

FCC Test Report

Report No.: AGC03285180601FE08

FCC ID : 2AP2S-FSC-BT616

APPLICATION PURPOSE: Original Equipment

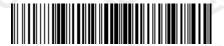
PRODUCT DESIGNATION: Bluetooth Module

BRAND NAME : SX3

MODEL NAME : FSC-BT616, SX3/FSC_BT616

CLIENT : SpaceSense Corporation

DATE OF ISSUE : Jun. 14, 2018


STANDARD(S) : FCC Part 15 Subpart C Section 15.247

REPORT VERSION : V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Page 2 of 53

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	© Mariestation	Jun. 14, 2018	Valid	Initial release

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 3 of 53

TABLE OF CONTENTS

1. VERIFICATION OF COMPLIANCE	5
2.GENERAL INFORMATION	
2.2TEST METHOD	13,000
2.3 EQUIPMENT MODIFICATIONS	® ## allord Good
2.4 MEASUREMENT UNCERTAINTY	
3. SYSTEM TEST CONFIGURATION	
3.1 CONFIGURATION OF TESTED SYSTEM	7
3.2 EQUIPMENT USED IN TESTED SYSTEM	
3.3. SUMMARY OF TEST RESULTS	3
4. DESCRIPTION OF TEST MODES	10
7. ANTENNA REQUIREMENT	12 12
7.2. TEST RESULT	
8. RADIATED EMISSION	
8.2 MEASUREMENT PROCEDURE	
8.3 TEST SETUP	15
8.4 TEST RESULT	
9. BAND EDGE EMISSION	29
9.2. TEST SET-UP	
9.3. TEST RESULT	
10. 6DB BANDWIDTH	34
10.2. SUMMARY OF TEST RESULTS/PLOTS	34
11. CONDUCTED OUTPUT POWER	
11.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	36
11.3. LIMITS AND MEASUREMENT RESULT	37
12. CONDUCTED SPURIOUS EMISSION	39
12.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	39
12.2 LIMITS AND MEASUDEMENT DESUILT	20

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.cett.com.

Report No.: AGC03285180601FE08 Page 4 of 53

13. CONDUCTED OUTPUT POWER SPECTRAL DENSITY	
13.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	43
13.3 LIMITS AND MEASUREMENT RESULT	43
14. LINE CONDUCTED EMISSION TEST	46
14.1 LIMITS	
14.2 TEST SETUP	
14.3 PRELIMINARY PROCEDURE	47
14.4 FINAL TEST PROCEDURE	47
14.5 TEST RESULT OF POWER LINE	48
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	
APPENDIX B: PHOTOGRAPHS OF EUT	52

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.cett.com.

Page 5 of 53

1. VERIFICATION OF COMPLIANCE

Applicant	SpaceSense Corporation
Address	200 CentrePort Drive, Suite 150, Greensboro NC, 27409 USA
Manufacturer	Shenzhen Feasycom Technology Co.,LTD
Address	Room 2004A, 20th Floor, Huichao Technology Building, Jinhai Road, Xixiang, Baoan District, Shenzhen, China
Product Designation	Bluetooth Module
Brand Name	SX3
Test Model	FSC-BT616
Series Model	SX3/FSC_BT616
Difference description	All the same except for the model name
Date of test	Jun. 06, 2018 to Jun. 14, 2018
Deviation	None Mone
Condition of Test Sample	Normal
Report Template	AGCRT-US-BLE/RF (2013-03-01)

We hereby certify that:

The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The test data, the energy emitted by the sample tested as described in this report is in compliance with the requirements of FCC Rules Part 15.247. The test results of this report relate only to the tested sample identified in this report.

Tested By	Harry Zhang	
K Kampione S F	Henry Zhang(Zhang Zhuorui)	Jun. 14, 2018
Reviewed By	and change	拉加
© St. Hard Countaine	Cool Cheng(Cheng Mengguo)	Jun. 14, 2018
Approved By	Forversto ce	
mre © A Time	Forrest Lei(Lei Yonggang) Authorized Officer	Jun. 14, 2018

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.agc.gett.com.

Page 6 of 53

2.GENERAL INFORMATION 2.1PRODUCT DESCRIPTION

The EUT is a Bluetooth Module designed as a "Communication Device". It is designed by way of utilizing the FHSS technology to achieve the system operation.

A major technical description of EUT is described as following

dBm(Max) K for BLE Channels(37 Hoppi	sing Change	C THE	SC ST ST		The state of the s
K for BLE	sing Change	The Manusco	O T T NOOD	ompharae	® ## IN
The state of the s	sing Change	The Standard Compliance	O F F of Global	Compila	® Mestation of
hannels(37 Hoppi	ing Chann	3 010	0 -55 1101		
	ong Channe	el,3 advertisir	ng Channel		
Antenna	C	10	711		:101
	TIME:	私	Compliance	The Williams	sitence ®
K Tomplance	The Kingliance	(B) Attestation of Gir		Attestation of Artestation of Artest	SO
Stop (8) William of			100		Till .
3.3V			人位	-Milauce	The Compliance
i 3	3 Antenna i 3 3 3.3V R, 2M bandwidth a	i 3 3.3V		i 3 3.3V	i 3 3.3V

2.2TEST METHOD

All measurements contained in this report were conducted with ANSI C63.10-2013.

2.3 EQUIPMENT MODIFICATIONS

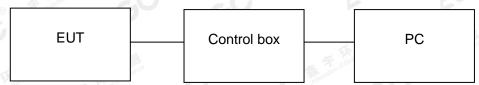
Not available for this EUT intended for grant.

2.4 MEASUREMENT UNCERTAINTY

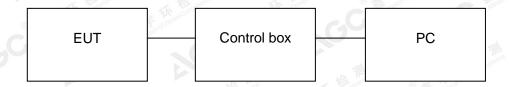
The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

- Uncertainty of Conducted Emission, Uc = ±3.2 dB
- Uncertainty of Radiated Emission below 1GHz, Uc = ±3.9 dB
- Uncertainty of Radiated Emission above 1GHz, Uc = ±4.8 dB

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.



Page 7 of 53


3. SYSTEM TEST CONFIGURATION

3.1 CONFIGURATION OF TESTED SYSTEM

Configure 1: (Normal hopping)

Configuration: Continuous TX

3.2 EQUIPMENT USED IN TESTED SYSTEM

Item	Equipment	Mfr/Brand	Model/Type No.	Remark
1	Bluetooth Module	SX3	FSC-BT616	EUT
2	PC PC	APPLE	A1465	A.E
3	PC Adapter	APPLE	A1436	A.E
4	Control box	SERIAL	N/A	A.E
5	USB Cable	N/A	1m Unshielded	A.E
6	Temporary Antenna Connector	CT10	N/A	A.E

Note: The temporary antenna connector is a RF SMA connector with fifty ohm resistor, which is welded to the PCB board or module.

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

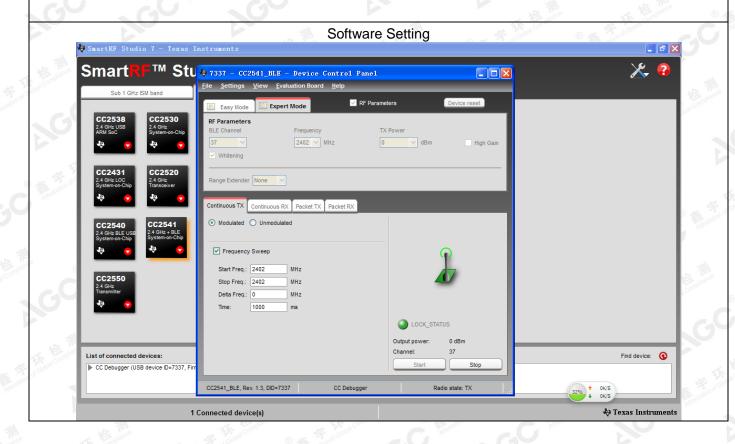
Page 8 of 53

3.3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT	
§15.203	Antenna Requirement	Compliant	
§15.209 §15.247(d)	Radiated Emission	Compliant	
§15.247(d)	Band Edges	Compliant	
§15.247(a) (2)	6 dB Bandwidth	Compliant	
§15.247(b)	Conducted Output Power	Compliant	
§15.247(d)	Conducted Spurious Emission	Compliant	
§15.247(e)	Conducted Power Spectral Density	Compliant	
§15.207	Line Conduction Emission Compliant		

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.cett.com.

