------------|----------|------------------|---|--------| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 133.9 | ± 3.3 % | ± 4.7 % | | | | 20000000 | Y | 0.00 | 0.00 | 1,00 | Semilar | 137.2 | CONTRACTOR STATE | 10000000-100 | | | | | 2 | 0.00 | 0.00 | 1.00 | January 1 | 135.5 | | | | | 10352- | Pulse Waveform (200Hz, 10%) | X | 6.91 | 76.74 | 14.90 | 10.00 | 60.0 | ± 4.2 % | ± 9.6 % | | | AAA | | Y | 10.94 | 82.20 | 16.58 | 00000000 | 60.0 | 5.000.241259.500 | | | | | | Z | 20.00 | 91.76 | 20.63 | ll | 60.0 | | | | | 10353- | Pulse Waveform (200Hz, 20%) | X | 20.00 | 88.86 | 17.47 | 6.99 | 0.08 | ±2.9% | ± 9.6 % | | | AAA | | Y | 20.00 | 89.09 | 17.63 | 20000 | 80.0 | | 120000000000000000000000000000000000000 | | | | | 2 | 20.00 | 96.75 | 21.92 | 0 | 80.0 | 1 | | | | 10354- | Pulse Waveform (200Hz, 40%) | X | 20.00 | 95.06 | 19.03 | 3.98 | 95.0 | ±1.8% | ± 9.6 % | | | AAA | | Y | 20.00 | 92.53 | 18.10 | (Section) | 95.0 | | 53753557 | | | | | Z | 20.00 | 110.11 | 26.85 | | 95.0 | 1 | | | | 10355- | Pulse Waveform (200Hz, 60%) | X | 20.00 | 110.08 | 24.67 | 2.22 | 120.0 | ±1.1% | ± 9.6 % | | | AAA | | Y | 20.00 | 100.93 | 20.96 | Stables | 120.0 | 1 | CONTROLLY | G35570 | | | 1 | Z | 20.00 | 129.65 | 34.26 | | 120,0 | | | | | 10387- | QPSK Waveform, 1 MHz | X | 1.70 | 67.37 | 15.57 | 1.00 | 150.0 | ±2.1% | ± 9.6 % | | | AAA | STATE OF STATE AND ADDRESS. | Y | 1.87 | 67.98 | 16.23 | | 150.0 | | 0.333.03 | | | | | Z | 1.76 | 67.40 | 15.78 | | 150.0 | 1 | | | | 10388- | QPSK Waveform, 10 MHz | X | 2.20 | 68.20 | 16.06 | 0.00 | 150.0 | ± 1.1 % | ±9.6% | | | AAA | | Y | 2,49 | 69.66 | 16.90 | 333630 | 150.0 | | 100000000000000000000000000000000000000 | | | | | Z | 2.30 | 68.67 | 16.34 | 1 | 150.0 | 1 | | | | 10396- | 64-QAM Waveform, 100 kHz | X | 2.65 | 70.40 | 19.07 | 3.01 | 150.0 | ±1.2% | ± 9.6 % | | | AAA | | Y | 2.42 | 67.66 | 18.00 | 23,43,5 | 150.0 | | 1500000 | | | | | Z | 3.07 | 72.66 | 20.27 | 1 | 150.0 | 1 | | | | 10399- | 64-QAM Waveform, 40 MHz | X | 3.50 | 67.23 | 15.93 | 0.00 | 150.0 | ±1.2% | ±9.6% | | | AAA | 150 | Y | 3.58 | 67.22 | 16.14 | (25)(52) | 150.0 | 100000 | 1000000 | | | | 1 | Z | 3.57 | 67.43 | 16.09 | | 150.0 | | | | | 10414- | WLAN CCDF, 64-QAM, 40MHz | X | 4.81 | 65.83 | 15.67 | 0.00 | 150.0 | ±1.9% | ± 9.6 % | | | AAA | 20 20 | Y | 4.89 | 65.53 | 15.74 | 15 | 150.0 | 1 | 100 | | | | | Z | 4.89 | 65.87 | 15.76 | - 1 | 150.0 | 1 | | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: EX3-7486_Jun21 Page 3 of 23 The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). Numerical linearization parameter: uncertainty not required. Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EX3DV4-- SN:7486 June 18, 2021 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7486 #### Sensor Model Parameters | | C1
fF | C2
fF | α
V-1 | T1
ms.V ⁻² | T2
ms.V ⁻¹ | T3
ms | T4
V-2 | T5
V ⁻¹ | Т6 | |---|----------|----------|----------|--------------------------|--------------------------|----------|-----------|-----------------------|------| | X | 37.0 | 271.91 | 34.67 | 6.55 | 0.05 | 4.99 | 1.70 | 0.00 | 1.01 | | Y | 44.1 | 342.17 | 38.13 | 10.19 | 0.00 | 5.01 | 0.00 | 0.31 | 1.00 | | Z | 40.8 | 304.97 | 35.65 | 8.14 | 0.00 | 5.05 | 1.92 | 0.03 | 1.01 | #### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -159,9 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y
Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job. Certificate No: EX3-7486_Jun21 Page 4 of 23 EX3DV4- SN:7486 June 18, 2021 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7486 Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ⁶
(mm) | Unc
(k=2) | |----------------------|--------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 150 | 52,3 | 0.76 | 13.52 | 13.52 | 13.52 | 0.00 | 1.00 | ± 13.3 % | | 300 | 45.3 | 0.87 | 12.20 | 12.20 | 12.20 | 0.09 | 1.25 | ± 13.3 % | | 450 | 43.5 | 0.87 | 11.24 | 11.24 | 11.24 | 0.16 | 1.30 | ± 13.3 % | | 750 | 41.9 | 0.89 | 10.44 | 10.44 | 10.44 | 0.48 | 0.80 | ± 12.0 % | | 835 | 41.5 | 0.90 | 10.15 | 10.15 | 10.15 | 0.29 | 1.13 | ± 12.0 9 | | 900 | 41.5 | 0.97 | 10.02 | 10.02 | 10.02 | 0.38 | 0.92 | ± 12.0 9 | | 1450 | 40.5 | 1.20 | 8.99 | 8.99 | 8,99 | 0.32 | 0.80 | ± 12.0 9 | | 1810 | 40.0 | 1,40 | 8.58 | 8.58 | 8.58 | 0.30 | 0.86 | ± 12.0 9 | | 1900 | 40.0 | 1.40 | 8.37 | 8.37 | 8.37 | 0.28 | 0.86 | ± 12.0 9 | | 2100 | 39.8 | 1.49 | 8.32 | 8.32 | 8.32 | 0.31 | 0.84 | ± 12.0 9 | | 2300 | 39.5 | 1.67 | 8.02 | 8.02 | 8.02 | 0.33 | 0.90 | ± 12.0 9 | | 2450 | 39.2 | 1.80 | 7.69 | 7.69 | 7.69 | 0.30 | 0.85 | ± 12.0 9 | | 2600 | 39.0 | 1.96 | 7.38 | 7.38 | 7.38 | 0.35 | 0.85 | ± 12.0 9 | | 3500 | 37.9 | 2.91 | 7.20 | 7.20 | 7.20 | 0.30 | 1.35 | ± 14.0 9 | | 3700 | 37.7 | 3.12 | 7.11 | 7.11 | 7.11 | 0.30 | 1.35 | ± 14.0 9 | | 5250 | 35.9 | 4.71 | 5.46 | 5.46 | 5.46 | 0.40 | 1.80 | ± 14.0 9 | | 5500 | 35.6 | 4.96 | 4.93 | 4.93 | 4.93 | 0.40 | 1.80 | ± 14.0 % | | 5600 | 35.5 | 5.07 | 4.73 | 4.73 | 4.73 | 0.40 | 1.80 | ± 14.0 9 | | 5750 | 35.4 | 5.22 | 4.90 | 4.90 | 4.90 | 0.40 | 1.80 | ± 14.0 % | Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (ace Page 2), also it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. At frequencies up to 6 GHz, the validity of tissue parameters (s and a) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Application are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies believed 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Certificate No: EX3-7486_Jun21 Page 5 of 23 diameter from the boundary. EX3DV4-SN:7486 June 18, 2021 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7486 #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ⁶
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 150 | 61.9 | 0.80 | 13.16 | 13.16 | 13.16 | 0.00 | 1.00 | ± 13.3 % | | 300 | 58.2 | 0.92 | 11.73 | 11.73 | 11.73 | 0.04 | 1.25 | ± 13.3 9 | | 450 | 56.7 | 0.94 | 11.40 | 11.40 | 11.40 | 0.11 | 1.20 | ± 13.3 9 | | 750 | 55.5 | 0.96 | 10.20 | 10.20 | 10.20 | 0.45 | 0.85 | ± 12.0 9 | | 835 | 55.2 | 0.97 | 9.91 | 9.91 | 9.91 | 0.37 | 0.95 | ± 12.0 9 | | 900 | 55.0 | 1.05 | 9.71 | 9.71 | 9.71 | 0.36 | 0.99 | ± 12.0 9 | | 1450 | 54.0 | 1.30 | 9.02 | 9.02 | 9.02 | 0.40 | 0.80 | ± 12.0 9 | | 1810 | 53.3 | 1.52 | 8.28 | 8.28 | 8.28 | 0.40 | 0.86 | ± 12.0 9 | | 1900 | 53.3 | 1.52 | 8.12 | 8.12 | 8.12 | 0.36 | 0,95 | ± 12.0 9 | | 2100 | 53.2 | 1.62 | 8.10 | 8.10 | 8.10 | 0.33 | 1,00 | ± 12.0 9 | | 2300 | 52.9 | 1.81 | 7.84 | 7.84 | 7.84 | 0.45 | 0.90 | ± 12.0 9 | | 2450 | 52.7 | 1.95 | 7.65 | 7.65 | 7.65 | 0.45 | 0.90 | ± 12.0 9 | | 2600 | 52.5 | 2.16 | 7.46 | 7.46 | 7.46 | 0.33 | 08,0 | ± 12.0 9 | | 3500 | 51,3 | 3.31 | 6.52 | 6.52 | 6.52 | 0.40 | 1.35 | ± 14.0 9 | | 3700 | 51.0 | 3.55 | 6.42 | 6.42 | 6.42 | 0.40 | 1.35 | ± 14.0 % | | 5250 | 48.9 | 5.36 | 4.70 | 4.70 | 4.70 | 0.50 | 1.90 | ± 14.0 9 | | 5500 | 48.6 | 5.65 | 4.14 | 4.14 | 4.14 | 0.50 | 1.90 | ± 14.0 % | | 5600 | 48.5 | 5.77 | 4.08 | 4.08 | 4.08 | 0.50 | 1.90 | ± 14.0 9 | | 5750 | 48.3 | 5.94 | 4.19 | 4.19 | 4.19 | 0.50 | 1.90 | ± 14.0 9 | ⁶ Frequency validity abovs 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 5 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. *A frequencies up to 6 GHz, the validity of tissue parameters (a and o) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. *Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. diameter from the boundary. Certificate No: EX3-7486_Jun21 Page 6 of 23 EX3DV4- SN:7486 June 18, 2021 ## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: EX3-7486_Jun21 Page 7 of 23 # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: EX3-7486_Jun21 Page 9 of 23 # Conversion Factor Assessment # Deviation from Isotropy in Liquid Error (ø, ð), f = 900 MHz Certificate No: EX3-7486_Jun21 Page 10 of 23 EX3DV4- SN:7486 June 18, 2021 ### **Appendix: Modulation Calibration Parameters** | UID | Rev | Communication System Name | Group | PAR
(dB) | Unc ^e
(k=2) | |-------|-----|---|-----------|-------------|---------------------------| | 0 | | CW | CW | 0.00 | ±4.7 % | | 10010 | CAA | SAR Validation (Square, 100ms, 10ms) | Test | 10.00 | ± 9.6 % | | 10011 | CAB | UMTS-FDD (WCDMA) | WCDMA. | 2.91 | ± 9.6 % | | 10012 | CAB | IEEE 802.11b WIFI 2.4 GHz (DSSS, 1 Mbps) | WLAN | 1.87 | ± 9.6 % | | 10013 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps) | WLAN | 9.46 | ± 9.6 % | | 10021 | DAC | GSM-FDD (TDMA, GMSK) | GSM | 9.39 | ± 9.6 % | | 10023 | DAC | GPRS-FDD (TDMA, GMSK, TN 0) | GSM | 9.57 | ± 9.6 % | | 10024 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1) | GSM | 6.56 | ± 9.6 % | | 10025 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0) | GSM | 12.62 | ± 9.6 % | | 10026 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1) | GSM | 9.55 | ± 9.6 % | | 10027 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2) | GSM | 4.80 | ± 9.6 % | | 10028 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3) | GSM | 3.55 | ± 9.6 % | | 10029 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2) | GSM | 7.78 | ± 9.6 % | | 10030 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH1) | Bluetooth | 5.30 | ±9.6 % | | 10031 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH3) | Bluetooth | 1.87 | ±9.6% | | 10032 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH5) | Bluetooth | 1.16 | ± 9.6 % | | 10033 | CAA | IEEE 802.15.1 Bluetooth (PV4-DQPSK, DH1) | Bluetooth | 7.74 | ± 9.6 % | | 10034 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3) | Bluetooth | 4.53 | ± 9.6 % | | 10035 | CAA | IEEE 802,15.1 Bluetooth (PI/4-DQPSK, DH5) | Bluetooth | 3.83 | ± 9.6 % | | 10036 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH1) | Bluetooth | 8.01 | ±9.6 % | | 10037 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH3) | Bluetooth | 4.77 | ± 9.6 % | | 10038 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH5) | Bluetooth | 4.10 | ± 9.6 % | | 10039 | CAB | CDMA2000 (1xRTT, RC1) | CDMA2000 | 4.57 | ± 9.6 % | | 10042 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate) | AMPS | 7.78 | ± 9.6 % | | 10044 | CAA | IS-91/EIA/TIA-553 FDD (FDMA, FM) | AMPS | 0.00 | ± 9.6 % | | 10048 | CAA | DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24) | DECT | 13.80 | ± 9.6 % | | 10049 | CAA | DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12) | DECT | 10.79 | ± 9.6 % | | 10056 | CAA | UMTS-TOD (TD-SCDMA, 1.28 Mcps) | TD-SCDMA | 11.01 | ± 9.6 % | | 10058 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) | GSM. | 6.52 | 10000000 | | 10059 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps) | WLAN | 2.12 | ± 9.6 % | | 10060 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps) | WLAN | 2.12 | ± 9.6 % | | 10061 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps) | WLAN | 3.60 | ± 9.6 % | | 10062 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps) | WLAN | 2/14/200 | ± 9.6 % | | 10063 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps) | WLAN | 8.68 | ± 9.6 % | | 10064 | CAD | IEEE 802.11a/h WiFl 5 GHz (OFDM, 12 Mbps) | WLAN | 8.63 | ± 9.6 % | | 10065 | CAD | IEEE 802.11a/h WIFI 5 GHz (OFDM, 18 Mbps) | WLAN | 9.09 | ± 9.6 % | | 10066 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps) | WLAN | 9.00 | ± 9.6 % | | 10067 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps) | WLAN | 9.38 | ± 9.6 % | | 10068 | CAD
