

# RADIO TEST REPORT

Report No.: SHATBL2208018W01

Applicant: Suzhou EICCOMM Technology CO., Ltd.

Address:
Room 304, Building 4,Zhuyuan Road 209, GAOXIN District, Suzhou,
Jiangsu Province, China

Product Name : LED tube

Brand Name : RAB

Model Name : LCBT8-18-48P-8TW-SD-BYP-SS

Series Model : N/A

Test Standard : FCC Part15.247

FCC ID : 2AXD8-BLET8WT

"Shanghai ATBL Technology Co., Ltd." hereby certifies that according to actual testing conditions. The test results or observations are provided in accordance with measured value, without taking risks caused by uncertainty into account. Without explicit stipulation in special agreements, standards or regulations, ATBL shall not assume any responsibility. The test results or observations are applicable only to tested sample. Client shall be responsible for representativeness of the sample and authenticity of the material. This report will be void without authorized signature or special seal for testing report. Do not copied without authorization.

Teİ:+86(0)21-51298625 Web:www.atbl-lab.com Email:atbl@atbl-lab.com



Page 2 of 52

Report No.: SHATBL2208018W01

GENERAL DESCRIPTION

Applicant's Name...... Suzhou EICCOMM Technology CO., Ltd.

Address ...... : Room 304, Building 4, Zhuyuan Road 209, GAOXIN District, Suzhou,

Jiangsu Province, China

Manufacture's Name...... RAB lighting INC

Address ...... No. 9, Jiaozhou Road, Jingan District, Shanghai, China

**Product Description** 

Product Name .....: LED tube

Brand Name .....: RAB

Model Name .....: LCBT8-18-48P-8TW-SD-BYP-SS

SeriesModel .....: N/A

Test Standards.....: FCC Part15.247

Test Procedure ...... ANSI C63.10-2013

This device described above has been tested by ATBL, the test results show that the equipment under test (EUT) is in compliance with the FCCrequirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of ATBL, this document may be altered or revised by ATBL, personal only, and shall be noted in the revision of the document.

Date of receipt of test item...... 16 Aug. 2022

Date of Issue ...... 20 Aug. 2022

Test Result..... Pass

Report Prepared by:

(Roean Wei)

(Roean Wei)

(Ghost Li)

Authorized Signatory:

(Terry Yang)



### Page 3 of 52

Report No.: SHATBL2208018W01

# Table of Contents

| 1. | SUMMARY OF TEST RESULTS                                     | 6  |
|----|-------------------------------------------------------------|----|
| 2. | GENERAL INFORMATION                                         | 7  |
|    | 2.1 GENERAL DESCRIPTION OF THE EUT                          | 7  |
|    | 2.2 DESCRIPTION OF THE TEST MODES                           | 9  |
|    | 2.3 TEST SOFTWARE AND POWER LEVEL                           | 9  |
|    | 2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED | 10 |
| -  | 2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS  | 11 |
|    | 2.6 LABORATORY INFORMATION                                  | 11 |
|    | 2.7 MEASUREMENT UNCERTAINTY                                 | 12 |
| ,  | 2.8 EQUIPMENTS LIST                                         | 13 |
| 3. | EMC EMISSION TEST                                           | 15 |
|    | 3.1 CONDUCTED EMISSION MEASUREMENT                          | 15 |
| P  | 3.2 TEST PROCEDURE                                          | 15 |
|    | 3.3 TEST SETUP                                              | 16 |
|    | 3.4 EUT OPERATING CONDITIONS                                | 16 |
|    | 3.5TEST RESULTS                                             | 16 |
| 4. | RADIATED EMISSION MEASUREMENT                               | 18 |
|    | 4.1 RADIATED EMISSION LIMITS                                | 18 |
| 4  | 4.2 TEST PROCEDURE                                          | 20 |
| 1. | 4.3 TEST SETUP                                              | 21 |
|    | 4.4 EUT OPERATING CONDITIONS                                | 21 |
|    | 4.5 FIELD STRENGTH CALCULATION                              | 22 |
| 5  | 4.6 TEST RESULTS                                            | 23 |
| 5. | CONDUCTED SPURIOUS & BAND EDGE EMISSION                     | 36 |
|    | 5.1 LIMIT                                                   | 36 |
|    | 5.2 TEST PROCEDURE                                          | 36 |
|    | 5.3 TEST SETUP                                              | 36 |
|    | 5.4 EUT OPERATION CONDITIONS                                | 36 |
| 2  | 5.5 TEST RESULTS                                            | 37 |
| 6. | POWER SPECTRAL DENSITY TEST                                 | 40 |
|    | 6.1 LIMIT                                                   | 40 |
|    | 6.2 TEST PROCEDURE                                          | 40 |
|    | 6.3 TEST SETUP                                              | 40 |



### Page 4 of 52

Report No.: SHATBL2208018W01

F

F

K

F3V

K

## Table of Contents

|    | 6.4 EUT OPERATION CONDITIONS | 40 |
|----|------------------------------|----|
|    | 6.5 TEST RESULTS             | 41 |
| 7. | BANDWIDTH TEST               | 43 |
|    | 7.1 LIMIT                    | 43 |
|    | 7.2 TEST PROCEDURE           | 43 |
| 2  | 7.3 TEST SETUP               | 43 |
|    | 7.4 EUT OPERATION CONDITIONS | 43 |
|    | 7.5 TEST RESULTS             | 44 |
| 8. | PEAK OUTPUT POWER TEST       | 46 |
|    | 8.1 LIMIT                    | 46 |
|    | 8.2 TEST PROCEDURE           | 46 |
| d  | 8.3 TEST SETUP               | 46 |
|    | 8.4 EUT OPERATION CONDITIONS | 46 |
|    | 8.5 TEST RESULTS             | 46 |
| 9. | ANTENNA REQUIREMENT          | 49 |
|    | 9.1 STANDARD REQUIREMENT     | 49 |
| 1  | 9.2 EUT ANTENNA              | 49 |
| ΑI | PPENDIX-PHOTOS OF TEST SETUP | 50 |

K3N

Kal

K3E



534

\$

K3V

F3N

35

3

13h

K3V

K BY

F3V

Kar

F3N

K3W

K3V

K3V

Kan Kan

K3N

Kar Kar

Kar.

Kan Kan

F3V

Fall

Kar

Kan Kan

Kan Kan

K3V

KON

K3V

# Page 5 of 52 FOR **Revision History**

| 0 20 Aug. 2022 SHATBL2208018W01 ALL Initial Is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Il Issue  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| TANK AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23°       |
| Tan Kalan Alan Kalan Kal | 300       |
| Tak E Estate Est | 25        |
| Par Kalan Kalan Kalan Ka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 234       |
| By E By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.       |
| SON FROM FOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| F 3V A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,         |
| 5 F 3 F 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ?         |
| D. E. D. C. E. E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 12V     |
| AND THE POST OF THE PERSON OF  | 10 July 1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20        |

KON TOWN

F.S.

Fall

K3V

F3V

Kan Kan

KINE KINE

KINE KINE

KINE KINE KINE

KINE KINE

KISE KISE

Mal

1

Page 6 of 52

Report No.: SHATBL2208018W01

### 1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02.

| 01                             |                                            |          |        |
|--------------------------------|--------------------------------------------|----------|--------|
| Standard<br>Section            | Test Item                                  | Judgment | Remark |
| 15.207                         | Conducted Emission                         | PASS     |        |
| 15.247 (a)(2)                  | 6dB&99% Bandwidth                          | PASS     | 2×     |
| 15.247 (b)(3)                  | Output Power                               | PASS     | 3      |
| 15.247(d) & 15.209 &<br>15.205 | Radiated Spurious Emission                 | PASS     | F X    |
| 15.247(d) & 15.205             | Conducted Spurious & Band Edge<br>Emission | PASS     | '      |
| 15.247 (e)                     | Power Spectral Density                     | PASS     | 25°    |
| 15.205                         | Restricted bands of operation              | PASS     | 19     |
| 15.203                         | Antenna Requirement                        | PASS     | F-     |

### NOTE:

- (1) 'N/A' denotes test is not applicable in this Test Report.
- (2)All tests are according to ANSI C63.10-2013.

Page 7 of 52

Report No.: SHATBL2208018W01

### 2. GENERAL INFORMATION

### 2.1 GENERAL DESCRIPTION OF THE EUT

| Product Name            | LED tube              | 200                         |  |  |
|-------------------------|-----------------------|-----------------------------|--|--|
| Trade Name              | RAB                   | F 35 F 37                   |  |  |
| Model Name              | LCBT8-18-48P-8TW-     | SD-BYP-SS                   |  |  |
| Series Model            | T8-12-48G-8xx-SD-B    | YP-DIM/LCB                  |  |  |
| Model Difference        | The color temperature | is different                |  |  |
|                         | The EUT is a LED to   | ube                         |  |  |
|                         | Operation Frequency:  | 2402~2480 MHz               |  |  |
|                         | Modulation Type:      | GFSK                        |  |  |
|                         | Radio Technology:     | BLE                         |  |  |
|                         | Bluetooth Version:    | 5.0                         |  |  |
| Product Description     | Bluetooth             | LE(Support 1M PHY)          |  |  |
|                         | Configuration:        | 1 1 1 1                     |  |  |
|                         | Number Of<br>Channel: | 40                          |  |  |
|                         | Antenna Designation:  | Please refer to the Note 3. |  |  |
|                         | AntennaGain (dBi)     | -1.8 dBi                    |  |  |
| Channel List            | Please refer to the   | Note 2.                     |  |  |
| Power Rating            | 18W                   | 5 3 7 3                     |  |  |
| Battery                 | N/A                   |                             |  |  |
| Hardware version number | V2.0                  |                             |  |  |
| Software versionnumber  | V1.0.1                | \$ 1 Km                     |  |  |
| Connecting I/O Port(s)  | Please refer to the   | Note 1.                     |  |  |

#### Note:

For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.