Page 9 of 53


4. DESCRIPTION OF TEST MODES

The EUT has been operated in one modulation: GFSK.

NO.	TEST MODE DESCRIPTION
(S) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	Low channel GFSK
GO 2	Middle channel GFSK
3	High channel GFSK
4 0 A	BT Link

Note:

- 1. Only the result of the worst case was recorded in the report if no any records.
- 2. Transmitting duty cycle >98%, The average correction factor is about -0.18.

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 10 of 53

5. TEST FACILITY

312 512	
Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd
Location	1-2F., Bldg.2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Bao'an District B112-B113, Bldg.12, Baoan Bldg Materials Center, No.1 of Xixiang Inner Ring Road, Baoan District, Shenzhen 518012
NVLAP Lab Code	600153-0
Designation Number	CN5028
Test Firm Registration Number	682566
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by National Voluntary Laboratory Accreditation program, NVLAP Code 600153-0

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.cett.com.

Page 11 of 53

6. TEST EQUIPMENT LIST

TEST EQUIPMENT OF CONDUCTED EMISSION TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESPI	101206	Jun.20, 2017	Jun.19, 2018
LISN	R&S	ESH2-Z5	100086	Aug.21, 2017	Aug.20, 2018

TEST EQUIPMENT OF RADIATED EMISSION TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESCI	10096	Jun.20, 2017	Jun.19, 2018
EXA Signal Analyzer	Aglient	N9010A	MY53470504	Dec.08, 2017	Dec.07, 2018
Horn antenna	SCHWARZBECK	BBHA 9170	#768	Sep.20, 2017	Sep.19, 2018
preamplifier	ChengYi	EMC184045SE	980508	Sep.15, 2017	Sep.14, 2018
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00034609	May 18, 2017	May 17, 2019
Broadband Preamplifier	SCHWARZBECK	BBV 9718	9718-205	Jun.20, 2017	Jun.19, 2018
ANTENNA	SCHWARZBECK	VULB9168	D69250	Sep.28, 2017	Sep.27, 2018
Radiation Cable 1	MXT	RS1	R005	June 6, 2018	June 5, 2019
Radiation Cable 2	MXT	RS1	R006	June 6, 2018	June 5, 2019
Loop Antenna	A.H.Systems,Inc	SAS-562B	:	Mar. 01, 2018	Feb. 28, 2020

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 12 of 53

7. ANTENNA REQUIREMENT

7.1. STANDARD APPLICABLE

According to FCC 15.203, An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

7.2. TEST RESULT

This product has a PCB antenna, fulfill the requirement of this section.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 13 of 53

8. RADIATED EMISSION 8.1 LIMITS

	. 17								
Frequency	Distance	Field Strengt	hs Limit						
(MHz)	Meters	μ V/m	dB(μV)/m						
0.009 ~ 0.490	300	2400/F(kHz)	TA 12 11 12 12 12 12 12 12 12 12 12 12 12						
0.490 ~ 1.705	30	24000/F(kHz)	© # - January Coppe						
1.705 ~ 30	30 sound cools	30	GO OO						
30 ~ 88		100	40.0						
88 ~ 216	3	150	43.5						
216 ~ 960	3	200	46.0						
960 ~ 1000	The towns 3 Franciscomme	500	54.0						
Above 1000	3 Albertahoon	Other:74.0 dB(µV)/m (Peak) 5	54.0 dB(µV)/m (Average)						

Remark:

- (1) Emission level dB μ V = 20 log Emission level μ V/m
- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

8.2 MEASUREMENT PROCEDURE

- 1. The measuring distance of 3m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation(Below 1GHz)
- 2. The measuring distance of 3m shall used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation(Above 1GHz)
- The height of the test antenna shall vary between 1m to 4m.Both horizontal and vertical polarization Of the antenna are set to make the measurement.
- 4. The initial step in collecting radiated emission data is a receive peak detector mode. Pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- All readings are peak unless otherwise stated QP in column of Note. Peak denoted that the Peak reading compliance with the QP limits and then QP Mode measurement didn't perform(Below 1GHz)
- 6. All readings are Peak mode value unless otherwise stated AVG in column of Note. If the Peak mode measured value compliance with the Peak limits and lower than AVG Limits, the EUT shall be deemed to meet Peak&AVG limits and then only Peak mode was measured, but AVG mode didn't perform.(Above 1GHz)

The results show this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gott.com.

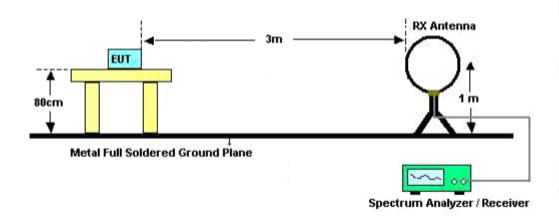
GC

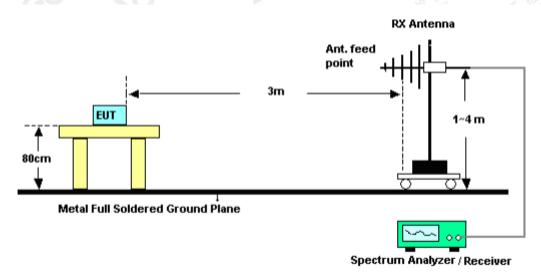
Page 14 of 53

The following table is the setting of spectrum analyzer and receiver.

	Spectrum Parameter	Setting					
Y KE Compliance	Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP					
8 A	Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP					
O	Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP					
玉	Companies Statement Statem	1GHz~26.5GHz					
8 A ation of Global	Start ~Stop Frequency	RBW 2MHz/ VBW 6MHz for Peak,					
Allesto		RBW 1.5MHz/ VBW 10Hz for Average					

Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP

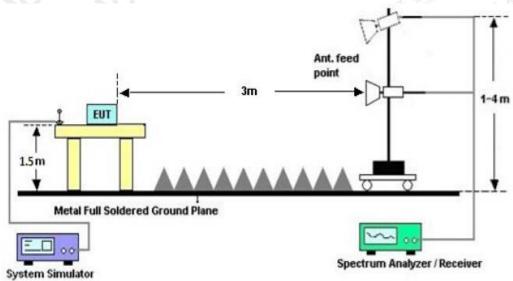

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.


Page 15 of 53

8.3 TEST SETUP

RADIATED EMISSION TEST SETUP BELOW 30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz



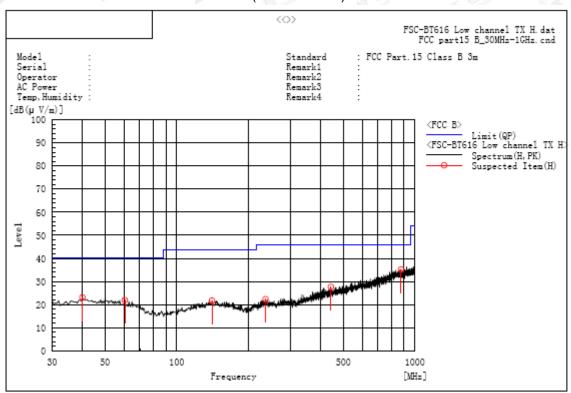
The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 16 of 53

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc-gett.com.

