Element

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 https://www.element.com

HEARING AID COMPATIBILITY

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Maetan dong, Yeongtong-gu, Suwon-si Gyeonggi-do 16677, Korea

Date of Testing: 10/3/2022 - 11/8/2022 Test Site/Location: Element Washington DC LLC, Columbia, MD, USA **Test Report Serial No.:** 1M2209010097-23.A3L

Date of Issue: 11/16/2022

FCC ID: A3LSMS916U

APPLICANT: SAMSUNG ELECTRONICS CO., LTD.

Scope of Test: Audio Band Magnetic Testing (T-Coil)

Application Type: Certification FCC Rule Part(s): CFR §20.19(b) **HAC Standard:** ANSI C63.19-2011

285076 D01 HAC Guidance v06r02

285076 D02 T-Coil testing for CMRS IP v04

DUT Type: Portable Handset

Model: SM-S916U Additional Model(s): SM-S916U1

Test Device Serial No.: Pre-Production Sample [S/N: 2669M, 2679M]

C63.19-2011 HAC Category: T3 (SIGNAL TO NOISE CATEGORY)

This wireless portable device has been shown to be hearing-aid compatible under the above rated category, specified in ANSI/IEEE Std. C63.19-2011 and has been tested in accordance with the specified measurement procedures. Test results reported herein relate only to the item(s) tested. Hearing-Aid Compatibility is based on the assumption that all production units will be designed electrically identical to the device tested in this report. North American Bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Executive Vice President

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 1 of 119
1M2209010097-23.A3L	10/3/2022 - 11/8/2022	Portable Handset	o o

TABLE OF CONTENTS

1.	INTRODUCTION	3
2.	DUT DESCRIPTION	4
3.	ANSI C63.19-2011 PERFORMANCE CATEGORIES	6
4.	METHOD OF MEASUREMENT	
5.	VOLTE TEST SYSTEM SETUP AND DUT CONFIGURATION	18
6.	VONR TEST SYSTEM SETUP AND DUT CONFIGURATION	23
7.	VOWIFI TEST SYSTEM SETUP AND DUT CONFIGURATION	27
8.	OTT VOIP TEST SYSTEM AND DUT CONFIGURATION	32
9.	FCC 3G MEASUREMENTS	38
10.	T-COIL TEST SUMMARY	39
11.	MEASUREMENT UNCERTAINTY	65
12.	EQUIPMENT LIST	66
13.	TEST DATA	67
14.	CALIBRATION CERTIFICATES	101
15.	CONCLUSION	114
16.	REFERENCES	115
17.	TEST SETUP PHOTOGRAPHS	117

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 2 of 119

1. INTRODUCTION

On July 10, 2003, the Federal Communications Commission (FCC) adopted new rules requiring wireless manufacturers and service providers to provide digital wireless phones that are compatible with hearing aids. The FCC has modified the exemption for wireless phones under the Hearing Aid Compatibility Act of 1998 (HAC Act) in WT Docket 01-309 RM-86581 to extend the benefits of wireless telecommunications to individuals with hearing disabilities. These benefits encompass business, social and emergency communications, which increase the value of the wireless network for everyone. An estimated more than 10% of the population in the United States show signs of hearing impairment and of that fraction, almost 80% use hearing aids. Approximately 500 million people worldwide and 30 million people in the United States suffer from hearing loss.

Compatibility Tests Involved:

The standard calls for wireless communications devices to be measured for:

- RF Electric-field emissions
- T-coil mode, magnetic-signal strength in the audio band
- T-coil mode, magnetic-signal frequency response through the audio band
- T-coil mode, magnetic-signal and noise articulation index

The hearing aid must be measured for:

- RF immunity in microphone mode
- RF immunity in T-coil mode

In the following tests and results, this report includes the evaluation for a wireless communications device.

Figure 1-1 Hearing Aid in-vitu

¹ FCC Rule & Order, WT Docket 01-309 RM-8658

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 3 of 119

2. DUT DESCRIPTION

FCC ID: A3LSMS916U

Applicant: Samsung Electronics Co., Ltd.

129, Samsung-ro, Maetan dong,

Yeongtong-gu, Suwon-si

Gyeonggi-do 16677, Korea

Model: SM-S916U
Additional Model(s): SM-S916U1
Serial Number: 2669M, 2679M

HW Version: REV1.0
SW Version: S916U.001
Antenna: Internal Antenna
DUT Type: Portable Handset

I. LTE Band Selection

This device supports LTE capabilities with overlapping transmission frequency ranges. When the supported frequency range of an LTE band falls completely within an LTE band with a larger transmission frequency range, both LTE bands have the same target power (or the band with the larger transmission frequency range has a higher target power), and both LTE bands share the same transmission path and signal characteristics, hearing-aid compatibility compliance was only assessed for the band with the larger transmission frequency range. However, overlapped LTE bands which are anchor bands for dual connectivity (EN-DC) scenarios between LTE and NR were evaluated as independent LTE bands.

II. NR Band Selection

This device supports NR capabilities with overlapping transmission frequency ranges. When the supported frequency range of an NR band falls completely within an NR band with a larger transmission frequency range, both NR bands have the same target power (or the band with the larger transmission frequency range has a higher target power), and both NR bands share the same transmission path and signal characteristics, hearing-aid compatibility compliance was only assessed for the band with the larger transmission frequency range.

III. Device Serial Numbers

Several samples with identical hardware were used to support HAC testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical, and thermal characteristics are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 10.

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 4 of 119

Table 2-1 A3LSMS916U HAC Air Interfaces

	A3LSMS916U HAC Air Interfaces							
Air-Interface	Band (MHz)	Type Transport	HAC Tested	Simultaneous But Not Tested	Name of Voice Service	Audio Codec Evaluated		
GSM	850 1900	VO	Yes	Yes: WIFI or BT	CMRS Voice ¹	EFR		
	GPRS/EDGE	VD	Yes	Yes: WIFI or BT	Google Meet ²	OPUS		
	850							
	1700	VD	Yes	Yes: WIFI or BT	CMRS Voice ¹	NB AMR, WB AMR		
UMTS	1900							
	HSPA	VD	Yes	Yes: WIFI or BT	Google Meet ²	OPUS		
	680 (B71)		Yes³					
	700 (B12)							
	780 (B13)							
	790 (B14)							
	850 (B5)							
LTE (FDD)	850 (B26)	VD		Yes: NR, WIFI or BT	VoLTE ¹ , Google Meet ²	Volte: NB AMR, WB AMR, EVS		
LIE (FDD)	1700 (B4)	VD	Yes	res. INC, WIFI OF BT	VOLTE , GOOgle Meet	Google Meet: OPUS		
	1700 (B66)							
	1900 (B2)							
	1900 (B25)							
	2300 (B30)							
	2500 (B7)							
	2600 (B41)					Volte: NB AMR, WB AMR, EVS		
LTE (TDD)	2600 (B38)	VD	Yes	Yes: NR, WIFI or BT	VoLTE ¹ , Google Meet ²	Google Meet: OPUS		
	3600 (B48)							
	680 (n71)		Yes ³					
	700 (n12)							
	850 (n5)							
	850 (n26)	VD		Yes: LTE, WIFI or BT	VoNR ⁷ , Google Meet ²	Vonr: NB AMR, WB AMR, EVS Google Meet: OPUS		
NR (FDD)	1700 (n66)		Yes					
	1900 (n2)							
	1900 (n25)							
	2300 (n30)							
	2500 (n7)							
	2600 (n41)							
	2600 (n38)		Yes		VaND ⁷ Canada Masa ²	Vonr: NB AMR, WB AMR, EVS		
	3500 (n77, DoD)		res		VoNR ⁷ , Google Meet ²	Google Meet: OPUS		
NR (TDD)	3600 (n48) 3700 (n77)	VD		Yes: LTE, WIFI or BT				
	24500 (n258)							
	28000 (n261)		No ⁴		Google Meet ²	OPUS		
	39000 (n260)		110		doogle weet	0.03		
	2450							
	5200 (U-NII 1)							
	5300 (U-NII 2A)							
	5500 (U-NII 2C)		Yes					
	5800 (U-NII 3)					VoWIFI: NB AMR, WB AMR, EVS		
WIFI	5900 (U-NII 4)	VD		Yes: GSM, UMTS, LTE, or NR	VoWIFI ² , Google Meet ²	Google Meet: OPUS		
	6175 (U-NII 5)		Yes ⁵					
	6475 (U-NII 6)							
	6700 (U-NII 7)		No ⁶					
	7000 (U-NII 8)							
BT	2450	DT	No	Yes: GSM, UMTS, LTE, or NR	N/A	N/A		
Type Transport VO = Voice Only			Notes:	aval in accordance with 7.4.3.1 of ANSI CC3.10.30	11 and July 2012 CC2 Val TE laterress	ation		
	a - Not intended for '	Voice Services	Reference level in accordance with 7.4.2.1 of ANSI C63.19-2011 and July 2012 C63 VoLTE Interpretation. Reference level is -20dBm0 in accordance with FCC KDB 285076 D02					
	or IP Voice over Data		3. LTE B71 and	NR n71, while outside the scope of ANSI C63.19	and FCC HAC regulations, were addit	ionally tested according to the		
			existing HAC procedures with currently available test equipment. 4. NR FR2 bands are currently outside the scope of ANSI C63,19 and FCC HAC regulations, and therefore they were not evaluated.					
					-			
				5. WIFI U-NII band 5 was evaluated for operations which are entirely below 6 GHz. Operations partially or entirely above 6 GHz were not evaluated due to equipment limitations and being outside of the current scope of ANSI C563.19 and FCC HAC regulations.				
		6. WIFI U-NII bands 6 through 8 were not evaluated due to equipment limitations and being outside the scope of ANSI C63.19 and						
FCC HAC regulations. 7. Reference level is -16dBm0 in accordance with FCC guidance and				and manufacturer attestation.				

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 5 of 119

3. ANSI C63.19-2011 PERFORMANCE CATEGORIES

I. MAGNETIC COUPLING

Axial and Radial Field Intensity

All orientations of the magnetic field, in the axial and radial position along the measurement plane shall be \geq -18 dB(A/m) at 1 kHz in a 1/3 octave band filter per §8.3.1.

Frequency Response

The frequency response of the axial component of the magnetic field shall follow the response curve specified in EIA RS-504-1983, over the frequency range 300 Hz – 3000 Hz per §8.3.2.

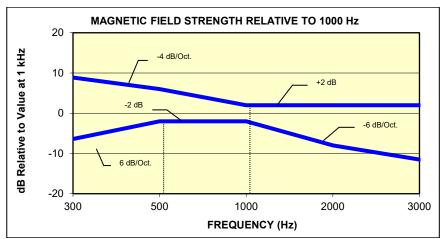
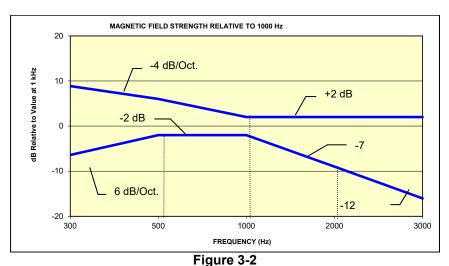



Figure 3-1
Magnetic field frequency response for Wireless Devices with an axial field ≤-15 dB(A/m) at 1 kHz

Magnetic Field frequency response for wireless devices with an axial field that exceeds
-15 dB(A/m) at 1 kHz

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 6 of 119

Signal Quality

The table below provides the signal quality requirement for the intended audio magnetic signal from a wireless device. Only the RF immunity of the hearing aid is measured in T-coil mode. It is assumed that a hearing aid can have no immunity to an interference signal in the audio band, which is the intended reception band for this mode. The only criterion that can be measured is the RF immunity in T-coil mode. This is measured using the same procedure as the audio coupling mode at the same levels.

The signal quality of the axial and radial components of the magnetic field was used to determine the T-coil mode category.

Category	Telephone RF Parameters			
	Wireless Device Signal Quality [(Signal + Noise)-to-noise ratio in dB]			
T1	0 to 10 dB			
T2	10 to 20 dB			
Т3	20 to 30 dB			
T4	> 30 dB			
Table 3-1 Magnetic Coupling Parameters				

Note: The FCC limit for SNNR is 20dB and the test data margins will indicate a margin from the FCC limit for compliance.

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 7 of 119

4. METHOD OF MEASUREMENT

I. Test Setup

The equipment was connected as shown in an RF-shielded chamber:

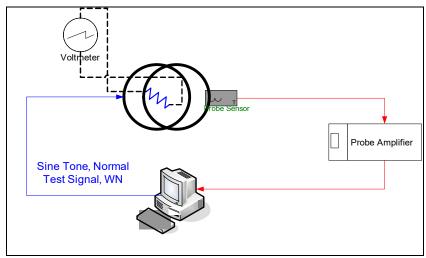


Figure 4-1 Validation Setup with Helmholtz Coil

Figure 4-2 T-Coil Test Setup

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 8 of 119

II. Scanning Mechanism

Manufacturer: TEM

Accuracy: ± 0.83 cm/meter

Minimum Step Size: 0.1 mm

Maximum speed 6.1 cm/sec

Line Voltage: 115 VAC

Line Frequency: 60 Hz

Material Composite: Delrin (Acetal)

Data Control: Parallel Port

Dynamic Range (X-Y-Z): 45 x 31.75 x 47 cm

Dimensions: 36" x 25" x 38" Operating Area: 36" x 49" x 55"

Reflections: < -20 dB (in anechoic chamber)

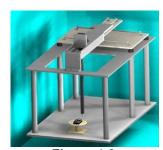


Figure 4-3 RF Near-Field Scanner

III. 3GPP2 Normal Test Signal (Speech)

Manufacturer: 3GPP2 (TIA 1042 §3.3.1)

Modified-IRS weighted, multi-talker speech signal, 4 Male and 4

Stimulus Type: Female speakers (alternating)

Single Sample Duration: 51.62 seconds

Activity Level: 77.4%

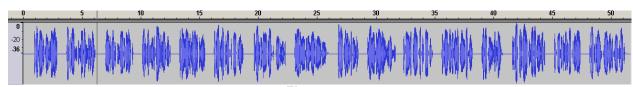
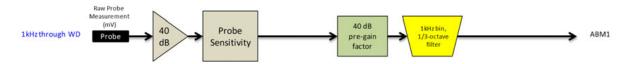



Figure 4-4
Temporal Characteristic of Normal Test Signal

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 9 of 119

ABM1 Measurement Block Diagram:

ABM2 Measurement Block Diagram:

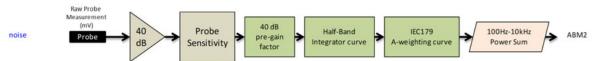


Figure 4-5 Magnetic Measurement Processing Steps

IV. Test Procedure

- 1. Ambient Noise Check per C63.19 §7.3.1
 - a. Ambient interference was monitored using a Real-Time Analyzer between 100-10,000 Hz with 1/3 octave filtering.
 - b. "A-weighting" and Half-Band Integration was applied to the measurements.
 - c. Since this measurement was measured in the same method as ABM2 measurements, this level was verified to be more than 10 dB below the lowest measurement signal (which is the highest ABM2 measurement for a T4 WD). Therefore the maximum noise level for a T4 WD with an ABM1 = -18 dBA/m is:

- 2. Measurement System Validation (See Figure 4-1)
 - a. The measurement system including the probe, pre-amplifier and acquisition system were validated as an entire system to ensure the reliability of test measurements.
 - b. ABM1 Validation

The magnetic field at the center of the Helmholtz coil is given by the equation (per C63.19 Annex D.10.1):

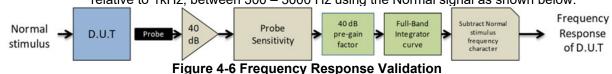
$$H_c = \frac{NI}{r\sqrt{1.25^3}} = \frac{N(\frac{V}{R})}{r\sqrt{1.25^3}}$$

Where H_c = magnetic field strength in amperes per meter

N = number of turns per coil

For Helmholtz Coil SN: SBI 1052, N=20; r=0.13m; R=10.193Ω and using V=29mV:

$$H_c = \frac{20 \cdot (\frac{0.029}{10.193})}{0.13 \cdot \sqrt{1.25^3}} = 0.316 \, A / m \approx -10 \, dB (A / m)$$