 IEEE 802.11a/h WIFI 5 GHz (OFDM, 48 Mbps) | | 10.12 | ± 9.6 % | | 10069 | CAD | IEEE 802,11ah WIFI 5 GHz (OFDM, 46 Mbps) | WLAN | 10.24 | ± 9.6 % | | 10071 | - | IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 9 Mbps) | WLAN | 10.56 | ± 9.6 % | | 10072 | CAB | IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 9 Mbps) | WLAN | 9.83 | ± 9.6 % | | 10072 | CAB | IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 12 Mbps) | WLAN | 9.62 | ± 9.6 % | | 10074 | CAB | IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 18 Mbps) | WLAN | 9.94 | ± 9.6 % | | 10075 | CAB | | WLAN | 10.30 | ± 9.6 % | | 10076 | CAB | IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 36 Mbps) | WLAN | 10.77 | ± 9.6 % | | 10076 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/ÖFDM, 48 Mbps) | WLAN | 10.94 | ± 9.6 % | | 0.000 | CAB | IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 54 Mbps) | WLAN | 11.00 | ± 9.6 % | | 10081 | CAB | CDMA2000 (1xRTT, RC3) | CDMA2000 | 3.97 | ± 9.6 % | | 10082 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate) | AMPS | 4.77 | ± 9.6 % | | 10090 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-4) | GSM | 6.56 | ± 9.6 % | | 10097 | CAC | UMTS-FDD (HSDPA) | WCDMA | 3.98 | ±9.6 % | | 10098 | DAC | UMTS-FDD (HSUPA, Subtest 2) | WCDMA | 3.98 | ± 9.6 % | Certificate No: EX3-7486_Jun21 Page 11 of 23 | 10099 | CAC | EDGE-FDD (TDMA, 8PSK, TN 0-4) | GSM | 9.55 | ± 9.6 % | |-------|-----|--|---------|-------|---------| | 10100 | CAC | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-FDD | 5.67 | ± 9.6 % | | 10101 | CAB | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-FDD | 6.42 | ± 9.6 % | | 10102 | CAB | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) | LTE-FDD | 6.60 | ± 9.6 % | | 10103 | DAC | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-TDD | 9.29 | ± 9.6 % | | 10104 | CAE | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-TOD | 9.97 | ± 9.6 % | | 10105 | CAE | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) | LTE-TOO | 10.01 | ± 9.6 % | | 10108 | CAE | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-FOD | 5.80 | ± 9.6 % | | 10109 | CAG | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-FOO | 6.43 | ±9.6 % | | 10110 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | LTE-FDD | 5.75 | ± 9.6 % | | 10111 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | LTE-FOO | 6.44 | ± 9.6 % | | 10112 | CAG | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) | LTE-FDO | 6.59 | ± 9.6 % | | 10113 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | LTE-FDO | 6.62 | ± 9.6 % | | 10114 | CAG | IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK) | WLAN | 8.10 | ± 9.6 % | | 10115 | CAG | IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM) | WLAN | 8.46 | ± 9.6 % | | 10116 | CAG | IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM) | WLAN | 8.15 | ± 9.6 % | | 10117 | CAG | IEEE 802,11n (HT Mixed, 13.5 Mbps, BPSK) | WLAN | 8.07 | ± 9.6 % | | 10118 | CAD | IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM) | WLAN | 8.59 | ± 9.6 % | | 10119 | CAD | IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM) | WLAN | 8.13 | ± 9.6 % | | 10140 | CAD | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-FDD | 6.49 | ±9.6% | | 10141 | CAD | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 84-QAM) | LTE-FDD | 6.53 | ±9.6 % | | 10142 | CAD | LTE-FDD (SC-FDMA, 190% RB, 3 MHz, QPSK) | LTE-FDO | 5.73 | ± 9.6 % | | 10143 | CAD | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | LTE-FDD | 6.35 | ± 9.6 % | | 10144 | CAC | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | LTE-FDD | 6.65 | ± 9.6 % | | 10145 | CAC | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-FDD | 5.76 | ± 9.6 % | | 10146 | CAC | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6,41 | ± 9.6 % | | 10147 | CAC | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.72 | ± 9.6 % | | 10149 | CAE | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-FDD | 6.42 | ± 9.6 % | | 10150 | CAE | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | LTE-FDO | 6.60 | ± 9.6 % | | 10151 | CAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | LTE-TOD | 9.28 | ± 9.6 % | | 10152 | CAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-TOO | 9.92 | ± 9.6 % | | 10153 | CAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | LTE-TOD | 10.05 | ± 9.6 % | | 10154 | CAF | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | LTE-FDD | 5.75 | ± 9.6 % | | 10155 | CAF | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-FDD | 6.43 | ± 9.6 % | | 10156 | CAF | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | LTE-FDD | 5.79 | ± 9.6 % | | 10157 | CAE | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | LTE-FDD | 6.49 | ± 9.6 % | | 10158 | CAE | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-FDD | 6.62 | ± 9.6 % | | 10159 | CAG | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-FDD | 6.56 | ± 9.6 % | | 10160 | CAG | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | LTE-FDD | 5.82 | ± 9.6 % | | 10161 | CAG | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-FDD | 6.43 | ± 9.6 % | | 10162 | CAG | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | LTE-FDD | 6.58 | ± 9.6 % | | 10166 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) | LTE-FDD | 5.46 | ± 9.6 % | | 10167 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.21 | ± 9.6 % | | 10168 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.79 | ± 9.6 % | | 10169 | CAG | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10170 | CAG | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10171 | CAE | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | LTE-FDD | 6.49 | ±9.6% | | 10172 | CAE | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | LTE-TDD | 9.21 | ± 9.6 % | | 10173 | CAE | LTE-TOD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10174 | CAF | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10175 | CAF | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | LTE-FDD | 5.72 | ± 9.6 % | | 10176 | CAF | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10177 | CAE | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10178 | CAE | LTE-FDD (SC-FDMA, 1 RB, 5 MHz., 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10179 | AAE | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | LTE-FDD | 6.50 | ±9.6 % | | 10180 | CAG | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | LYE-FOD | 6.50 | ± 9.6 % | Certificate No: EX3-7486_Jun21 Page 12 of 23 | 3225 (2.1.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | | |--|---------------| | EX3DV4 SN:7486 | June 18, 2021 | | 10181 | CAG | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | LTE-FDO | 5.72 | ± 9.6 % | |-------|-----|---|---------|-------|---------| | 10182 | CAG | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10183 | CAG | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10184 | CAG | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10185 | CAI | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) | LTE-FDD | 6.51 | ± 9.6 % | | 10186 | CAG | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10187 | CAG | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10188 | CAG | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10189 | CAE | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 84-QAM) | LTE-FDD | 6,50 | ± 9.6 % | | 10193 | CAE | IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK) | WLAN | 8.09 | ± 9.6 % | | 10194 | AAD | IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM) | WLAN | 8.12 | ± 9.6 % | | 10195 | CAE | IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM) | WLAN | 8.21 | ± 9.6 % | | 10196 | CAE | IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK) | WLAN | 8.10 | ± 9.6 % | | 10197 | AAE | IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM) | WLAN | 8.13 | ± 9.6 % | | 10198 | CAF | IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM) | WLAN | 6.27 | ± 9.6 % | | 10219 | CAF | IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK) | WLAN | 8.03 | ± 9.6 % | | 10220 | AAF | IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM) | WLAN | 8.13 | ±9.6 % | | 10221 | CAC | IEEE 802.11ri (HT Mixed, 72.2 Mbps, 64-QAM) | WLAN | 8.27 | ±9.6 % | | 10222 | CAC | IEEE 802.11n (HT Mixed, 15 Mbps, BPSK) | WLAN | 8.06 | ± 9.6 % | | 10223 | CAD | IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM) | WLAN | 8.48 | ± 9.6 % | | 10224 | CAD | IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM) | WLAN | 8.08 | ± 9.6 % | | 10225 | CAD | UMTS-FDD (HSPA+) | WCDMA | 5.97 | ± 9.6 % | | 10226 | CAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | LTE-TOO | 9.49 | ± 9.6 % | | 10227 | CAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | LTE-TOO | 10.26 | ±9.6 % | | 10228 | CAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-TOO | 9.22 | ± 9.6 % | | 10229 | DAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) | LTE-TDD | 9.48 | ±9.6% | | 10230 | CAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | LTE-TOO | 10.25 | ± 9.6 % | | 10231 | CAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-TOD | 9,19 | ± 9.6 % | | 10232 | CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | LTE-TOD | 9.48 | ± 9.6 % | | 10233 | CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10234 | CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | LTE-TDD | 9.21 | ± 9.6 % | | 10235 | CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz. 16-QAM) | LTE-TOD | 9.48 | ± 9.6 % | | 10236 | CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10237 | CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | LTE-TOD | 9.21 | ± 9.6 % | | 10238 | CAB | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10239 | CAB | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | LTE-TDD | 10.25 | ±9.6 % | | 10240 | CAB | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | LTE-TDD | 9.21 | ± 9.6 % | | 10241 | CAB | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-TOD | 9.82 | ± 9.6 % | | 10242 | CAD | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | LTE-TDD | 9.86 | ± 9.6 % | | 10243 | CAD | LTE-TDD (SC-FDMA, 50% RB, 1,4 MHz, QPSK) | LTE-TOD | 9.46 | ± 9.6 % | | 10244 | CAD | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | LTE-TOD | 10.06 | ± 9.6 % | | 10245 | CAG | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | LTE-TDD | 10.06 | ± 9.6 % | | 10246 | CAG | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK) |