Page 17 of 53


8.4 TEST RESULT

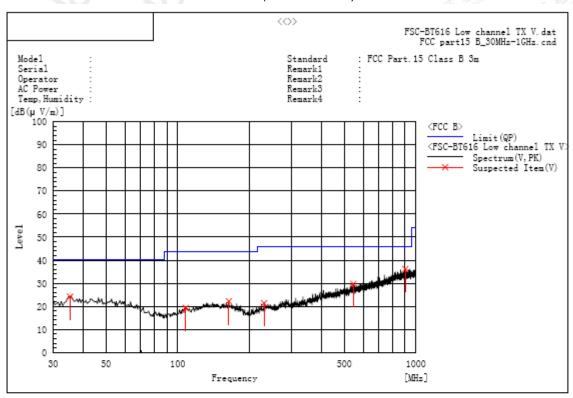
RADIATED EMISSION BELOW 30MHz

No emission found between lowest internal used/generated frequencies to 30MHz.

RADIATED EMISSION BELOW 1GHz

RADIATED EMISSION TEST- (30MHz-1GHz)-LOW CHANNEL-HORIZONTAL

A. Suspected List:


	Frequency MHz	Polarization	Reading dB(uV)	Factor dB (1/m)	Level dB(uV/m) PK	Limit dB(u∀/m) QP	Margin dB	Pass/Fail	Height cm	Angle deg
ob	40.185	H	5.7	17.4	23.1	40.0	16.9	Pass	100.0	344.3
	60.555	H	5.8	16.1	21.9	40.0	18.1	Pass	100.0	126.6
	140.580	H	5.1	16.6	21.7	43.5	21.8	Pass	200.0	305.1
	236.125	Н	6.2	16.1	22.3	46.0	23.7	Pass	200.0	273.2
	443.705	Н	5.6	22.0	27.6	46.0	18.4	Pass	100.0	126.6
	875.355	Н	5.3	29.9	35.2	46.0	10.8	Pass	100.0	91.1

RESULT: PASS

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc-gett.com.

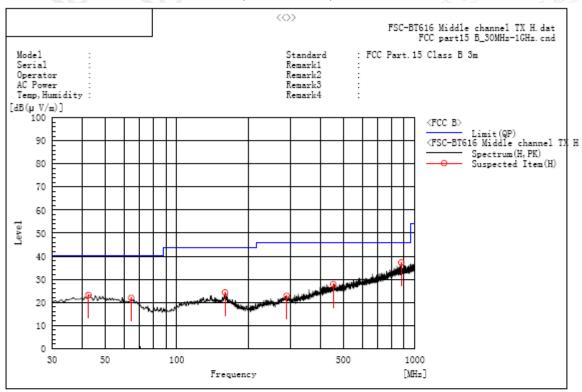
Page 18 of 53

RADIATED EMISSION TEST- (30MHz-1GHz)-LOW CHANNEL -VERTICAL

A. Suspected List:

Frequency MHz	Polarization	Reading dB(uV)	Factor dB (1/m)	Level dB(uV/m) PK	Limit dB(uV/m) QP	Margin dB	Pass/Fail	Height cm	Angle deg
35.335	v	7.9	16.3	24.2	40.0	15.8	Pass	100.0	119.6
108.085	v	5.0	14.3	19.3	43.5	24.2	Pass	150.0	48.5
163.860	v	5.7	16.5	22.2	43.5	21.3	Pass	150.0	192.8
230.305	v	5.7	15.7	21.4	46.0	24.6	Pass	200.0	266.9
546.040	v	5.9	23.8	29.7	46.0	16.3	Pass	100.0	264.9
902.515	v	6.0	30.2	36.2	46.0	9.8	Pass	200.0	266.9

RESULT: PASS


Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. The "Factor" value can be calculated automatically by software of measurement system.

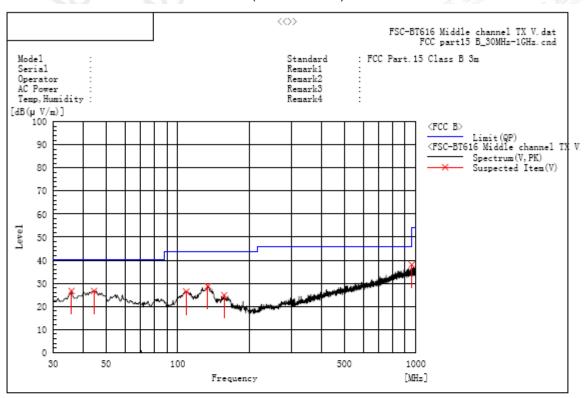
The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 19 of 53

RADIATED EMISSION TEST- (30MHz-1GHz)-MIDDLE CHANNEL-HORIZONTAL

A. Suspected List:

77. VAN	Frequency MHz	Polarization Reading dB(uV)		Polarization Reading dB			Level dB(uV/m) PK	Limit dB(uV/m) QP	Margin dB	Pass/Fail	Height cm	Angle deg
	42.610	H	5.7	17.4	23.1	40.0	16.9	Pass	100.0	358.5		
	64.435	Н	6.2	15.7	21.9	40.0	18.1	Pass	200.0	92.1		
	159.495	H	7.7	16.6	24.3	43.5	19.2	Pass	200.0	92.1		
	289.475	Н	5.2	17.6	22.8	46.0	23.2	Pass	200.0	92.1		
37	454.375	Н	5.7	22.2	27.9	46.0	18.1	Pass	100.0	286.3		
	876.325	Н	7.4	29.9	37.3	46.0	8.7	Pass	100.0	72.5		


RESULT: PASS

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 20 of 53

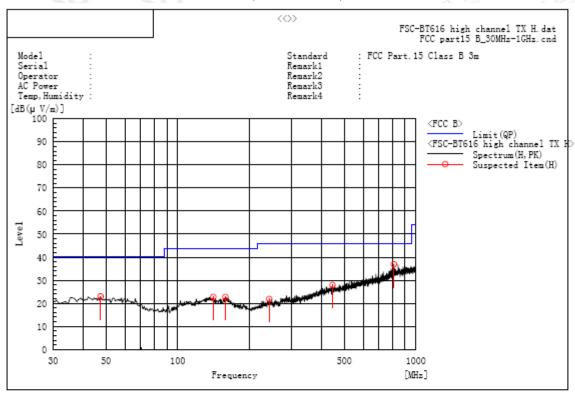
RADIATED EMISSION TEST- (30MHz-1GHz)-MIDDLE CHANNEL -VERTICAL

A. Suspected List:

No. 27	Frequency MHz	Polarization	Reading dB(uV)	Factor dB (1/m)	Level dB(uV/m) PK	Limit dB(uV/m) QP	Margin dB	Pass/Fail	Height cm	Angle deg
	35.820	V	10.2	16.5	26.7	40.0	13.3	Pass	200.0	213.3
Г	44.550	V	9.4	17.3	26.7	40.0	13.3	Pass	100.0	342.3
	108.570	v	12.1	14.4	26.5	43.5	17.0	Pass	150.0	216.4
	133.790	V	12.3	16.5	28.8	43.5	14.7	Pass	150.0	71.5
8	156.585	V	8.2	16.6	24.8	43.5	18.7	Pass	100.0	269.0
	959.745	v	7.4	30.7	38.1	46.0	7.9	Pass	200.0	70.6

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.


2. The "Factor" value can be calculated automatically by software of measurement system.

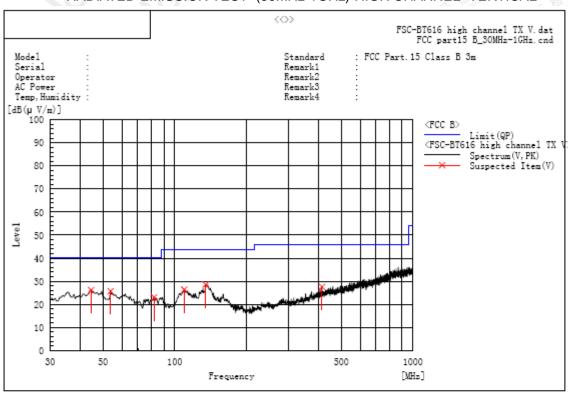
The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 21 of 53

RADIATED EMISSION TEST- (30MHz-1GHz)-HIGH CHANNEL-HORIZONTAL

A. Suspected List:

Frequency MHz	Polarization	Reading dB(uV)	Factor dB (1/m)	Level dB(uV/m) PK	Limit dB(uV/m) QP	Margin dB	Pass/Fail	Height cm	Angle deg
47.460	H	5.8	17.2	23.0	40.0	17.0	Pass	150.0	179.9
141.065	Н	6.2	16.6	22.8	43.5	20.7	Pass	200.0	180.0
158.525	Н	6.2	16.6	22.8	43.5	20.7	Pass	100.0	268.8
242.430	Н	5.7	16.2	21.9	46.0	24.1	Pass	100.0	51.7
446.615	H	5.9	22.0	27.9	46.0	18.1	Pass	100.0	302.9
807.940	Н	8.0	28.9	36.9	46.0	9.1	Pass	100.0	265.7


RESULT: PASS

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago.gent.com.