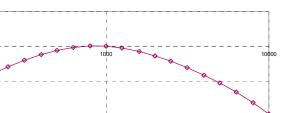

For Helmholtz Coil SN: 925, N=20; r=0.08m; R=10.2Ω and using V=18mV:

$$H_c = \frac{20 \cdot (\frac{0.018}{10.2})}{0.08 \cdot \sqrt{1.25^3}} = 0.316 A/m \approx -10 dB(A/m)$$

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 10 of 119
1M2209010097-23.A3L	10/3/2022 - 11/8/2022	Portable Handset	

Therefore, a pure tone of 1kHz was applied into the coils such that 29mV or 18mV. respectively, was observed across the resistor. The voltmeter used for measurement was verified to be capable of measurements in the audio band range. This theoretically generates an expected field of -10 dB(A/m) in the center of the Helmholtz coil which was used to validate the probe measurement at -10dB(A/m). This was verified to be within ± 0.5 dB of the -10dB(A/m) value (see Pages 60-63).

c. Frequency Response Validation The frequency response through the Helmholtz Coil was verified to be within 0.5 dB relative to 1kHz, between 300 – 3000 Hz using the Normal signal as shown below:

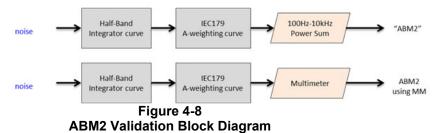

d. ABM2 Measurement Validation

WD noise measurements are filtered with A-weighting and Half-Band Integration over a frequency range of 100Hz - 10kHz to process ABM2 measurements. Below is the verification of the system processing A-weighting and Half-Band integration between system input to output within 0.5 dB of the theoretical result:

Table 4-1 **ABM2 Frequency Response Validation**

HBI, A - HBI, A -				
f (Hz)	Measured	Theoretical	dB Var.	
1 (112)			ub vai.	
400	(dB re 1kHz)		0.040	
100	-16.180	-16.170	-0.010	
125	-13.257	-13.250	-0.007	
160	-10.347	-10.340	-0.007	
200	-8.017	-8.010	-0.007	
250	-5.925	-5.920	-0.005	
315	-4.045	-4.040	-0.005	
400	-2.405	-2.400	-0.005	
500	-1.212	-1.210	-0.002	
630	-0.349	-0.350	0.001	
800	0.071	0.070	0.001	
1000	0.000	0.000	0.000	
1250	-0.503	-0.500	-0.003	
1600	-1.513	-1.510	-0.003	
2000	-2.778	-2.780	0.002	
2500	-4.316	-4.320	0.004	
3150	-6.166	-6.170	0.004	
4000	-8.322	-8.330	0.008	
5000	-10.573	-10.590	0.017	
6300	-13.178	-13.200	0.022	
8000	-16.241	-16.270	0.029	
10000	-19.495	-19.520	0.025	

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 11 of 119



- HBI. A - Measured

ABM2 Frequency Response Validation (LISTEN)

Frequency (Hz) Figure 4-7 **ABM2 Frequency Response Validation**

The ABM2 result is a power sum from 100Hz to 10kHz with half-band integration and Aweighting. To verify the power sum measurement, a power sum over the full band was measured and verified to track with the source level (See Figure 4-8). Therefore the setup in this step was used to verify the power sum post-processing for ABM2 measurements. See below block diagram:

The power summed output results for a known input were compared to the multi-meter results to verify any deviation in the post-processing implemented with the power-sum.

Table 4-2 **ABM2 Power Sum Validation**

WN Input (dBV)	Power Sum (dBV)	Multimeter-Full (dBV)	Dev (dB)
-60	-60.36	-60.2	0.16
-50	-50.19	-50.13	0.06
-40	-40.14	-40.03	0.11
-30	-30.13	-30.01	0.12
-20	-20.12	-20	0.12
-10	-10.14	-10	0.14

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 12 of 119
1M2209010097-23.A3L	10/3/2022 - 11/8/2022	Portable Handset	1 age 12 of 113

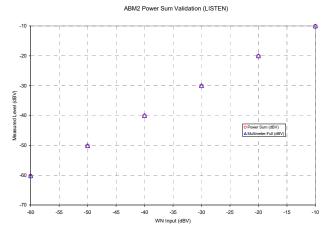
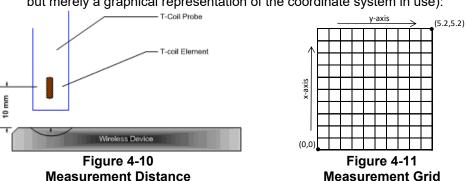



Figure 4-9 **ABM2 Power Sum Validation**

- 3. Measurement Test Setup
 - a. Fine scan above the WD (TEM)
 - i. A multitone signal was applied to the handset such that the phone acoustic output was stable within 1dB over the probe settling time and with the acoustic output level at the C63.19 specified levels (below). The measurement step size was in 2 mm increments at a distance of 10 mm between the surface of the wireless device as shown below (note that in Figure 4-11, the grid is not to scale but merely a graphical representation of the coordinate system in use):

- ii. After scanning, the planar field maximum point was determined. The position of the probe was moved to this location to setup the test using the SoundCheck system.
- iii. These steps were repeated for all T-coil orientations (axial and radial) per Figure 4-13 after a T-coil orientation was fully measured with the SoundCheck system.
- b. Speech Signal Setup to Base Station Simulator
 - i. C63.19 Table 7-1 states audio reference input levels for various technologies:

Standard	Technology	Input Level (dBm0)
TIA/EIA/IS-2000	CDMA	-18
J-STD-007	GSM (217)	-16
T1/T1P1/3GPP	UMTS (WCDMA)	-16
iDEN TM	TDMA (22 and 11 Hz)	-18

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 13 of 119

- ii. See Section 5 and 7 for more information regarding CMW500 audio level settings for Voice Over LTE (VoLTE) and Voice Over WIFI (VoWIFI) testing.
- iii. See Section 6 for more information regarding CMW500 and CMX500 audio level settings for Voice Over NR (VoNR) testing.
- iv. See Section 8 for more information regarding audio level settings for Over-The-Top (OTT) Voice Over IP (VoIP) Testing.

c. Real-Time Analyzer (RTA)

i. The Real-Time Analyzer was configured to analyze measurements using 1/3 Octave band weighted filtering.

d. WD Radio Configuration Selection

- i. The device was chosen to be tested in the worst-case ABM2 condition (See Section 9 for more information regarding worst-case configurations for UMTS. LTE configuration information can be found in Section 5 and 8. NR configuration information can be found in Section 6 and 8. WIFI configuration information can be found in Section 7 and 8.)
- ii. Supported GSM vocoders were investigated for the worst-case ABM2 condition. GSM-EFR was deemed the worst-case condition for the GSM air interface.

4. Signal Quality Data Analysis

- a. Narrow-band Magnetic Intensity
 - i. The standard specifies a 1kHz 1/3 octave band minimum field intensity for a sine tone. The ABM1 measurements were evaluated at 1kHz with 1/3 octave band filtering over an averaged period of 10 seconds.

b. Frequency Response

- i. The appropriate frequency response curve was measured to curves in Figure 3-1 or Figure 3-2 between 300 3000 Hz using digital linear averaging (limit lines chosen according to measurement found in step 4a). A linear average over 3x the length of the artificial voice signal (3x sampling) was performed. A 10 second delay was configured in the measurement process of the stimulus to ensure handset vocoder latency effects and echo cancellation devices (if any) were appropriately stabilized during measurements.
- ii. The appropriate post-processing was applied according to the system processing chain illustrated in Figure 4-6. All R10 frequencies were plotted with respect to 0dB at 1kHz value and aligned with respect to the EIA-504 mask.
- iii. The margin is represented by the closest measured data point on the curve to the EIA-504 limit lines, in dB.

c. Signal Quality Index

- i. Ensuring the WD was at maximum RF power, maximum volume, backlight off, display on, maximum contrast setting, keypad lights on (when possible) with no audio signal through the vocoder, the WD was measured over at least 100 Hz 10,000 Hz, maximized over 5 seconds with a 50ms sample time for the ABM2 measurement (5 second time period is used in noise measurements under standards such as IEEE 269, etc.).
- ii. After applying half-band integration and A-weighting to the result, a power sum was applied over each 1/3 octave bandwidth frequency for an ABM2 value.
- This result was subtracted from the ABM1 result in step a, to obtain the Signal Quality.

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 14 of 119

V. Test Setup

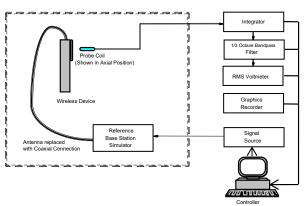


Figure 4-12
Audio Magnetic Field Test Setup

Environmental conditions such as temperature and relative humidity are monitored to ensure there are no impacts on system specifications. Proper voltage and power line frequency conditions are maintained with three phase power sources. Environmental noise and reflections are monitored through system checks.

VI. Deviation from C63.19 Test Procedure

Non-conducted RF connection due to inaccessible RF ports.

VII. Air Interface Technologies Tested

All air interfaces which support voice capabilities over a managed CMRS or pre-installed OTT VoIP applications were tested for T-coil unless otherwise noted. See Table 2-1 for more details regarding which modes were tested.

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 15 of 119
1M2209010097-23.A3L	10/3/2022 - 11/8/2022	Portable Handset	

VIII. Wireless Device Channels and Frequencies

1. 2G/3G Modes

The frequencies listed in the table below are those that lie in the center of the bands used for cellular telephony. Low, middle and high channels were tested in each band for FCC compliance evaluation to ensure the maximum emission is captured across the entire band. Only middle channels were evaluated for data modes.

Table 4-3 **Center Channels and Frequencies**

Test frequencies & associated channels			
Channel	Frequency (MHz)		
Cellular 850			
190 (GSM)	836.60		
4183 (UMTS)	836.60		
AWS 1750			
1412 (UMTS)	1730.40		
PCS 1900			
661 (GSM)	1880		
9400 (UMTS)	1880		

2. 4G (LTE) Modes

The middle channel for every band and bandwidth combination was tested for each probe orientation. The band and bandwidth combination from each probe orientation resulting in the worst-case SNNR was additionally tested using low and high channels for that band and bandwidth combination. Low-mid and mid-high channels were additionally tested for LTE TDD. The middle channels and supported bandwidths from the worst-case bands according to Tables 8-6 and 8-7 were additionally evaluated with OTT VoIP for each probe orientation. See Tables 10-4 to 10-24 as well as 10-51 and 10-52 for LTE bandwidths and channels.

3. 5G (NR) Modes

The middle channel for every band and bandwidth combination was tested for each probe orientation. The band and bandwidth combination from each probe orientation resulting in the worst-case SNNR was additionally tested using low and high channels for that band and bandwidth combination. Low-mid and mid-high channels were additionally tested for NR TDD. The middle channel and supported bandwidths from the worst-case NR FDD band according to Table 8-10 was evaluated with OTT VoIP for each probe orientation. NR TDD was additionally evaluated with OTT VoIP for each probe orientation according to Table 8-11. See Tables 10-25 to 10-43 as well as Tables 10-53 and 10-54 for NR bandwidths and channels.

4. WIFI

The middle channel for each IEEE 802.11 standard was tested for each probe orientation. The 2.4GHz IEEE 802.11 standard from each probe orientation resulting in the worst-case SNNR was additionally tested using low and high channels. The 5GHz IEEE 802.11 standard from each probe orientation resulting in the worst-case SNNR was additionally tested on higher U-NII bands as well as applicable low and high channels. See Tables 10-44 to 10-48 as well as 10-55 to 10-59 for WIFI standards and channels.

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 16 of 119

IX. Test Flow

The flow diagram below was followed (From C63.19):

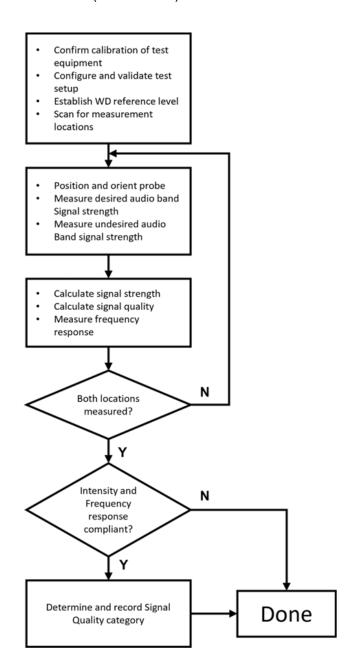


Figure 4-13 C63.19 T-Coil Signal Test Process

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 17 of 119

5. **VOLTE TEST SYSTEM SETUP AND DUT CONFIGURATION**

I. Test System Setup for VoLTE over IMS T-coil Testing

1. Equipment Setup

The general test setup used for VoLTE over IMS is shown below. The callbox used when performing VoLTE over IMS T-coil measurements is a CMW500. The Data Application Unit (DAU) of the CMW500 was used to simulate the IP Multimedia Subsystem (IMS) server.

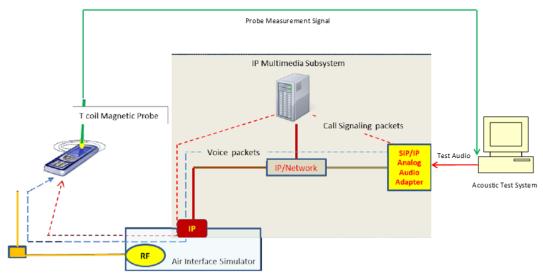


Figure 5-1 Test Setup for VoLTE over IMS T-Coil Measurements

2. Audio Level Settings

According to the July 2012 interpretations by the C63 Committee regarding the appropriate audio levels to be used for VoLTE over IMS T-coil testing, -16dBm0 shall be used for the normal speech input level*. The CMW500 base station simulator was manually configured to ensure that the settings for speech input and full scale levels resulted in the -16dBm0 speech input level to the DUT for the VoLTE over IMS connection.

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 18 of 119
1M2209010097-23.A3L	10/3/2022 - 11/8/2022	Portable Handset	

^{*} http://c63.org/documents/misc/posting/new_interpretations.htm

DUT Configuration for VoLTE over IMS T-coil Testing II.

1. Radio Configuration

An investigation was performed to determine the modulation and RB configuration to be used for testing. The effects of modulation and RB configuration were found to be independent of band and bandwidth; therefore, only one band and bandwidth were used for this investigation. 16QAM, 1RB, 50%RB offset was used for the testing as the worst-case configuration for the handset. See below table for SNNR comparison between different radio configurations:

> Table 5-1 **VoLTE over IMS SNNR by Radio Configuration**

				<u>,</u>					
Band	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
66	1745.0	132322	20	QPSK	1	0	7.28	-45.38	52.66
66	1745.0	132322	20	QPSK	1	50	7.01	-38.18	45.19
66	1745.0	132322	20	QPSK	1	99	7.01	-44.76	51.77
66	1745.0	132322	20	QPSK	50	0	6.99	-49.75	56.74
66	1745.0	132322	20	QPSK	50	25	6.98	-49.76	56.74
66	1745.0	132322	20	QPSK	50	50	6.95	-48.94	55.89
66	1745.0	132322	20	QPSK	100	0	6.94	-49.39	56.33
66	1745.0	132322	20	16QAM	1	0	6.89	-38.02	44.91
66	1745.0	132322	20	16QAM	1	50	7.34	-35.97	43.31
66	1745.0	132322	20	16QAM	1	99	6.72	-37.00	43.72
66	1745.0	132322	20	16QAM	50	0	6.95	-48.30	55.25
66	1745.0	132322	20	16QAM	50	25	6.93	-48.39	55.32
66	1745.0	132322	20	16QAM	50	50	7.03	-47.70	54.73
66	1745.0	132322	20	16QAM	100	0	6.88	-44.30	51.18
66	1745.0	132322	20	64QAM	1	0	7.12	-39.25	46.37
66	1745.0	132322	20	64QAM	1	50	7.10	-38.41	45.51
66	1745.0	132322	20	64QAM	1	99	6.95	-38.03	44.98
66	1745.0	132322	20	64QAM	50	0	6.74	-48.73	55.47
66	1745.0	132322	20	64QAM	50	25	7.02	-48.38	55.40
66	1745.0	132322	20	64QAM	50	50	6.81	-47.75	54.56
66	1745.0	132322	20	64QAM	100	0	6.64	-47.67	54.31
66	1745.0	132322	20	256QAM	1	0	7.28	-42.53	49.81
66	1745.0	132322	20	256QAM	1	50	6.67	-41.50	48.17
66	1745.0	132322	20	256QAM	1	99	7.24	-41.41	48.65
66	1745.0	132322	20	256QAM	50	0	7.39	-48.62	56.01
66	1745.0	132322	20	256QAM	50	25	7.07	-47.55	54.62
66	1745.0	132322	20	256QAM	50	50	7.00	-48.72	55.72
66	1745.0	132322	20	256QAM	100	0	7.09	-48.98	56.07