LTE-TOD | 9.30 | ± 9.6 % | | 10247 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | LTE-TOD | 9.91 | ± 9.6 % | | 10248 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-TDD | 10.09 | ± 9.6 % | | 10249 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | LTE-TOD | 9.29 | ± 9.6 % | | 10250 | CAG | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-TDD | 9.81 | ± 9.6 % | | 10251 | CAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-TDD | 10.17 | ± 9.6 % | | 10252 | CAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | LTE-TDD | 9.24 | ± 9.6 % | | 10253 | CAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-TDD | 9.90 | ± 9.6 % | | 10254 | CAB | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 84-QAM) | LTE-TDD | 10.14 | ± 9.6 % | | 10255 | CAB | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | LTE-TDD | 9.20 | ± 9.6 % | | 10256 | CAB | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.96 | ± 9.6 % | | 10257 | CAD | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-TDD | 10.08 | ± 9.6 % | | 10258 | CAD | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-TDD | 9.34 | ±9.6 % | | 10259 | CAD | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | LTE-TOD | 9.98 | ±9.6 % | Certificate No: EX3-7486_Jun21 Page 13 of 23 | EX3DV4- SN:7486 | June 18, 2021 | |-----------------|----------------| | | Julie 10, 2021 | | 10260 | CAG | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | LTE-TDD | 9.97 | ± 9.6 % | |-------|-----|---|---|-------|---------| | 10261 | CAG | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | LTE-TDD | 9.24 | ± 9.6 % | | 10262 | CAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 18-QAM) | LTE-TDD | 9.83 | ± 9.6 % | | 10263 | CAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | LTE-TDD | 10.16 | ± 9.6 % | | 10264 | CAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | LTE-TOD | 9.23 | ± 9.6 % | | 10265 | CAG | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-TDD | 9.92 | ± 9.6 % | | 10266 | CAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) | LTE-TDD | 10.07 | ± 9.6 % | | 10267 | CAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-TOD | 9.30 | ± 9.6 % | | 10268 | CAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-TDD | 10.06 | ± 9.6 % | | 10269 | CAB | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM) | LTE-TDD | 10.13 | ± 9.6 % | | 10270 | CAB | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK) | LTE-TDD | 9.58 | ± 9.6 % | | 10274 | CAB | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10) | WCDMA | 4.87 | ± 9.6 % | | 10275 | CAD | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8,4) | WCDMA | 3.96 | ± 9.6 % | | 10277 | CAD | PHS (QPSK) | PHS | 11.81 | ± 9.6 % | | 10278 | CAD | PHS (QPSK, BW 884MHz, Rolloff 0.5) | PHS | 11.81 | ± 9.6 % | | 10279 | CAG | PHS (QPSK, BW 884MHz, Rolloff 0.38) | PHS | 12.18 | 19.6% | | 10290 | CAG | CDMA2000, RC1, SO55, Full Rate | CDMA2000 | 3.91 | ± 9.6 % | | 10291 | CAG | CDMA2000, RC3, SO55, Full Rate | CDMA2000 | 3.46 | | | 10292 | - | CDMA2000, RC3, SO32, Full Rate | CDMA2000 | | ± 9.6 % | | 10293 | CAG | CDMA2000, RC3, SO3, Full Rate | CDMA2000 | 3.39 | ± 9.6 % | | 10295 | - | CDMA2000, RC1, SO3, 1/8th Rate 25 fr. | Local Court | 3.50 | ± 9.6 % | | 10297 | CAG | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | CDMA2000 | 12.49 | ± 9.6 % | | 10298 | CAF | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | LTE-FDD | 5.81 | ± 9.6 % | | 10299 | CAF | | LTE-FDD | 5.72 | ± 9.6 % | | | CAF | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | LTE-FDD | 6.39 | ± 9.6 9 | | 10300 | CAC | LTE-FDO (SC-FDMA, 50% RB, 3 MHz, 84-QAM) | LTE-FDD | 6.60 | ±9.69 | | 1000 | CAC | IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC) | WIMAX | 12.03 | ± 9.6 9 | | 10302 | CAB | IEEE 802,16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3CTRL) | WIMAX | 12.57 | ± 9.6 % | | 10303 | CAB | IEEE 802.16e WIMAX (31:15, 5ms, 10MHz, 64QAM, PUSC) | WiMAX | 12,52 | ± 9.6 % | | 10304 | CAA | IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, 64QAM, PUSC) | WIMAX | 11.86 | ±9.6% | | 10305 | CAA | IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC) | WIMAX | 15.24 | ±9.6% | | 10306 | CAA | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 64QAM, PUSC) | WiMAX | 14.67 | ± 9.6 % | | 10307 | AAB | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC) | WiMAX | 14.49 | ± 9.6 % | | 10308 | AAB | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC) | WiMAX | 14.46 | ± 9.6 % | | 10309 | AAB | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM,AMC 2x3) | WiMAX | 14.58 | ± 9.6 % | | 10310 | AAB | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3 | WIMAX | 14.57 | ± 9.6 % | | 10311 | AAB | LTE-FDO (SC-FDMA, 100% RB, 15 MHz, QPSK) | LTE-FDD | 6.06 | ± 9.6 % | | 10313 | AAD | IDEN 1:3 | IDEN | 10.51 | ± 9.6 % | | 10314 | AAD | IDEN 1:8 | IDEN | 13.48 | ± 9.6 % | | 10315 | AAD | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc) | WLAN | 1.71 | ± 9.6 % | | 10316 | AAD | IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc) | WLAN | 8.36 | ± 9.6 % | | 10317 | AAA | IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc) | WLAN | 8.36 | ± 9.6 % | | 10352 | AAA | Pulse Waveform (200Hz, 10%) | Generic | 10.00 | ± 9.6 % | | 10353 | AAA | Pulse Waveform (200Hz, 20%) | Generic | 6.99 | ± 9.6 % | | 10354 | AAA | Pulse Waveform (200Hz, 40%) | Generic | 3.98 | ± 9.6 % | | 10355 | AAA | Pulse Waveform (200Hz, 60%) | Generic | 2.22 | ± 9.6 % | | 10356 | AAA | Pulse Waveform (200Hz, 80%) | Generic | 0.97 | ± 9.6 % | | 10387 | AAA | QPSK Waveform, 1 MHz | Generic | 5.10 | ± 9.6 % | | 10388 | AAA | QPSK Waveform, 10 MHz | Generic | 5.22 | ± 9.6 % | | 10396 | AAA | 64-QAM Waveform, 100 kHz | Generic | 6.27 | ± 9.6 % | | 10399 | AAA | 64-QAM Waveform, 40 MHz | Generic | 6.27 | ± 9.6 % | | 10400 | AAD | IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc) | WLAN | 8.37 | ±9.69 | | 10401 | AAA | IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc) | WLAN | 8.60 | ± 9.6 9 | | 10402 | AAA | IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc dc) | WLAN | 8.53 | ± 9.6 % | | 10403 | AAB | CDMA2000 (1xEV-DO, Rev. 0) | CDMA2000 | 3.76 | ± 9.6 % | | 10404 | AAB | CDMA2000 (1xEV-DO, Rev. A) | CDMA2000 | 3.77 | ± 9.6 % | | 10406 | AAD | CDMA2000, RC3, SO32, SCH0, Full Rate | CDMA2000 | 5.22 | ± 9.6 % | Certificate No: EX3-7486_Jun21 Page 14 of 23 | 10410 | AAA | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub=2,3,4,7,8,9) | LTE-TOD | 7.82 | ± 9.6 % | |-------|-----|--|----------|-------|---------| | 10414 | AAA | WLAN CCDF, 64-QAM, 40MHz | Generic | 8.54 | ± 9.6 % | | 10415 | AAA | IEEE 802.11b WiFl 2.4 GHz (DSSS, 1 Mbps, 99pc dc) | WLAN | 1.54 | ±9.6 % | | 10416 | AAA | IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc dc) | WLAN | 8.23 | ± 9.6 % | | 10417 | AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc dc) | WLAN | 8.23 | ± 9.6 % | | 10418 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) | WLAN | 8.14 | ± 9.6 % | | 10419 | AAA | IEEE 802.11g WIFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) | WLAN | 8.19 | ± 9.6 % | | 10422 | AAA | IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) | WLAN | 8.32 | ± 9.6 % | | 10423 | AAA | IEEE 802,11n (HT Greenfield, 43.3 Mbps, 16-QAM) | WLAN | 8.47 | ± 9.6 % | | 10424 | AAE | IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) | WLAN | 8.40 | ±9.6 % | | 10425 | AAE | IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) | WLAN | 8.41 | ± 9.6 % | | 10426 | AAE | IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) | WLAN | 8.45 | ±9.6% | | 10427 | AAB | IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) | WLAN | 8.41 | ± 9.6 % | | 10430 | AAB | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) | LTE-FDD | 8.28 | ± 9.6 % | | 10431 | AAC | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) | LTE-FDD | 8.38 | ± 9.6 % | | 10432 | AAB | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) | LTE-FDD | 8.34 | ± 9.6 % | | 10433 | AAC | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) | LTE-FDD | 8.34 | ± 9.6 % | | 10434 | AAG | W-COMA (BS Test Model 1, 64 DPCH) | WCDMA | 8.60 | ± 9.6 % | | 10435 | AAA | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 % | | 10447 | AAA | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) | LTE-FDD | 7.56 | ± 9.6 % | |