Page 22 of 53

RADIATED EMISSION TEST- (30MHz-1GHz)-HIGH CHANNEL -VERTICAL

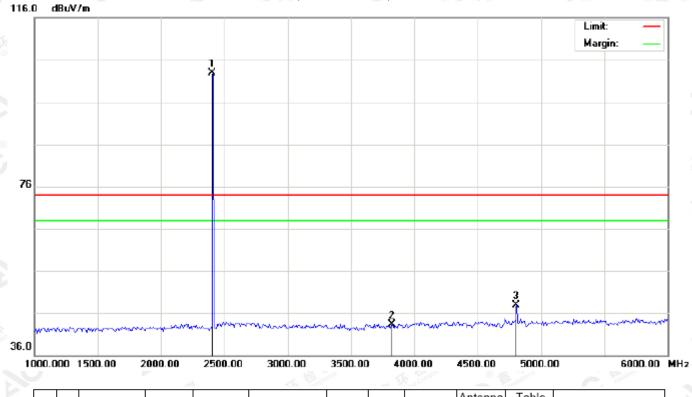
A. Suspected List:

Frequency MHz	Polarization	Reading dB(uV)	Factor dB (1/m)	Level dB(uV/m) PK	Limit dB(uV/m) QP	Margin dB	Pass/Fail	Height cm	Angle deg
44.550	V	8.9	17.3	26.2	40.0	13.8	Pass	200.0	267.9
53.765	V	8.9	16.8	25.7	40.0	14.3	Pass	200.0	127.7
81.895	v	10.8	12.3	23.1	40.0	16.9	Pass	100.0	267.9
109.540	V	11.9	14.5	26.4	43.5	17.1	Pass	100.0	199.8
134.760	V	12.1	16.5	28.6	43.5	14.9	Pass	100.0	305.1
415.090	v	6.3	21.3	27.6	46.0	18.4	Pass	150.0	91.6

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. The "Factor" value can be calculated automatically by software of measurement system.

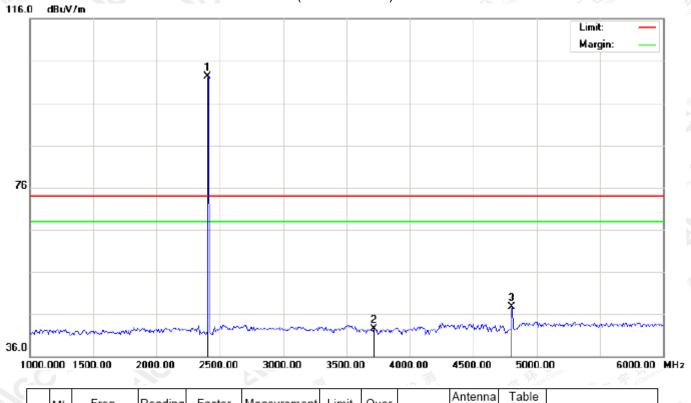

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago-gent.com.

Page 23 of 53

RADIATED EMISSION ABOVE 1GHz

RADIATED EMISSION TEST- (ABOVE 1GHz)-LOW CHANNEL-HORIZONTAL

No	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
3	-	MHz	dBu∀	dB/m	dBu\//m	dBu∀/m	dB		cm	degree	
1	*	2402.000	92.51	10.32	102.83	74.00	28.83	peak			
2		3825.000	29.20	14.11	43.31	74.00	-30.69	peak			
3		4804.000	40.21	7.69	47.90	74.00	-26.10	peak			


RESULT: PASS

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

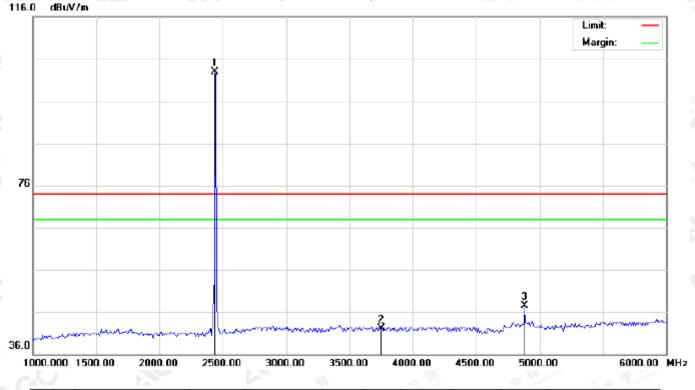
Page 24 of 53

RADIATED EMISSION TEST-(ABOVE 1GHz)-LOW CHANNEL-VERTICAL

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	•	MHz	dBu∀	dB/m	dBuV/m	dBu∀/m	dB		cm	degree	
1	*	2402.000	92.04	10.32	102.36	74.00	28.36	peak			
2		3716.667	29.08	13.44	42.52	74.00	-31.48	peak			
3		4804.000	40.05	7.69	47.74	74.00	-26.26	peak			

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

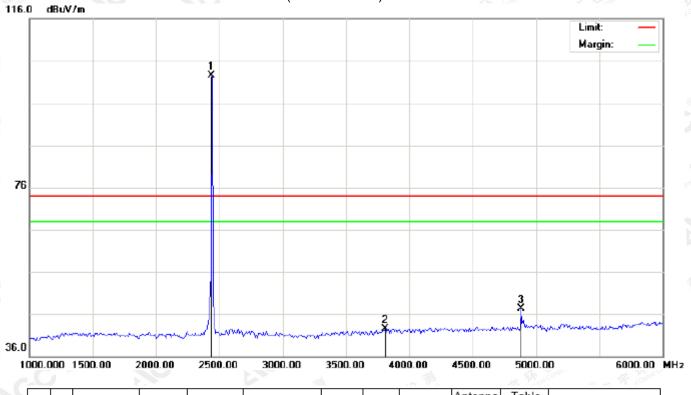

2. The "Factor" value can be calculated automatically by software of measurement system.

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 25 of 53

RADIATED EMISSION TEST-(ABOVE 1GHz)-MIDDLE CHANNEL-HORIZONTAL

No	. Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBu∀	dB/m	dBu∀/m	dBu∀/m	dB		cm	degree	
1	*	2440.000	92.57	10.36	102.93	74.00	28.93	peak			
2		3750.000	28.48	13.65	42.13	74.00	-31.87	peak			-
3		4880.000	39.66	7.89	47.55	74.00	-26.45	peak			


RESULT: PASS

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc-gett.com.