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 19 of 119
1M2209010097-23.A3L	10/3/2022 - 11/8/2022	Portable Handset	

2. Codec Configuration

An investigation was performed to determine the audio codec configuration to be used for testing. The effects of codec configuration were found to be independent of radio configuration; therefore, only one radio configuration was used for this investigation. The WB AMR 6.60kbps setting was used for the audio codec on the CMW500 for VoLTE over IMS T-coil testing. See below table for comparisons between different codecs and codec data rates:

Table 5-2
AMR Codec Investigation – VoLTE over IMS

Codec Setting:	WB AMR 23.85kbps	WB AMR 6.60kbps	NB AMR 12.2kbps	NB AMR 4.75kbps	Orientation	Band / BW	Channel		
ABM1 (dBA/m)	8.52	7.65	10.18	9.87			132322		
ABM2 (dBA/m)	-37.34	-37.26	-37.57	-37.27	A1	LTE Band 66 20MHz			
Frequency Response	Pass	Pass	Pass	Pass	Axial				
S+N/N (dB)	45.86	44.91	47.75	47.14					

Table 5-3
EVS Codec Investigation - VoLTE over IMS

Codec Setting:	EVS Primary SWB 128kbps	EVS Primary SWB 9.6kbps	EVS Primary WB 128kbps	EVS Primary WB 5.9kbps	EVS Primary NB 24.4kbps	EVS Primary NB 5.9kbps	Orientation	Band / BW	Channel
ABM1 (dBA/m)	10.53	9.89	8.66	8.35	9.34	9.33	Axial	LTE Band 66 20MHz	132322
ABM2 (dBA/m)	-36.83	-37.04	-37.41	-37.37	-37.24	-37.28			
Frequency Response	Pass	Pass	Pass	Pass	Pass	Pass			
S+N/N (dB)	47.36	46.93	46.07	45.72	46.58	46.61			

- Mute on; Backlight off; Max Volume; Max Contrast
- TPC = "Max Power"

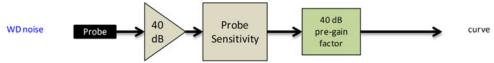


Figure 5-2
Audio Band Magnetic Curve Measurement Block Diagram

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 20 of 119

3. LTE TDD Uplink-Downlink Configuration Investigation for VoLTE over IMS

An investigation was performed to determine the worst-case Uplink-Downlink configuration for VoLTE over IMS T-Coil testing.

Per 3GPP TS 36.211, the total frame length for each TDD radio frame of length $T_f = 307200 \cdot T_s =$ 10 ms, where T_s is a number of time units equal to 1/(15000 x 2048) seconds. Additionally, each radio frame consists of 10 subframes, each of length $30720 \cdot T_s = 1$ ms, and subframes can be designated as uplink (U), downlink (D), or special subframe (S), depending on the Uplink-Downlink configuration as indicated in Table 4.2-2 of 3GPP TS 36.211. In the transmission duty factor calculation, the special subframe configuration with the shortest UpPTS duration within the special subframe is used and will be applied for measurement. From 3GPP TS 36.211 Table 4.2-1, the shortest UpPTS is 2192 · Ts which occurs in the normal cyclic prefix and special subframe configuration 4.

See table below outlining the calculated transmission duty cycles for each Uplink-Downlink configuration:

> Table 5-4 **Uplink-Downlink Configurations for Type 2 Frame Structures**

Uplink-downlink configuration	Downlink-to-Uplink Switch-point periodicity		Subframe number							Calculated Transmission		
configuration	Switch-point periodicity	0	1	2	3	4	5	6	7	8	9	Duty Cycle (%)
0	5 ms	D	S	U	U	U	D	S	U	U	U	61.4%
1	5 ms	D	S	U	U	D	D	S	U	U	D	41.4%
2	5 ms	D	S	U	D	D	D	S	U	D	D	21.4%
3	10 ms	D	S	U	U	U	D	D	D	D	D	30.7%
4	10 ms	D	S	U	U	D	D	D	D	D	D	20.7%
5	10 ms	D	S	U	D	D	D	D	D	D	D	10.7%
6	5 ms	D	S	U	U	U	D	S	U	U	D	51.4%

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 21 of 119
1M2209010097-23.A3L	10/3/2022 - 11/8/2022	Portable Handset	

a. Power Class 3 Uplink-Downlink Configuration Investigation

Power Class 3 was evaluated with the following radio configuration: channel 40620, 20MHz BW, 16QAM, 1RB, 50%RB offset. For Power Class 3, all configurations (0-6) are supported. The configuration which resulted in the worst SNNR was used for full testing. Uplink-Downlink configuration 2 was used as the worst-case configuration for Power Class 3 VoLTE over IMS T-Coil testing. See table below for the SNNR comparison between each Uplink-Downlink configuration:

Table 5-5 Power Class 3 VoLTE over IMS SNNR by UL-DL Configuration

Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	UL-DL Configuration	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
2593.0	40620	20	16QAM	1	50	0	7.04	-31.04	38.08
2593.0	40620	20	16QAM	1	50	1	7.28	-31.39	38.67
2593.0	40620	20	16QAM	1	50	2	6.85	-31.15	38.00
2593.0	40620	20	16QAM	1	50	3	7.34	-33.21	40.55
2593.0	40620	20	16QAM	1	50	4	7.03	-33.92	40.95
2593.0	40620	20	16QAM	1	50	5	7.24	-34.08	41.32
2593.0	40620	20	16QAM	1	50	6	7.06	-31.15	38.21

b. Power Class 2 Uplink-Downlink Configuration Investigation

Power Class 2 was evaluated with the following radio configuration: channel 40620, 20MHz BW, 16QAM, 1RB, 50%RB offset. For Power Class 2, configurations 1-5 are supported. The configuration which resulted in the worst SNNR was used for full testing. Uplink-Downlink configuration 2 was used as the worst-case configuration for Power Class 2 VoLTE over IMS T-Coil testing. See table below for the SNNR comparison between each Uplink-Downlink configuration:

Table 5-6 Power Class 2 VoLTE over IMS SNNR by UL-DL Configuration

Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	UL-DL Configuration	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]	
2593.0	40620	20	16QAM	1	50	1	7.14	-29.51	36.65	
2593.0	40620	20	16QAM	1	50	2	7.19	-29.37	36.56	
2593.0	40620	20	16QAM	1	50	3	7.19	-32.26	39.45	
2593.0	40620	20	16QAM	1	50	4	7.04	-31.68	38.72	
2593.0	40620	20	16QAM	1	50	5	7.16	-32.47	39.63	

Note: LTE TDD B41 Power Class 2 only supports UL-DL configurations 1-5, not 0 or 6.

c. Conclusion

Per the investigations above, UL-DL Configuration 2 was used to evaluate both Power Class 3 and Power Class 2 VoLTE over IMS.

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 22 of 119
1M2209010097-23.A3L	10/3/2022 - 11/8/2022	Portable Handset	

6. **VONR TEST SYSTEM SETUP AND DUT CONFIGURATION**

I. Test System Setup for VoNR over IMS T-coil Testing

1. Equipment Setup

The general test setup used for VoNR over IMS is shown below. The callboxes used when performing VoNR over IMS T-coil measurements are CMW500 and CMX500. The Data Application Unit (DAU) of the CMW500 was used to simulate the IP Multimedia Subsystem (IMS) server. The CMX500 provided the baseband signal to perform NR signaling. An external USB audio interface is used to perform the A/D conversion and ensure proper speech input level to the DUT.

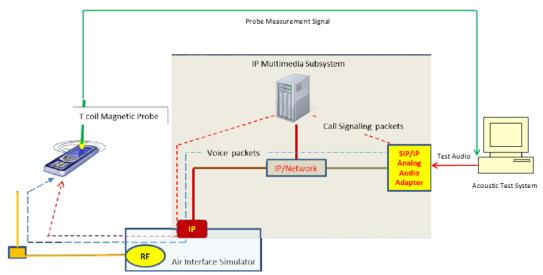


Figure 6-1 **Test Setup for VoNR over IMS T-Coil Measurements**

2. Audio Level Settings

According to FCC guidance and manufacturer attestation, -16dBm0 was used for the normal speech input level. The acoustic test system was manually configured to ensure that the settings for speech input and full scale levels resulted in the -16dBm0 speech input level to the DUT for the VoNR over IMS connection.

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 23 of 119

DUT Configuration for VoNR over IMS T-coil Testing II.

1. Radio Configuration

An investigation was performed to determine the waveform, modulation, and RB configuration to be used for testing. The effects of waveform, modulation, and RB configuration were found to be independent of band and bandwidth; therefore, only one band and bandwidth were used for this investigation. CP-OFDM, QPSK, 1RB, 99%RB offset was used for the testing as the worst-case configuration for the handset. See below table for SNNR comparison between different radio configurations:

> Table 6-1 **VoNR over IMS SNNR by Radio Configuration (CP-OFDM)**

	Volation of the State of the St									
Band	Frequency [MHz]	Channel	Bandwidth [MHz]	Waveform	Modulation	RB Size	RB Offset	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
n5	836.5	167300	20	CP-OFDM	QPSK	1	1	7.72	-41.70	49.42
n5	836.5	167300	20	CP-OFDM	QPSK	1	53	7.73	-40.73	48.46
n5	836.5	167300	20	CP-OFDM	QPSK	1	104	7.59	-40.44	48.03
n5	836.5	167300	20	CP-OFDM	QPSK	53	0	7.70	-49.93	57.63
n5	836.5	167300	20	CP-OFDM	QPSK	53	26	7.67	-49.74	57.41
n5	836.5	167300	20	CP-OFDM	QPSK	53	53	7.58	-49.01	56.59
n5	836.5	167300	20	CP-OFDM	QPSK	106	0	7.64	-49.00	56.64
n5	836.5	167300	20	CP-OFDM	16QAM	1	1	7.65	-48.57	56.22
n5	836.5	167300	20	CP-OFDM	16QAM	1	53	7.48	-47.90	55.38
n5	836.5	167300	20	CP-OFDM	16QAM	1	104	7.50	-47.69	55.19
n5	836.5	167300	20	CP-OFDM	16QAM	53	0	7.59	-50.18	57.77
n5	836.5	167300	20	CP-OFDM	16QAM	53	26	7.58	-50.00	57.58
n5	836.5	167300	20	CP-OFDM	16QAM	53	53	7.65	-49.76	57.41
n5	836.5	167300	20	CP-OFDM	16QAM	106	0	7.59	-49.75	57.34
n5	836.5	167300	20	CP-OFDM	64QAM	1	1	7.65	-43.43	51.08
n5	836.5	167300	20	CP-OFDM	64QAM	1	53	7.64	-48.58	56.22
n5	836.5	167300	20	CP-OFDM	64QAM	1	104	7.53	-48.66	56.19
n5	836.5	167300	20	CP-OFDM	64QAM	53	0	7.43	-50.65	58.08
n5	836.5	167300	20	CP-OFDM	64QAM	53	26	7.48	-50.67	58.15
n5	836.5	167300	20	CP-OFDM	64QAM	53	53	7.45	-50.30	57.75
n5	836.5	167300	20	CP-OFDM	64QAM	106	0	7.43	-50.68	58.11
n5	836.5	167300	20	CP-OFDM	256QAM	1	1	7.39	-50.22	57.61
n5	836.5	167300	20	CP-OFDM	256QAM	1	53	7.35	-50.23	57.58
n5	836.5	167300	20	CP-OFDM	256QAM	1	104	7.62	-49.96	57.58
n5	836.5	167300	20	CP-OFDM	256QAM	53	0	7.54	-50.66	58.20
n5	836.5	167300	20	CP-OFDM	256QAM	53	26	7.51	-50.72	58.23
n5	836.5	167300	20	CP-OFDM	256QAM	53	53	7.48	-50.66	58.14
n5	836.5	167300	20	CP-OFDM	256QAM	106	0	7.55	-50.17	57.72

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 24 of 119
1M2209010097-23.A3L	10/3/2022 - 11/8/2022	Portable Handset	

Table 6-2 **VoNR over IMS SNNR by Radio Configuration (DFT-s-OFDM)**

	VONK OVER IMS SINING BY RAUIO COINIGUIALION (DF1-5-OFDM)									
Band	Frequency [MHz]	Channel	Bandwidth [MHz]	Waveform	Modulation	RB Size	RB Offset	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
n5	836.5	167300	20	DFT-s-OFDM	π/2-BPSK	1	1	7.51	-46.99	54.50
n5	836.5	167300	20	DFT-s-OFDM	π/2-BPSK	1	53	7.84	-48.82	56.66
n5	836.5	167300	20	DFT-s-OFDM	π/2-BPSK	1	104	7.77	-47.91	55.68
n5	836.5	167300	20	DFT-s-OFDM	π/2-BPSK	50	0	7.50	-50.64	58.14
n5	836.5	167300	20	DFT-s-OFDM	π/2-BPSK	50	28	7.57	-50.60	58.17
n5	836.5	167300	20	DFT-s-OFDM	π/2-BPSK	50	53	7.55	-51.00	58.55
n5	836.5	167300	20	DFT-s-OFDM	π/2-BPSK	100	0	7.38	-50.37	57.75
n5	836.5	167300	20	DFT-s-OFDM	QPSK	1	1	7.51	-48.89	56.40
n5	836.5	167300	20	DFT-s-OFDM	QPSK	1	53	7.46	-48.67	56.13
n5	836.5	167300	20	DFT-s-OFDM	QPSK	1	104	7.48	-46.21	53.69
n5	836.5	167300	20	DFT-s-OFDM	QPSK	50	0	7.43	-49.43	56.86
n5	836.5	167300	20	DFT-s-OFDM	QPSK	50	28	7.42	-50.75	58.17
n5	836.5	167300	20	DFT-s-OFDM	QPSK	50	53	7.39	-50.89	58.28
n5	836.5	167300	20	DFT-s-OFDM	QPSK	100	0	7.49	-50.80	58.29
n5	836.5	167300	20	DFT-s-OFDM	16QAM	1	1	7.53	-48.45	55.98
n5	836.5	167300	20	DFT-s-OFDM	16QAM	1	53	7.37	-47.96	55.33
n5	836.5	167300	20	DFT-s-OFDM	16QAM	1	104	7.47	-48.09	55.56
n5	836.5	167300	20	DFT-s-OFDM	16QAM	50	0	7.49	-49.40	56.89
n5	836.5	167300	20	DFT-s-OFDM	16QAM	50	28	7.40	-49.81	57.21
n5	836.5	167300	20	DFT-s-OFDM	16QAM	50	53	7.39	-50.33	57.72
n5	836.5	167300	20	DFT-s-OFDM	16QAM	100	0	7.42	-50.01	57.43
n5	836.5	167300	20	DFT-s-OFDM	64QAM	1	1	7.35	-48.68	56.03
n5	836.5	167300	20	DFT-s-OFDM	64QAM	1	53	7.40	-48.92	56.32
n5	836.5	167300	20	DFT-s-OFDM	64QAM	1	104	7.41	-49.23	56.64
n5	836.5	167300	20	DFT-s-OFDM	64QAM	50	0	7.38	-50.00	57.38
n5	836.5	167300	20	DFT-s-OFDM	64QAM	50	28	7.44	-49.46	56.90
n5	836.5	167300	20	DFT-s-OFDM	64QAM	50	53	7.37	-49.79	57.16
n5	836.5	167300	20	DFT-s-OFDM	64QAM	100	0	7.38	-49.71	57.09
n5	836.5	167300	20	DFT-s-OFDM	256QAM	1	1	7.37	-48.50	55.87
n5	836.5	167300	20	DFT-s-OFDM	256QAM	1	53	7.36	-48.82	56.18
n5	836.5	167300	20	DFT-s-OFDM	256QAM	1	104	7.49	-49.13	56.62
n5	836.5	167300	20	DFT-s-OFDM	256QAM	50	0	7.46	-50.45	57.91
n5	836.5	167300	20	DFT-s-OFDM	256QAM	50	28	7.47	-50.42	57.89
n5	836.5	167300	20	DFT-s-OFDM	256QAM	50	53	7.40	-50.03	57.43
n5	836.5	167300	20	DFT-s-OFDM	256QAM	100	0	7.25	-50.30	57.55

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 25 of 119
'			REV 4.2.M

2. Codec Configuration

An investigation was performed to determine the audio codec configuration to be used for testing. The effects of codec configuration were found to be independent of radio configuration; therefore, only one radio configuration was used for this investigation. The WB AMR 6.60kbps setting was used for the audio codec on the CMX500/CMW500 for VoNR over IMS T-coil testing. See below table for comparisons between different codecs and codec data rates:

Table 6-3
AMR Codec Investigation – VoNR over IMS

Codec Setting:	WB AMR 23.85kbps	WB AMR 6.60kbps	NB AMR 12.2kbps	NB AMR 4.75kbps	Orientation	Band / BW	Channel		
ABM1 (dBA/m)	8.52	7.55	9.69	9.27		NR n66 40MHz	349000		
ABM2 (dBA/m)	-36.60	-36.61	-37.04	-36.84	ا ما ا				
Frequency Response	Pass	Pass	Pass	Pass	- Axial				
S+N/N (dB)	45.12	44.16	46.73	46.11					

Table 6-4
EVS Codec Investigation - VoNR over IMS

Codec Setting:	EVS Primary SWB 128kbps	EVS Primary SWB 9.6kbps	EVS Primary WB 128kbps	EVS Primary WB 5.9kbps	EVS Primary NB 24.4kbps	EVS Primary NB 5.9kbps	Orientation	Band / BW	Channel
ABM1 (dBA/m)	10.29	10.21	8.84	8.65	9.31	10.22		NR n66 40MHz	349000
ABM2 (dBA/m)	-37.03	-36.65	-36.38	-36.77	-36.53	-36.53	Axial		
Frequency Response	Pass	Pass	Pass	Pass	Pass	Pass			
S+N/N (dB)	47.32	46.86	45.22	45.42	45.84	46.75			

- Mute on; Backlight off; Max Volume; Max Contrast
- TPC = "Max Power"

Figure 6-2
Audio Band Magnetic Curve Measurement Block Diagram

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 26 of 119

VOWIFI TEST SYSTEM SETUP AND DUT CONFIGURATION

I. Test System Setup for VoWIFI over IMS T-coil Testing

1. Equipment Setup

The general test setup used for VoWIFI over IMS, or CMRS WIFI Calling, is shown below. The callbox used when performing VoWIFI over IMS T-coil measurements is a CMW500. The Data Application Unit (DAU) of the CMW500 was used to simulate the IP Multimedia Subsystem (IMS) server.