10448 | AAA | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) | LTE-FDD | 7.53 | ± 9.6 % | | 10449 | AAC | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%) | LTE-FDD | 7.51 | ± 9.6 % | | 10450 | AAA | LTE-FDO (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) | LTE-FDD | 7.48 | ± 9.6 % | | 10451 | AAA | W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) | WCDMA | 7.59 | ± 9.6 % | | 10453 | AAC | Validation (Square, 10ms, 1ms) | Tast | 10.00 | ± 9.6 % | | 10456 | AAC | IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc) | WLAN | 8.63 | ± 9.6 % | | 10457 | AAC | UMTS-FDD (DC-HSDPA) | WCDMA | 6.62 | ± 9.6 % | | 10458 | AAC | CDMA2000 (1xEV-DO, Rev. B, 2 carriers) | CDMA2000 | 6.55 | ± 9.6 % | | 10459 | AAC | CDMA2000 (1xEV-DO, Rev. B, 3 carriers) | CDMA2000 | 8.25 | ± 9.6 % | | 10460 | AAC | UMTS-FDD (WCDMA, AMR) | WCDMA | 2.39 | ±9.6 % | | 10461 | AAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 % | | 10462 | AAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.30 | ± 9.6 % | | 10463 | AAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.56 | ± 9.6 % | | 10464 | AAD | LTE-TDO (SC-FOMA, 1 RB, 3 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 % | | 10465 | AAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ± 9.6 % | | 10466 | AAC | LTE-TDO (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.57 | ± 9.6 % | | 10467 | AAA | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub) | LTE-TOD | 7.82 | ± 9.6 % | | 10468 | AAF | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ± 9.6 % | | 10469 | AAD | LTE-TDO (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.56 | ± 9.6 % | | 10470 | AAD | LTE-TDO (SC-FDMA, 1 RB. 10 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 % | | 10471 | AAC | LTE-TDO (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ± 9.6 % | | 10472 | AAC | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.57 | ± 9.6 % | | 10473 | AAA | LTE-TOD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 % | | 10474 | AAC | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ±9.6% | | 10475 | AAD | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.57 | ± 9.6 % | | 10477 | AAC | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ± 9.6 % | | 10478 | AAC | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.57 | ± 9.6 % | | 10479 | AAC | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10480 | AAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.18 | ±9.6 % | | 10481 | AAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.45 | ±9.6 % | | 10482 | AAA | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Sub) | LTE-TDD | 7.71 | ± 9.6 % | | 10483 | AAA | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, Sub) | LTE-TOD | 8.39 | ± 9.6 % | | 10484 | AAB | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.47 | ±9.6 % | | 10485 | AAB | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Sub) | LTE-TOD | 7.59 | ±9.6 % | | 14-64 | AAB | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QFSR, 0L Sub) | LTE-TDD | 8.38 | ± 9.6 % | | 10486 | | | | | | Certificate No: EX3-7486_Jun21 Page 15 of 23 | 10488 | AAC | LTE-TOD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Sub) | LTE-TOD | 7.70 | ± 9.6 % | |-------|-----|---|---------|------|---------| | 10489 | AAC | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.31 | ± 9.6 % | | 10490 | AAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.54 | ± 9.6 % | | 10491 | AAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Sub) | LTE-TOD | 7.74 | ± 9.6 % | | 10492 | AAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.41 | ± 9.6 % | | 10493 | AAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.55 | ± 9.6 % | | 10494 | AAF | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Sub) | LTE-TOD | 7.74 | ± 9.6 % | | 10495 | AAF | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.37 | ± 9.6 % | | 10496 | AAE | LTE-TDO (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.54 | ± 9.6 % | | 10497 | AAE | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Sub) | LTE-TOD | 7.67 | ± 9.6 % | | 10498 | AAE | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.40 | ± 9.6 % | | 10499 | AAC | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.68 | ± 9.6 % | | 10500 | AAF | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Sub) | LTE-TDD | 7.67 | ± 9.6 % | | 10501 | AAF | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.44 | ± 9.6 % | | 10502 | AAB | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.52 | ±9.6% | | 10503 | AAB | LTE-TOD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Sub) | LTE-TDD | 7.72 | ± 9.6 % | | 10504 | AAB | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.31 | ± 9.6 % | | 10505 | AAC | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Sub) | LTE-TOD | 8,54 | ±9.6 % | | 10506 | AAC | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10507 | AAC | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.36 | ± 9.6 % | | 10508 | AAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.55 | ± 9.6 % | | 10509 | AAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Sub) | LTE-TDD | 7.99 | ± 9.6 % | | 10510 | AAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.49 | ± 9.6 % | | 10511 | AAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.51 | ± 9.6 % | | 10512 | AAF | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10513 | AAF | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.42 | ± 9.6 % | | 10514 | AAE | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.45 | ± 9.6 % | | 10515 | AAE | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc dc) | WLAN | 1.58 | ± 9.6 % | | 10516 | AAE | IEEE 802,11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc dc) | WLAN | 1.57 | ± 9.6 % | | 10517 | AAF | IEEE 802.11b WIFI 2.4 GHz (DSSS, 11 Mbps, 99pc dc) | WLAN | 1.58 | ± 9.6 % | | 10518 | AAF | IEEE 802.11a/h WIFI 5 GHz (OFDM, 9 Mbps, 99pc dc) | WLAN | 8.23 | ± 9.6 % | | 10519 | AAF | IEEE 802.11a/h WIFi 5 GHz (OFDM, 12 Mbps, 99pc dc) | WLAN | 8.39 | ± 9.6 % | | 10520 | AAB | IEEE 802,11a/h WIFI 5 GHz (OFDM, 18 Mbps, 99pc dc) | WLAN | 8.12 | ± 9.6 % | | 10521 | AAB | IEEE 802.11a/h WIFI 5 GHz (OFDM, 24 Mbps, 99pc dc) | WLAN | 7.97 | ±9.6 % | | 10522 | AAB | IEEE 802.11a/h WIFi 5 GHz (OFDM, 36 Mbps, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10523 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc dc) | WLAN | 8.08 | ± 9.6 % | | 10524 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc dc) | WLAN | 8.27 | ± 9.6 % | | 10525 | AAC | IEEE 802.11ac WIFi (20MHz, MCS0, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | 10526 | AAF | IEEE 802.11ac WiFi (20MHz, MCS1, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10527 | AAF | IEEE 802.11ac WIFI (20MHz, MCS2, 99pc dc) | WLAN | 8.21 | ± 9.6 % | | 10528 | AAF | IEEE 802.11sc WIFI (20MHz, MCS3, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | 10529 | AAF | IEEE 802.11ac WiFi (20MHz, MCS4, 99pc do) | WLAN | B.36 | ± 9.6 % | | 10531 | AAF | IEEE 802.11ac WiFi (20MHz, MCS6, 99pc dc) | WLAN | 8.43 | ± 9.6 % | | 10532 | AAF | IEEE 802.11ac WIFI (20MHz, MCS7, 99pc dc) | WLAN | 8.29 | ±9.6 % | | 10533 | AAE | IEEE 802.11ac WIFI (20MHz, MCS8, 99pc dc) | WLAN | 8.38 | ± 9.6 % | | 10534 | AAE | IEEE 802.11ac WiFi (40MHz, MCS0, 99pc dc) | WLAN | 8.45 | ±9.6 % | | 10535 | AAE | IEEE 802.11ac WiFi (40MHz, MCS1, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10536 | AAF | IEEE 802.11ac WiFi (40MHz, MCS2, 99pc dc) | WLAN | 8.32 | ± 9.6 % | | 10537 | AAF | IEEE 802.11ac WiFI (40MHz, MCS3, 99pc dc) | WLAN | 8.44 | ± 9.6 % | | 10538 | AAF | IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc) | WLAN | 8.54 | ± 9.6 % | | 10540 | AAA | IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc) | WLAN | 8.39 | ± 9.6 % | | 10541 | AAA | IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc) | WLAN | 8.46 | ± 9.6 % | | 10542 | AAA | IEEE 802.11ac WiFi (40MHz, MCS8, 99pc dc) | WLAN | 8.65 | ± 9.6 % | | 10543 | AAC | IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc) | WLAN | 8.65 | ± 9.6 % | | 10544 | AAC | IEEE 802.11ac WiFi (80MHz, MCS0, 99pc dc) | WLAN | 8.47 | ± 9.6 % | | 10545 | AAC | IEEE 802.11ac WiFi (80MHz, MCS1, 99pc dc) | WLAN | 8.55 | ± 9.6 % | Certificate No: EX3-7486_Jun21 Page 16 of 23 EX3DV4- SN:7486 June 18, 2021 | 10546 | AAC | IEEE 802.11ac WiFi (80MHz, MCS2, 99pc dc) | WLAN | 8.35 | ± 9.6 % | |-------------|------
--|------|------|--------------| | 10547 | AAC | IEEE 802.11ac WiFi (80MHz, MCS3, 99pc dc) | WLAN | 8.49 | ± 9.6 % | | 10548 | AAC | IEEE 802.11ac WiFi (80MHz, MCS4, 99pc dc) | WLAN | 8.37 | ± 9.6 % | | 10550 | AAC | IEEE 802.11ac WiFi (80MHz, MCS6, 99pc dc) | WLAN | 8.38 | ± 9.6 % | | 10551 | AAC | IEEE 802.11ac WiFi (80MHz, MCS7, 99pc dc) | WLAN | 8.50 | ± 9.6 % | | 10552 | AAC | JEEE 802,11ac WiFi (80MHz, MCS8, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10553 | AAC | IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10554 | AAC | IEEE 802.11ac WiFi (160MHz, MCS0, 99pc dc) | WLAN | 8.48 | ± 9.6 % | | 10555 | AAC | IEEE 802.11ac WiFi (160MHz, MCS1, 99pc dc) | WLAN | 8.47 | ±9.6% | | 10556 | AAC | IEEE 802.11ac WiFi (160MHz, MCS2, 99pc dc) | WLAN | 8.50 | ± 9.6 % | | 10557 | AAC | IEEE 802.11ac WiFi (160MHz, MCS3, 99pc dc) | WLAN | 8.52 | ± 9.6 % | | 10558 | AAC | IEEE 802.11ac WiFi (160MHz, MCS4, 99pc dc) | WLAN | 8.61 | ± 9.6 % | | 10560 | AAC | IEEE 802.11ac WiFi (160MHz, MCS6, 99pc dc) | WLAN | 8.73 | ± 9.6 % | | 10561 | AAC | IEEE 802.11ac WiFi (160MHz, MCS7, 99pc dc) | WLAN | 8.56 | ± 9.6 % | | 10562 | AAC | IEEE 802.11ac WIFI (160MHz, MCS8, 99pc dc) | WLAN | 8.69 | ± 9.6 % | | 10563 | AAC | IEEE 802.11ac WiFi (160MHz, MCS9, 99pc dc) | WLAN | 8.77 | ± 9.6 % | | 10564 | AAC | IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc dc) | WLAN | 8.25 | ± 9.6 % | | 10565 | AAC | IEEE 802.11g WiFl 2.4 GHz (DSSS-OFDM, 12 Mbgs, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10566 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc dc) | WLAN | 8.13 | ± 9.6 % | | 10567 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc) | WLAN | 8.00 | ± 9.6 % | | 10568 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc) | WLAN | 8.37 | ± 9.6 % | | 10569 | AAC | IEEE 802.11g WiFl 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc) | WLAN | 8.10 | ± 9.6 % | | 10570 | AAC | IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc) | WLAN | 8.30 | ± 9.6 % | | 10571 | AAC | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc dc) | WLAN | 1.99 | ± 9.6 % | | 10572 | AAC | IEEE 802.11b WIFI 2.4 GHz (DSSS, 2 Mbps, 90pc dc) | WLAN | 1.99 | ± 9.6 % | | 10573 | AAC | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc) | WLAN | 1.98 | ± 9.6 % | | 10574 | AAC | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc dc) | WLAN | 1.98 | ± 9.6 % | | 10575 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90oc dc) | WLAN | 8.59 | ± 9.6 % | | 10576 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc) | WLAN | 8.60 | ± 9.6 % | | 10577 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-DFDM, 12 Mbps, 90pc dc) | WLAN | 8.70 | - management | | 10578 | AAD | IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc dc) | WLAN | 8.49 | ± 9.6 % | | 10579 | AAD | IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc) | WLAN | 8.36 | ± 9.6 % | | 10580 | AAD | IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc) | WLAN | 8.76 | ± 9.6 % | | 10581 | AAD | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc) | WLAN | 8.35 | ± 9.6 % | | 10582 | AAD | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc) | WLAN | | ± 9.6 % | | 10583 | AAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc) | WLAN | 8.67 | ± 9.6 % | | 10584 | AAD | IEEE 802.11a/h WiFl 5 GHz (OFDM, 9 Mbps, 90pc dc) | WLAN | 8.59 | ± 9.6 % | | 10585 | AAD | IEEE 802.11ah WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc) | WLAN | 8.60 | ± 9.6 % | | 10586 | AAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10587 | AAA | IEEE 802.11a/h WIFI 5 GHz (OFDM, 24 Mbps, 90pc dc) | WLAN | 8.49 | ± 9.6 % | | 10588 | AAA | IEEE 802.11a/h WIFI 5 GHz (OFDM, 36 Mbps, 90pc dc) | WLAN | 8.36 | ± 9.6 % | | 10589 | AAA | IEEE 802.11a/h WIFI 5 GHz (OFDM, 48 Mbps, 90pc dc) | WLAN | 8.76 | ± 9.6 % | | 10590 | AAA | IEEE 802,11a/h WIFI 5 GHz (OFDM, 54 Mbps, 90pc dc) | WLAN | 8.35 | ± 9.6 % | | 10591 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc dc) | WLAN | 8.67 | ± 9.6 % | | 10592 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc dc) | WLAN | 8.63 | ± 9.6 % | | 10593 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc dc) | WLAN | 8.79 | ±9.6 % | | 10594 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc dc) | WLAN | 8.64 | ± 9.6 % | | 10595 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc dc) | | 8,74 | ± 9.6 % | | 10596 | 1000 | IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10597 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc dc) | WLAN | 8.71 | ± 9.6 % | | 10598 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc dc) | WLAN | 8.72 | ± 9.6 % | | 10599 | AAA | IEEE 802.11h (HT Mixed, 20MHz, MCS7, 90pc dc) | WLAN | 8.50 | ± 9.6 % | | 10600 | AAA | The state of s | WLAN | 8.79 | ± 9.6 % | | 10601 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc dc) IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc dc) | WLAN | 8.88 | ± 9.6 % | | 10601 | AAA | | WLAN | 8.82 | ± 9.6 % | | 1.0 925-225 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc dc) | WLAN | 8.94 | ± 9.6 % | | 10603 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc dc) | WLAN | 9.03 | ± 9.6 % | Certificate No: EX3-7486_Jun21 Page 17 of 23 | 10604 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc dc) | WLAN | 8.76 | 196% | |-------|-----|---|-----------|-------|---------| | 10605 | AAA | IEEE 802,11n (HT Mixed, 40MHz, MCS6, 90pc dc) | WLAN | 8.97 | ± 9.6 % | | 10606 | AAC | IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc dc) | WLAN | 8.82 | ±9.6% | | 10607 | AAC | IEEE 802.11ac WiFi (20MHz, MCS0, 90pc dc) | WLAN | 8.64 | ±9.6% | | 10608 | AAC | IEEE 802 11ac WiFi (20MHz, MCS1, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10609 | AAC | IEEE 802.11ac WiFi (20MHz, MCS2, 90pc dc) | WLAN | 8.57 | ± 9.6 % | | 10610 | AAC | IEEE 802.11ac WiFi (20MHz, MCS3, 90pc dc) | WLAN | 8.78 | ± 9.6 % | | 10611 | AAC | IEEE 802.11ac WiFi (20MHz, MCS4, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10612 | AAC | IEEE 802.11ac WiFi (20MHz, MCS5, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10613 | AAC | IEEE 802.11ac WiFi (20MHz, MCS6, 90pc dc) | WLAN | 8.94 | ±9.6% | | 10614 | AAC | IEEE 802.11ac WiFi (20MHz, MCS7, 90pc dc) | WLAN | 8.59 | ± 9.6 % | | 10615 | AAC | IEEE 802.11ac WiFi (20MHz, MCS8, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10616 | AAC | IEEE 802.11ac WiFi (40MHz, MCS0, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10617 | AAC | IEEE 802.11ac WiFi (40MHz, MCS1, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10618 | AAC | IEEE 802.11ac WiFi (40MHz, MCS2, 90pc dc) | WLAN | 8.58 | ± 9.6 % | | 10619 | AAC | IEEE 802.11ac WiFi (40MHz, MCS3, 90pc dc) | WLAN | 8.86 | ±9.6 % | | 10620 | AAC | IEEE 802.11ac WiFi (40MHz, MCS4, 90pc dc) | WLAN | 8.87 | ± 9.6 % | | 10621 | AAC | IEEE 802.11ac WiFi (40MHz, MCS5, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10622 | AAC | IEEE 802.11ac WiFi (40MHz, MCS6, 90pc dc) | WLAN | 8.68 | ± 9.6 % | | 10823 | AAC | IEEE 802.11ac WiFi (40MHz, MCS7, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10624 | AAC | IEEE 802.11sc WiFi (40MHz, MCS8, 90pc dc) | WLAN | 8.96 | ± 9.6 % | | 10625 | AAC | IEEE 802.11ac WiFi (40MHz, MCS9, 90pc dc) | WLAN | 8.96 | ± 9.6 % | | 10626 | AAC | IEEE 802.11ac WiFi (80MHz, MCS0, 90pc dc) | WLAN | 8.83 | ± 9.6 % | | 10827 | AAC | IEEE 802.11ac WiFi (80MHz, MCS1, 90pc dc) | WLAN | 8.88 | ± 9.6 % | | 10628 | AAC | IEEE 802.11ac WiFi (80MHz, MCS2, 90pc dc) | WLAN | 8.71 | ± 9.6 % | | 10629 | AAC | IEEE 802.11ac WiFi (80MHz, MCS3, 90pc dc) | WLAN | 8.85 | ± 9.6 % | | 10630 | AAC | IEEE 802.11sc WIFI (80MHz, MCS4, 90pc dc) | WLAN | 8.72 | ± 9.6 % | | 10631 | AAC | IEEE 802,11sc WiFi (80MHz, MCS5, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10632 | AAC | IEEE 802.11ac WIFI (80MHz, MCS6, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10633 | AAC | IEEE 802.11ac WiFi (80MHz, MCS7, 90pc dc) | WLAN | 8.83 | ± 9.6 % | | 10634 | AAC | IEEE 802.11ac WiFi (80MHz, MCS8, 90pc dc) | WLAN | 8.80 | ±9.6 % | | 10635 | AAC | IEEE 802.11ac WiFi (80MHz, MCS9, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10636 | AAC | IEEE 802.11ac WiFi
(160MHz, MCS0, 90pc dc) | WLAN | 8.83 | ± 9.6 % | | 10637 | AAC | IEEE 802.11ac WIFI (160MHz, MCS1, 90pc dc) | WLAN | 8.79 | ± 9.6 % | | 10638 | AAC | IEEE 802.11ac WiFI (160MHz, MCS2, 90pc dc) | WLAN | 8.86 | ± 9.6 % | | 10639 | AAC | IEEE 802.11sc WiFi (160MHz, MCS3, 90pc dc) | WLAN | 8.85 | ± 9.6 % | | 10840 | AAC | IEEE 802.11ac WiFi (160MHz, MCS4, 90pc dc) | WLAN | 8.98 | ± 9.6 % | | 10641 | AAC | IEEE 802.11ac WiFi (160MHz, MCS5, 90pc dc) | WLAN | 9.06 | ± 9.6 % | | 10642 | AAC | IEEE 802.11ac WiFi (160MHz, MCS6, 90pc dc) | WLAN | 9.06 | ± 9.6 % | | 10843 | AAC | IEEE 802.11ac WiFi (160MHz, MCS7, 90pc dc) | WLAN | 8.89 | ± 9.6 % | | 10644 | AAC | IEEE 802.11ac WiFi (160MHz, MCS8, 90pc dc) | WLAN | 9.05 | ± 9.6 % | | 10845 | AAC | IEEE 802.11ac WIFI (160MHz, MCS9, 90pc dc) | WLAN | 9.11 | ± 9.6 % | | 10646 | AAC | LTE-TOD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub=2,7) | LTE-TDD | 11,96 | ± 9.6 % | | 10647 | AAC | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub=2,7) | LTE-TDD | 11.96 | ± 9.6 % | | 10648 | AAC | CDMA2000 (1x Advanced) | CDMA2000 | 3.45 | ± 9.6 % | | 10652 | AAC | LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 6.91 | ± 9.6 % | | 10653 | AAC | LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 7.42 | ± 9.6 % | | 10654 | AAC | LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 6.96 | 2 9.6 % | | 10655 | AAC | LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 7.21 | ± 9.6 % | | 10658 | AAC | Pulse Waveform (200Hz, 10%) | Test | 10.00 | ± 9.6 % | | 10659 | AAC | Pulse Waveform (200Hz, 20%) | Test | 6.99 | ±9.6 % | | 10660 | AAC | Pulse Waveform (200Hz, 40%) | Test | 3.98 | ±9.6 % | | 10661 | AAC | Pulse Waveform (200Hz, 60%) | Test | 2.22 | ±9.6 % | | 10662 | AAC | Pulse Waveform (200Hz. 80%) | Test | 0.97 | ± 9.6 % | | 10670 | AAC | Bluetooth Low Energy | Bluetooth | 2.19 | ±9.6 % | | 10671 | AAD | IEEE 802.11ax (20MHz, MCS0, 90pc dc) | WLAN | 9.09 | ± 9.6 % | Certificate No: EX3-7486_Jun21 Page 18 of 23 | EX3D/ | 100 | DA | 1.74 | DO: | |-------|------|-----|-------|------| | CASE | V 44 | 311 | 1.7.4 | evo. | June 18, 2021 | 10672 | AAD | IEEE 802.11ax (20MHz, MCS1, 90pc dc) | WLAN | 8.57 | ± 9.6 % | |-------|-----|---------------------------------------|------|------|---------| | 10673 | AAD | IEEE 802.11ax (20MHz, MCS2, 90pc dc) | WLAN | 8.78 | ± 9.6 % | | 10674 | AAD | IEEE 802.11ax (20MHz, MCS3, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10675 | AAD | IEEE 802.11ax (20MHz, MCS4, 90pc dc) | WLAN | 8.90 | ± 9.6 % | | 10676 | AAD | IEEE 802.11ax (20MHz, MC55, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10677 | AAD | IEEE 802.11ax (20MHz, MCS6, 90pc dc) | WLAN | 8.73 | ± 9.6 % | | 10678 | AAD | IEEE 802,11ax (20MHz, MCS7, 90pc dc) | WLAN | 8.78 | ±9.6% | | 10679 | AAD | IEEE 802.11ax (20MHz, MCS8, 90pc dc) | WLAN | 8.89 | ± 9.6 % | | 10680 | AAD | IEEE 802.11ax (20MHz, MCS9, 90pc dc) | WLAN | 8.80 | ± 9.6 % | | 10681 | AAG | IEEE 802.11ax (20MHz, MCS10, 90pc dc) | WLAN | 8.62 | ± 9.6 % | | 10682 | AAF | IEEE 802.11ax (20MHz, MCS11, 90pc dc) | WLAN | 8.83 | ± 9.6 % | | 10683 | AAA | IEEE 802.11ax (20MHz, MCS0, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10684 | AAC | IEEE 802.11ax (20MHz, MCS1, 99pc dc) | WLAN | 8.26 | ± 9.6 % | | 10685 | AAC | IEEE 802.11ax (20MHz, MCS2, 99pc dc) | WLAN | 8.33 | ± 9.6 % | | 0686 | AAC | IEEE 802.11ax (20MHz, MCS3, 99pc dc) | WLAN | 8.28 | ± 9.6 % | | 10687 | AAE | IEEE 802.11ax (20MHz, MCS4, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 8890 | AAE | IEEE 802.11ax (20MHz, MCS5, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10689 | AAD | IEEE 802.11ax (20MHz, MCS6, 99pc dc) | WLAN | 8.55 | ± 9.6 % | | 0690 | AAE | IEEE 802.11ax (20MHz, MCS7, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10691 | AAB | IEEE 802.11ax (20MHz, MCS8, 99pc dc) | WLAN | 8.25 | ± 9.6 % | | 10692 | AAA | IEEE 802.11ax (20MHz, MCS9, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10693 | AAA | IEEE 802.11ax (20MHz, MCS10, 99pc dc) | WLAN | 8.25 | ± 9.6 % | | 10694 | AAA | IEEE 802.11ax (20MHz, MCS11, 99pc dc) | WLAN | 8.57 | ± 9.6 % | | 10695 | AAA | IEEE 802.11ax (40MHz, MCS0, 90pc dc) | WLAN | 8.78 | ± 9.6 % | | 0696 | AAA | IEEE 802.11ax (40MHz, MCS1, 90pc dc) | WLAN | 8.91 | ±9.6 % | | 10697 | AAA | IEEE 802.11ax (40MHz, MCS2, 90pc dc) | WLAN | 8.61 | ± 9.6 % | | 10698 | AAA | IEEE 802.11ax (40MHz, MCS3, 90pc dc) | WLAN | 8.89 | ± 9.6 % | | 10699 | AAA | IEEE 802,11ax (40MHz, MC\$4, 90pc dc) | WLAN | 8.82 | ±9.6 % | | 10700 | AAA | IEEE 802.11ax (40MHz, MCS5, 90pc dc) | WLAN | 8.73 | ± 9.6 % | | 10701 | AAA | IEEE 802.11ax (40MHz, MCS6, 90pc dc) | WLAN | 8.86 | ± 9.6 % | | 0702 | AAA | IEEE 802.11ax (40MHz, MCS7, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10703 | AAA | IEEE 802.11ax (40MHz, MCS8, 90pc dc) | WLAN | 8.82 | ±9.6% | | 10704 | AAA | IEEE 802.11ax (40MHz, MCS9, 90pc dc) | WLAN | 8.56 | ±9.6 % | | 10705 | AAA | IEEE 802.11ax (40MHz, MCS10, 90pc dc) | WLAN | 8.69 | ± 9.6 % | | 10706 | AAC | IEEE 802.11ax (40MHz, MCS11, 90pc dc) | WLAN | 8.66 | ± 9.6 % | | 10707 | AAC | IEEE 802.11ax (40MHz, MCS0, 