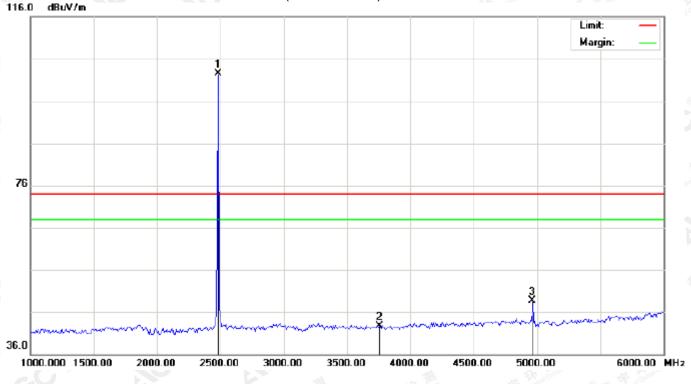
Page 26 of 53

RADIATED EMISSION TEST-(ABOVE 1GHz)-MIDDLE CHANNEL-VERTICAL

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBu∀	dB/m	dBuV/m	dBu∀/m	dB		cm	degree	
1	*	2440.000	92.14	10.36	102.50	74.00	28.50	peak			
2		3808.333	28.49	14.01	42.50	74.00	-31.50	peak			
3		4880.000	39.39	7.89	47.28	74.00	-26.72	peak			

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

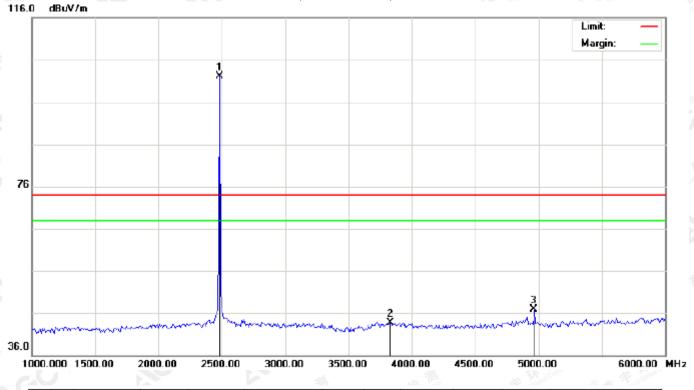

2. The "Factor" value can be calculated automatically by software of measurement system.

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 27 of 53

RADIATED EMISSION TEST-(ABOVE 1GHz)-HIGH CHANNEL-HORIZONTAL

N	lo.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
		-	MHz	dBu∀	dB/m	dBu∀/m	dBu∀/m	dB		cm	degree	
	1	*	2480.000	92.17	10.41	102.58	74.00	28.58	peak			
Γ	2		3758.333	29.10	13.70	42.80	74.00	-31.20	peak			
	3		4960.000	40.60	8.09	48.69	74.00	-25.31	peak			


DECIII T. DACC

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.cett.com.

Page 28 of 53

RADIATED EMISSION TEST-(ABOVE 1GHz)-HIGH CHANNEL-VERTICAL

	No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
			MHz	dBu∀	dB/m	dBu∀/m	dBu∀/m	dB		cm	degree	
3	1	*	2480.000	91.75	10.41	102.16	74.00	28.16	peak			
	2		3833.333	29.53	14.16	43.69	74.00	-30.31	peak			
	3		4960.000	38.91	8.09	47.00	74.00	-27.00	peak			

RESULT: PASS

Note: 6~25GHz at least have 20dB margin. No recording in the test report.

Factor=Antenna Factor+ Cable loss-Amplifier gain,

Margin=Measurement-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

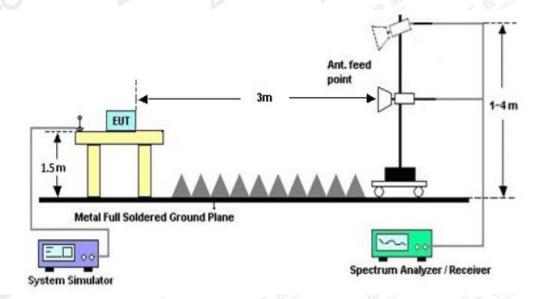
The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 29 of 53

9. BAND EDGE EMISSION

9.1. MEASUREMENT PROCEDURE

- 1. Set the EUT Work on the top, the bottom operation frequency individually.
- 2. Set SPA Start or Stop Frequency=Operation Frequency,

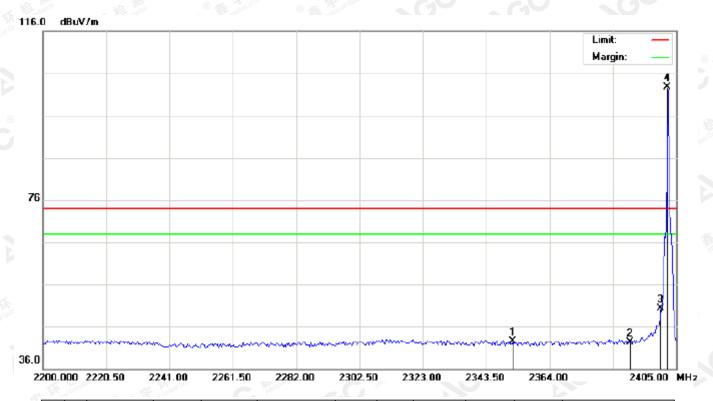

For unrestricted band: RBW=100kHz, VBW=300kHz

For restricted band: RBW=1MHz, VBW=3*RBW

Center frequency = Operation frequency

3. The band edges was measured and recorded.

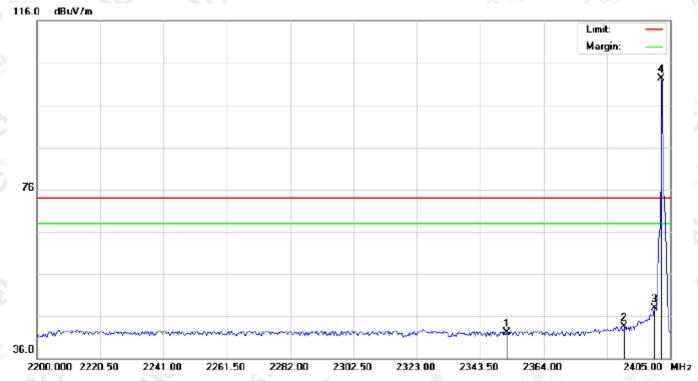
9.2. TEST SET-UP


The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 30 of 53

9.3. TEST RESULT

TEST PLOT OF BAND EDGE FOR LOW CHANNEL -Horizontal

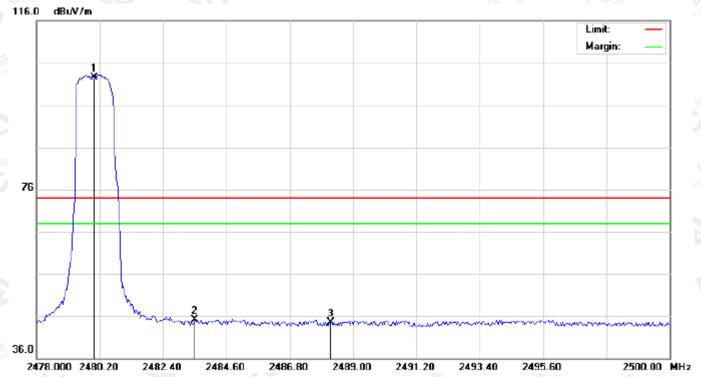

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBu∀	dB/m	dBu∀/m	dBu∀/m	dB		cm	degree	
1		2352.042	32.19	10.27	42.46	74.00	-31.54	peak			
2		2390.000	32.00	10.31	42.31	74.00	-31.69	peak			
3		2400.000	39.97	10.32	50.29	74.00	-23.71	peak			
4	*	2402.000	92.48	10.32	102.80	74.00	28.80	peak			

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 31 of 53

TEST PLOT OF BAND EDGE FOR LOW CHANNEL - Vertical

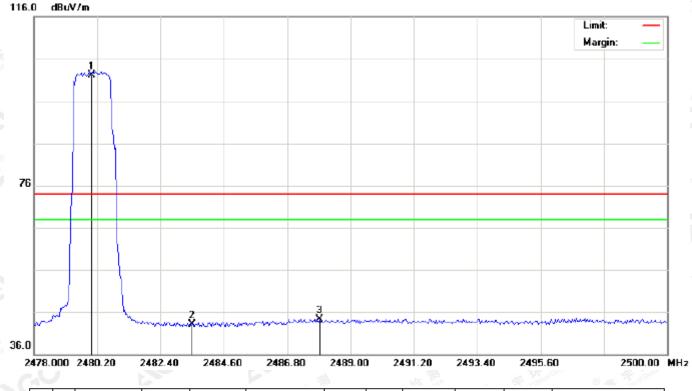
ı	Vo.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
L		•	MHz	dBu∀	dB/m	dBu∀/m	dBu∀/m	dB		cm	degree	
	1		2352.042	31.80	10.27	42.07	74.00	-31.93	peak			
ſ	2		2390.000	33.21	10.31	43.52	74.00	-30.48	peak			
Γ	3		2400.000	37.56	10.32	47.88	74.00	-26.12	peak			
	4	*	2402.000	92.00	10.32	102.32	74.00	28.32	peak			