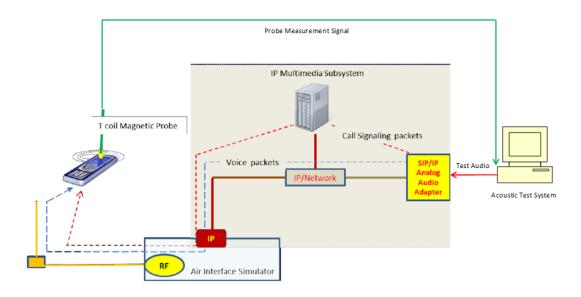


Figure 7-1 Test Setup for VoWIFI over IMS T-Coil Measurements

2. Audio Level Settings

According to KDB 285076 D02 released by the FCC OET regarding the appropriate audio levels to be used for VoWIFI over IMS T-Coil testing, -20dBm0 shall be used for the normal speech input level². The CMW500 base station simulator was manually configured to ensure that the settings for speech input and full scale levels resulted in the -20dBm0 speech input level to the DUT for the VoWIFI over IMS connection.

² FCC Office of Engineering and Technology KDB, "285076 D02 T-Coil Testing for CMRS IP v04," February 23, 2022

1 00 Office of Engineer	ing and recimology RDB, A	EGGGTG BGE T Gell Testing for Giving in Vo+, T	obludiy 20, 2022
FCC ID: A3LSMS916U element		HAC (T-COIL) TEST REPORT	Approved by:
		,	Managing Director
Filename:	Test Dates:	DUT Type:	Page 27 of 119
1M2209010097-23.A3L	10/3/2022 - 11/8/2022	Portable Handset	Fage 21 01 119

II. DUT Configuration for VoWIFI over IMS T-coil Testing

1. Radio Configuration

An investigation was performed on all applicable data rates and modulations to determine the radio configuration to be used for testing. See tables below for SNNR comparison between radio configurations in each IEEE 802.11 standard:

Table 7-1
IEEE 802.11b SNNR by Radio Configuration

Mode	Channel	Modulation	Data Rate [Mbps]	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
IEEE 802.11b	6	DSSS	1	3.34	-39.23	42.57
IEEE 802.11b	6	DSSS	2	3.05	-39.28	42.33
IEEE 802.11b	6	CCK	5.5	3.31	-39.70	43.01
IEEE 802.11b	6	CCK	11	3.22	-39.78	43.00

Table 7-2 IEEE 802.11g/a SNNR by Radio Configuration

			<u> </u>			
Mode	Channel	Modulation	Data Rate	ABM1	ABM2	SNNR
			[Mbps]	[dB(A/m)]	[dB(A/m)]	[dB]
IEEE 802.11g	6	BPSK	6	3.08	-40.19	43.27
IEEE 802.11g	6	BPSK	9	3.01	-40.98	43.99
IEEE 802.11g	6	QPSK	12	3.27	-40.01	43.28
IEEE 802.11g	6	QPSK	18	3.13	-40.98	44.11
IEEE 802.11g	6	16QAM	24	3.06	-41.19	44.25
IEEE 802.11g	6	16QAM	36	3.42	-41.65	45.07
IEEE 802.11g	6	64QAM	48	3.49	-41.39	44.88
IEEE 802.11g	6	64QAM	54	3.41	-42.36	45.77

Table 7-3 IEEE 802.11n/ac 20MHz BW SNNR by Radio Configuration

Mode	Bandwidth [MHz]	Channel	Modulation	MCS Index	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
IEEE 802.11n	20	40	BPSK	0	3.09	-39.62	42.71
IEEE 802.11n	20	40	QPSK	1	3.08	-39.38	42.46
IEEE 802.11n	20	40	QPSK	2	3.45	-40.24	43.69
IEEE 802.11n	20	40	16QAM	3	3.18	-39.52	42.70
IEEE 802.11n	20	40	16QAM	4	3.07	-39.48	42.55
IEEE 802.11n	20	40	64QAM	5	3.00	-39.54	42.54
IEEE 802.11n	20	40	64QAM	6	3.00	-39.53	42.53
IEEE 802.11n	20	40	64QAM	7	3.34	-39.15	42.49
IEEE 802.11ac	20	40	256QAM	8	3.36	-40.27	43.63

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 28 of 119

Table 7-4
IEEE 802.11ax SU 20MHz BW SNNR by Radio Configuration

IEEE 802.118X 30 20MHZ BW SNINK by Radio Configuration									
Mode	Bandwidth [MHz]	Channel	Modulation	MCS Index	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]		
IEEE 802.11ax SU	20	40	BPSK	0	3.17	-39.02	42.19		
IEEE 802.11ax SU	20	40	QPSK	1	3.08	-38.90	41.98		
IEEE 802.11ax SU	20	40	QPSK	2	3.03	-38.98	42.01		
IEEE 802.11ax SU	20	40	16QAM	3	2.99	-39.23	42.22		
IEEE 802.11ax SU	20	40	16QAM	4	3.29	-39.67	42.96		
IEEE 802.11ax SU	20	40	64QAM	5	3.00	-39.64	42.64		
IEEE 802.11ax SU	20	40	64QAM	6	3.05	-40.40	43.45		
IEEE 802.11ax SU	20	40	64QAM	7	3.10	-40.27	43.37		
IEEE 802.11ax SU	20	40	256QAM	8	3.22	-39.53	42.75		
IEEE 802.11ax SU	20	40	256QAM	9	3.35	-40.56	43.91		
IEEE 802.11ax SU	20	40	1024QAM	10	3.00	-39.58	42.58		
IEEE 802.11ax SU	20	40	1024QAM	11	3.35	-41.06	44.41		

Table 7-5
IEEE 802.11ax RU 20MHz BW SNNR by Radio Configuration

in the second se									
Mode	Bandwidth [MHz]	Channel	Modulation	MCS Index	RU Index	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]	
IEEE 802.11ax RU	20	40	QPSK	1	0	3.00	-40.30	43.30	
IEEE 802.11ax RU	20	40	QPSK	1	8	2.99	-40.96	43.95	
IEEE 802.11ax RU	20	40	QPSK	1	37	3.42	-40.12	43.54	
IEEE 802.11ax RU	20	40	QPSK	1	40	3.23	-40.11	43.34	
IEEE 802.11ax RU	20	40	QPSK	1	53	3.62	-40.90	44.52	
IEEE 802.11ax RU	20	40	QPSK	1	54	3.66	-40.93	44.59	
IEEE 802.11ax RU	20	40	QPSK	1	61	3.03	-40.71	43.74	

Table 7-6
IEEE 802.11n/ac 40MHz BW SNNR by Radio Configuration

TELE 002:111//ac 40MHz BW SMARK By Radio Configuration									
Mode	Bandwidth [MHz]	Channel	Modulation	MCS Index	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]		
IEEE 802.11n	40	38	BPSK	0	3.43	-40.27	43.70		
IEEE 802.11n	40	38	QPSK	1	3.42	-39.22	42.64		
IEEE 802.11n	40	38	QPSK	2	3.10	-39.02	42.12		
IEEE 802.11n	40	38	16QAM	3	2.98	-40.18	43.16		
IEEE 802.11n	40	38	16QAM	4	3.39	-40.30	43.69		
IEEE 802.11n	40	38	64QAM	5	2.98	-40.70	43.68		
IEEE 802.11n	40	38	64QAM	6	3.21	-39.90	43.11		
IEEE 802.11n	40	38	64QAM	7	3.40	-40.46	43.86		
IEEE 802.11ac	40	38	256QAM	8	3.65	-41.05	44.70		
IEEE 802.11ac	40	38	256QAM	9	3.13	-40.93	44.06		

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 29 of 119

Table 7-7 IEEE 802.11ax SU 40MHz BW SNNR by Radio Configuration

1222 00211 tax 00 40mile BW Office by Radio Configuration									
Mode	Bandwidth [MHz]	Channel	Modulation	MCS Index	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]		
IEEE 802.11ax SU	40	38	BPSK	0	3.02	-39.28	42.30		
IEEE 802.11ax SU	40	38	QPSK	1	2.90	-40.36	43.26		
IEEE 802.11ax SU	40	38	QPSK	2	2.96	-39.43	42.39		
IEEE 802.11ax SU	40	38	16QAM	3	3.21	-40.68	43.89		
IEEE 802.11ax SU	40	38	16QAM	4	3.17	-41.18	44.35		
IEEE 802.11ax SU	40	38	64QAM	5	3.07	-40.97	44.04		
IEEE 802.11ax SU	40	38	64QAM	6	3.28	-39.03	42.31		
IEEE 802.11ax SU	40	38	64QAM	7	3.07	-39.82	42.89		
IEEE 802.11ax SU	40	38	256QAM	8	3.43	-39.48	42.91		
IEEE 802.11ax SU	40	38	256QAM	9	2.95	-41.73	44.68		
IEEE 802.11ax SU	40	38	1024QAM	10	2.96	-40.28	43.24		
IEEE 802.11ax SU	40	38	1024QAM	11	2.81	-40.75	43.56		

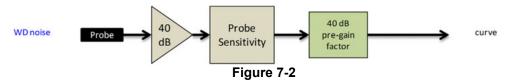
Table 7-8 IEEE 802.11ax RU 40MHz BW SNNR by Radio Configuration

izzz odziriak ito foliliz bit olilit by itaalo ooliligalation									
Mode	Bandwidth [MHz]	Channel	Modulation	MCS Index	RU Index	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]	
IEEE 802.11ax RU	40	38	BPSK	0	0	3.44	-39.59	43.03	
IEEE 802.11ax RU	40	38	BPSK	0	17	3.49	-39.79	43.28	
IEEE 802.11ax RU	40	38	BPSK	0	37	2.91	-39.65	42.56	
IEEE 802.11ax RU	40	38	BPSK	0	44	3.12	-38.43	41.55	
IEEE 802.11ax RU	40	38	BPSK	0	53	2.90	-39.92	42.82	
IEEE 802.11ax RU	40	38	BPSK	0	56	3.49	-39.83	43.32	
IEEE 802.11ax RU	40	38	BPSK	0	61	2.89	-39.41	42.30	
IEEE 802.11ax RU	40	38	BPSK	0	62	2.84	-40.03	42.87	
IEEE 802.11ax RU	40	38	BPSK	0	65	3.41	-39.87	43.28	

2. Codec Configuration

An investigation was performed to determine the audio codec configuration to be used for testing. The effects of codec configuration were found to be independent of radio configuration; therefore, only one radio configuration was used for this investigation. The WB AMR 6.60kbps setting was used for the audio codec on the CMW500 for VoWIFI over IMS T-coil testing. See below table for comparisons between different codecs and codec data rates:

Table 7-9 **AMR Codec Investigation – VoWIFI over IMS**


Codec Setting:	WB AMR 23.85kbps	WB AMR 6.60kbps	NB AMR 12.2kbps	NB AMR 4.75kbps	Orientation	Band	Standard	Channel
ABM1 (dBA/m)	4.55	3.49	5.96	5.55			IEEE 802.11b	6
ABM2 (dBA/m)	-39.57	-39.82	-38.47	-39.25	Axial	2.4GHz		
Frequency Response	Pass	Pass	Pass	Pass	Axiai	2.4002	IEEE 802.11D	
S+N/N (dB)	44.12	43.31	44.43	44.80				

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 30 of 119

Table 7-10 EVS Codec Investigation – VoWIFI over IMS

L vo obaco in vostigation vovin i over imo										
Codec Setting:	EVS Primary SWB 128kbps	EVS Primary SWB 9.6kbps	EVS Primary WB 128kbps	EVS Primary WB 5.9kbps	EVS Primary NB 24.4kbps	EVS Primary NB 5.9kbps	Orientation	Band	Standard	Channel
ABM1 (dBA/m)	6.90	6.23	4.91	4.56	5.55	5.67		2.4GHz IEEE 802.11b		
ABM2 (dBA/m)	-39.82	-39.65	-39.68	-39.97	-39.95	-39.38	Axial		JEEE 000 441	
Frequency Response	Pass	Pass	Pass	Pass	Pass	Pass	Axiai	2.4002	IEEE 802.11D	6
S+N/N (dB)	46.72	45.88	44.59	44.53	45.50	45.05				

Mute on; Backlight off; Max Volume; Max Contrast

Audio Band Magnetic Curve Measurement Block Diagram

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 31 of 119

8. OTT VOIP TEST SYSTEM AND DUT CONFIGURATION

I. Test System Setup for OTT VoIP T-Coil Testing

1. OTT VoIP Application

Google Meet is a pre-installed application on the DUT which allows for VoIP calls in a held-to-ear scenario. Meet uses the OPUS audio codec and supports a bitrate range of 6kb/s to 75kb/s. All air interfaces capable of a data connection were evaluated with Google Meet.

2. Equipment Setup

A CMW500 callbox was used to perform OTT VoIP T-coil measurements. The Data Application Unit (DAU) of the CMW500 was connected to the internet and allowed for an IP data connection on the DUT. An auxiliary VoIP unit was used to initiate an OTT VoIP call to the DUT. The auxiliary VoIP unit allowed for the configuration and monitoring of the OTT VoIP codec bitrate during a call. Both high and low bitrate settings were evaluated in to determine the worst-case configuration.

3. Audio Level Settings

According to KDB 285076 D02, the average speech level of -20dBm0 shall be used for protocols not specifically listed in Table 7.1 of ANSI C63.19-2011 or the ANSI C63.19-2011 VoLTE interpretation³. The auxiliary VoIP unit allowed for monitoring the signal input level to ensure that the settings for speech input and full scale levels resulted in the -20dBm0 speech input level to the DUT for the OTT VoIP call.