Page 8 of 52

Report No.: SHATBL2208018W01

2

|         | Channel List       |         |                    |         |                    |         |                     |  |  |  |
|---------|--------------------|---------|--------------------|---------|--------------------|---------|---------------------|--|--|--|
| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequenc<br>y (MHz) |  |  |  |
| 00      | 2402               | 10      | 2422               | 20      | 2442               | 30      | 2462                |  |  |  |
| 01      | 2404               | 11      | 2424               | 21      | 2444               | 31      | 2464                |  |  |  |
| 02      | 2406               | 12      | 2426               | 22      | 2446               | 32      | 2466                |  |  |  |
| 03      | 2408               | 13      | 2428               | 23      | 2448               | 33      | 2468                |  |  |  |
| 04      | 2410               | 14      | 2430               | 24      | 2450               | 34      | 2470                |  |  |  |
| 05      | 2412               | 15      | 2432               | 25      | 2452               | 35      | 2472                |  |  |  |
| 06      | 2414               | 16      | 2434               | 26      | 2454               | 36      | 2474                |  |  |  |
| 07      | 2416               | 17      | 2436               | 27      | 2456               | 37      | 2476                |  |  |  |
| 08      | 2418               | 18      | 2438               | 28      | 2458               | 38      | 2478                |  |  |  |
| 09      | 2420               | 19      | 2440               | 29      | 2460               | 39      | 2480                |  |  |  |

3.

#### Table for Filed Antenna

| Ant. | Brand | Model Name                         | Antenna<br>Type | Connector | Gain (dBi) | NOTE    |
|------|-------|------------------------------------|-----------------|-----------|------------|---------|
| 1    | RAB   | LCBT8-18-48P-<br>8TW-SD-BYP-S<br>S | Single-stage    | N/A       | -1.8 dBi   | BLE ANT |



Page 9 of 52

Report No.: SHATBL2208018W01

#### 2.2 DESCRIPTION OF THE TEST MODES

Forconducted test items and radiated spurious emissions

Each of these EUT operation mode(s) or test configuration mode(s) mentioned below was evaluated respectively.

| Worst Mode | Description      | Data/Modulation |
|------------|------------------|-----------------|
| Mode 1     | TX CH00(2402MHz) | 1 Mbps/GFSK     |
| Mode 2     | TX CH19(2440MHz) | 1 Mbps/GFSK     |
| Mode 3     | TX CH39(2480MHz) | 1 Mbps/GFSK     |

#### Note:

#### ForConducted Emission

| Oroonaaotea Enni      | 501011                 | 7.73  |
|-----------------------|------------------------|-------|
| 20                    | Test Case              | Va Ca |
| Conducted<br>Emission | Mode 4 : Keeping BT TX | 1 2 3 |

#### 2.3 TEST SOFTWARE AND POWER LEVEL

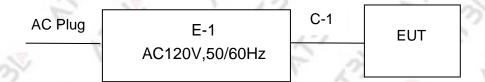
During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

| RF Function | Туре | Mode Or<br>Modulation type | Ant Gain(dBi) | Power<br>Class | Software For Testing |
|-------------|------|----------------------------|---------------|----------------|----------------------|
| BLE         | BLE  | GFSK                       | -1.8          | default        | EMI_Test_Tool        |

<sup>(1)</sup> The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.



Page 10 of 52


Report No.: SHATBL2208018W01

### 2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test



Conduction Emission Test





Page 11 of 52 Report No.: SHATBL2208018W01

#### 2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Necessary accessories

| Item | Equipment | Mfr/Brand | Model/Type No. | Length | Note |
|------|-----------|-----------|----------------|--------|------|
| N/A  | N/A       | N/A       | N/A            | N/A    | N/A  |
| 1    | L 3       |           | E AV           | F 2    | 2    |
| -    | E. F      | 2         | 5 3            | F      | 23   |
| 2    | 7         | 13        | 150            |        | F 23 |

Support units

| Item | Equipment | Mfr/Brand | Model           | Type No.                | Note |
|------|-----------|-----------|-----------------|-------------------------|------|
| E-2  | Notebook  | Lenovo    | DESKTOP-USDEO09 | 00326-10000-00000-AA636 | N/A  |
| C-1  | USB Cable | N/A       | 100cm           | N/A                     | N/A  |
| K    | )"        | F         | 05              | Z, Z L                  | 23   |

#### Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in Length a column.

### 2.6 LABORATORY INFORMATION

| Company Name:                      | Shanghai ATBL Technology Co., Ltd.                                                       |
|------------------------------------|------------------------------------------------------------------------------------------|
| Address:                           | Building 8, No. 160, Basheng Road, Waigaoqiao Free Trade Zone, Pudong New Area, Shanghai |
| Telephone:                         | +86(0)21-51298625                                                                        |
| The FCC Registration Number (FRN): | 0031025281                                                                               |
| A2LA Number:                       | 6184.01                                                                                  |
| CNAS Number:                       | CNAS L14531                                                                              |



Page 12 of 52 Report

Report No.: SHATBL2208018W01

### 2.7 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement  $\mathbf{y} \pm \mathbf{U}$ , where expended uncertainty  $\mathbf{U}$  is based on a standard uncertainty multiplied by a coverage factor of  $\mathbf{k}=2$ , providing a level of confidence of approximately 95 %.

| No. | Item                               | Uncertainty |
|-----|------------------------------------|-------------|
| 10  | RF output power, conducted         | ±0.962dB    |
| 2   | Conducted spurious emissions       | ±2.986dB    |
| 3   | All emissions, radiated 30MHz-1GHz | ±2.49dB     |
| 4   | All emissions, radiated 1GHz-18GHz | ±3.50dB     |
| 5   | Occupied bandwidth                 | ±23.36dB    |
| 6   | Power spectral density             | ±0.866dB    |



Page 13 of 52

Report No.: SHATBL2208018W01

### 2.8 EQUIPMENTS LIST

2.8.1 Radiation Test equipment

| Kind of Equipment               | Manufacturer | Type No.        | Serial No.       | Management number | Calibrated until |
|---------------------------------|--------------|-----------------|------------------|-------------------|------------------|
| Test Receiver                   | R&S          | ESCI            | 100469           | SHATBL-E003       | 2023.05.20       |
| Spectrum<br>Analyzer            | Agilent      | N9020A          | MY50200811       | SHATBL-E017       | 2023.05.20       |
| Bilog Antenna                   | SCHWARZBECK  | VLUB 9168       | 01174            | SHATBL-E008       | 2023.05.20       |
| Horn Antenna                    | SCHWARZBECK  | BBHA 9120D      | 02014            | SHATBL-E009       | 2023.05.20       |
| Pre-Amplifier<br>(0.1M-3GHz)    | JPT          | JPA-10M1G35     | 21010100035001   | SHATBL-E005       | 2023.05.20       |
| Pre-Amplifier<br>(1G-18GHz)     | JPT          | JPA0118-55-303A | 1910001800055000 | SHATBL-E006       | 2023.05.20       |
| Temperature & Humidity          | DeLi         | DeLi            | N/A              | SHATBL-E016       | 2023.05.20       |
| Antenna/Turntable<br>Controller | Brilliant    | N/A             | N/A              | SHATBL-E007       | N/A              |
| Test SW                         | FALA         | EMC-R           | RI(Ver.4A2)      | SHATBL-E046       | N/A              |

2.8.2 Conduction Test equipment

| Kind of Equ       | uipment | Manufacturer | Type No.      | Serial No.   | Management number | Calibration date |
|-------------------|---------|--------------|---------------|--------------|-------------------|------------------|
| Test Rec          | eiver   | R&S          | ESPI          | 101679       | SHATBL-E012       | 2023.05.20       |
| LISN              | 1       | R&S          | ENV216        | 101300       | SHATBL-E013       | 2023.05.20       |
| LISN              | 1       | R&S          | ENV216        | 100333       | SHATBL-E041       | 2023.05.20       |
| Temperat<br>Humic |         | DeLi         | DeLi          | N/A          | SHATBL-E015       | 2023.05.20       |
| Test S            | W       | FALA         | EZ-EMC(Ver.EM | IC-CON3A1.1) | SHATBL-E044       | N/A              |



Page 14 of 52

Report No.: SHATBL2208018W01

F

K

K

#### 2.8.3 RF Connected Test

| 2.0.5 IXI CONTINUE ICST               |                    | The same of the sa |                     |                     |                  |
|---------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|------------------|
| Kind of Equipment                     | Manufactur<br>er   | Type No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Serial No.          | equipment<br>number | Calibrated until |
| Power meter (with pulse power sensor) | Anritsu            | ML2496A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1935001             | SHATBL-W030         | 2022.10.26       |
| Pulse power sensor (with power meter) | Anritsu            | MA2411B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1911006             | SHATBL-W031         | 2022.10.26       |
| Signal Analyzer                       | Agilent            | N9020A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MY57300196          | SHATBL-W004         | 2022.10.07       |
| Signal Generator                      | Agilent            | N5182B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MY46240556          | SHATBL-W005         | 2022.10.07       |
| Wireless Communications Test Set      | R&S                | CMW500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 101331              | SHATBL-W007         | 2022.10.07       |
| Temperature & Humidity                | Deli               | deli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                 | SHATBL-W011         | 2022.10.07       |
| Attenuator                            | Agilent            | 8494B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DC-18G              | SHATBL-W009         | 2022.10.07       |
| Attenuator                            | Agilent            | 8496B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DC-18G              | SHATBL-W010         | 2022.10.07       |
| nouse enlitter                        | MANUZ              | MPD-DC/6-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 62315 G51           | SHATBL-W015         | 2022.10.07       |
| power splitter                        | MNK                | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 62315 G52           | SHATBL-W016         | 2022.10.07       |
| Filter                                | Chengdu kangmaiwei | ZBSF-C2400<br>-2483.5-T3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N/A                 | SHATBL-W021         | N/A              |
| Constant temperature and humidity box | KSON               | THS-B6C-15<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61 <mark>59K</mark> | SHATBL-W019         | 2023.01.17       |
| Test SW                               | FALA               | LZ-RF(Ver.L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | zRF-03A3.1)         | SHATBL-W020         | N/A              |



Page 15 of 52

Report No.: SHATBL2208018W01

#### 3. EMC EMISSION TEST

#### 3.1 CONDUCTED EMISSION MEASUREMENT

#### 3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

Operating frequency band. In case the emission fall within the restricted band specified on Part 207(a)limit in the table below has to be followed.