RESULT: PASS

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 32 of 53

TEST PLOT OF BAND EDGE FOR HIGH CHANNEL -Horizontal


N	lo.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height		Comment
		-	MHz	dBu∀	dB/m	dBu∀/m	dBu∀/m	dB		cm	degree	
1	1	*	2480.000	92.14	10.41	102.55	74.00	28.55	peak			
	2		2483.500	34.69	10.41	45.10	74.00	-28.90	peak			
	3		2488.230	34.16	10.42	44.58	74.00	-29.42	peak			

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 33 of 53

TEST PLOT OF BAND EDGE FOR HIGH CHANNEL -Vertical

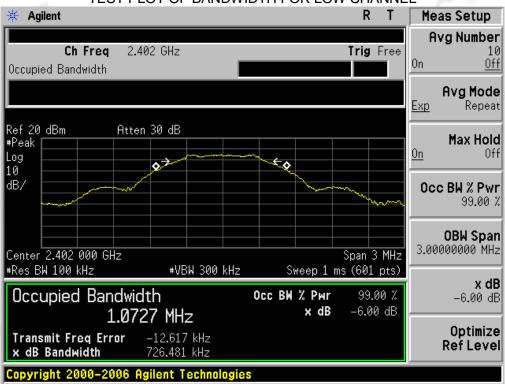
No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height		Comment
8	-	MHz	dBu∀	dB/m	dBu∀/m	dBu∀/m	dB		cm	degree	
1	*	2480.000	91.79	10.41	102.20	74.00	28.20	peak			
2		2483.500	32.76	10.41	43.17	74.00	-30.83	peak			
3		2487.937	33.87	10.42	44.29	74.00	-29.71	peak			

RESULT: PASS

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at all the confirmed at a confirmed

Page 34 of 53

10. 6DB BANDWIDTH


10.1. TEST PROCEDURE

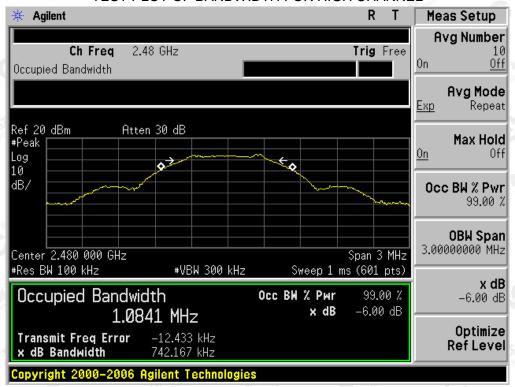
- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Centre Frequency = Operation Frequency, RBW= 100 KHz, VBW ≥ 3*RBW.
- 4. Set SPA Trace 1 Max hold, then View.

10.2. SUMMARY OF TEST RESULTS/PLOTS

Channel	6dB Bandwidth (KHz)	Minimum Limit (KHz)	Pass/Fail
Low	726	The Manual Company of the State	Pass
Middle	682	500KHz	Pass
High	742		Pass

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gatt.com.

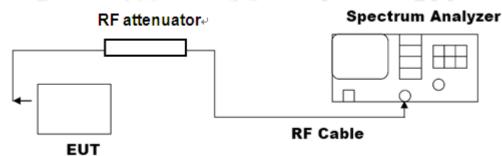


Page 35 of 53

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

The results spowfil this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.


Page 36 of 53

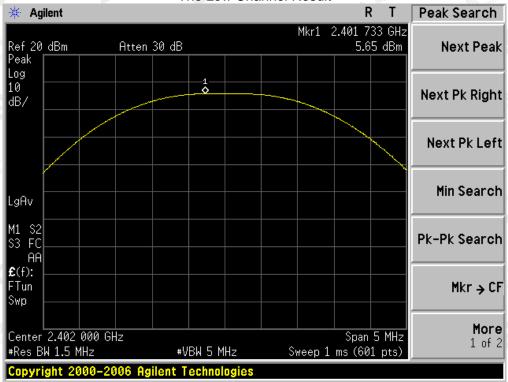
11. CONDUCTED OUTPUT POWER

11.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, middle and the bottom operation frequency individually.
- 3. Use the following spectrum analyzer settings:
- a) Set the RBW ≥ DTS bandwidth.
- b) Set VBW ≥ 3 RBW.
- c) Set span ≥ 3 x RBW
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.
- 4. Allow the trace to stabilize.
- 5. Record the result form the Spectrum Analyzer.

11.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

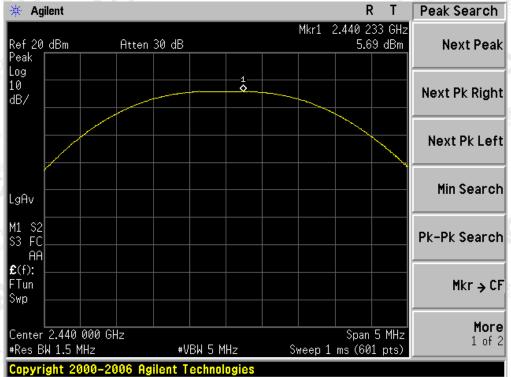
The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gott.com.

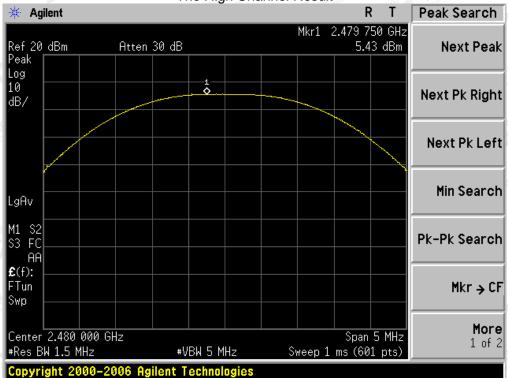


Page 37 of 53

11.3. LIMITS AND MEASUREMENT RESULT

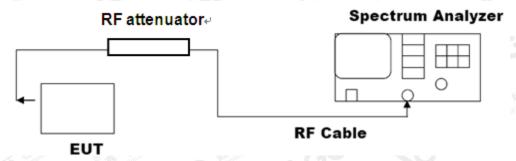
Channel	Peak Power (dBm)	Applicable Limits (dBm)	Pass/Fail		
Low Channel	5.65	30	Pass		
Middle Channel	5.69	30	Pass		
High Channel	5.43	30	Pass		





Page 38 of 53

The High Channel Result


Page 39 of 53

12. CONDUCTED SPURIOUS EMISSION

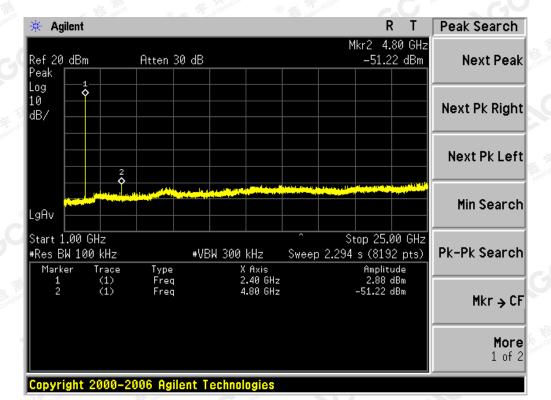
12.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the Middle and the bottom operation frequency individually.
- 3. Set the Span = wide enough to capture the peak level of the in-band emission and all spurious emissions from the lowest frequency generated in the EUT up through the 10th harmonic.
 - RBW = 100kHz; VBW = 300kHz; Sweep = auto; Detector function = peak.
- 4. Set SPA Trace 1 Max hold, then View.