II. DUT Configuration for OTT VoIP T-Coil Testing

1. Codec Configuration

An investigation was performed for each applicable data mode to determine the audio codec configuration to be used for testing. The effects of codec configuration were found to be independent of radio configuration; therefore, only one radio configuration for each applicable data mode was used for these investigations. The 6kbps codec setting was used for the audio codec on the auxiliary VoIP unit for OTT VoIP T-Coil testing. See below tables for comparisons between codec data rates on all applicable data modes:

³ FCC Office of Engineering and Technology KDB, "285076 D02 T-Coil Testing for CMRS IP v04," February 23, 2022

1 00 0 moo or Enginoor	ing and recimelegy RDB, I	todoro Boz r com recarrigion civilità il voli, r estadily zo	
FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by:
TOO ID. ACCOMICS TOO	9 0101110111	(1 00.12) 1.201 1121 0111	Managing Director
Filename:	Test Dates:	DUT Type:	Page 32 of 119
1M2209010097-23.A3L	10/3/2022 - 11/8/2022	Portable Handset	raye 32 01 119

Table 8-1 Codec Investigation - OTT VoIP (EDGE)

Codec Setting:	75kbps	6kbps	Orientation	Channel	
ABM1 (dBA/m)	8.08	7.70			
ABM2 (dBA/m)	-29.90	-29.28	Axial	661	
Frequency Response	Pass	Pass	Axiai		
S+N/N (dB)	37.98	36.98			

Table 8-2 Codec Investigation – OTT VoIP (HSPA)

Codec investigation – OTT von (NOTA)												
Codec Setting:	75kbps	6kbps	Orientation	Channel								
ABM1 (dBA/m)	8.13	8.00										
ABM2 (dBA/m)	-42.45	-42.31	Axial	9400								
Frequency Response	Pass	Pass	Axiai	9400								
S+N/N (dB)	50.58	50.31										

Table 8-3 Codec Investigation – OTT VoIP (LTE)

Codec Setting:	75kbps	6kbps	Orientation	Band / BW	Channel			
ABM1 (dBA/m)	7.99	7.79						
ABM2 (dBA/m)	-36.27	-36.15	Axial	LTE Band 66	12222			
Frequency Response	Pass	Pass	Axiai	20MHz	132322			
S+N/N (dB)	44.26	43.94						

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 33 of 119

Table 8-4 Codec Investigation - OTT VolP (NR)

Codec Setting:	75kbps	6kbps	Orientation	Band / BW	Channel			
ABM1 (dBA/m)	8.11	8.08						
ABM2 (dBA/m)	-35.84	-35.44	Axial	NR n66	349000			
Frequency Response	Pass	Pass	Axiai	40MHz	349000			
S+N/N (dB)	43.95	43.52						

Table 8-5 Codec Investigation - OTT VoIP (WIFI)

		oo mroongat	 	, ,		
Codec Setting:	75kbps	6kbps	Orientation	Band	Standard	Channel
ABM1 (dBA/m)	8.39	7.95				
ABM2 (dBA/m)	-38.78	-38.74	Axial		IEEE 802.11b	6
Frequency Response	Pass	Pass	, vecai	2.4GHz		0
S+N/N (dB)	47.17	46.69				

- Mute on; Backlight off; Max Volume; Max Contrast Radio Configurations can be found in Section 10.II.I

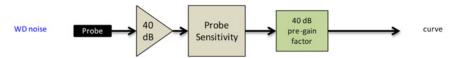


Figure 8-1
Audio Band Magnetic Curve Measurement Block Diagram

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 34 of 119

2. Radio Configuration for OTT VoIP (LTE)

An investigation was performed to determine the worst-case LTE FDD band to be used for OTT VoIP testing. LTE FDD Band 66 - ANT F was used for the testing as the worst-case configuration for the handset. See below table for SNNR comparison between different LTE FDD bands:

> Table 8-6 OTT VoIP (LTE FDD) SNNR by LTE Band

	OTT VOIL (ETET DD) ONNIK DY ETE BAILO											
Band	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]			
71	680.5	133297	20	16QAM	1	50	7.93	-40.63	48.56			
12	707.5	23095	10	16QAM	1	25	8.12	-40.02	48.14			
13	782.0	23230	10	16QAM	1	25	8.37	-40.05	48.42			
14	793.0	23330	10	16QAM	1	25	7.98	-39.89	47.87			
26	831.5	26865	15	16QAM	1	36	8.28	-40.98	49.26			
5	836.5	20525	10	16QAM	1	25	7.89	-40.34	48.23			
4 - ANT A	1732.5	20175	20	16QAM	1	50	7.89	-36.87	44.76			
4 - ANT F	1732.5	20175	20	16QAM	1	50	8.11	-31.52	39.63			
66 - ANT A	1745.0	132322	20	16QAM	1	50	7.88	-36.01	43.89			
66 - ANT F	1745.0	132322	20	16QAM	1	50	8.25	-30.15	38.40			
2 - ANT A	1880.0	18900	20	16QAM	1	50	7.86	-37.33	45.19			
2 - ANT F	1880.0	18900	20	16QAM	1	50	8.08	-31.63	39.71			
25 - ANT A	1882.5	26365	20	16QAM	1	50	7.90	-37.03	44.93			
25 - ANT F	1882.5	26365	20	16QAM	1	50	8.06	-32.00	40.06			
30 - ANT A	2310.0	27710	10	16QAM	1	25	7.92	-37.46	45.38			
30 - ANT F	2310.0	27710	10	16QAM	1	25	8.07	-32.24	40.31			
7 - ANT B	2535.0	21100	20	16QAM	1	50	7.94	-37.40	45.34			
7 - ANT F	2535.0	21100	20	16QAM	1	50	8.18	-31.09	39.27			

An investigation was performed to determine the worst-case LTE TDD band to be used for OTT VoIP testing. LTE TDD Band 41 (PC2) - ANT F was used for the testing as the worst-case configuration for the handset. See below table for SNNR comparison between different LTE TDD bands:

> Table 8-7 OTT VoIP (LTE TDD) SNNR by LTE Band

Band	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
41 (PC3) - ANT B	2593.0	40620	20	16QAM	1	50	8.05	-30.41	38.46
41 (PC3) - ANT F	2593.0	40620	20	16QAM	1	50	7.88	-23.89	31.77
41 (PC2) - ANT B	2593.0	40620	20	16QAM	1	50	7.67	-29.09	36.76
41 (PC2) - ANT F	2593.0	40620	20	16QAM	1	50	7.96	-22.55	30.51
48	3625.0	55990	20	16QAM	1	50	7.77	-24.27	32.04

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by:
1 66 IB. ASESINOS 100	Cicincin	TIAG (T-GGIE) TEST KET GKT	Managing Director
Filename:	Test Dates:	DUT Type:	Page 35 of 119
1M2209010097-23.A3L	10/3/2022 - 11/8/2022	Portable Handset	rage 30 01 119

3. LTE FDD Uplink Carrier Aggregation for OTT VoIP

LTE FDD ULCA was evaluated to ensure LTE FDD standalone was the worst-case scenario. The configurations in Table 8-8 were determined from Table 8-6 and satisfy the configuration requirements as defined in 3GPP 36.101.

> Table 8-8 LTE FDD SNNR for OTT VolP Uplink Carrier Aggregation

			_	. – . –			. •		- P			.55.0	g~	•			
				PCC							SCC						
Combination	PCC Band	PCC Bandwidth [MHz]	PCC (UL) Channel	PCC (UL) Frequency [MHz]	Modulation	PCC UL# RB	PCC UL RB Offset	SCC Band	SCC Bandwidth [MHz]	SCC (UL) Channel	SCC (UL) Frequency [MHz]	Modulation	SCC UL# RB	SCC UL RB Offset	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
CA_5B	LTE B5	10	20525	836.5	16QAM	1	0	LTE B5	5	20453	829.3	16QAM	1	24	8.08	-40.31	48.39
CA_66B	LTE B66	10	132322	1745.0	16QAM	1	0	LTE B66	10	132223	1735.1	16QAM	1	49	7.90	-36.02	43.92
CA_66C	LTE B66	20	132322	1745.0	16QAM	1	0	LTE B66	20	132124	1725.5	16QAM	1	99	8.25	-35.99	44.24

4. LTE TDD Uplink Carrier Aggregation for OTT VolP

LTE TDD ULCA was evaluated to ensure LTE TDD standalone was the worst-case scenario. The configurations in Table 8-9 were determined from Table 8-7 and satisfy the configuration requirements as defined in 3GPP 36.101.

> Table 8-9 LTE TDD SNNR for OTT VoIP Uplink Carrier Aggregation

				PCC					SCC								
Combination	PCC Band	PCC Bandwidth [MHz]	PCC (UL/DL) Channel	PCC (UL/DL) Frequency [MHz]	Modulation	PCC UL# RB	PCC UL RB Offset	SCC Band	SCC Bandwidth [MHz]	SCC (UL/DL) Channel	SCC (UL/DL) Frequency [MHz]	Modulation	SCC UL# RB	SCC UL RB Offset	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
CA_41C (PC3)	LTE B41	20	40620	2593.0	16QAM	1	0	LTE B41	20	40422	2573.2	16QAM	1	99	8.33	-31.02	39.35
CA_41C (PC2)	LTE B41	20	40620	2593.0	16QAM	1	0	LTE B41	20	40422	2573.2	16QAM	1	99	8.42	-30.60	39.02
CA_48C	LTE B48	20	55990	3625.0	16QAM	1	0	LTE B48	20	55792	3605.2	16QAM	1	99	8.32	-24.12	32.44

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 36 of 119
1M2209010097-23.A3L	10/3/2022 - 11/8/2022	Portable Handset	

5. Radio Configuration for OTT VoIP (NR)

An investigation was performed to determine the worst-case NR FDD band to be used for OTT VoIP testing. NR FDD Band n66 - ANT A was used for the testing as the worst-case configuration for the handset. See below table for SNNR comparison between different NR FDD bands:

> **Table 8-10** OTT VoIP (NR FDD) SNNR by NR Band

Band	F	Chamal	Bandwidth	W	Ma dulation	DD C:	DD 0#***	ABM1 _{LTE}	ABM2 _{NR}	SNNR _{NR}
Вапо	Frequency [MHz]	Channel	[MHz]	Waveform	Modulation	RB Size	RB Offset	[dB(A/m)]	[dB(A/m)]	[dB]
n71	680.5	136100	20	CP-OFDM	QPSK	1	104	8.04	-39.71	47.75
n12	707.5	141500	15	CP-OFDM	QPSK	1	77	8.21	-42.53	50.74
n5	836.5	167300	20	CP-OFDM	QPSK	1	104	8.03	-41.24	49.27
n26	831.5	166300	20	CP-OFDM	QPSK	1	104	7.75	-40.74	48.49
n66 - ANT A	1745.0	349000	40	CP-OFDM	QPSK	1	214	7.71	-35.82	43.53
n66 - ANT F	1745.0	349000	40	CP-OFDM	QPSK	1	214	8.10	-37.96	46.06
n2 - ANT A	1880.0	376000	20	CP-OFDM	QPSK	1	214	8.26	-40.50	48.76
n2 - ANT F	1880.0	376000	20	CP-OFDM	QPSK	1	214	7.73	-36.17	43.90
n25 - ANT A	1882.5	376500	40	CP-OFDM	QPSK	1	214	8.06	-39.22	47.28
n25 - ANT F	1882.5	376500	40	CP-OFDM	QPSK	1	214	7.59	-36.46	44.05
n30 - ANT A	2310.0	462000	10	CP-OFDM	QPSK	1	50	7.86	-37.83	45.69
n30 - ANT F	2310.0	462000	10	CP-OFDM	QPSK	1	50	7.53	-40.36	47.89
n7 - ANT B	2535.0	507000	40	CP-OFDM	QPSK	1	214	8.01	-39.09	47.10
n7 - ANT F	2535.0	507000	40	CP-OFDM	QPSK	1	214	7.65	-40.64	48.29

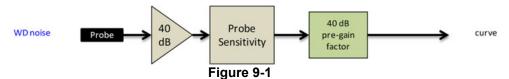
An investigation was performed to determine the worst-case NR TDD band to be used for OTT VoIP testing. NR TDD Band n77, DoD (PC2) was used for the testing was the worst-case configuration for the handset. See below table for SNNR comparison between different NR TDD bands:

> **Table 8-11** OTT VoIP (NR TDD) SNNR by NR Band

Band	Frequency [MHz]	Channel	Bandwidth [MHz]	Waveform	Modulation	RB Size	RB Offset	ABM1 _{LTE} [dB(A/m)]	ABM2 _{NR} [dB(A/m)]	SNNR _{NR} [dB]
n41 (PC2) (ANT F)	2592.99	518598	100	CP-OFDM	QPSK	1	271	7.71	-29.99	37.70
n41 (PC2) (ANT B)	2592.99	519000	100	CP-OFDM	QPSK	1	271	7.80	-31.06	38.86
n48	3624.99	641666	40	CP-OFDM	QPSK	1	104	7.70	-37.53	45.23
n77, DoD (PC2)	3500.01	633334	100	CP-OFDM	QPSK	1	271	7.79	-29.75	37.54
n77 (PC2)	3840.00	656000	100	CP-OFDM	QPSK	1	271	7.84	-32.66	40.50

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 37 of 119
1M2209010097-23.A3L	10/3/2022 - 11/8/2022	Portable Handset	

FCC 3G MEASUREMENTS 9.


UMTS Test Configurations I.

WB AMR 6.60kbps, 13.6kbps SRB was used for the testing as the worst-case configuration for the handset.

> Table 9-1 **Codec Investigation - UMTS**

Codec Setting:	WB AMR 23.85kbps	WB AMR 6.60kbps	NB AMR 12.2kbps	NB AMR 4.75kbps	Orientation	Channel
ABM1 (dBA/m)	8.63	7.33	9.77	9.68		
ABM2 (dBA/m)	-51.22	-51.71	-51.54	-51.85	Axial	9400
Frequency Response	Pass	Pass	Pass	Pass	Axiai	9400
S+N/N (dB)	59.85	59.04	61.31	61.53		

- Mute on; Backlight off; Max Volume; Max Contrast
- TPC="All 1s"

Audio Band Magnetic Curve Measurement Block Diagram

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 38 of 119
1M2209010097-23.A3L	10/3/2022 - 11/8/2022	Portable Handset	