|                 | Conducted Emission | onlimit (dBuV) |
|-----------------|--------------------|----------------|
| FREQUENCY (MHz) | Quasi-peak         | Average        |
| 0.15 -0.5       | 66 - 56 *          | 56 - 46 *      |
| 0.50 -5.0       | 56.00              | 46.00          |
| 5.0 -30.0       | 60.00              | 50.00          |

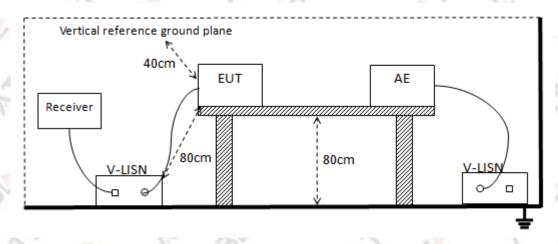
#### Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " \* " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

| Receiver Parameters | Setting  |
|---------------------|----------|
| Attenuation         | 10 dB    |
| Start Frequency     | 0.15 MHz |
| Stop Frequency      | 30 MHz   |
| IF Bandwidth        | 9 kHz    |

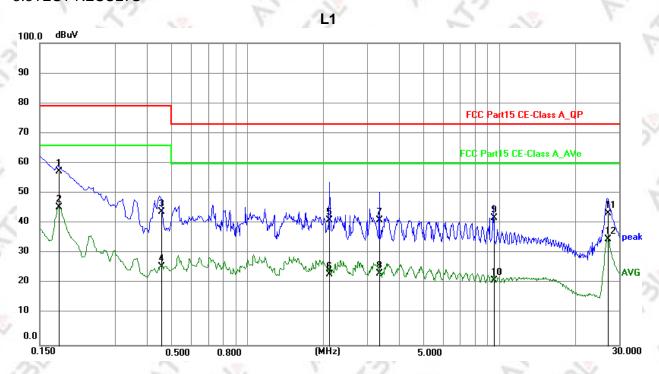
#### 3.2 TEST PROCEDURE


- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.



Page 16 of 52

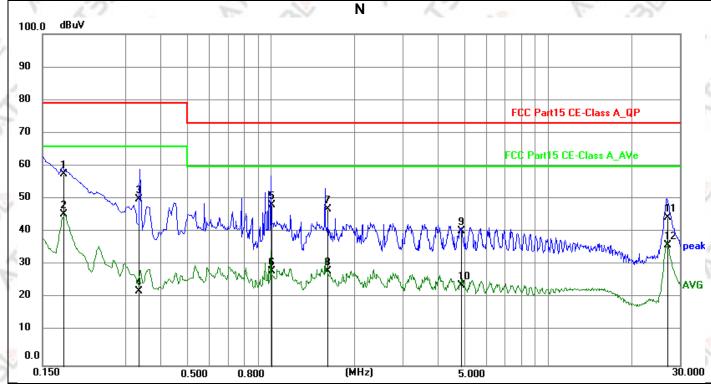
Report No.: SHATBL2208018W01


#### 3.3 TEST SETUP



#### 3.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.


#### 3.5TEST RESULTS





Page 17 of 52 Report No.: SHATBL2208018W01

| No. | Frequency | Reading | Correct | Result | Limit  | Margin | Remark |
|-----|-----------|---------|---------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB)    | (dBuV) | (dBuV) | (dB)   |        |
| 1 7 | 0.1780    | 47.86   | 9.76    | 57.62  | 79.00  | -21.38 | QP     |
| 2   | 0.1780    | 35.95   | 9.76    | 45.71  | 66.00  | -20.29 | AVG    |
| 3   | 0.4550    | 34.38   | 9.75    | 44.13  | 79.00  | -34.87 | QP     |
| 4   | 0.4550    | 16.34   | 9.75    | 26.09  | 66.00  | -39.91 | AVG    |
| 5   | 2.1140    | 31.60   | 9.79    | 41.39  | 73.00  | -31.61 | QP     |
| 6   | 2.1140    | 13.80   | 9.79    | 23.59  | 60.00  | -36.41 | AVG    |
| 7   | 3.3450    | 31.74   | 9.82    | 41.56  | 73.00  | -31.44 | QP     |
| 8   | 3.3450    | 14.08   | 9.82    | 23.90  | 60.00  | -36.10 | AVG    |
| 9   | 9.5150    | 32.30   | 9.96    | 42.26  | 73.00  | -30.74 | QP     |
| 10  | 9.5150    | 11.69   | 9.96    | 21.65  | 60.00  | -38.35 | AVG    |
| 11  | 27.1260   | 33.30   | 10.37   | 43.67  | 73.00  | -29.33 | QP     |
| 12  | 27.1260   | 24.84   | 10.37   | 35.21  | 60.00  | -24.79 | AVG    |



| No. | Frequency | Reading | Correct | Result | Limit  | Margin | Remark |
|-----|-----------|---------|---------|--------|--------|--------|--------|
|     | (MHz)     | (dBuV)  | (dB)    | (dBuV) | (dBuV) | (dB)   |        |
| 1 . | 0.1790    | 48.18   | 9.73    | 57.91  | 79.00  | -21.09 | QP     |
| 2   | 0.1790    | 36.01   | 9.73    | 45.74  | 66.00  | -20.26 | AVG    |
| 3   | 0.3350    | 40.43   | 9.72    | 50.15  | 79.00  | -28.85 | QP     |
| 4   | 0.3350    | 12.94   | 9.72    | 22.66  | 66.00  | -43.34 | AVG    |
| 5   | 1.0070    | 38.66   | 9.73    | 48.39  | 73.00  | -24.61 | QP     |
| 6   | 1.0070    | 18.75   | 9.73    | 28.48  | 60.00  | -31.52 | AVG    |
| 7   | 1.5950    | 37.43   | 9.75    | 47.18  | 73.00  | -25.82 | QP     |
| 8   | 1.5950    | 18.89   | 9.75    | 28.64  | 60.00  | -31.36 | AVG    |
| 9   | 4.8560    | 30.78   | 9.84    | 40.62  | 73.00  | -32.38 | QP     |
| 10  | 4.8560    | 14.48   | 9.84    | 24.32  | 60.00  | -35.68 | AVG    |
| 11  | 27.0370   | 34.36   | 10.45   | 44.81  | 73.00  | -28.19 | QP     |
| 12  | 27.0370   | 26.02   | 10.45   | 36.47  | 60.00  | -23.53 | AVG    |

Page 18 of 52 Report No.: SHATBL2208018W01

#### 4. RADIATED EMISSION MEASUREMENT

#### 4.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (Frequency Range 9kHz-1000MHz)

| Frequencies | Field Strength     | Measurement Distance |
|-------------|--------------------|----------------------|
| (MHz)       | (micorvolts/meter) | (meters)             |
| 0.009~0.490 | 2400/F(KHz)        | 300                  |
| 0.490~1.705 | 24000/F(KHz)       | 30                   |
| 1.705~30.0  | 30                 | 30                   |
| 30~88       | 100                | 3                    |
| 88~216      | 150                | 3                    |
| 216~960     | 200                | 3                    |
| Above 960   | 500                | 3                    |

#### LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

|                 | (dBuV/m) (at 3M) |         |  |  |
|-----------------|------------------|---------|--|--|
| FREQUENCY (MHz) | PEAK             | AVERAGE |  |  |
| Above 1000      | 74               | 54      |  |  |

#### Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

#### LIMITS OF RESTRICTED FREQUENCY BANDS

#### FCC:

| FREQUENCY (MHz)   | FREQUENCY (MHz)     | FREQUENCY (MHz) | FREQUENCY (GHz) |
|-------------------|---------------------|-----------------|-----------------|
| 0.090-0.110       | 16.42-16.423        | 399.9-410       | 4.5-5.15        |
| 0.495-0.505       | 16.69475-16.69525   | 608-614         | 5.35-5.46       |
| 2.1735-2.1905     | 16.80425-16.80475   | 960-1240        | 7.25-7.75       |
| 4.125-4.128       | 25.5-25.67          | 1300-1427       | 8.025-8.5       |
| 4.17725-4.17775   | 37.5-38.25          | 1435-1626.5     | 9.0-9.2         |
| 4.20725-4.20775   | 73-74.6             | 1645.5-1646.5   | 9.3-9.5         |
| 6.215-6.218       | 74.8-75.2           | 1660-1710       | 10.6-12.7       |
| 6.26775-6.26825   | 108-121.94          | 1718.8-1722.2   | 13.25-13.4      |
| 6.31175-6.31225   | 123-138             | 2200-2300       | 14.47-14.5      |
| 8.291-8.294       | 149.9-150.05        | 2310-2390       | 15.35-16.2      |
| 8.362-8.366       | 156.52475-156.52525 | 2483.5-2500     | 17.7-21.4       |
| 8.37625-8.38675   | 156.7-156.9         | 2690-2900       | 22.01-23.12     |
| 8.41425-8.41475   | 162.0125-167.17     | 3260-3267       | 23.6-24.0       |
| 12.29-12.293      | 167.72-173.2        | 3332-3339       | 31.2-31.8       |
| 12.51975-12.52025 | 240-285             | 3345.8-3358     | 36.43-36.5      |
| 12.57675-12.57725 | 322-335.4           | 3600-4400       | Above 38.6      |
| 13.36-13.41       |                     | 10 Y            | 22              |



Page 19 of 52

Report No.: SHATBL2208018W01

### For Radiated Emission

| Spectrum Parameter              | Setting                       |  |  |
|---------------------------------|-------------------------------|--|--|
| Attenuation                     | Auto                          |  |  |
| Detector                        | Peak/QP/AV                    |  |  |
| Start Frequency                 | 9 KHz/150KHz(Peak/QP/AV)      |  |  |
| Stop Frequency                  | 150KHz/30MHz(Peak/QP/AV)      |  |  |
|                                 | 200Hz (From 9kHz to 0.15MHz)/ |  |  |
| RB / VB (emission in restricted | 9KHz (From 0.15MHz to 30MHz); |  |  |
| band)                           | 200Hz (From 9kHz to 0.15MHz)/ |  |  |
| C F D                           | 9KHz (From 0.15MHz to 30MHz)  |  |  |

| Spectrum Parameter              | Setting            |  |  |
|---------------------------------|--------------------|--|--|
| Attenuation                     | Auto               |  |  |
| Detector                        | Peak/QP            |  |  |
| Start Frequency                 | 30 MHz(Peak/QP)    |  |  |
| Stop Frequency                  | 1000 MHz (Peak/QP) |  |  |
| RB / VB (emission in restricted | 120 KHz / 300 KHz  |  |  |
| band)                           | 120 M 127 000 M 12 |  |  |

| Spectrum Parameter              | Setting                       |
|---------------------------------|-------------------------------|
| Attenuation                     | Auto                          |
| Detector                        | Peak/AV                       |
| Start Frequency                 | 1000 MHz(Peak/AV)             |
| Stop Frequency                  | 10th carrier hamonic(Peak/AV) |
| RB / VB (emission in restricted | 1MHz / 3MHz(Peak)             |
| band)                           | 1 MHz/1/T MHz(AVG)            |