12.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

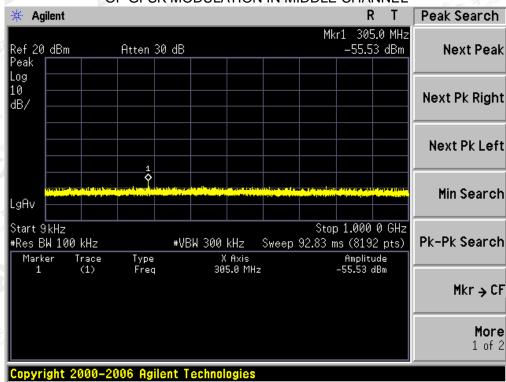
12.3. LIMITS AND MEASUREMENT RESULT

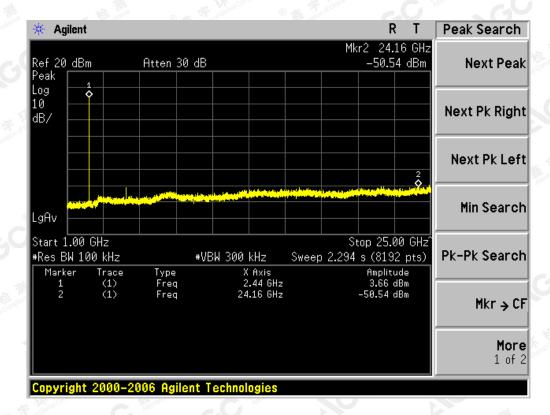

LIMITS AND MEASUREMENT RESULT								
A multi-plate trimite	Measurement Result							
Applicable Limits	Test Data	Result						
In any 100 KHz Bandwidth Outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency	At least -20dBc than the limit Specified on the BOTTOM Channel	PASS						
power that is produce by the intentional radiator shall be at least 20 dB below that in 100KHz bandwidth within the band that contains the highest level of the desired power. In addition, radiation emissions which fall in the restricted bands, as defined in §15.205(a), must also	At least -20dBc than the limit Specified on the TOP Channel	PASS CO						
comply with the radiated emission limits specified in§15.209(a))		And Compliance (8) American						


The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 40 of 53

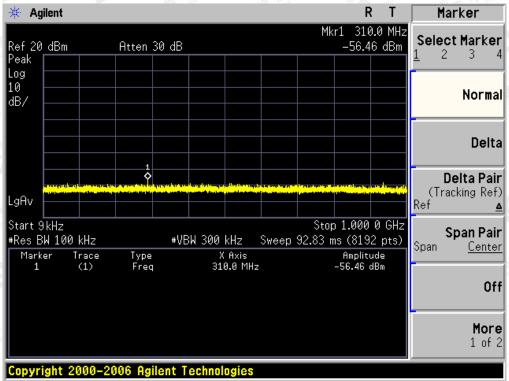
TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF GFSK MODULATION IN LOW CHANNEL

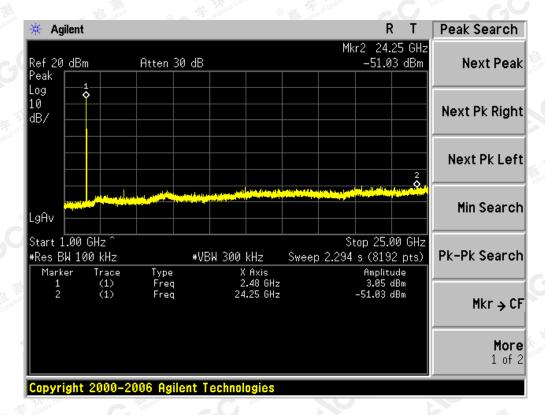




Page 41 of 53

TEST PLOT OF OUT OF BAND EMISSIONS OF GFSK MODULATION IN MIDDLE CHANNEL

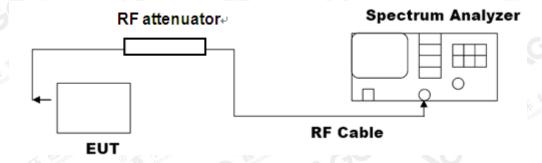




Page 42 of 53

TEST PLOT OF OUT OF BAND EMISSIONS OF GFSK MODULATION IN HIGH CHANNEL

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.


Page 43 of 53

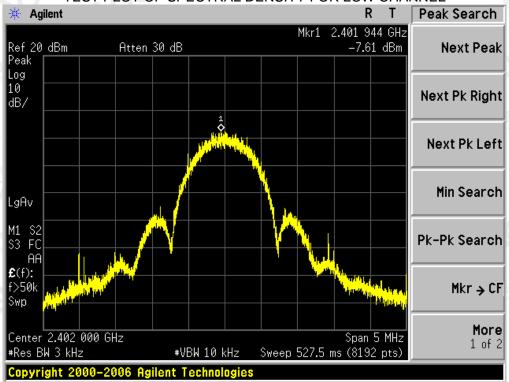
13. CONDUCTED OUTPUT POWER SPECTRAL DENSITY 13.1 MEASUREMENT PROCEDURE

- (1). Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- (2). Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- (3). Set the span to 1.5times the DTS bandwidth, RBW: 3kHz<=RBW<=100KHz, VBW>=3*RBW
- (4). Set SPA Trace 1 Max hold, then View.

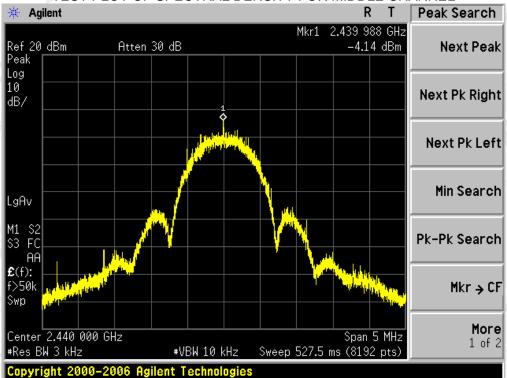
Note: The EUT was tested according to KDB 558074 for compliance to FCC 47CFR 15.247 requirements.

13.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

13.3 LIMITS AND MEASUREMENT RESULT

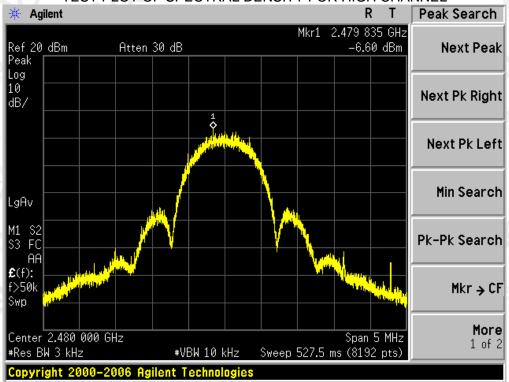

Channel No.	PSD (dBm/3KHz)	Limit (dBm/3KHz)	Result
Low Channel	-7.61	8	Pass
Middle Channel	-4.14	8	Pass
High Channel	-6.60	8	Pass

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.