Table 10-1 Consolidated Tabled Results

		51150	maa	ica i	ubic	d Results		<u> </u>		
			esponse rgin		netic / Verdict		SNNR	Margin from	C63.19-2011	
		8	3.2	8	3.1	8	3.4	FCC Limit (dB)	Rating	
C63.19	9 Section	Axial	Radial	Axial	Radial	Axial	Radial	(ub)		
	Cellular	PASS	NA.	PASS	PASS	PASS	PASS			
GSM	PCS	PASS	NA NA	PASS	PASS	PASS	PASS	-6.38	Т3	
	Cellular	PASS	NA.	PASS	PASS	PASS	PASS			
EDGE (OTT VoIP)	PCS	PASS	NA.	PASS	PASS	PASS	PASS	-5.63	Т3	
	Cellular	PASS	NA	PASS	PASS	PASS	PASS			
UMTS	AWS	PASS	NA.	PASS	PASS	PASS	PASS	-33.14	T4	
	PCS	PASS	NA	PASS	PASS	PASS	PASS			
	Cellular	PASS	NA	PASS	PASS	PASS	PASS			
HSPA	AWS	PASS	NA	PASS	PASS	PASS	PASS	-21.24	T4	
(OTT VoIP)	PCS	PASS	NA	PASS	PASS	PASS	PASS			
	B71	PASS	NA	PASS	PASS	PASS	PASS			
	B12	PASS	NA	PASS	PASS	PASS	PASS			
	B13	PASS	NA	PASS	PASS	PASS	PASS			
	B14	PASS	NA	PASS	PASS	PASS	PASS			
	B26	PASS	NA	PASS	PASS	PASS	PASS			
175 500	B5	PASS	NA	PASS	PASS	PASS	PASS	45.44	т.	
LTE FDD	B4	PASS	NA	PASS	PASS	PASS	PASS	-15.44	T4	
	B66	PASS	NA	PASS	PASS	PASS	PASS			
	B2	PASS	NA	PASS	PASS	PASS	PASS			
	B25	PASS	NA	PASS	PASS	PASS	PASS			
	B30	PASS	NA	PASS	PASS	PASS	PASS			
	B7	PASS	NA	PASS	PASS	PASS	PASS			
LTE FDD (OTT VoIP)	B66	PASS	NA	PASS	PASS	PASS	PASS	-14.91	T4	
	B41 (PC3)	PASS	NA	PASS	PASS	PASS	PASS			
LTE TDD	B41 (PC2)	PASS	NA	PASS	PASS	PASS	PASS	-5.34	Т3	
	B48	PASS	NA	PASS	PASS	PASS	PASS			
LTE TDD (OTT VolP)	B41 (PC2)	PASS	NA	PASS	PASS	PASS	PASS	-5.39	Т3	
	n71	PASS	NA	PASS	PASS	PASS	PASS			
	n12	PASS	NA	PASS	PASS	PASS	PASS			
	n26	PASS	NA	PASS	PASS	PASS	PASS			
	n5	PASS	NA	PASS	PASS	PASS	PASS			
NR FDD	n66	PASS	NA	PASS	PASS	PASS	PASS	-22.24	T4	
	n2	PASS	NA	PASS	PASS	PASS	PASS			
	n25	PASS	NA	PASS	PASS	PASS	PASS			
	n30	PASS	NA	PASS	PASS	PASS	PASS			
	n7	PASS	NA	PASS	PASS	PASS	PASS			
	n41	PASS	NA	PASS	PASS	PASS	PASS			
NR TDD	n48	PASS	NA	PASS	PASS	PASS	PASS	-3.37	Т3	
	n77	PASS	NA	PASS	PASS	PASS	PASS	-0.07		
	n77, DoD	PASS	NA	PASS	PASS	PASS	PASS			
NR FDD (OTT VoIP)	n66	PASS	NA	PASS	PASS	PASS	PASS	-22.38	T4	
NR TDD (OTT VoIP)	n77, DoD	PASS	NA	PASS	PASS	PASS	PASS	-3.77	Т3	
	IEEE 802.11b	PASS	NA	PASS	PASS	PASS	PASS			
	IEEE 802.11g	PASS	NA	PASS	PASS	PASS	PASS			
WLAN	IEEE 802.11n	PASS	NA	PASS	PASS	PASS	PASS	-12.58	T4	
	IEEE 802.11ax SU	PASS	NA	PASS	PASS	PASS	PASS			
	IEEE 802.11ax RU	PASS	NA	PASS	PASS	PASS	PASS			
	IEEE 802.11b	PASS	NA	PASS	PASS	PASS	PASS			
14/1 441	IEEE 802.11g	PASS	NA	PASS	PASS	PASS	PASS			
WLAN (OTT VoIP)	IEEE 802.11n	PASS	NA	PASS	PASS	PASS	PASS	-20.09	T4	
, ,	IEEE 802.11ax SU	PASS	NA	PASS	PASS	PASS	PASS			
	IEEE 802.11ax RU	PASS	NA	PASS	PASS	PASS	PASS			
	IEEE 802.11a	PASS	NA	PASS	PASS	PASS	PASS			
	IEEE 802.11n	PASS	NA	PASS	PASS	PASS	PASS			
U-NII	IEEE 802.11ac	PASS	NA	PASS	PASS	PASS	PASS	-11.44	T4	
	IEEE 802.11ax SU	PASS	NA	PASS	PASS	PASS	PASS			
	IEEE 802.11ax RU	PASS	NA	PASS	PASS	PASS	PASS			
	IEEE 802.11a	PASS	NA	PASS	PASS	PASS	PASS			
U-NII	IEEE 802.11n	PASS	NA	PASS	PASS	PASS	PASS			T4
(OTT VoIP)	IEEE 802.11ac	PASS	NA	PASS	PASS	PASS	PASS	-19.48	T4	
	IEEE 802.11ax SU	PASS	NA	PASS	PASS	PASS	PASS			
	IEEE 802.11ax RU	PASS	NA	PASS	PASS	PASS	PASS			

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by:
FCC ID. ASESMISS 100	Gelefficin	HAC (1-COIL) TEST REPORT	Managing Director
Filename:	Test Dates:	DUT Type:	Dags 20 of 110
1M2209010097-23.A3L	10/3/2022 - 11/8/2022	Portable Handset	Page 39 of 119

I. **Raw Handset Data**

Table 10-2 Raw Data Results for GSM

Mode	Orientation	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		128	2679M	11.20	-26.72		2.00	37.92	20.00	-17.92	T4	
	Axial	190	2679M	11.76	-26.72	-60.50	2.00	38.48	20.00	-18.48	T4	1.4, 1.0
GSM850		251	2679M	11.92	-26.63		2.00	38.55	20.00	-18.55	T4	
GSIVIOSU		128	2679M	3.24	-23.14			26.38	20.00	-6.38	Т3	
Radial	190	2679M	3.36	-23.15	-60.93	N/A	26.51	20.00	-6.51	Т3	1.4, 0.2	
		251	2679M	3.55	-23.08			26.63	20.00	-6.63	Т3	
		512	2679M	11.25	-25.10		2.00	36.35	20.00	-16.35	T4	
	Axial	661	2679M	11.34	-25.25	-60.50	2.00	36.59	20.00	-16.59	T4	1.4, 1.0
GSM1000		810	2679M	11.67	-25.13		2.00	36.80	20.00	-16.80	T4	
GGW11900	Radial Radial	512	2679M	3.09	-28.99		·	32.08	20.00	-12.08	T4	
		661	2679M	3.18	-28.97	-60.93	N/A	32.15	20.00	-12.15	T4	1.4, 0.2
		810	2679M	3.15	-28.89			32.04	20.00	-12.04	T4	

Table 10-3 Raw Data Results for UMTS

Mode	Orientation	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		4132	2679M	7.03	-50.35		1.80	57.38	20.00	-37.38	T4	
	Axial	4183	2679M	7.39	-50.83	-60.50	1.75	58.22	20.00	-38.22	T4	1.4, 1.0
UMTS V		4233	2679M	7.08	-50.12		1.83	57.20	20.00	-37.20	T4	
OWITS		4132	2679M	0.38	-53.05			53.43	20.00	-33.43	T4	
	Radial	4183	2679M	0.50	-53.48	-60.93	N/A	53.98	20.00	-33.98	T4	1.4, 0.2
		4233	2679M	0.42	-53.81			54.23	20.00	-34.23	T4	
	Axial	1312	2679M	7.40	-49.84	-60.50	1.77	57.24	20.00	-37.24	T4	
		1412	2679M	7.08	-50.75		1.76	57.83	20.00	-37.83	T4	1.4, 1.0
UMTS IV		1513	2679M	7.05	-51.23		1.74	58.28	20.00	-38.28	T4	
OWITSIV		1312	2679M	0.37	-53.84			54.21	20.00	-34.21	T4	
	Radial	1412	2679M	0.31	-53.49	-60.93	93 N/A	53.80	20.00	-33.80	T4	1.4, 0.2
		1513	2679M	0.50	-53.64			54.14	20.00	-34.14	T4	
		9262	2679M	7.24	-50.94		1.69	58.18	20.00	-38.18	T4	
	Axial	9400	2679M	7.13	-51.15	-60.50	1.87	58.28	20.00	-38.28	T4	1.4, 1.0
LIMTOIL		9538	2679M	7.46	-51.05		1.67	58.51	20.00	-38.51	T4	1
OWISH	Radial	9262	2679M	0.27	-52.87	-60.93 N/A		53.14	20.00	-33.14	T4	
		9400	2679M	0.25	-53.51		53.76	20.00	-33.76	T4	1.4, 0.2	
		9538	2679M	0.19	-53.37			53.56	20.00	-33.56	T4	

Table 10-4 Raw Data Results for LTE B71

Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
	20MHz	133297	2679M	6.94	-43.35		1.81	50.29	20.00	-30.29	T4	
Avial	15MHz	133297	2679M	6.69	-42.82	60.50	1.75	49.51	20.00	-29.51	T4	1.4, 1.0
Axiai	10MHz	133297	2679M	6.68	-43.82	-00.50	1.76	50.50	20.00	-30.50	T4 T4	1.4, 1.0
	5MHz	133297	2679M	6.85	-43.60		1.77	50.45	20.00	-30.45	T4	
	20MHz	133297	2679M	0.52	-42.44			42.96	20.00	-22.96	T4	
Padial	15MHz	133297	2679M	0.29	-42.84	60.03	NI/A	43.13	20.00	-23.13	T4	1.4, 0.2
Radial -	10MHz	133297	2679M	0.66	-42.48	-00.93	IVA	43.14	20.00	-23.14	T4	1.4, 0.2
	5MHz	133297	2679M	0.20	-42.37				42.57	20.00	-22.57	T4
	Axial Radial	Axial 20MHz 15MHz 10MHz 5MHz 20MHz 20MHz 15MHz 15MHz 10MHz 10MHz	Axial	Axial 20MHz 133297 2679M 15MHz 133297 2679M 10MHz 133297 2679M 5MHz 133297 2679M 20MHz 133297 2679M Radial 15MHz 133297 2679M 15MHz 133297 2679M 10MHz 133297 2679M	Axial 20MHz 133297 2679M 6.94 15MHz 133297 2679M 6.69 10MHz 133297 2679M 6.69 5MHz 133297 2679M 6.68 5MHz 133297 2679M 6.85 20MHz 133297 2679M 0.52 15MHz 133297 2679M 0.29 10MHz 133297 2679M 0.66	Axial Bandwidth Channel Device SN [dB(A/m)] [dB(A/m)] Axial 20MHz 133297 2679M 6.94 -43.35 15MHz 133297 2679M 6.69 -42.82 10MHz 133297 2679M 6.68 -43.82 5MHz 133297 2679M 6.85 -43.60 20MHz 133297 2679M 0.52 -42.44 15MHz 133297 2679M 0.29 -42.84 10MHz 133297 2679M 0.66 -42.48	Orientation Bandwidth Channel Device SN [dB(A/m)] [dB(A/m)] <t< th=""><th>Orientation Bandwidth Channel Device SN [dB(Am)] ABM2 [dB(Am)] ABM2 [dB(Am)] Ambient Noise [dB(Am)] Response [dB(Am)] Response [dB(Am)] Ambient Noise [dB(Am)] Response [dB(Am)] Mary Indiangle [dB(Am)] Ambient Noise [dB(Am)] Response [dB(Am)] Mary Indiangle [dB(Am)] Ambient Noise [dB(Am)] Response [dB(Am)] Mary Indiangle [dB(Am)] Ambient Noise [dB(Am)] Ambien Noise [dB(Am)] Ambien Noise [dB(Am)] Ambien Noise</th><th>Orientation Bandwidth Channel Device SN [dB(A/m)] [dB(A/m)] ABMZ [dB(A/m)] [dB(A/m)] Ambient Noise [dB(A/m)] Response (dB) S+NN (dB) Axial 133297 2679M 6.69 -42.82 -60.50 1.81 50.29 10MHz 133297 2679M 6.68 -43.82 -60.50 1.75 49.51 10MHz 133297 2679M 6.85 -43.80 1.77 50.45 20MHz 133297 2679M 0.52 -42.44 -42.44 -60.93 N/A 43.13 Radial 10MHz 133297 2679M 0.66 -42.44 -60.93 N/A 43.13</th><th>Orientation Bandwidth Channel Device SN [dB(A/m)] [dB(A/m)] ABM2 [dB(A/m)] [dB(A/m)] Ambient Noise [dB(A/m)] [dB(A/m)] Response (dB) (dB) S+NN (dB) (dB) FCC Limit (dB) Axial 15MHz 133297 2679M 6.69 -42.82 -60.50 1.81 50.29 20.00 10MHz 133297 2679M 6.68 -43.82 -60.50 1.76 50.50 20.00 5MHz 133297 2679M 6.85 -43.60 1.77 50.45 20.00 20MHz 133297 2679M 0.52 -42.44 -60.93 N/A 43.13 20.00 Radial 10MHz 133297 2679M 0.66 -42.48 -60.93 N/A 43.14 20.00</th><th>Orientation Bandwidth Channel Device SN [dB(A/m)] [dB(A/m)] ABM2 [dB(A/m)] [dB(A/m)] Ambient Noise [dB(A/m)] [dB(A/m)] Response [dB(A/m)] [dB(A/m)] S+NN (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB)</th><th>Orientation Bandwidth Channel Device SN [dB(A/m)] ABM1 [dB(A/m)] ABM2 [dB(A/m)] Response [dB(A/m)] S+NN (dB) FCC Limit (dB) CC3.19-201 C3.19-201 Rating (dB) FCC Limit (dB) CC Limit (dB)</th></t<>	Orientation Bandwidth Channel Device SN [dB(Am)] ABM2 [dB(Am)] ABM2 [dB(Am)] Ambient Noise [dB(Am)] Response [dB(Am)] Response [dB(Am)] Ambient Noise [dB(Am)] Response [dB(Am)] Mary Indiangle [dB(Am)] Ambient Noise [dB(Am)] Response [dB(Am)] Mary Indiangle [dB(Am)] Ambient Noise [dB(Am)] Response [dB(Am)] Mary Indiangle [dB(Am)] Ambient Noise [dB(Am)] Ambien Noise [dB(Am)] Ambien Noise [dB(Am)] Ambien Noise	Orientation Bandwidth Channel Device SN [dB(A/m)] [dB(A/m)] ABMZ [dB(A/m)] [dB(A/m)] Ambient Noise [dB(A/m)] Response (dB) S+NN (dB) Axial 133297 2679M 6.69 -42.82 -60.50 1.81 50.29 10MHz 133297 2679M 6.68 -43.82 -60.50 1.75 49.51 10MHz 133297 2679M 6.85 -43.80 1.77 50.45 20MHz 133297 2679M 0.52 -42.44 -42.44 -60.93 N/A 43.13 Radial 10MHz 133297 2679M 0.66 -42.44 -60.93 N/A 43.13	Orientation Bandwidth Channel Device SN [dB(A/m)] [dB(A/m)] ABM2 [dB(A/m)] [dB(A/m)] Ambient Noise [dB(A/m)] [dB(A/m)] Response (dB) (dB) S+NN (dB) (dB) FCC Limit (dB) Axial 15MHz 133297 2679M 6.69 -42.82 -60.50 1.81 50.29 20.00 10MHz 133297 2679M 6.68 -43.82 -60.50 1.76 50.50 20.00 5MHz 133297 2679M 6.85 -43.60 1.77 50.45 20.00 20MHz 133297 2679M 0.52 -42.44 -60.93 N/A 43.13 20.00 Radial 10MHz 133297 2679M 0.66 -42.48 -60.93 N/A 43.14 20.00	Orientation Bandwidth Channel Device SN [dB(A/m)] [dB(A/m)] ABM2 [dB(A/m)] [dB(A/m)] Ambient Noise [dB(A/m)] [dB(A/m)] Response [dB(A/m)] [dB(A/m)] S+NN (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB)	Orientation Bandwidth Channel Device SN [dB(A/m)] ABM1 [dB(A/m)] ABM2 [dB(A/m)] Response [dB(A/m)] S+NN (dB) FCC Limit (dB) CC3.19-201 C3.19-201 Rating (dB) FCC Limit (dB) CC Limit (dB)

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 40 of 119

Table 10-5 Raw Data Results for LTE B12

Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		10MHz	23095	2679M	6.72	-45.43		1.68	52.15	20.00	-32.15	T4	
	Axial	5MHz	23095	2679M	7.01	-45.70	-60.50	1.76	52.71	20.00	-32.71	T4	1.4, 1.0
		3MHz	23095	2679M	6.85	-45.41		1.71	52.26	20.00	-32.26	T4	1.4, 1.0
LTE Band 12		1.4MHz	23095	2679M	7.03	-45.76		1.81	52.79	20.00	-32.79	T4	
LIE Ballu 12		10MHz	23095	2679M	0.49	-45.29			45.78	20.00	-25.78	T4	
	Radial	5MHz	23095	2679M	0.66	-46.57	-60.93	N/A	47.23	20.00	-27.23	T4	1.4, 0.2
		3MHz	23095	2679M	0.25	-46.61	-00.93	IVA	46.86	20.00	-26.86	T4	1.4, 0.2
		1.4MHz	23095	2679M	0.27	-45.39	1 -	45.66	20.00	-25.66	T4		

Table 10-6 Raw Data Results for LTE B13

	Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
Ī		Axial	10MHz	23230	2679M	7.16	-43.41	-60.50	1.73	50.57	20.00	-30.57	T4	1.4. 1.0
١.	LTE Band 13		5MHz	23230	2679M	7.04	-43.18	-00.50	1.74	50.22	20.00	-30.22	T4	1.4, 1.0
ľ		Radial	10MHz	23230	2679M	0.24	-41.64	-60.93	N/A	41.88	20.00	-21.88	T4	1.4, 0.2
		Radiai	5MHz	23230	2679M	0.02	-41.08	-60.93	IN/A	41.10	20.00	-21.10	T4	1.4, 0.2