### For Restricted band

| Spectrum Parameter   | Setting                           |  |  |
|----------------------|-----------------------------------|--|--|
| Detector             | Peak/AV                           |  |  |
| 01-11/01-1-5-1-1-1   | Lower Band Edge: 2310 to 2410 MHz |  |  |
| Start/Stop Frequency | Upper Band Edge: 2475to 2500 MHz  |  |  |
| DD /VD               | 1 MHz / 3 MHz(Peak)               |  |  |
| RB / VB              | 1 MHz/1/T MHz(AVG)                |  |  |

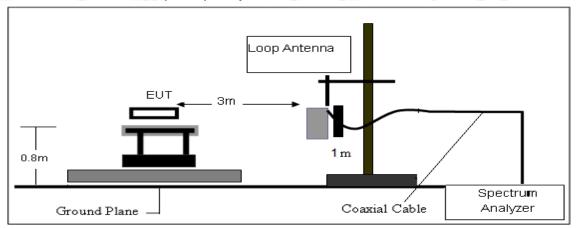


Page 20 of 52 Report No.: SHATBL2208018W01

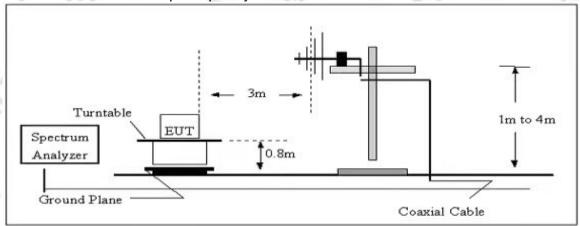
| The same of the sa |                                      |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|
| Receiver Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Setting                              |  |
| Start ~ Stop Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9kHz~90kHz / RB 200Hz for PK & AV    |  |
| Start ~ Stop Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 90kHz~110kHz / RB 200Hz for QP       |  |
| Start ~ Stop Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 110kHz~490kHz / RB 200Hz for PK & A\ |  |
| Start ~ Stop Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 490kHz~30MHz / RB 9kHz for QP        |  |
| Start ~ Stop Frequency 30MHz~1000MHz / RB 120kHz f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      |  |

#### 4.2 TEST PROCEDURE

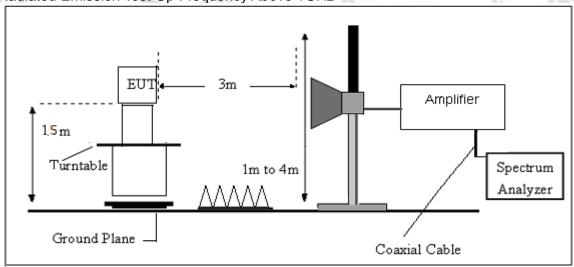
- a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 meters(above 1GHz is 1.5 m) above the ground at a 3 meter anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:


Both horizontal and vertical antenna polarities were testedand performed pretest to three orthogonal axis. The worst case emissions were reported.




Page 21 of 52 Report No.: SHATBL2208018W01

#### 4.3 TEST SETUP


#### (A) Radiated Emission Test-Up Frequency Below 30MHz



#### (B) Radiated Emission Test-Up Frequency 30MHz~1GHz



#### (C) Radiated Emission Test-Up Frequency Above 1GHz



#### 4.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.



Page 22 of 52 Re

Report No.: SHATBL2208018W01

#### 4.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where

FS = Field Strength

CL = Cable Attenuation Factor (Cable Loss)

RA = Reading Amplitude

AG = Amplifier Gain

AF = Antenna Factor

For example

| Frequency | FS       | RA       | AF   | CL   | AG   | Factor |
|-----------|----------|----------|------|------|------|--------|
| (MHz)     | (dBµV/m) | (dBµV/m) | (dB) | (dB) | (dB) | (dB)   |
| 300       | 40       | 58.1     | 12.2 | 1.6  | 31.9 | -18.1  |

Factor=AF+CL-AG



Page 23 of 52

Report No.: SHATBL2208018W01

#### 4.6 TEST RESULTS

| Temperature:  | 23.0℃      | Relative Humidtity: | 59%RH |
|---------------|------------|---------------------|-------|
| Test Voltage: | DC 3V      | Polarization:       | F 20V |
| Test Mode:    | TX Mode1/3 | F 35                | 1     |

#### Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor.

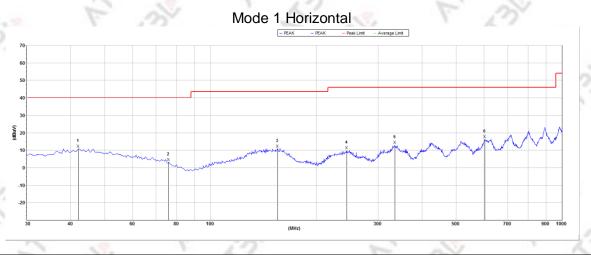
#### (9KHz-30MHz)

| Temperature:  | 23.3℃     | Relative Humidity: | 60%RH                 |
|---------------|-----------|--------------------|-----------------------|
| Test Voltage: | DC 3V     | Phase:             | Horizontal / Vertical |
| Test Mode:    | TX Mode 1 | 23"                | F SV                  |

#### Remark:

1. 9KHz-30MHz Emission detected are more than 20dB below the limit.




Report No.: SHATBL2208018W01

#### (30MHz -1000MHz)

| Temperature:  | 23.3℃     | Relative Humidity: | 60%RH      |
|---------------|-----------|--------------------|------------|
| Test Voltage: | DC 3V     | Phase:             | Horizontal |
| Test Mode:    | TX Mode 1 | E 3                | 2 K 32     |

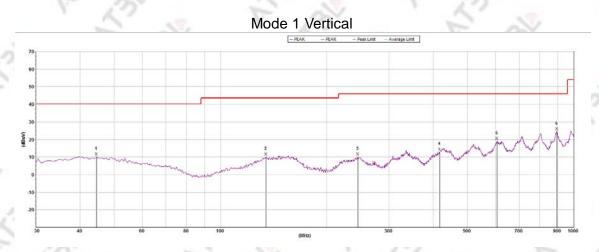
#### Remark:

- Margin = Result (Result = Reading + Factor )—Limit
   Factor = Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain



| Mk. | Freq.(MHz) | Level(d<br>BuV/m) | Limit(dB<br>uV/m) | Margin(<br>dB) | Ant.F/G.(d<br>B/m) | Amp.G.(d<br>B) | Cbl.L.<br>(dB) | Pol. |
|-----|------------|-------------------|-------------------|----------------|--------------------|----------------|----------------|------|
| _1  | 42.080322  | 10.9              | 40.0              | 29.1           | 14.0               | 32.4           | 0.8            | Н    |
| 2   | 75.977347  | 3.3               | 40.0              | 36.7           | 9.9                | 32.9           | 0.9            | Н    |
| 3   | 155.092197 | 11.0              | 43.5              | 32.5           | 14.1               | 32.9           | 1.4            | Н    |
| 4   | 243.804269 | 10.0              | 46.0              | 36.0           | 11.5               | 32.8           | 2.5            | ÐΉ   |
| 5   | 334.858889 | 13.0              | 46.0              | 33.0           | 13.2               | 32.6           | 2.7            | Н    |
| 6   | 603.539169 | 16.4              | 46.0              | 29.6           | 16.0               | 32.3           | 3.4            | Н    |




Page 25 of 52

Report No.: SHATBL2208018W01

| Temperature:  | 23.0℃     | Relative Humidity: | 59%RH    |
|---------------|-----------|--------------------|----------|
| Test Voltage: | DC 3V     | Phase:             | Vertical |
| Test Mode:    | TX Mode 1 | - F 2V             | 1. 13,   |

#### Remark:

- 1. Margin = Result (Result = Reading + Factor )-Limit
- 2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain



Limit(dB uV/m) Amp.G.(d Level(d Ant.F/G.(d Margin( Cbl.L. Pol. Freq.(MHz) Mk. BuV/m) dB) B/m) B) (dB) 44.508721 10.2 40.0 29.8 13.8 32.5 8.0 2 134.559188 10.3 43.5 33.2 13.1 32.9 1.4 ٧ 3 244.660683 46.0 10.2 35.8 11.5 32.8 2.5 46.0 417.641063 15.2 4 13.1 32.9 32.3 2.7 5 605.659229 19.3 46.0 18.4 32.3 26.7 3.4 6 895.425214 24.6 46.0 21.4 21.6 31.6 3.6

#### (30MHz -1000MHz)

| Temperature:  | 23.3℃     | Relative Humidity: | 60%RH      |
|---------------|-----------|--------------------|------------|
| Test Voltage: | DC 3V     | Phase:             | Horizontal |
| Test Mode:    | TX Mode 3 | F 31               | 1 6        |