99pc dc) | WLAN | 8,32 | ± 9.6 % | | 10708 | AAC | IEEE 802.11ax (40MHz, MCS1, 99pc dc) | WLAN | 8.55 | ± 9.6 % | | 10709 | AAC | IEEE 802,11ax (40MHz, MCS2, 99pc dc) | WLAN | 8.33 | ± 9.6 % | | 10710 | AAC | IEEE 802.11ax (40MHz, MCS3, 99pc dc) | WLAN | 8.29 | ±9.6% | | 10711 | AAC | IEEE 802,11ax (40MHz, MCS4, 99pc dc) | WLAN | 8.39 | ±9.6 % | | 10712 | AAC | IEEE 802.11ax (40MHz, MCS5, 99pc dc) | WLAN | 8.67 | ± 9.6 % | | 10713 | AAC | IEEE 802.11ax (40MHz, MCS6, 99pc dc) | WLAN | 8.33 | 4 9.6 % | | 0714 | AAC | IEEE 802.11ax (40MHz, MCS7, 99pc dc) | WLAN | 8.26 | ± 9.6 % | | 0715 | AAC | IEEE 802.11ax (40MHz, MCS8, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 0716 | AAC | IEEE 802.11ax (40MHz, MCS9, 99pc dc) | WLAN | 8.30 | ± 9.6 % | | 0717 | AAC | IEEE 802.11ax (40MHz, MCS10, 99pc dc) | WLAN | 8.48 | ±9.6% | | 0718 | AAC | IEEE 802.11ax (40MHz, MCS11, 99pc dc) | WLAN | 8.24 | ± 9.6 % | | 0719 | AAC | IEEE 802.11ax (80MHz, MCS0, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 0720 | AAC | IEEE 802.11ax (80MHz, MCS1, 90pc dc) | WLAN | 8.87 | ± 9.6 % | | 0721 | AAC | IEEE 802.11ax (80MHz, MCS2, 90pc dc) | WLAN | 8.76 | ± 9.6 % | | 0722 | AAC | IEEE 802.11ax (80MHz, MCS3, 90pc dc) | WLAN | 8.55 | ± 9.6 % | | 0723 | AAC | IEEE 802.11ax (80MHz, MCS4, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 0724 | AAC | IEEE 802.11ax (80MHz, MCS5, 90pc dc) | WLAN | 8.90 | ± 9.6 % | | 10725 | AAC | IEEE 802.11ax (80MHz, MCS6, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10726 | AAC | IEEE 802.11ax (80MHz, MCS7, 90pc dc) | WLAN | 8.72 | ± 9.6 % | | 10727 | AAC | IEEE 802.11ax (80MHz, MCSB, 90pc dc) | WLAN | 8.66 | ± 9.6 % | Certificate No: EX3-7486_Jun21 Page 19 of 23 | 10728 | AAC | IEEE 802.11ax (80MHz, MCS9, 90pc dc) | WLAN | 8.65 | ± 9.6 % | |---------|-----|--
--|------|---------------------------------| | 10729 | AAC | IEEE 802.11ax (80MHz, MCS10, 90pc dc) | WLAN | 8.64 | ± 9.6 % | | 10730 | AAC | IEEE 802,11ax (80MHz, MCS11, 90pc dc) | WLAN | 8.67 | ± 9.6 % | | 10731 | AAC | IEEE 802.11ax (80MHz, MCS0, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10732 | AAC | IEEE 802.11ax (80MHz, MCS1, 99pc dc) | WLAN | 8.46 | ± 9.6 % | | 10733 | AAC | IEEE 802.11ax (80MHz, MCS2, 99pc dc) | WLAN | 8.40 | ± 9.6 % | | 10734 | AAC | IEEE 802.11ax (80MHz, MCS3, 99pc dc) | WLAN | 8.25 | ± 9.6 % | | 10735 | AAC | IEEE 802,11ax (80MHz, MCS4, 99pc dc) | WLAN | 8.33 | ± 9.6 % | | 10736 | AAC | IEEE 802.11ax (80MHz, MCS5, 99pc dc) | WLAN | 8.27 | ± 9.6 % | | 10737 | AAC | IEEE 802.11ax (80MHz, MCS6, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | 10738 | AAC | IEEE 802.11ax (80MHz, MCS7, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10739 | AAC | IEEE 802.11ax (80MHz, MCS8, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10740 | AAC | IEEE 802.11ax (80MHz, MCS9, 99pc dc) | WLAN | 8.48 | ±9.6 % | | 10741 | AAC | IEEE 802.11ax (80MHz, MCS10, 99pc dc) | WLAN | 8.40 | ±9.6 % | | 10742 | AAC | IEEE 802.11ax (80MHz, MCS11, 99oc dc) | WLAN | 8.43 | ± 9.6 % | | 10743 | AAC | IEEE 802 11ax (160MHz, MCS0, 90pc dc) | WLAN | 8.94 | ± 9.6 % | | 10744 | - | IEEE 802.11ax (160MHz, MCS1, 90pc dc) | WLAN | | The second second second second | | 10745 | AAC | IEEE 802.11ax (160MHz, MCS2, 90pc dc) | WLAN | 9.16 | ± 9.6 % | | 10746 | AAC | IEEE 802.11ax (160MHz, MCS3, 90pc dc) | The state of s | 8.93 | ± 9.6 % | | 10747 | AAC | IEEE 802.11ax (160MHz, MCS4, 90pc dc) | WLAN
WLAN | 9.11 | ± 9.6 % | | 10748 | AAC | IEEE 802.11ax (160MHz, MCS5, 90pc dc) | WLAN | 9.04 | ± 9.6 % | | 10749 | AAC | IEEE 802.11ax (160MHz, MCS6, 90pc dc) | | 8.93 | ± 9.6 % | | | AAC | The State of S | WLAN | 8.90 | ± 9.6 % | | 10750 | AAC | IEEE 802.11ax (160MHz, MCS7, 90pc dc) | WLAN | 8.79 | ± 9.6 % | | | AAC | IEEE 802.11ax (160MHz, MCS8, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10752 | AAC | IEEE 802.11ax (160MHz, MCS9, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 1500000 | AAC | IEEE 802.11ax (160MHz, MCS10, 90pc dc) | WLAN | 9.00 | ± 9.6 % | | 10754 | AAC | IEEE 802.11ax (160MHz, MCS11, 90pc dc) | WLAN | 8.94 | ± 9.6 % | | 10755 | AAC | IEEE 802.11ax (160MHz, MCS0, 99pc dc) | WLAN | 8.64 | ± 9.6 % | | 10756 | AAC | IEEE 802.11ax (160MHz, MCS1, 99pc dc) | WLAN | 8.77 | ± 9.6 % | | 10757 | AAC | IEEE 802,11ax (160MHz, MCS2, 99pc dc) | WLAN | 8.77 | ± 9.6 % | | 10758 | AAC | IEEE 802.11ax (160MHz, MCS3, 99pc dc) | WLAN | 8.69 | ± 9.6 % | | 10759 | AAC | IEEE 802.11ax (160MHz, MCS4, 99pc dc) | WLAN | 8.58 | ± 9.6 % | | 10760 | AAC | IEEE 802.11ax (160MHz, MCS5, 99pc dc) | WLAN | 8.49 | ± 9.6 % | | 10761 | AAC | IEEE 802.11ax (160MHz, MCS8, 99pc dc) | WLAN | 8.58 | ± 9.6 % | | 10762 | AAC | IEEE 802,11ax (160MHz, MCS7, 99pc dc) | WLAN | 8.49 | ± 9.6 % | | 10763 | AAC | IEEE 802.11ax (160MHz, MCS8, 99pc dc) | WLAN | 8.53 | ± 9.6 % | | 10764 | AAC | IEEE 802.11ax (160MHz, MCS9, 99pc dc) | WLAN | 8.54 | ± 9.6 % | | 10765 | AAC | IEEE 802.11ax (160MHz, MCS10, 99pc dc) | WLAN | 8.54 | ± 9.6 % | | 10766 | AAC | IEEE 802.11ax (160MHz, MCS11, 99pc dc) | WLAN | 8.51 | ± 9.6 % | | 10767 | AAC | 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 7,99 | ± 9.6 % | | 10768 | AAC | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.01 | ± 9.6 % | | 10769 | AAC | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.01 | ± 9.6 % | | 10770 | AAC | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ± 9.6 % | | 10771 | AAC | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ± 9.6 % | | 10772 | AAC | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.23 | ± 9.6 % | | 10773 | AAC | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.03 | ± 9.6 % | | 10774 | AAC | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ± 9.6 % | | 10775 | AAC | 5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.31 | ±9.6% | | 10776 | AAC | 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.30 | ± 9.6 % | | 10777 | AAC | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8,30 | ± 9.6 % | | 10778 | AAC | 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6 % | | 10779 | AAC | 5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.42 | ±9.6 % | | 10780 | AAC | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.38 | ±9.6% | | 10781 | AAC | 5G NR (CP-0FDM, 50% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.38 | ± 9.6 % | | 10782 | AAC | 5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.43 | ± 9.6 % | | 10783 | AAC | 5G NR (CP-0FDM, 100% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.31 | ±9.6 % | Certificate No: EX3-7486_Jun21 Page 20 of 23 | 10784 | AAC | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TOD | 8.29 | ±9.6 % | |-------|--|---|---------------|---|-----------------------| | 10785 | AAC | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TOD | 8.40 | ±9.6% | | 10786 | AAC | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.35 | ± 9.6 % | | 10787 | AAC | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.44 | ± 9.6 % | | 10788 | AAC | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.39 | ± 9.6 % | | 10789 | AAC | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 % | | 10790 | AAC | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.39 | ± 9.6 % | | 10791 | AAC | 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TOO | 7.83 | ± 9.6 % | | 10792 | AAC | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TOD | 7.92 | ± 9.6 % | | 10793 | AAC | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) |
5G NR FR1 TOD | 7.95 | ±9.6% | | 10794 | AAC | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.82 | ±9.6% | | 10795 | AAC | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.84 | ±9.6% | | 10796 | AAC | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.82 | ± 9.6 % | | 10797 | AAC | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.01 | ± 9.6 % | | 10798 | AAC | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.89 | ± 9.6 % | | 10799 | AAC | 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.93 | ± 9.6 % | | 10801 | AAC | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.89 | ± 9.6 % | | 10802 | AAC | 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.87 | ± 9.6 % | | 10803 | AAE | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.93 | ±9.6 % | | 10805 | AAD | 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10006 | AAD | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 % | | 10809 | AAD | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10810 | AAD | 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10812 | AAD | 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.35 | ± 9.6 % | | 10817 | AAD | 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.35 | ± 9.6 % | | 10818 | AAD | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10819 | AAD | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.33 | ± 9.6 % | | 10820 | AAD | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.30 | ± 9.6 % | | 10821 | AAC | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10822 | AAD | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10823 | AAC | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.36 | ± 9.6 % | | 10824 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.39 | ± 9.6 % | | 10825 | AAD | 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10827 | AAD | 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.42 | ± 9.6 % | | 10828 | AAE | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.43 | ± 9.6 % | | 10829 | AAD | 5G NR (CP-0FDM, 100% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.40 | ± 9.6 % | | 10830 | AAD | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.63 | ± 9.6 % | | 10831 | AAD | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.73 | ± 9.6 % | | 10832 | AAD | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.74 | ±9.6% | | 10833 | AAD | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ± 9.6 % | | 10834 | AAD | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.75 | ± 9.6 % | | 10835 | AAD | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | 19.6% | | 10836 | AAE | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.66 | ± 9.6 % | | 10837 | AAD | 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.68 | ± 9.6 % | | 10839 | AAD | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | and the second second | | 10840 | AAD | 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.67 | ± 9.6 % | | 10841 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.71 | ±9.6% | | 10843 | AAD | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 100000000000000000000000000000000000000 | ± 9.6 % | | 10844 | the state of s | 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.49 | ± 9.6 % | | 10846 | AAD | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ±9.6% | | 10854 | AAD | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10855 | THE RESIDENCE OF THE PARTY NAMED IN | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | | ±9.6% | | 10856 | AAD | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TOD | 8.36 | ±9.6% | | 10857 | AAD | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 2000 | ±9.6% | | 10858 | AAD | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.35 | ±9.6 % | | 10859 | AAD | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.36 | ± 9.6 % | | 10008 | AAD | DO NEL (OF OF DIE, 100 % NO. 40 MINZ, QEAN, 60 KMZ) | DO NR FRI IDD | 8.34 | ± 9.6 % | Certificate No: EX3-7486_Jun21 Page 21 of 23 EX3DV4- SN:7486 June 18, 2021 | 10860 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | |-------|-----|--|-----------------------|----------|-------------------| | 10861 | AAD | 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.40 | ± 9.6 % | | 10863 | AAD | 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ±9.6 % | | 10864 | AAE | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 80 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 % | | 10865 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10866 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10868 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.89 | ± 9.6 % | | 10869 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.75 | | | 10870 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.86 | ± 9.6 % | | 10871 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 5.75 | ±9.6% | | 10872 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.52 | ± 9.6 % | | 10873 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 1,20,000 | . 150/00/01/01/03 | | 10874 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.61 | ± 9.6 % | | 10875 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 6.65 | ± 9.6 % | | 10876 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 7.78 | ± 9.6 % | | 10877 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) | SHOW SHARES AND STORY | 8.39 | ± 9.6 % | | 10878 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 7.95 | ±9.6 % | | 10879 | - | 5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.41 | ±9.6 % | | 10880 | AAD | | 5G NR FR2 TDD | 8.12 | ± 9.6 % | | 10881 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.38 | ± 9.6 % | | 10882 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TOD | 5.75 | ± 9.6 % | | 10883 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.96 | ± 9.6 % | | | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.57 | ± 9.6 % | | 10884 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.53 | ± 9.6 % | | 10865 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6,61 | ± 9.6 % | | 10886 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.65 | ± 9.6 % | | 10887 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 7.78 | ± 9.6 % | | 10888 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 8.35 | ± 9.6 % | | 10889 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.02 | ±9.6% | | 10890 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDO | 8.40 | ± 9.6 % | | 10891 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.13 | ± 9.6 % | | 10892 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.41 | ± 9.6 % | | 10897 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.66 | ± 9.6 % | | 10898 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.67 | ± 9.6 % | | 10899 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.67 | ± 9.6 % | | 10900 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10901 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10902 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10903 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10904 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10905 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10906 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10907 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.78 | ± 9.6 % | | 10908 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.93 | ± 9.6 % | | 10909 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.96 | ± 9.6 % | | 10910 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.83 | ± 9.6 % | | 10911 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.93 | ± 9.6 % | | 10912 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10913 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10914 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.85 | ± 9.6 % | | 10915 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.83 | ± 9.6 % | | 10916 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.87 | ± 9.6 % | | 10917 | AAD | 5G NR
(DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.94 | ± 9.6 % | | 10916 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.86 | ± 9.6 % | | 10919 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.86 | ± 9.6 % | | 10920 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.87 | ± 9.6 % | | 10921 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | Certificate No: EX3-7486_Jun21 Page 22 of 23 EX3DV4-SN:7486 June 18, 2021 | 10922 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.82 | ± 9.6 % | |-------|-----|---|---------------|-------|---------| | 10923 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10924 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10925 | GAA | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.95 | ± 9.6 % | | 10926 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10927 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.94 | ± 9.6 % | | 10928 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ± 9.6 % | | 10929 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ± 9.6 % | | 10930 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ± 9.6 % | | 10931 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10932 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10933 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10934 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10935 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10936 | AAC | 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.90 | ± 9.6 % | | 10937 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.77 | ± 9.6 % | | 10938 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.90 | ± 9.6 % | | 10939 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.82 | ± 9.6 % | | 10940 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.89 | ± 9.6 % | | 10941 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.83 | ± 9.6 % | | 10942 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.85 | ± 9.6 % | | 10943 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.95 | ± 9.6 % | | 10944 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.81 | ± 9.6 % | | 10945 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.85 | ± 9.6 % | | 10946 | AAC | 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.83 | ± 9.6 % | | 10947 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.87 | ± 9.6 % | | 10948 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.94 | ± 9.6 % | | 10949 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.87 | ± 9.6 % | | 10950 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.94 | ± 9.6 % | | 10951 | AAB | 5G NR (DFT-e-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.92 | ± 9.6 % | | 10952 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.25 | ± 9.6 % | | 10953 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.15 | ± 9.6 % | | 10954 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.23 | ± 9.6 % | | 10955 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.42 | ± 9.6 % | | 10956 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.14 | ± 9.6 % | | 10957 | AAC | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.31 | ± 9.6 % | | 10958 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.61 | ± 9.6 % | | 10959 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.33 | ± 9.6 % | | 10960 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.32 | ±9.6 % | | 10961 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.36 | ± 9.6 % | | 10962 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.40 | ±9.6 % | | 10963 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.55 | ± 9.6 % | | 10964 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.29 | ± 9.6 % | | 10965 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.37 | ± 9.6 % | | 10966 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 84-QAM, 30 kHz) | 5G NR FR1 TDD | 9.55 | ± 9.6 % | | 10987 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.42 | ± 9.6 % | | 10966 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.49 | ± 9.6 % | | 10972 | AAB | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 11.59 | ± 9.6 % | | 10973 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 9.06 | ± 9.6 % | | 10974 | AAB | 5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz) | 5G NR FR1 TDD | 10.28 | ± 9.6 % | ⁶ Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Certificate No: EX3-7486_Jun21 Page 23 of 23 # Appendix C Dipole Calibration Certificates Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Motorola Solutions MY Certificate No: D450V3-1077 Jul21 | I | D. LEON TO CALL CO. | 19 | | |--|--|--|---| | Object | D450V3 - SN:107 | 77 | | | Calibration procedure(s) | QA CAL-15.v9
Calibration Proce | edure for SAR Validation Sources | below 700 MHz | | Calibration date: | July 09, 2021 | | | | The measurements and the uncer | tainties with confidence p | ional standards, which realize the physical uni
robability are given on the following pages an
ry facility: environment temperature (22 ± 3)°C | d are part of the certificate. | | | | | | | Calibration Equipment used (M&T | E critical for calibration) | | | | | E critical for calibration) | Cal Date (Certificate No.) | Scheduled Calibration | | Primary Standards | | Cal Date (Certificate No.)