Table 10-7 Raw Data Results for LTE B14

	Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
Ī		Axial	10MHz	23330	2679M	6.95	-45.86	-60.50	1.80	52.81	20.00	-32.81	T4	1.4, 1.0
	LTE Band 14		5MHz	23330	2679M	6.68	-45.39	-60.50	1.74	52.07	20.00	-32.07	T4	1.4, 1.0
		Radial	10MHz	23330	2679M	0.13	-45.01	-60.93	N/A	45.14	20.00	-25.14	T4	1.4. 0.2
		radiai	5MHz	23330	2679M	0.56	-44.21	-00.93	IWA	44.77	20.00	-24.77	T4	1.4, 0.2

Table 10-8 Raw Data Results for LTE B26

				110	AVV Date	ı ixesui	to ioi L						
Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		15MHz	26865	2679M	6.82	-46.49		1.65	53.31	20.00	-33.31	T4	
		10MHz	26865	2679M	6.72	-45.98		1.61	52.70	20.00	-32.70	T4	ļ l
	Axial	5MHz	26865	2679M	7.02	-46.19	-60.50	1.70	53.21	20.00	-33.21	T4	1.4, 1.0
		3MHz	26865	2679M	7.02	-45.87		1.78	52.89	20.00	-32.89	T4	į l
LTE Band 26		1.4MHz	26865	2679M	6.81	-45.61		1.80	52.42	20.00	-32.42	T4	
LIE Ballu 26		15MHz	26865	2679M	0.30	-46.16			46.46	20.00	-26.46	T4	
		10MHz	26865	2679M	0.21	-46.02			46.23	20.00	-26.23	T4	ļ l
	Radial	5MHz	26865	2679M	0.29	-46.01	-60.93	N/A	46.30	20.00	-26.30	T4	1.4, 0.2
		3MHz	26865	2679M	0.28	-46.17			46.45	20.00	-26.45	T4	
		1.4MHz	26865	2679M	0.62	-46.23			46.85	20.00	-26.85	T4	

Table 10-9 Raw Data Results for LTE B5

Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		10MHz	20525	2679M	7.01	-45.88		1.77	52.89	20.00	-32.89	T4	
	Axial	5MHz	20525	2679M	6.86	-45.61	-60.50	1.75	52.47	20.00	-32.47	T4	1.4, 1.0
	Axiai	3MHz	20525	2679M	7.07	-45.78	-00.50	1.64	52.85	20.00	-32.85	T4	1.4, 1.0
LTE Band 5		1.4MHz	20525	2679M	6.94	-44.59		1.81	51.53	20.00	-31.53	T4	
LIE Ballu 5		10MHz	20525	2679M	0.17	-45.18			45.35	20.00	-25.35	T4	
	Radial	5MHz	20525	2679M	0.19	-44.90	-60.93	N/A	45.09	20.00	-25.09	T4	1.4, 0.2
	Radiai	3MHz	20525	2679M	0.23	-45.11	-60.93	IN/A	45.34	20.00	-25.34	T4	1.4, 0.2
		1.4MHz	20525	2679M	0.27	-45.08			45.35	20.00	-25.35	T4	

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 41 of 119

Table 10-10 Raw Data Results for LTE B66 - ANT A

					ata i tot			00 / 11 1					
Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	132322	2679M	7.05	-36.89		1.69	43.94	20.00	-23.94	T4	
		15MHz	132322	2679M	6.85	-38.08		1.84	44.93	20.00	-24.93	T4	
	Axial	10MHz	132322	2679M	7.24	-37.63	-60.50	1.65	44.87	20.00	-24.87	T4	1.4, 1.0
	Axiai	5MHz	132322	2679M	6.84	-37.34	-60.50	1.79	44.18	20.00	-24.18	T4	1.4, 1.0
		3MHz	132322	2679M	7.30	-37.72		1.74	45.02	20.00	-25.02	T4	
LTE Band 66		1.4MHz	132322	2679M	7.03	-37.43		1.69	44.46	20.00	-24.46	T4	
LIE Ballu 66		20MHz	132322	2679M	0.17	-41.67			41.84	20.00	-21.84	T4	
		15MHz	132322	2679M	0.48	-42.13			42.61	20.00	-22.61	T4	
	Radial	10MHz	132322	2679M	0.44	-41.64	60.00	N/A	42.08	20.00	-22.08	T4	4400
	Radiai	5MHz	132322	2679M	0.14	-41.47	-60.93	IN/A	41.61	20.00	-21.61	T4	1.4, 0.2
		3MHz	132322	2679M	0.13	-41.40			41.53	20.00	-21.53	T4	
		1.4MHz	132322	2679M	0.19	-41.62			41.81	20.00	-21.81	T4	

Table 10-11 Raw Data Results for LTE B66 - ANT F

Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	132572	2679M	7.20	-29.20		1.74	36.40	20.00	-16.40	T4	
		20MHz	132322	2679M	7.28	-29.78		1.60	37.06	20.00	-17.06	T4	
		20MHz	132072	2679M	6.94	-28.50	1 [1.80	35.44	20.00	-15.44	T4	
	Axial	15MHz	132322	2679M	7.18	-30.33	-61.17	1.77	37.51	20.00	-17.51	T4	1.4, 1.0
	Axidi	10MHz	132322	2679M	7.34	-30.00	-01.17	1.73	37.34	20.00	-17.34	T4	1.4, 1.0
		5MHz	132322	2679M	7.30	-29.85	1 [1.71	37.15	20.00	-17.15	T4	
		3MHz	132322	2679M	7.31	-29.85	1 [1.79	37.16	20.00	-17.16	T4	
LTE Band 66		1.4MHz	132322	2679M	7.12	-30.06		1.82	37.18	20.00	-17.18	T4	
LIE Ballu 66		20MHz	132572	2679M	0.02	-37.19			37.21	20.00	-17.21	T4	
		20MHz	132322	2679M	0.13	-37.48			37.61	20.00	-17.61	T4	
		20MHz	132072	2679M	0.12	-36.24			36.36	20.00	-16.36	T4	
	D. F.I	15MHz	132322	2679M	0.06	-37.81	04.00		37.87	20.00	-17.87	T4	4400
	Radial	10MHz	132322	2679M	0.01	-37.68	-61.82	N/A	37.69	20.00	-17.69	T4	1.4, 0.2
		5MHz	132322	2679M	0.47	-37.48			37.95	20.00	-17.95	T4	
		3MHz	132322	2679M	0.08	-37.61	1		37.69	20.00	-17.69	T4	
		1.4MHz	132322	2679M	0.03	-37.86			37.89	20.00	-17.89	T4	

Table 10-12 Raw Data Results for LTE B4 - ANT A

				ILAW L	Jala ING	ouito it	<i>)</i> L E E	77 - WIN	. ~				
Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	20175	2679M	6.78	-38.40		1.71	45.18	20.00	-25.18	T4	
		15MHz	20175	2679M	6.93	-38.93		1.82	45.86	20.00	-25.86	T4	
	Axial	10MHz	20175	2679M	7.00	-38.40	-60.50	1.81	45.40	20.00	-25.40	T4	1.4, 1.0
	Axidi	5MHz	20175	2679M	6.62	-38.01	-00.50	1.83	44.63	20.00	-24.63	T4	1.4, 1.0
		3MHz	20175	2679M	7.06	-38.51		1.72	45.57	20.00	-25.57	T4	
LTE Band 4		1.4MHz	20175	2679M	6.83	-37.81		1.74	44.64	20.00	-24.64	T4	
LIE Ballu 4		20MHz	20175	2679M	0.63	-42.88			43.51	20.00	-23.51	T4	
		15MHz	20175	2679M	0.54	-42.75			43.29	20.00	-23.29	T4	
	Radial	10MHz	20175	2679M	0.53	-42.56	-60.93	N/A	43.09	20.00	-23.09	T4	44.00
	Radiai	5MHz	20175	2679M	0.60	-42.34	-60.93	IWA	42.94	20.00	-22.94	T4	1.4, 0.2
		3MHz	20175	2679M	0.47	-42.55			43.02	20.00	-23.02	T4	
		1.4MHz	20175	2679M	0.24	-41.76			42.00	20.00	-22.00	T4	

Table 10-13 Raw Data Results for LTF B25 - ANT A

				Naw D	ala Nes	รนเเจ เบ	ILIED	23 - AN	1 ^				
Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	26365	2679M	7.57	-38.95		1.62	46.52	20.00	-26.52	T4	
		15MHz	26365	2679M	7.45	-39.01		1.73	46.46	20.00	-26.46	T4	
	Axial	10MHz	26365	2679M	6.88	-38.75	-60.50	1.70	45.63	20.00	-25.63	T4	1.4, 1.0
	Axidi	5MHz	26365	2679M	7.16	-38.24	-00.50	1.79	45.40	20.00	-25.40	T4	1.4, 1.0
		3MHz	26365	2679M	6.83	-38.36		1.81	45.19	20.00	-25.19	T4	
LTE Band 25		1.4MHz	26365	2679M	6.83	-37.85		1.78	44.68	20.00	-24.68	T4	
LIE Ballu 25		20MHz	26365	2679M	0.47	-42.57			43.04	20.00	-23.04	T4	
		15MHz	26365	2679M	0.40	-42.68			43.08	20.00	-23.08	T4	
	D-di-l	10MHz	26365	2679M	0.21	-42.35	60.00	NVA	42.56	20.00	-22.56	T4	4400
	Radial	5MHz	26365	2679M	0.46	-42.13	-60.93	N/A	42.59	20.00	-22.59	T4	1.4, 0.2
		3MHz	26365	2679M	0.41	-42.24			42.65	20.00	-22.65	T4	
		1.4MHz	26365	2679M	0.03	-42.21			42.24	20.00	-22.24	T4	

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 42 of 119

Table 10-14 Raw Data Results for LTE B25 - ANT F

Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	26365	2679M	7.05	-32.00		1.67	39.05	20.00	-19.05	T4	
		15MHz	26365	2679M	7.10	-31.91		1.78	39.01	20.00	-19.01	T4	
	Axial	10MHz	26365	2679M	7.07	-31.82	-61.17	1.80	38.89	20.00	-18.89	T4	1.4, 1.0
	Axidi	5MHz	26365	2679M	7.14	-31.62	-01.17	1.78	38.76	20.00	-18.76	T4	1.4, 1.0
		3MHz	26365	2679M	7.43	-31.69		1.74	39.12	20.00	-19.12	T4	
LTE Band 25		1.4MHz	26365	2679M	7.08	-31.82		1.75	38.90	20.00	-18.90	T4	
LIE Ballu 25		20MHz	26365	2679M	0.28	-39.89			40.17	20.00	-20.17	T4	
		15MHz	26365	2679M	0.34	-39.67			40.01	20.00	-20.01	T4	
	Radial	10MHz	26365	2679M	0.19	-39.48	64.00	N/A	39.67	20.00	-19.67	T4	4400
	Radiai	5MHz	26365	2679M	0.17	-39.18	-61.82	IWA	39.35	20.00	-19.35	T4	1.4, 0.2
		3MHz	26365	2679M	0.08	-39.54			39.62	20.00	-19.62	T4	
		1.4MHz	26365	2679M	0.00	-39.34			39.34	20.00	-19.34	T4	

Table 10-15 Raw Data Results for LTE B2

Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	18900	2679M	6.52	-38.55		1.71	45.07	20.00	-25.07	T4	
		15MHz	18900	2679M	6.70	-38.84		1.83	45.54	20.00	-25.54	T4	
	Axial	10MHz	18900	2679M	6.85	-38.67	-60.50	1.69	45.52	20.00	-25.52	T4	1.4, 1.0
	Axidi	5MHz	18900	2679M	6.76	-38.35	-00.50	1.61	45.11	20.00	-25.11	T4	1.4, 1.0
		3MHz	18900	2679M	6.94	-38.45		1.76	45.39	20.00	-25.39	T4	
LTE Band 2		1.4MHz	18900	2679M	6.89	-37.80		1.74	44.69	20.00	-24.69	T4	
LIE Ballu 2		20MHz	18900	2679M	0.48	-42.75			43.23	20.00	-23.23	T4	
		15MHz	18900	2679M	0.02	-43.06			43.08	20.00	-23.08	T4	İ
	Radial	10MHz	18900	2679M	0.42	-42.60	-60.93	N/A	43.02	20.00	-23.02	T4	1.4, 0.2
	Radiai	5MHz	18900	2679M	0.13	-42.25	-60.93	IWA	42.38	20.00	-22.38	T4	1.4, 0.2
		3MHz	18900	2679M	0.00	-42.68			42.68	20.00	-22.68	T4	
		1.4MHz	18900	2679M	0.08	-42.65			42.73	20.00	-22.73	T4	1

Table 10-16 Raw Data Results for LTE B30 - ANT A

Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011	Test Coordinates
LTE Band 30	Axial	10MHz	27710	2679M	6.84	-40.37	-60.50	1.90	47.21	20.00	-27.21	T4	1.4, 1.0
		5MHz	27710	2679M	6.84	-39.94	-60.50	1.84	46.78	20.00	-26.78	T4	1.4, 1.0
	Radial	10MHz	27710	2679M	0.42	-44.48	-60.93	N/A	44.90	20.00	-24.90	T4	1.4, 0.2
	Radiai	5MHz	27710	2679M	0.40	-43.76	-00.93	IVA	44.16	20.00	-24.16	T4	1.4, 0.2

Table 10-17 Raw Data Results for LTE B30 - ANT F

					I LUIT D	utu ito	Juito io		- Ait					
	Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
	LTE Band 30	Axial	10MHz	27710	2679M	6.96	-32.15	-61.17	1.72	39.11	20.00	-19.11	T4	1.4, 1.0
			5MHz	27710	2679M	6.96	-31.77	-01.17	1.83	38.73	20.00	-18.73	T4	1.4, 1.0
		Radial	10MHz	27710	2679M	0.16	-39.92	-61.82	N/A	40.08	20.00	-20.08	T4	1.4. 0.2
		Radiai	5MHz	27710	2679M	0.31	-39.72	-01.82	IVA	40.03	20.00	-20.03	T4	1.4, 0.2

Table 10-18 Raw Data Results for LTE B7 - ANT B

Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	21100	2679M	7.10	-40.33		1.70	47.43	20.00	-27.43	T4	
	Axial	15MHz	21100	2679M	6.90	-39.29	-60.50	1.79	46.19	20.00	-26.19	T4	1.4, 1.0
LTE Band 7	Axiai	10MHz	21100	2679M	6.95	-40.21	-60.50	1.70	47.16	20.00	-27.16	T4	1.4, 1.0
		5MHz	21100	2679M	7.25	-39.66		1.76	46.91	20.00	-26.91	T4	
LIE Ballu 7		20MHz	21100	2679M	0.36	-44.17			44.53	20.00	-24.53	T4	
	Dadial	15MHz	21100	2679M	0.43	-43.75	-60.93	N/A	44.18	20.00	-24.18	T4	44.00
	Radial	10MHz	21100	2679M	0.41	-43.55	-60.93	IN/A	43.96	20.00	-23.96	T4	1.4, 0.2
		5MHz	21100	2679M	0.42	-43.46			43.88	20.00	-23.88	T4	

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 43 of 119

Table 10-19 Raw Data Results for LTE B7 - ANT F

				I LUIV L	Julu I V	Juito i	J. L.L.	<i>71</i> /\!\					
Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	21100	2679M	7.42	-31.07		1.83	38.49	20.00	-18.49	T4	
	Axial	15MHz	21100	2679M	7.16	-31.03	-61.17	1.71	38.19	20.00	-18.19	T4	1.4. 1.0
	Axiai	10MHz	21100	2679M	7.27	-30.74	-01.17	1.82	38.01	20.00	-18.01	T4	1.4, 1.0
LTE Band 7	,	5MHz	21100	2679M	7.01	-30.51		1.77	37.52	20.00	-17.52	T4	
LIE Ballu /		20MHz	21100	2679M	0.16	-39.14			39.30	20.00	-19.30	T4	
	Radial	15MHz	21100	2679M	0.25	-39.23	-61.82	N/A	39.48	20.00	-19.48	T4	1.4. 0.2
	Radiai	10MHz	21100	2679M	0.15	-38.88	-01.02	IWA	39.03	20.00	-19.03	T4	1.4, 0.2
		5MHz	21100	2679M	0.15	-38.69			38.84	20.00	-18.84	T4	