Report No.: SHATBL2208018W01 Page 26 of 52

- Margin = Result (Result = Reading + Factor ) Limit
   Factor = Antenna factor + Cable attenuation factor (cable loss) Amplifier gain



| Mk. | Freq.(MHz) | Level(d<br>BuV/m) | Limit(dB<br>uV/m) | Margin(<br>dB) | Ant.F/G.(d<br>B/m) | Amp.G.(d<br>B) | Cbl.L.<br>(dB) | Pol. |
|-----|------------|-------------------|-------------------|----------------|--------------------|----------------|----------------|------|
| 1   | 43.505724  | 10.6              | 40.0              | 29.4           | 13.9               | 32.5           | 0.8            | Н    |
| 2   | 137.179492 | 9.9               | 43.5              | 33.6           | 13.3               | 32.9           | 1.4            | УH   |
| 3   | 245.950949 | 10.4              | 46.0              | 35.6           | 11.5               | 32.8           | 2.5            | / н  |
| 4   | 425.773890 | 14.1              | 46.0              | 31.9           | 14.1               | 32.4           | 2.7            | HO   |
| 5   | 604.598270 | 16.1              | 46.0              | 29.9           | 16.0               | 32.3           | 3.4            | E)   |
| 6   | 892.290853 | 23.2              | 46.0              | 22.8           | 19.6               | 31.7           | 3.6            | Н    |

| Temperature:  | 23.3℃     | Relative Humidity: | 60%RH    |
|---------------|-----------|--------------------|----------|
| Test Voltage: | DC 3V     | Phase:             | Vertical |
| Test Mode:    | TX Mode 3 | N 1 2              | F 3      |

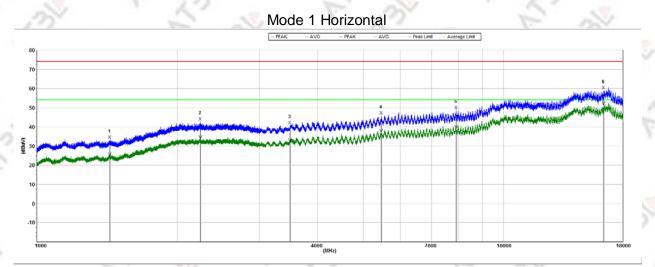
#### Remark:

- Margin = Result (Result = Reading + Factor ) Limit
   Factor = Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain





Report No.: SHATBL2208018W01 Page 27 of 52


| Mk. | Freq.(MHz) | Level(d<br>BuV/m) | Limit(dB<br>uV/m) | Margin(<br>dB) | Ant.F/G.(d<br>B/m) | Amp.G.(d<br>B) | Cbl.L.<br>(dB) | Pol. |
|-----|------------|-------------------|-------------------|----------------|--------------------|----------------|----------------|------|
| 1   | 42.599954  | 10.7              | 40.0              | 29.3           | 13.9               | 32.4           | 0.8            | V    |
| 2   | 66.266167  | 5.8               | 40.0              | 34.2           | 11.5               | 32.8           | 0.8            | V    |
| 3   | 159.784415 | 10.7              | 43.5              | 32.8           | 14.1               | 32.9           | 1.5            | V    |
| 4   | 333.686743 | 13.5              | 46.0              | 32.5           | 13.5               | 32.6           | 2.7            | V    |
| 5   | 605.659229 | 18.6              | 46.0              | 27.4           | 18.4               | 32.3           | 3.4            | V    |
| 6   | 890.727788 | 25.1              | 46.0              | 20.9           | 21.5               | 31.7           | 3.6            | V    |

### (1000MHz -18000MHz)

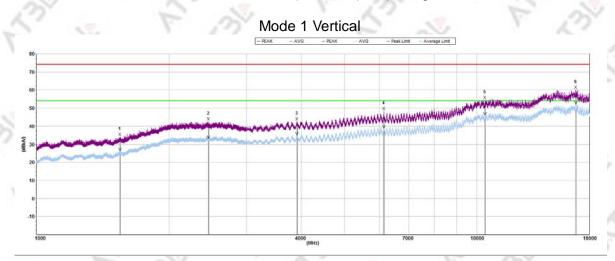
| Temperature:  | 23.3℃     | Relative Humidity: | 60%RH      |
|---------------|-----------|--------------------|------------|
| Test Voltage: | DC 3V     | Phase:             | Horizontal |
| Test Mode:    | TX Mode 1 | 1 8                | S. E.      |

#### Remark:

- 1. Margin = Result (Result = Reading + Factor )—Limit
  2. Factor = Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain






Page 28 of 52

| Report | No · | SHATBL | 22080 | 18W01  |
|--------|------|--------|-------|--------|
| LEDOL  | 110  |        |       | IOVVOI |

| Mk.  | Freq.(MHz)   | Level(<br>dBuV/<br>m) | Limit(dB<br>uV/m) | Margin(<br>dB) | Ant.F/G.(d<br>B/m) | Amp.G.(d<br>B) | Cbl.L.<br>(dB) | Pol. |
|------|--------------|-----------------------|-------------------|----------------|--------------------|----------------|----------------|------|
| Peak |              | 1                     | 7,                | 1              | 2                  | 1              | 1              | ,    |
| 1    | 1434.400000  | 33.1                  | 74.0              | 40.9           | 20.8               | 57.3           | 2.4            | Н    |
| 2    | 2240.900000  | 42.7                  | 74.0              | 31.3           | 22.5               | 50.1           | 2.8            | H    |
| 3    | 3490.500000  | 40.9                  | 74.0              | 33.1           | 24.2               | 50.5           | 3.1            | H    |
| 4    | 5471.250000  | 45.9                  | 74.0              | 28.1           | 24.9               | 49.1           | 4.0            | Н    |
| 5    | 7913.250000  | 48.7                  | 74.0              | 25.3           | 26.0               | 48.6           | 4.8            | Н    |
| 6    | 16385.250000 | 59.0                  | 74.0              | 15.0           | 30.8               | 48.0           | 6.7            | Н    |
| Avg  | 1.           | (2)                   | F (8 1)           | Tree of        | 2                  | 1 4            | 1              |      |
| (1)  | 1434.400000  | 24.5                  | 54.0              | 29.5           | 20.8               | 57.3           | 2.4            | ¥    |
| 2    | 2240.900000  | 33.1                  | 54.0              | 20.9           | 22.5               | 50.1           | 2.8            | Н    |
| 3    | 3490.500000  | 31.6                  | 54.0              | 22.4           | 24.2               | 50.5           | 3.1            | H)   |
| 4    | 5471.250000  | 36.7                  | 54.0              | 17.3           | 24.9               | 49.1           | 4.0            | Ξ    |
| 5    | 7913.250000  | 38.7                  | 54.0              | 15.3           | 26.0               | 48.6           | 4.8            | Н    |
| 6    | 16385.250000 | 50.8                  | 54.0              | 3.2            | 30.8               | 48.0           | 6.7            | Н    |

| Temperature:  | 23.3℃     | Relative Humidity: | 60%RH    |
|---------------|-----------|--------------------|----------|
| Test Voltage: | DC 3V     | Phase:             | Vertical |
| Test Mode:    | TX Mode 1 | . E                | 200      |

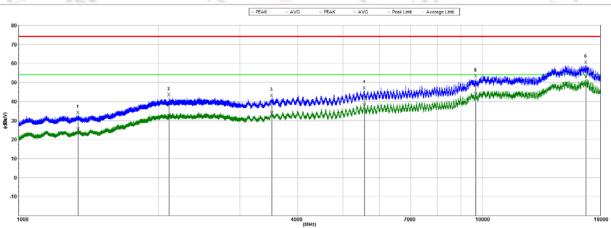
- Margin = Result (Result = Reading + Factor ) Limit
   Factor = Antenna factor + Cable attenuation factor (cable loss) Amplifier gain





Page 29 of 52

| Report | No · | SHATRI | .2208018W0 | 1 |
|--------|------|--------|------------|---|
| LEDOL  | 110  |        |            |   |


| Mk.  | Freq.(MHz)   | Level(<br>dBuV/<br>m) | Limit(dB<br>uV/m) | Margin(<br>dB) | Ant.F/G.(d<br>B/m) | Amp.G.(d<br>B) | Cbl.L.<br>(dB) | Pol. |
|------|--------------|-----------------------|-------------------|----------------|--------------------|----------------|----------------|------|
| Peak |              | 1                     | 7,                | F 13           | 2                  | 2              | 1              | ,    |
| 1    | 1548.900000  | 34.1                  | 74.0              | 39.9           | 21.1               | 56.6           | 2.5            | V    |
| 2    | 2458.400000  | 42.6                  | 74.0              | 31.4           | 23.3               | 50.2           | 2.8            | V    |
| 3    | 3909.000000  | 42.6                  | 74.0              | 31.4           | 24.7               | 50.2           | 3.2            | V    |
| 4    | 6153.750000  | 48.2                  | 74.0              | 25.8           | 25.7               | 48.9           | 4.2            | V    |
| 5    | 10444.500000 | 54.4                  | 74.0              | 19.6           | 28.8               | 48.6           | 5.5            | V    |
| 6    | 16768.500000 | 60.1                  | 74.0              | 13.9           | 31.4               | 47.5           | 6.8            | V    |
| Avg  | 1.           | (2)                   | 130               | 100            | 2                  | 1 1            | 7              |      |
| 1    | 1548.900000  | 25.8                  | 54.0              | 28.2           | 21.1               | 56.6           | 2.5            | V    |
| 2    | 2458.400000  | 32.6                  | 54.0              | 21.4           | 23.3               | 50.2           | 2.8            | V    |
| 3    | 3909.000000  | 34.5                  | 54.0              | 19.5           | 24.7               | 50.2           | 3.2            | V    |
| 4    | 6153.750000  | 38.3                  | 54.0              | 15.7           | 25.7               | 48.9           | 4.2            | V    |
| 5    | 10444.500000 | 45.4                  | 54.0              | 8.6            | 28.8               | 48.6           | 5.5            | V    |
| 6    | 16768.500000 | 51.5                  | 54.0              | 2.5            | 31.4               | 47.5           | 6.8            | V    |

## (1000MHz -18000MHz)

| Temperature:  | 23.3°C    | Relative Humidity: | 60%RH      |
|---------------|-----------|--------------------|------------|
| Test Voltage: | DC 3V     | Phase:             | Horizontal |
| Test Mode:    | TX Mode 3 | 3                  | 200        |

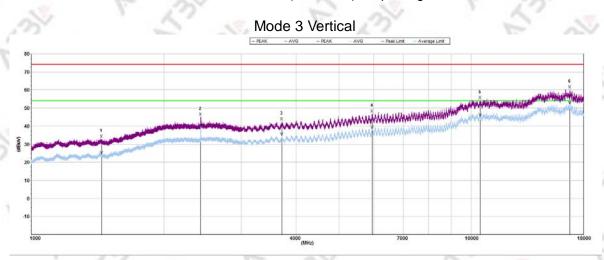
- Margin = Result (Result = Reading + Factor )—Limit
   Factor = Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