09-Apr-21 (No. 217-03291/03292) | Scheduled Calibration
Apr-22 | | Primary Standards Power mater NRP | ID# | | | | Primary Standards Power meter NRP Power sensor NRP-Z91 | ID#
SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator | ID #
SN: 104778
SN: 103244
SN: 103245
SN: CC2552 (20x) | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343) | Apr-22
Apr-22
Apr-22
Apr-22 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination | ID #
SN: 104778
SN: 103244
SN: 103245
SN: CC2552 (20x)
SN: 310982 / 06327 | 09-Apr-21 (No. 217-03281/03282)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344) | Apr-22
Apr-22
Apr-22
Apr-22
Apr-22 | | Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | ID #
SN: 104778
SN: 103244
SN: 103245
SN: CC2552 (20x)
SN: 310982 / 08327
SN: 3877 | 09-Apr-21 (No. 217-03281/03282)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344)
30-Dec-20 (No. EX3-3877_Dec20) | Apr-22
Apr-22
Apr-22
Apr-22
Apr-22
Dec-21 | | Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | ID #
SN: 104778
SN: 103244
SN: 103245
SN:
CC2552 (20x)
SN: 310982 / 06327 | 09-Apr-21 (No. 217-03281/03282)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344) | Apr-22
Apr-22
Apr-22
Apr-22
Apr-22 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | ID #
SN: 104778
SN: 103244
SN: 103245
SN: CC2552 (20x)
SN: 310982 / 08327
SN: 3877 | 09-Apr-21 (No. 217-03281/03282)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344)
30-Dec-20 (No. EX3-3877_Dec20) | Apr-22
Apr-22
Apr-22
Apr-22
Apr-22
Dec-21 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B | ID #
SN: 104778
SN: 103244
SN: 103245
SN: CC2552 (20x)
SN: 310982 / 06327
SN: 3877
SN: 654 | 09-Apr-21 (No. 217-03281/03282)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344)
30-Dec-20 (No. EX3-3877_Dec20)
28-Jun-21 (No. DAE4-654_Jun21) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22 Scheduled Check In house check: Jun-22 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A | ID # SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 08327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 | 09-Apr-21 (No. 217-03281/03282)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344)
30-Dec-20 (No. EX3-3877_Dec20)
28-Jun-21 (No. DAE4-654_Jun21)
Check Date (in house)
06-Apr-16 (in house check Jun-20)
06-Apr-16 (in house check Jun-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22 Scheduled Check In house check: Jun-22 In house check: Jun-22 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A | ID # SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-3877 Dec20) 28-Jun-21 (No. DAE4-654_Jun-21) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22 Scheduled Check In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E44198 Power sensor E4412A RF generator HP 8648C | ID # SN: 104778 SN: 103244 SN: 103245 SN: 03245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-3877 Dec20) 28-Jun-21 (No. DAE4-654_Jun-21) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22 Scheduled Check In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 | | Primary Standards Power mater NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power mater E44198 Power sensor E4412A RF generator HP 8648C | ID # SN: 104778 SN: 103244 SN: 103245 SN: 03245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-3877 Dec20) 28-Jun-21 (No. DAE4-654_Jun-21) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22 Scheduled Check In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A RF generator HP 8648C | ID # SN: 104778 SN: 103244 SN: 103245 SN: 03245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-3877 Dec20) 28-Jun-21 (No. DAE4-654_Jun-21) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22 Scheduled Check In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer Aglient E8358A | ID # SN: 104778 SN: 103244 SN: 103245 SN: 03245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US41080477 | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-3877_Dec20) 28-Jun-21 (No. DAE4-654_Jun-21) Check Date (in house) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 31-Mar-14 (in house check Jun-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Doc-21 Jun-22 Scheduled Check In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 In house check: Oct-21 | | Calibration Equipment used (M&T Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer Agilent E8358A Calibrated by: | ID # SN: 104778 SN: 103244 SN: 103245 SN: 062552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US3642U01700 SN: US41080477 | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-3877_Dec20) 28-Jun-21 (No. DAE4-654_Jun21) Check Date (in house) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 31-Mar-14 (in house check Jun-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Doc-21 Jun-22 Scheduled Check In house check: Jun-2: In house check: Jun-2: In house check: Jun-2: In house check: Oct-2: | Certificate No: D450V3-1077_Jul21 Page 1 of 8 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D450V3-1077_Jul21 Page 2 of 8 #### **Measurement Conditions**
DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-----------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | ELI4 Flat Phantom | Shell thickness: 2 ± 0.2 mm | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 450 MHz ± 1 MHz | | #### Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 43.5 | 0.87 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 43.2 ± 6 % | 0.87 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.16 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 4.63 W/kg ± 18.1 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 0.772 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 3.08 W/kg ± 17.6 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 56.7 | 0.94 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 56.7 ± 6 % | 0.93 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | **** | #### SAR result with Body TSL | SAR averaged over 1 cm3 (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.15 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 4.64 W/kg ± 18.1 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 0.774 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 3.12 W/kg ± 17.6 % (k=2) | Certificate No: D450V3-1077_Jul21 Page 3 of 8 #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 55.1 Ω - 6.3 μΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 22.2 dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 52.4 Ω - 9.8 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 20.2 dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.351 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D450V3-1077_Jul21 Page 4 of 8 #### **DASY5 Validation Report for Head TSL.** Date: 07.07.2021 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN:1077 Communication System: UID 0 - CW; Frequency: 450 MHz Medium parameters used: f = 450 MHz; $\sigma = 0.87 \text{ S/m}$; $\varepsilon_f = 43.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN3877; ConvF(10.64, 10.64, 10.64) @ 450 MHz; Calibrated: 30.12.2020 · Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn654; Calibrated: 28.06.2021 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) #### Dipole Calibration for Head Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 39.23 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.79 W/kg #### SAR(1 g) = 1.16 W/kg; SAR(10 g) = 0.772 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid (> 30 mm) Ratio of SAR at M2 to SAR at M1 = 64.4% Maximum value of SAR (measured) = 1.56 W/kg Certificate No: D450V3-1077_Jul21 Page 5 of 8 #### Impedance Measurement Plot for Head TSL Certificate No: D450V3-1077_Jul21 #### DASY5 Validation Report for Body TSL Date: 09.07.2021 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN:1077 Communication System: UID 0 - CW; Frequency: 450 MHz Medium parameters used: f = 450 MHz; $\sigma = 0.93 \text{ S/m}$; $\varepsilon_r = 56.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN3877; ConvF(10.64, 10.64, 10.64) @ 450 MHz; Calibrated: 30.12.2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn654; Calibrated: 28.06.2021 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ### Dipole Calibration for Body Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 42.26 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 1.76 W/kg #### SAR(1 g) = 1.15 W/kg; SAR(10 g) = 0.774 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid (> 30 mm) Ratio of SAR at M2 to SAR at M1 = 65.5% Maximum value of SAR (measured) = 1.54 W/kg 0 dB = 1.54 W/kg = 1.88 dBW/kg Certificate No: D450V3-1077_Jul21 Page 7 of 8 ### Impedance Measurement Plot for Body TSL Certificate No: D450V3-1077_Jul21 Page 8 of 8 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Motorola Solutions MY Certificate No: D2450V2-782_Feb20 # CALIBRATION CERTIFICATE Object D2450V2 - SN:782 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: February 20, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 03-Apr-19 (No. 217-02892/02893) | Apr-20 | | Power sensor NRP-Z91 | SN: 103244 | 03-Apr-19 (No. 217-02892) | Apr-20 | | Power sensor NRP-Z91 | SN: 103245 | 03-Apr-19 (No. 217-02893) | Apr-20 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-19 (No. 217-02894) | Apr-20 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-19 (No. 217-02895) | Apr-20 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-19 (No. EX3-7349_Dec19) | Dec-20 | | DAE4 | SN: 601 | 27-Dec-19 (No. DAE4-601_Dec19) | Dec-20 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 | | | Name | Function | Signature | | Calibrated by: | Leif Klysner | Laboratory Technician | Seef Dyn | | | | | 410 | | Approved by: | Katja Pokovic | Technical Manager | MUS | Certificate No: D2450V2-782_Feb20 Page 1 of 8 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Issued: February 20, 2020 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the
recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2450V2-782_Feb20 Page 2 of 8 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY5 | V52.10.4 | |------------------------|--| | | | | Advanced Extrapolation | | | Modular Flat Phantom | | | 10 mm | with Spacer | | dx, dy, dz = 5 mm | | | 2450 MHz ± 1 MHz | | | | Modular Flat Phantom 10 mm dx, dy, dz = 5 mm | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.4 ± 6 % | 1.86 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.9 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 54.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.41 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.3 W/kg ± 16.5 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.4 ± 6 % | 2.03 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | T 7 200 | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.3 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 51.9 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.21 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 24.5 W/kg ± 16.5 % (k=2) | Certificate No: D2450V2-782_Feb20 Page 3 of 8 # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.2 Ω + 3.8 jΩ | | | |--------------------------------------|-----------------|--|--| | Return Loss | - 26.3 dB | | | # Antenna Parameters with Body TSL | Impedance, transformed to feed point | 49.6 Ω + 5.9 jΩ | | | |--------------------------------------|-----------------|--|--| | Return Loss | - 24.6 dB | | | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.153 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | | | |-----------------|-------|--|--|--| # **DASY5 Validation Report for Head TSL** Date: 20.02.2020 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:782 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.86 \text{ S/m}$; $\epsilon_r = 38.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.98, 7.98, 7.98) @ 2450 MHz; Calibrated: 31.12.2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.12.2019 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 120.1 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 27.7 W/kg SAR(1 g) = 13.9 W/kg; SAR(10 g) = 6.41 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 50% Maximum value of SAR (measured) = 23.0 W/kg 0 dB = 23.0 W/kg = 13.62 dBW/kg Certificate No: D2450V2-782_Feb20 Page 5 of 8 # Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 20.02.2020 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:782 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.03 \text{ S/m}$; $\varepsilon_r = 51.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.02, 8.02, 8.02) @ 2450 MHz; Calibrated: 31.12.2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.12.2019 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 110.9 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 25.6 W/kg #### SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.21 W/kg Smallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 52.9% Maximum value of SAR (measured) = 21.6 W/kg 0 dB = 21.6 W/kg = 13.34 dBW/kg Certificate No: D2450V2-782_Feb20 # Impedance Measurement Plot for Body TSL #### FCC ID: AZ489FT7125 / IC: 109U-89FT7125 # **Dipole Data** As stated in KDB 865664, dipoles used for longer calibration intervals are required to provide supporting information and measurement to qualify for extended calibration interval. Dipole D450V3 (S/N: 1077) has yet to exceed the annual calibration date, hence no further justification is required. Dipole D450V2 (S/N: 782) has exceeded the annual calibration date thus the dipole impedance and return loss measurement data measured by Motorola Solutions' EME lab for Dipole 2450 (S/N: 782) are provided in the table below. The results meet the requirements stated in KDB 865664. | Dipole 2450-782 | Head | | Body | | | | |------------------------|-----------|------------|--------------------|-----------|-------------------------|--------------------| | Dipole 2430-762 | Impedance | | Return Loss | Impedance | | Return Loss | | Date Measured | real
Ω | imag
jΩ | dB | real
Ω | imag $\mathrm{j}\Omega$ | dB | | 04/13/20 | 52.88 | 5.04 | -24.71 | 46.60 | 4.69 |
-24.53 | | 04/23/21 | 50.90 | 3.21 | -29.40 | 48.13 | 3.70 | -25.41 |