Page 44 of 53

TEST PLOT OF SPECTRAL DENSITY FOR LOW CHANNEL


TEST PLOT OF SPECTRAL DENSITY FOR MIDDLE CHANNEL

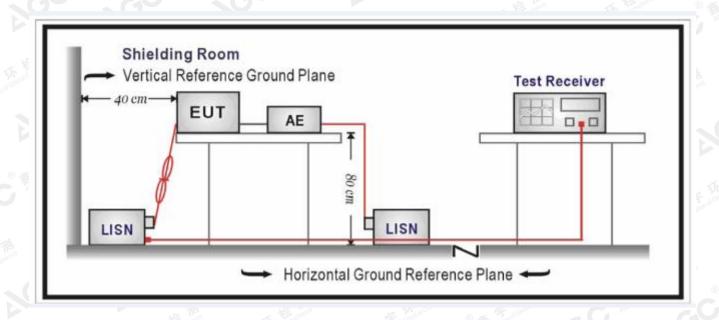
Page 45 of 53

TEST PLOT OF SPECTRAL DENSITY FOR HIGH CHANNEL

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 46 of 53

14. LINE CONDUCTED EMISSION TEST


14.1 LIMITS

F	Maximum RF Line Voltage					
Frequency	Q.P.(dBuV)	Average(dBuV)				
150kHz~500kHz	66-56	56-46				
500kHz~5MHz	56	46				
5MHz~30MHz	60	50				

Note: 1. The lower limit shall apply at the transition frequency.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz

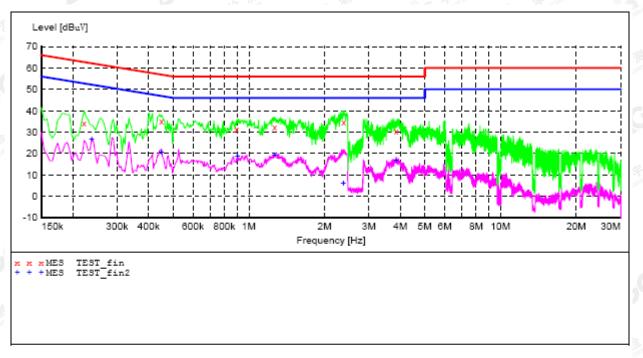
14.2 TEST SETUP

Page 47 of 53

14.3 PRELIMINARY PROCEDURE

- The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2) Support equipment, if needed, was placed as per ANSI C63.10.
- 3) All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4) All support equipments received AC120V/60Hz power from a LISN, if any.
- 5) The EUT received voltage by control box connected to PC which received 120V/60Hzpower by a LISN.
- 6) The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8) During the above scans, the emissions were maximized by cable manipulation.
- 9) The following test mode(s) were scanned during the preliminary test. Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

14.4 FINAL TEST PROCEDURE


- 1) EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- 2) A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less -2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3) The test data of the worst case condition(s) was reported on the Summary Data page.

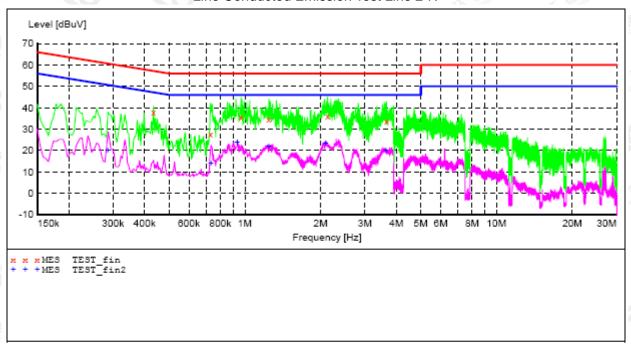
The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.gett.com.

Page 48 of 53

14.5 TEST RESULT OF POWER LINE

Line Conducted Emission Test Line 1-L

MEASUREMENT RESULT:


Frequency MHz	Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
0.222000 0.450000 0.894000 1.266000 2.382000 3.850000	34.20 35.30 31.50 32.30 34.70 30.60	10.1 10.2 10.2 10.2 10.1	63 57 56 56 56	28.5 21.6 24.5 23.7 21.3 25.4	QP	L1 L1 L1 L1 L1 L1	FLO FLO FLO FLO FLO

MEASUREMENT RESULT:

Frequency MHz	Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
0.238000 0.450000 0.902000 1.270000	26.70 20.60 18.60 19.10	10.1 10.1 10.2 10.2	52 47 46 46	25.5 26.3 27.4 26.9	AV AV AV AV	L1 L1 L1 L1	FLO FLO FLO
2.378000 3.850000	6.30 16.90	10.1 10.1	46 46	39.7 29.1	AV AV	L1 L1	FLO FLO

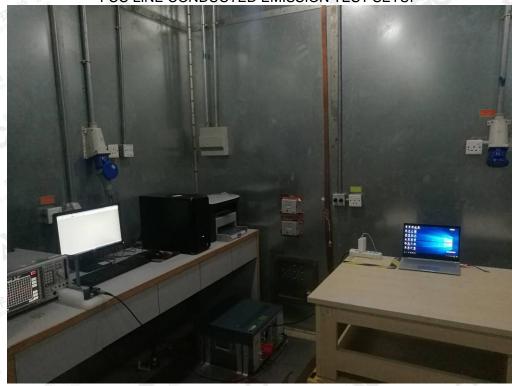
Report No.: AGC03285180601FE08 Page 49 of 53

Line Conducted Emission Test Line 2-N

MEASUREMENT RESULT:

Frequency MHz	Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
0.434000	38.10	10.1	57	19.1	QP	N	FLO
0.730000	27.80	10.1	56	28.2	QP	N	FLO
0.966000	35.40	10.2	56	20.6	QP	N	FLO
1.246000	34.60	10.2	56	21.4	QP	N	FLO
2.134000	35.90	10.1	56	20.1	QP	N	FLO
3.654000	33.60	10.1	56	22.4	QP	N	FLO

MEASUREMENT RESULT:


Frequency MHz	Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
0.286000	20.10	10.1	51	30.5	AV	N	FLO
0.734000	14.20	10.1	46	31.8	AV	N	FLO
0.934000	23.80	10.2	46	22.2	AV	N	FLO
1.246000	22.00	10.2	46	24.0	AV	N	FLO
2.098000	23.60	10.2	46	22.4	AV	N	FLO
3.634000	20.20	10.0	46	25.8	AV	N	FLO

Page 50 of 53

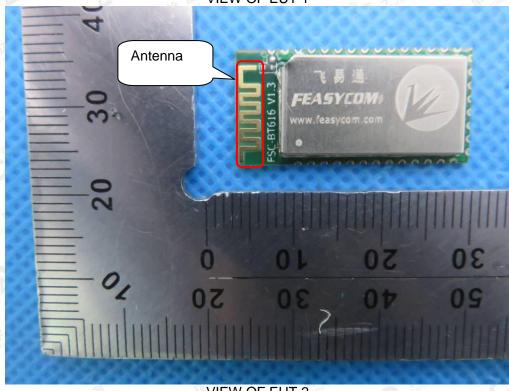
APPENDIX A: PHOTOGRAPHS OF TEST SETUP

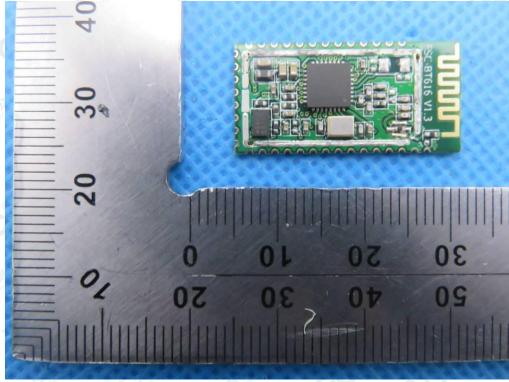
FCC LINE CONDUCTED EMISSION TEST SETUP

FCC RADIATED EMISSION TEST SETUP

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.gett.com.

Report No.: AGC03285180601FE08 Page 51 of 53

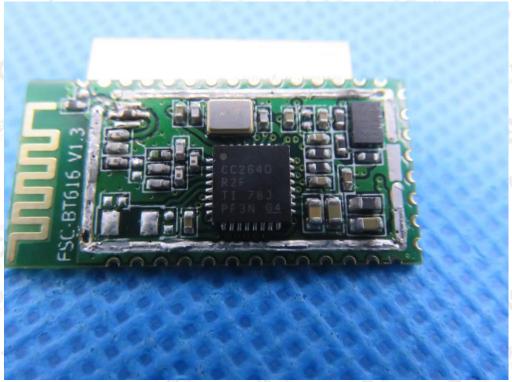



Page 52 of 53

APPENDIX B: PHOTOGRAPHS OF EUT

VIEW OF EUT-1

The results specified this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gent.com.


VIEW OF EUT-3

O O L O Z O S

O Z O S O Z O S

O Z O S O Z O S

----END OF REPORT----

The results shown the sample (s) the sample (s) tested unless otherwise stated and the sample (s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true; // www.agc. gett.com.