#### Mode 3 Horizontal





Page 30 of 52


| Report | No · | SHATBL | 220801 | 8W01  |
|--------|------|--------|--------|-------|
| LEDOL  | 110  |        |        | CAACI |

| Mk.  | Freq.(MHz)   | Level(<br>dBuV/<br>m) | Limit(dB<br>uV/m) | Margin(<br>dB) | Ant.F/G.(d<br>B/m) | Amp.G.(d<br>B) | Cbl.L.<br>(dB) | Pol. |
|------|--------------|-----------------------|-------------------|----------------|--------------------|----------------|----------------|------|
| Peak |              | 1                     | 7,                | F 12           | 2                  | 100            | 1              | -    |
| 1    | 1344.600000  | 32.8                  | 74.0              | 41.2           | 20.8               | 57.3           | 2.3            | Н    |
| 2    | 2112.600000  | 42.2                  | 74.0              | 31.8           | 22.2               | 50.1           | 2.7            | H    |
| 3    | 3517.500000  | 41.8                  | 74.0              | 32.2           | 24.2               | 50.5           | 3.1            | H    |
| 4    | 5568.750000  | 45.7                  | 74.0              | 28.3           | 25.0               | 49.1           | 4.0            | Н    |
| 5    | 9681.750000  | 52.1                  | 74.0              | 21.9           | 27.4               | 48.5           | 5.4            | Н    |
| 6    | 16750.500000 | 59.3                  | 74.0              | 14.7           | 30.9               | 47.5           | 6.8            | Н    |
| Avg  | 1.           | (2)                   | E & D. 1          | 1              |                    | 1 4            | 7              |      |
| 1    | 1344.600000  | 24.1                  | 54.0              | 29.9           | 20.8               | 57.3           | 2.3            | ¥.   |
| 2    | 2112.600000  | 31.3                  | 54.0              | 22.7           | 22.2               | 50.1           | 2.7            | Н    |
| 3    | 3517.500000  | 32.7                  | 54.0              | 21.3           | 24.2               | 50.5           | 3.1            | H)   |
| 4    | 5568.750000  | 36.9                  | 54.0              | 17.1           | 25.0               | 49.1           | 4.0            | Н    |
| 5    | 9681.750000  | 42.5                  | 54.0              | 11.5           | 27.4               | 48.5           | 5.4            | Н    |
| 6    | 16750.500000 | 51.8                  | 54.0              | 2.2            | 30.9               | 47.5           | 6.8            | Η    |

| Temperature:  | 23.3℃     | Relative Humidity: | 60%RH    |
|---------------|-----------|--------------------|----------|
| Test Voltage: | DC 3V     | Phase:             | Vertical |
| Test Mode:    | TX Mode 3 | \$ F.              | 3, E     |

#### Remark:

- Margin = Result (Result = Reading + Factor ) Limit
   Factor = Antenna factor + Cable attenuation factor (cable loss) Amplifier gain





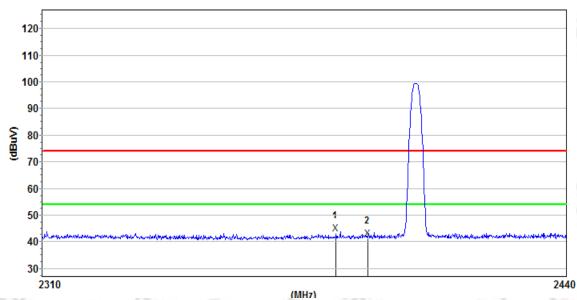
Page 31 of 52

Report No.: SHATBL2208018W01

| Mk.  | Freq.(MHz)   | Level(<br>dBuV/<br>m) | Limit(dB<br>uV/m) | Margin(<br>dB) | Ant.F/G.(d<br>B/m) | Amp.G.(d<br>B) | Cbl.L.<br>(dB) | Pol. |
|------|--------------|-----------------------|-------------------|----------------|--------------------|----------------|----------------|------|
| Peak |              | 1                     | 7,                | F 13           | 2                  | 2              | 1              | ,    |
| 1    | 1445.100000  | 33.0                  | 74.0              | 41.0           | 20.9               | 57.3           | 2.4            | V    |
| 2    | 2426.700000  | 45.1                  | 74.0              | 28.9           | 23.2               | 50.2           | 2.8            | V    |
| 3    | 3708.750000  | 42.5                  | 74.0              | 31.5           | 24.7               | 50.3           | 3.2            | V    |
| 4    | 5948.250000  | 47.0                  | 74.0              | 27.0           | 25.5               | 48.9           | 4.1            | V    |
| 5    | 10488.750000 | 54.4                  | 74.0              | 19.6           | 28.9               | 48.6           | 5.5            | V    |
| 6    | 16750.500000 | 60.3                  | 74.0              | 13.7           | 31.4               | 47.5           | 6.8            | V    |
| Avg  | 1.           | (2)                   | F (8) (6.1)       | 100            | 2                  | 1 1            | 1              |      |
| 1    | 1445.100000  | 23.9                  | 54.0              | 30.1           | 20.9               | 57.3           | 2.4            | V    |
| 2    | 2426.700000  | 39.0                  | 54.0              | 15.0           | 23.2               | 50.2           | 2.8            | V    |
| 3    | 3708.750000  | 34.3                  | 54.0              | 19.7           | 24.7               | 50.3           | 3.2            | V    |
| 4    | 5948.250000  | 37.9                  | 54.0              | 16.1           | 25.5               | 48.9           | 4.1            | V    |
| 5    | 10488.750000 | 44.8                  | 54.0              | 9.2            | 28.9               | 48.6           | 5.5            | V    |
| 6    | 16750.500000 | 51.5                  | 54.0              | 2.5            | 31.4               | 47.5           | 6.8            | V    |

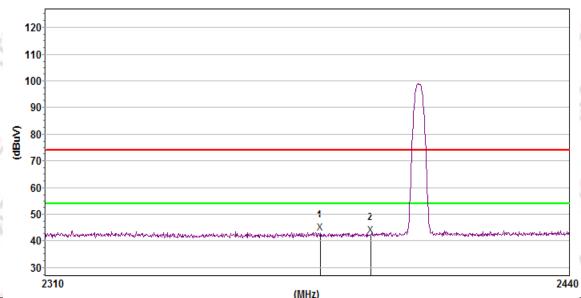
#### Note:

- 1.All TX Mode, the worst case is mode1&3, only show the worst case.
- 2.Other 18G-25G Emission detected are more than 20dB below the limit.




Page 32 of 52

Report No.: SHATBL2208018W01


### 4.6 TEST RESULTS (Restricted Bands Requirements)

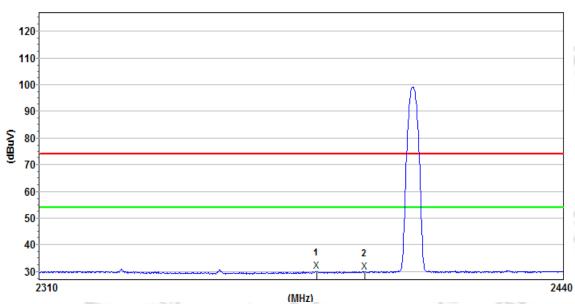
#### **GFSK-Low** Horizontal



| Mk. | Frequency   | Level    | Limit    | Margin | Ant.F/G. | Amp.G. | Cbl.L. | Pol. |
|-----|-------------|----------|----------|--------|----------|--------|--------|------|
|     | (MHz)       | (dBuV/m) | (dBuV/m) | (dB)   | (dB/m)   | (dB)   | (dB)   | FOI. |
| PK  | 1           | 12       | 25       | 1.70   | 1        | 17     | 1.     | 12   |
| . 1 | 2382.052625 | 43.0     | 74.0     | 31.0   | 22.7     | 50.2   | 2.8    | Ţ    |
| 2   | 2390.000000 | 41.2     | 74.0     | 32.8   | 22.8     | 50.2   | 2.8    | H A  |

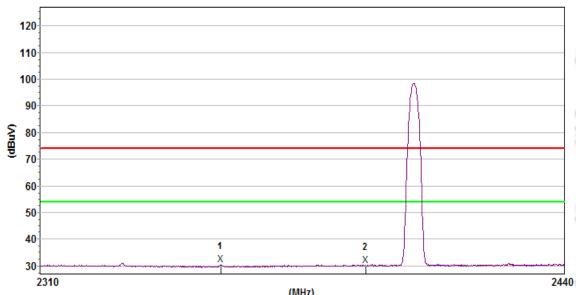
#### Vertical




| Mk. | Frequency   | Level    | Limit    | Margin | Ant.F/G. | Amp.G. | Cbl.L. | Pol. |
|-----|-------------|----------|----------|--------|----------|--------|--------|------|
|     | (MHz)       | (dBuV/m) | (dBuV/m) | (dB)   | (dB/m)   | (dB)   | (dB)   | FOI. |
| PK  | 23          | 2        | 17.      | 1.     | (2)      |        |        | 2    |
| 1   | 2377.362179 | 43.1     | 74.0     | 30.9   | 23.1     | 50.2   | 2.8    | V    |
| 2   | 2390.000000 | 42.2     | 74.0     | 31.8   | 23.1     | 50.2   | 2.8    | V    |



Page 33 of 52 Report


Report No.: SHATBL2208018W01

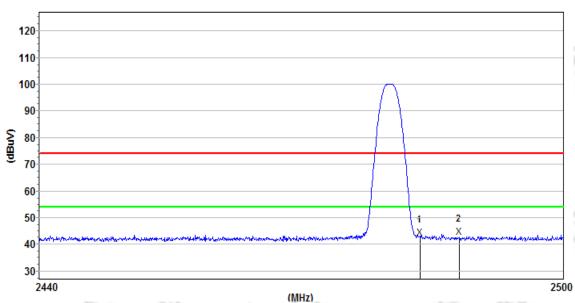
GFSK-Low Horizontal



| Mk. | Frequency   | Level    | Limit    | Margin | Ant.F/G. | Amp.G. | Cbl.L. | Pol. |
|-----|-------------|----------|----------|--------|----------|--------|--------|------|
|     | (MHz)       | (dBuV/m) | (dBuV/m) | (dB)   | (dB/m)   | (dB)   | (dB)   | FOI. |
| AVG |             |          | 9        | Time   | 200      | ,      | 1      | 42   |
| 1   | 2378.013077 | 30.2     | 54.0     | 23.8   | 22.7     | 50.2   | 2.8    | /H/  |
| 2   | 2390.000000 | 30.0     | 54.0     | 24.0   | 22.8     | 50.2   | 2.8    | ΛH   |

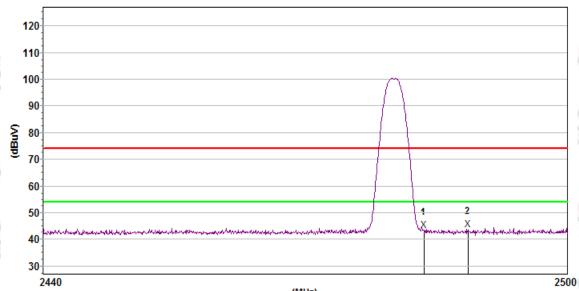
Vertical




| Mk. | Frequency   | Level    | Limit    | Margin | Ant.F/G. | Amp.G. | Cbl.L. | Pol. |
|-----|-------------|----------|----------|--------|----------|--------|--------|------|
|     | (MHz)       | (dBuV/m) | (dBuV/m) | (dB)   | (dB/m)   | (dB)   | (dB)   | Poi. |
| AVG |             | F 8      | , ·      | 12     |          | E      | .25    |      |
| 1   | 2354.048124 | 30.6     | 54.0     | 23.4   | 23.0     | 50.2   | 2.8    | V    |
| 2   | 2390.000000 | 30.2     | 54.0     | 23.8   | 23.1     | 50.2   | 2.8    | V    |



Page 34 of 52 Rep


Report No.: SHATBL2208018W01

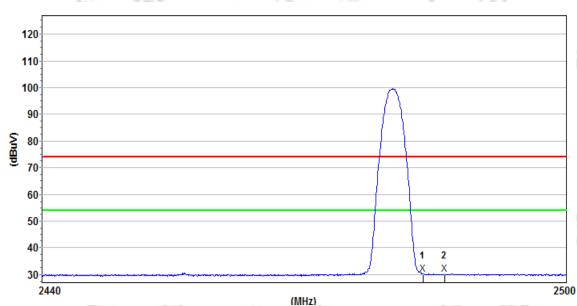
### GFSK-High Horizontal



| Mk. | Frequency   | Level    | Limit    | Margin | Ant.F/G. | Amp.G. | Cbl.L. | Pol. |
|-----|-------------|----------|----------|--------|----------|--------|--------|------|
|     | (MHz)       | (dBuV/m) | (dBuV/m) | (dB)   | (dB/m)   | (dB)   | (dB)   | POI. |
| PK  |             |          | (J)      | lin.   | 200      |        |        | 40   |
| 1   | 2483.500000 | 42.6     | 74.0     | 31.4   | 22.9     | 50.2   | 2.8    | H    |
| 2   | 2487.943551 | 42.8     | 74.0     | 31.2   | 22.9     | 50.2   | 2.8    | ΛH   |

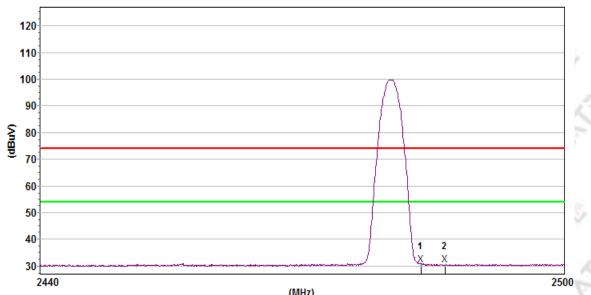
Vertical




| Mk. | Frequency   | Level    | Limit    | Margin | Ant.F/G. | Amp.G. | Cbl.L. | Pol. |
|-----|-------------|----------|----------|--------|----------|--------|--------|------|
|     | (MHz)       | (dBuV/m) | (dBuV/m) | (dB)   | (dB/m)   | (dB)   | (dB)   |      |
| PK  |             | 7.       | ,        | 1      |          | 1      | 25     |      |
| 1   | 2483.500000 | 43.6     | 74.0     | 30.4   | 23.3     | 50.2   | 2.8    | V    |
| 2   | 2488.487560 | 43.9     | 74.0     | 30.1   | 23.3     | 50.2   | 2.8    | V    |



Page 35 of 52 Rep


Report No.: SHATBL2208018W01

GFSK- High Horizontal



| - 3 | 1000        |          |          | 11111121 |          |        | 200, 9 |      |
|-----|-------------|----------|----------|----------|----------|--------|--------|------|
| Mk. | Frequency   | Level    | Limit    | Margin   | Ant.F/G. | Amp.G. | Cbl.L. | Pol. |
|     | (MHz)       | (dBuV/m) | (dBuV/m) | (dB)     | (dB/m)   | (dB)   | (dB)   | POI. |
| AVG |             |          | (2)      | Time,    | 201      |        |        | 10   |
| 1   | 2483.500000 | 30.4     | 54.0     | 23.6     | 22.9     | 50.2   | 2.8    | /H/  |
| 2   | 2485.949868 | 30.2     | 54.0     | 23.8     | 22.9     | 50.2   | 2.8    | ΛH   |

Vertical



| Mk. | Frequency   | Level    | Limit    | Margin | Ant.F/G. | Amp.G. | Cbl.L. | Pol.  |
|-----|-------------|----------|----------|--------|----------|--------|--------|-------|
|     | (MHz)       | (dBuV/m) | (dBuV/m) | (dB)   | (dB/m)   | (dB)   | (dB)   | 1 01. |
| AVG |             | 7        | ,        | 1      |          | 1      | .25    |       |
| 1   | 2483.500000 | 30.7     | 54.0     | 23.3   | 23.3     | 50.2   | 2.8    | V     |
| 2   | 2486.191442 | 30.7     | 54.0     | 23.3   | 23.3     | 50.2   | 2.8    | V     |



Page 36 of 52 Report No.: SHATBL2208018W01

#### 5. CONDUCTED SPURIOUS & BAND EDGE EMISSION

#### 5.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.


#### 5.2 TEST PROCEDURE

| Spectrum Parameter                    | Setting                         |  |  |  |  |  |
|---------------------------------------|---------------------------------|--|--|--|--|--|
| Detector                              | Peak                            |  |  |  |  |  |
| Start/Stop Frequency                  | 30 MHz to 10th carrier harmonic |  |  |  |  |  |
| RB / VB (emission in restricted band) | 100 KHz/300 KHz                 |  |  |  |  |  |
| Trace-Mode:                           | Max hold                        |  |  |  |  |  |

#### For Band edge

| Spectrum Parameter                    | Setting                          |
|---------------------------------------|----------------------------------|
| Detector                              | Peak                             |
| Otant/Otan Francisco                  | Lower Band Edge: 2300 – 2407 MHz |
| Start/Stop Frequency                  | Upper Band Edge: 2475 – 2500 MHz |
| RB / VB (emission in restricted band) | 100 KHz/300 KHz                  |
| Trace-Mode:                           | Max hold                         |

#### 5.3 TEST SETUP

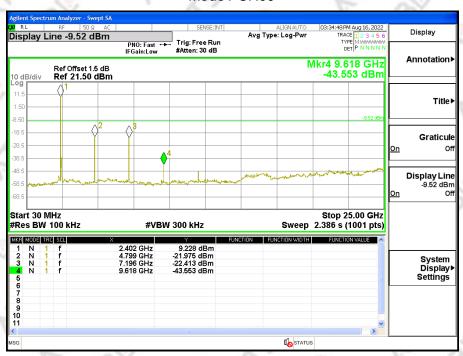


The EUT which is powered by the Battery, is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 50 Ohm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth(RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

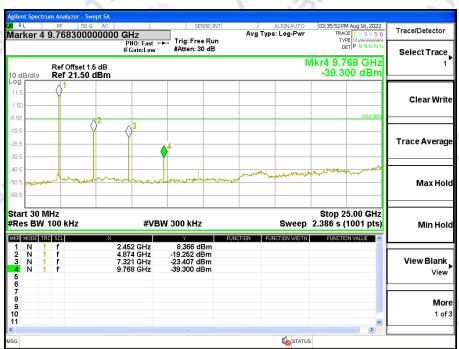
#### 5.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.



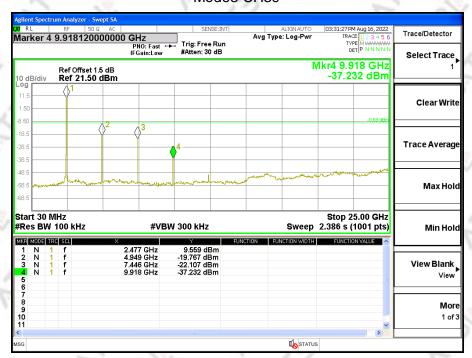

Page 37 of 52

Report No.: SHATBL2208018W01


### 5.5 TEST RESULTS

| Temperature:  | 25°C  | Relative Humidity: | 50%RH         |
|---------------|-------|--------------------|---------------|
| Test Voltage: | DC 3V | Test Mode:         | TX Mode 1/2/3 |

#### Mode1 CH00




### Mode2 CH19





Page 38 of 52 Report No.: SHATBL2208018W01





For Band edge(it's also the reference level for conducted spurious emission)

#### Mode1 CH00

Report No.: SHATBL2208018W01





Page 40 of 52

Report No.: SHATBL2208018W01

### 6. POWER SPECTRAL DENSITY TEST

#### 6.1 LIMIT

|           | FCC Part15.247,Subpart C |                      |                          |        |  |
|-----------|--------------------------|----------------------|--------------------------|--------|--|
| Section   | Test Item                | Limit                | Frequency Range<br>(MHz) | Result |  |
| 15.247(e) | Power Spectral Density   | ≤8 dBm<br>(RBW≥3KHz) | 2400-2483.5              | PASS   |  |

#### **6.2 TEST PROCEDURE**

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to:  $100 \text{ kHz} \ge \text{RBW} \ge 3 \text{ kHz}$ .
- 4. Set the VBW ≥ 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

# 6.3 TEST SETUP

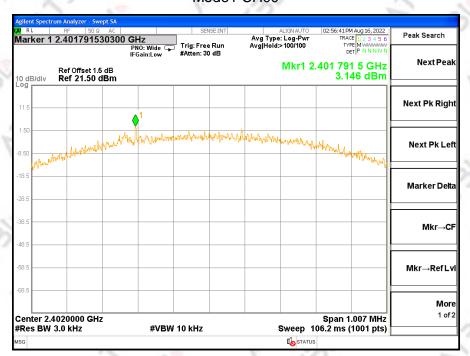
| EUT | SPECTRUM |
|-----|----------|
|     | ANALYZER |

#### 6.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

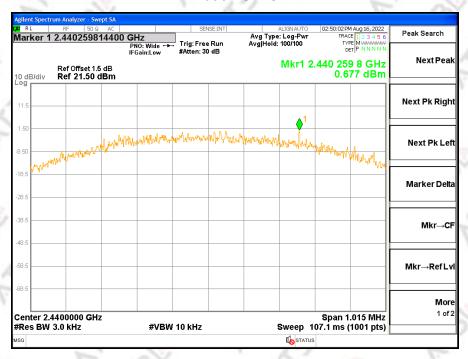


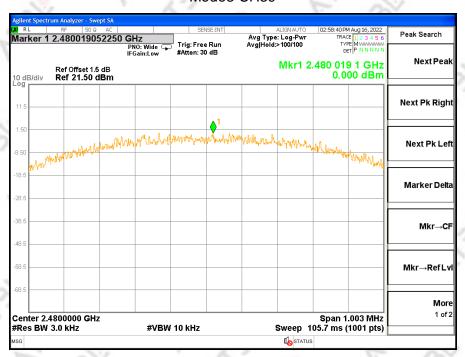
Page 41 of 52


Report No.: SHATBL2208018W01

## 6.5 TEST RESULTS

| Temperature:  | 25 °C | Relative Humidity: | 60%RH        |
|---------------|-------|--------------------|--------------|
| Test Voltage: | DC 3V | Test Mode:         | TX Mode1/2/3 |


| 13        | Power Density | 1: :/(0/4/1 //15 )          | Result |  |
|-----------|---------------|-----------------------------|--------|--|
| Frequency | (dBm/3kHz)    | (dBm/3kHz) Limit (3KHz/dBm) |        |  |
| 2402 MHz  | 3.146         | ≤8                          | PASS   |  |
| 2440 MHz  | 0.677         | ≤8                          | PASS   |  |
| 2480 MHz  | 0.000         | ≤8                          | PASS   |  |


### Mode1 CH00



Page 42 of 52 Report No.: SHATBL2208018W01

#### Mode2 CH19







7. BANDWIDTH TEST

Report No.: SHATBL2208018W01

#### **7.1 LIMIT**

| FCC Part15.247,Subpart C |           |                              |                          |        |
|--------------------------|-----------|------------------------------|--------------------------|--------|
| Section                  | Test Item | Limit                        | Frequency Range<br>(MHz) | Result |
| 15.247(a)(2)             | Bandwidth | >= 500KHz<br>(6dB bandwidth) | 2400-2483.5              | PASS   |

#### 7.2 TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

| Center Frequency | The centre frequency of the channel under test                                   |  |  |  |  |
|------------------|----------------------------------------------------------------------------------|--|--|--|--|
| Detector         | Peak                                                                             |  |  |  |  |
| RBW              | For 6 dB Bandwidth :100KHz For 99% Bandwidth :1% to 5% of the occupied bandwidth |  |  |  |  |
| VBW              | For 6dB Bandwidth : ≥3 × RBW For 99% Bandwidth : approximately 3×RBW             |  |  |  |  |
| Trace            | Max hold                                                                         |  |  |  |  |
| Sweep            | Auto                                                                             |  |  |  |  |

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB and 99% relative to the maximum level measured in the fundamental emission.

### 7.3 TEST SETUP

| EUT | SPECTRUM |
|-----|----------|
|     | ANALYZER |

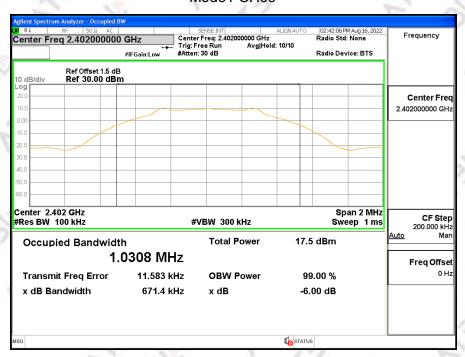
## 7.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.



Page 44 of 52

Report No.: SHATBL2208018W01


### 7.5 TEST RESULTS

| Temperature:  | 25 °C | Relative Humidity: | 60%RH        |
|---------------|-------|--------------------|--------------|
| Test Voltage: | DC 3V | Test Mode:         | TX Mode1/2/3 |

| Frequency | 6dB Bandwidth<br>(KHz) | 99 <mark>%</mark> Bandwidth<br>(KHz) | 6dB Bandwidth<br>Limit(KHz) | Result |
|-----------|------------------------|--------------------------------------|-----------------------------|--------|
| 2402 MHz  | 671.4                  | 1030.8                               | ≥500KHz                     | PASS   |
| 2440 MHz  | 676.6                  | 1033.0                               | ≥500KHz                     | PASS   |
| 2480 MHz  | 668.5                  | 1035.7                               | ≥500KHz                     | PASS   |

# 6dB Bandwidth &99% Bandwidth

## Mode1 CH00





Page 45 of 52 Report No.: SHATBL2208018W01

#### Mode2 CH19





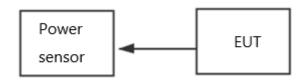


Page 46 of 52

Report No.: SHATBL2208018W01

# 8. PEAK OUTPUT POWER TEST

#### 8.1 LIMIT


|              | FCC Part15.247,Subpart C                             |                 |             |      |  |
|--------------|------------------------------------------------------|-----------------|-------------|------|--|
| Section      | Section Test Item Limit Frequency Range (MHz) Result |                 |             |      |  |
| 15.247(b)(3) | Output Power                                         | 1 watt or 30dBm | 2400-2483.5 | PASS |  |

#### 8.2 TEST PROCEDURE

### PKPM1 Peak power meter method:

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

### 8.3 TEST SETUP



### 8.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

## 8.5 TEST RESULTS

| Temperature:  | 25 °C | Relative Humidity: | 60%RH        |
|---------------|-------|--------------------|--------------|
| Test Voltage: | DC 3V | Test Mode:         | TX Mode1/2/3 |

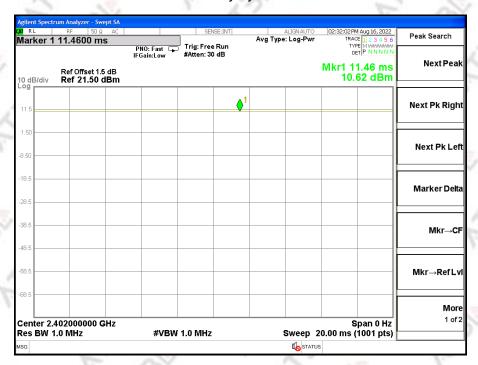
|   | Test Channel | Frequency | Peak Conducted Output Power | Average Conducted Output Power | LIMIT |  |
|---|--------------|-----------|-----------------------------|--------------------------------|-------|--|
|   |              | (MHz)     | (dBm)                       | (dBm)                          | dBm   |  |
| ſ | CH00         | 2402      | 9.14                        | 9.07                           | 30    |  |
|   | CH19         | 2440      | 9.53                        | 9.48                           | 30    |  |
| 1 | CH39         | 2480      | 9.76                        | 9.71                           | 30    |  |



Page 47 of 52

Report No.: SHATBL2208018W01

## **EIRP Power**


| Test Channe - | Frequency | Peak Conducted Output Power | Antenna Gain | EIRP<br>Power | LIMIT |
|---------------|-----------|-----------------------------|--------------|---------------|-------|
|               | (MHz)     | (dBm)                       | (dBi)        | (dBm)         | dBm   |
| CH0           | 2402      | 9.14                        | -1.8         | 7.34          | 36    |
| CH19          | 2440      | 9.53                        | -1.8         | 7.73          | 36    |
| CH39          | 2480      | 9.76                        | -1.8         | 7.96          | 36    |

Note: Our power sensor test AVG power has no duty cycle display. The power sensor measures AVG power is Burst power. The software has considered the factor of the duty cycle factor, so it is unnecessary to add it again.



Page 48 of 52 Report No.: SHATBL2208018W01

### Duty cycle



| Ton | Тр | Duty cycle(%) |
|-----|----|---------------|
| 132 |    | 100           |



Page 49 of 52 Report No.: SHATBL2208018W01

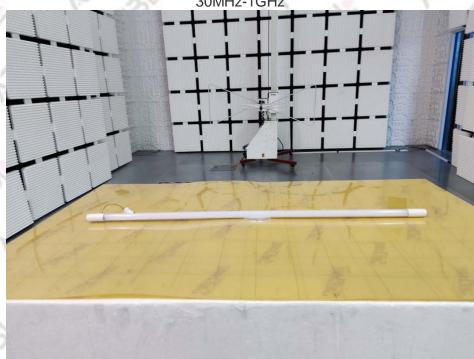
### 9. ANTENNA REQUIREMENT

#### 9.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

### 9.2 EUT ANTENNA

The EUT antenna is Single-stageAntenna. It comply with the standard requirement.




Page 50 of 52

Report No.: SHATBL2208018W01

# **APPENDIX-PHOTOS OF TEST SETUP**

Radiation emission 30MHz-1GHz



Conduction emission





Report No.: SHATBL2208018W01 Page 51 of 52

F

F

F3

3

K

K

K3V



Kal



Page 52 of 52 Re

Report No.: SHATBL2208018W01



RSE 1GHz-18GHz



\*\*\*\*END OF THE REPORT\*\*\*