Table 10-20 Raw Data Results for LTE B41 Power Class 3 - ANT B

				ata i too			O	o. o.ao.	, , , , , ,	-			
Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	40620	2679M	6.98	-31.02		1.83	38.00	20.00	-18.00	T4	
	Axial	15MHz	40620	2679M	6.96	-31.26	-60.50	1.86	38.22	20.00	-18.22	T4	1.4, 1.0
	Axidi	10MHz	40620	2679M	6.99	-31.19	-00.50	1.71	38.18	20.00	-18.18	T4	1.4, 1.0
LTE Band 41		5MHz	40620	2679M	7.11	-31.24		1.67	38.35	20.00	-18.35	T4	
(PC3)		20MHz	40620	2679M	0.37	-32.63			33.00	20.00	-13.00	T4	
	Radial	15MHz	40620	2679M	0.36	-32.90	-60.93	N/A	33.26	20.00	-13.26	T4	1.4, 0.2
	Natial	10MHz	40620	2679M	0.22	-32.72	-00.93	IVA	32.94	20.00	-12.94	T4	1.4, 0.2
		5MHz	40620	2679M	0.69	-32.80			33.49	20.00	-13.49	T4	

Table 10-21 Raw Data Results for LTE B41 Power Class 3 - ANT F

				u.u	<u> </u>			0. 0.00	, v ,				
Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	40620	2679M	7.42	-23.79		1.79	31.21	20.00	-11.21	T4	
	Axial	15MHz	40620	2679M	7.58	-24.06	-61.17	1.73	31.64	20.00	-11.64	T4	1.4. 1.0
LTE Band 41	Axiai	10MHz	40620	2679M	7.47	-23.91	-01.17	1.74	31.38	20.00	-11.38	T4	1.4, 1.0
		5MHz	40620	2679M	7.22	-23.90		1.70	31.12	20.00	-11.12	T4	
(PC3)		20MHz	40620	2679M	0.22	-28.54			28.76	20.00	-8.76	Т3	
(1 33)	Radial	15MHz	40620	2679M	0.19	-28.71	-61.82	N/A	28.90	20.00	-8.90	Т3	1.4. 0.2
	Radiai	10MHz	40620	2679M	0.21	-28.63	-01.02	IN/A	28.84	20.00	-8.84	Т3	1.4, 0.2
		5MHz	40620	2679M	0.23	-28.68			28.91	20.00	-8.91	T3	

Table 10-22 Raw Data Results for LTE B41 Power Class 2 - ANT B

Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	40620	2679M	6.96	-29.41		1.72	36.37	20.00	-16.37	T4	
	Axial	15MHz	40620	2679M	6.92	-29.97	-60.50	1.73	36.89	20.00	-16.89	T4	1.4, 1.0
	Axidi	10MHz	40620	2679M	6.99	-29.74	-60.50	1.70	36.73	20.00	-16.73	T4	1.4, 1.0
LTE Band 41		5MHz	40620	2679M	7.10	-29.84		1.81	36.94	20.00	-16.94	T4	
(PC2)		20MHz	40620	2679M	0.48	-30.78			31.26	20.00	-11.26	T4	
	Radial	15MHz	40620	2679M	0.23	-31.17	-60.93	N/A	31.40	20.00	-11.40	T4	1.4. 0.2
	Radiai	10MHz	40620	2679M	0.11	-30.90	-60.93	IWA	31.01	20.00	-11.01	T4	1.4, 0.2
		5MHz	40620	2679M	0.24	-30.91			31.15	20.00	-11.15	T4	1

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 44 of 119
1M2209010097-23.A3L	10/3/2022 - 11/8/2022	Portable Handset	

Table 10-23 Raw Data Results for LTE B41 Power Class 2 - ANT F

			IXAW D										
Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	41490	2679M	7.12	-21.94		1.74	29.06	20.00	-9.06	Т3	
		20MHz	41055	2679M	7.14	-20.95		1.73	28.09	20.00	-8.09	Т3	
		20MHz	40620	2679M	7.29	-22.12		1.77	29.41	20.00	-9.41	Т3	
	Axial	20MHz	40185	2679M	7.55	-22.12	-61.17	1.76	29.67	20.00	-9.67	Т3	1.4, 1.0
	Axiai	20MHz	39750	2679M	7.09	-20.61	-01.17	1.76	27.70	20.00	-7.70	Т3	1.4, 1.0
		15MHz	40620	2679M	7.15	-22.31		1.73	29.46	20.00	-9.46	Т3	
		10MHz	40620	2679M	7.14	-22.34		1.69	29.48	20.00	-9.48	Т3	
LTE Band 41		5MHz	40620	2679M	7.07	-22.43		1.77	29.50	20.00	-9.50	Т3	
(PC2)		20MHz	41490	2679M	0.60	-26.53			27.13	20.00	-7.13	Т3	
		20MHz	41055	2679M	0.65	-25.08			25.73	20.00	-5.73	Т3	
		20MHz	40620	2679M	0.24	-26.97			27.21	20.00	-7.21	Т3	
	Radial	20MHz	40185	2679M	0.69	-26.58	-61.82	N/A	27.27	20.00	-7.27	Т3	1.4, 0.2
	radiai	20MHz	39750	2679M	0.30	-25.04	-01.82	IWA	25.34	20.00	-5.34	Т3	1.4, 0.2
		15MHz	40620	2679M	0.26	-27.15			27.41	20.00	-7.41	Т3	
		10MHz	40620	2679M	0.26	-27.02			27.28	20.00	-7.28	Т3	
		5MHz	40620	2679M	0.52	-26.77			27.29	20.00	-7.29	Т3	

Table 10-24 Raw Data Results for LTE B48

Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	55990	2679M	7.09	-24.14		1.71	31.23	20.00	-11.23	T4	
	Axial	15MHz	55990	2679M	7.05	-24.15	-60.50	1.85	31.20	20.00	-11.20	T4	1.4, 1.0
	Axiai	10MHz	55990	2679M	7.13	-24.18	-00.50	1.76	31.31	20.00	-11.31	T4	1.4, 1.0
LTE Band 48		5MHz	55990	2679M	7.09	-24.16		1.75	31.25	20.00	-11.25	T4	
LIE Ballu 40		20MHz	55990	2679M	0.69	-29.48			30.17	20.00	-10.17	T4	
	Radial	15MHz	55990	2679M	0.23	-29.37	60.00	N/A	29.60	20.00	-9.60	Т3	44.00
	Radiai	10MHz	55990	2679M	0.30	-29.39	-60.93	IWA	29.69	20.00	-9.69	Т3	1.4, 0.2
		5MHz	55990	2679M	0.25	-29.41			29.66	20.00	-9.66	Т3	

Table 10-25 Raw Data Results for NR n71

	Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
			20MHz	136100	2669M	7.65	-40.01		2.00	47.66	20.00	-27.66	T4	
		Axial	15MHz	136100	2669M	7.54	-39.67	-59.35	2.00	47.21	20.00	-27.21	T4	1.4, 1.0
		Axiai	10MHz	136100	2669M	7.49	-41.38	-59.55	2.00	48.87	20.00	-28.87	T4	1.4, 1.0
	NR n71		5MHz	136100	2669M	7.47	-41.10		2.00	48.57	20.00	-28.57	T4	
			20MHz	136100	2669M	0.42	-49.46			49.88	20.00	-29.88	T4	
		Radial	15MHz	136100	2669M	0.45	-50.19	-59.52	N/A	50.64	20.00	-30.64	T4	44.00
		Radiai	10MHz	136100	2669M	0.13	-47.76	-59.52	IWA	47.89	20.00	-27.89	T4	1.4, 0.2
			5MHz	136100	2669M	0.34	-47.85			48.19	20.00	-28.19	T4	

Table 10-26 Raw Data Results for NR n12

					un Du	u itosu	113 101 11						
Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		15MHz	141500	2669M	7.00	-42.51		2.00	49.51	20.00	-29.51	T4	
	Axial	10MHz	141500	2669M	7.07	-41.15	-59.35	2.00	48.22	20.00	-28.22	T4	1.4, 1.0
NR n12		5MHz	141500	2669M	7.03	-41.01		2.00	48.04	20.00	-28.04	T4	
NK IIIZ		15MHz	141500	2669M	0.35	-49.82			50.17	20.00	-30.17	T4	
	Radial	10MHz	141500	2669M	0.37	-49.35	-59.52	N/A	49.72	20.00	-29.72	T4	1.4, 0.2
		5MHz	141500	2669M	0.38	-50.50			50.88	20.00	-30.88	T4	

Table 10-27 Raw Data Results for NR n26

Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	166300	2669M	7.68	-40.09		2.00	47.77	20.00	-27.77	T4	
	Axial	15MHz	166300	2669M	7.47	-40.14	-59.35	2.00	47.61	20.00	-27.61	T4	1.4, 1.0
	Axiai	10MHz	166300	2669M	7.71	-40.78	-09.55	2.00	48.49	20.00	-28.49	T4	1.4, 1.0
NR n26		5MHz	166300	2669M	7.85	-38.89		2.00	46.74	20.00	-26.74	T4	
NK 1120	; <u> </u>	20MHz	166300	2669M	0.51	-49.66			50.17	20.00	-30.17	T4	
	Radial	15MHz	166300	2669M	0.49	-49.73	50.50	N/A	50.22	20.00	-30.22	T4	44.00
	Radiai	10MHz	166300	2669M	0.44	-49.74	-59.52	IWA	50.18	20.00	-30.18	T4	1.4, 0.2
		5MHz	166300	2669M	0.55	-49.95			50.50	20.00	-30.50	T4	1

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 45 of 119
IM2209010097-23.A3L	10/3/2022 - 11/8/2022	Portable Handset	1 ago 10 01 110

Table 10-28 Raw Data Results for NR n5

Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	167300	2669M	7.24	-40.74		2.00	47.98	20.00	-27.98	T4	
	Axial	15MHz	167300	2669M	7.64	-40.66	-59.35	2.00	48.30	20.00	-28.30	T4	1.4, 1.0
	Axiai	10MHz	167300	2669M	7.46	-41.93	-59.55	2.00	49.39	20.00	-29.39	T4	1.4, 1.0
NR n5		5MHz	167300	2669M	7.74	-40.92		2.00	48.66	20.00	-28.66	T4	
NK IIS		20MHz	167300	2669M	0.04	-49.84			49.88	20.00	-29.88	T4	
	Radial	15MHz	167300	2669M	0.25	-49.73	-59.52	N/A	49.98	20.00	-29.98	T4	1.4, 0.2
	Radiai	10MHz	167300	2669M	0.43	-50.22	-59.52	IWA	50.65	20.00	-30.65	T4	1.4, 0.2
		5MHz	167300	2669M	0.45	-49.98			50.43	20.00	-30.43	T4	

Table 10-29 Raw Data Results for NR n66 - ANT A

Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		40MHz	349000	2669M	7.52	-36.33		2.00	43.85	20.00	-23.85	T4	
		30MHz	349000	2669M	7.34	-36.14		2.00	43.48	20.00	-23.48	T4	
		25MHz	349000	2669M	7.10	-36.68		2.00	43.78	20.00	-23.78	T4	
	Axial	20MHz	349000	2669M	7.74	-37.30	-59.35	2.00	45.04	20.00	-25.04	T4	1.4, 1.0
		15MHz	349000	2669M	7.25	-36.13		2.00	43.38	20.00	-23.38	T4	
		10MHz	349000	2669M	7.06	-37.63		2.00	44.69	20.00	-24.69	T4	
NR n66		5MHz	349000	2669M	7.11	-37.01		2.00	44.12	20.00	-24.12	T4	
NK 1100		40MHz	349000	2669M	0.10	-43.15			43.25	20.00	-23.25	T4	
		30MHz	349000	2669M	0.07	-43.22			43.29	20.00	-23.29	T4	
		25MHz	349000	2669M	0.20	-43.35			43.55	20.00	-23.55	T4	
	Radial	20MHz	349000	2669M	0.15	-43.11	-59.52	N/A	43.26	20.00	-23.26	T4	1.4, 0.2
		15MHz	349000	2669M	0.06	-43.19			43.25	20.00	-23.25	T4	
		10MHz	349000	2669M	0.16	-43.14			43.30	20.00	-23.30	T4	
		5MHz	349000	2669M	0.02	-43.26			43.28	20.00	-23.28	T4	

Table 10-30 Raw Data Results for NR n66 - ANT F

Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		40MHz	349000	2669M	7.37	-37.56		2.00	44.93	20.00	-24.93	T4	
		30MHz	349000	2669M	7.25	-37.61		2.00	44.86	20.00	-24.86	T4	
		25MHz	349000	2669M	7.25	-37.58		2.00	44.83	20.00	-24.83	T4	
Axia	Axial	20MHz	349000	2669M	7.24	-38.07	-59.35	2.00	45.31	20.00	-25.31	T4	1.4, 1.0
		15MHz	349000	2669M	7.12	-38.85		2.00	45.97	20.00	-25.97	T4	
		10MHz	349000	2669M	7.30	-37.74		2.00	45.04	20.00	-25.04	T4	
ND		5MHz	349000	2669M	7.37	-37.34		2.00	44.71	20.00	-24.71	T4	
NR n66		40MHz	349000	2669M	0.08	-47.95			48.03	20.00	-28.03	T4	
		30MHz	349000	2669M	0.08	-47.88			47.96	20.00	-27.96	T4	
		25MHz	349000	2669M	0.21	-47.67			47.88	20.00	-27.88	T4	
	Radial	20MHz	349000	2669M	0.25	-47.65	-59.52	N/A	47.90	20.00	-27.90	T4	1.4, 0.2
		15MHz	349000	2669M	0.28	-48.03			48.31	20.00	-28.31	T4	
		10MHz	349000	2669M	0.27	-47.98			48.25	20.00	-28.25	T4	
		5MHz	349000	2669M	0.27	-48.13			48.40	20.00	-28.40	T4	

Table 10-31 Raw Data Results for NR n2 - ANT A

				INAW	Data IN	souito i	01 1417 11	4 - AII I	_				
Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	376000	2669M	7.55	-40.24		2.00	47.79	20.00	-27.79	T4	
	Axial	15MHz	376000	2669M	7.55	-38.71	-59.35	2.00	46.26	20.00	-26.26	T4	1.4. 1.0
	Axiai	10MHz	376000	2669M	7.53	-39.46	-59.55	2.00	46.99	20.00	-26.99	T4	1.4, 1.0
NR n2		5MHz	376000	2669M	7.43	-38.68		2.00	46.11	20.00	-26.11	T4	
NK IIZ		20MHz	376000	2669M	0.10	-44.60			44.70	20.00	-24.70	T4	
	Radial	15MHz	376000	2669M	0.14	-45.44	-59.52	N/A	45.58	20.00	-25.58	T4	1.4. 0.2
	Radiai	10MHz	376000	2669M	0.21	-44.95	-59.52	IN/A	45.16	20.00	-25.16	T4	1.4, 0.2
		5MHz	376000	2669M	0.19	-44.66			44.85	20.00	-24.85	T4	

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	
1M2209010097-23.A3L	10/3/2022 - 11/8/2022	Portable Handset	Page 46 of 119

Table 10-32 Raw Data Results for NR n2 - ANT F

Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	376000	2669M	7.40	-35.81		2.00	43.21	20.00	-23.21	T4	
Axial	Avial	15MHz	376000	2669M	7.13	-36.77	-59.35	2.00	43.90	20.00	-23.90	T4	1.4, 1.0
	Axidi	10MHz	376000	2669M	7.15	-38.05	-59.55	2.00	45.20	20.00	-25.20	T4	1.4, 1.0
NR n2		5MHz	376000	2669M	7.75	-38.49		2.00	46.24	20.00	-26.24	T4	
NK IIZ		20MHz	376000	2669M	0.29	-45.14			45.43	20.00	-25.43	T4	
	Radial	15MHz	376000	2669M	0.37	-44.40	50.50		44.77	20.00	-24.77	T4	44.00
	Radiai	10MHz	376000	2669M	0.17	-44.04	-59.52		44.21	20.00	-24.21	T4	1.4, 0.2
		5MHz	376000	2669M	0.54	-44.83			45.37	20.00	-25.37	T4	

Table 10-33 Raw Data Results for NR n25 - ANT A

Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		40MHz	376500	2669M	7.65	-38.24		2.00	45.89	20.00	-25.89	T4	
		30MHz	376500	2669M	7.70	-38.25		2.00	45.95	20.00	-25.95	T4	
		25MHz	376500	2669M	7.61	-36.90		2.00	44.51	20.00	-24.51	T4	
	Axial	20MHz	376500	2669M	7.29	-37.86	-59.35	2.00	45.15	20.00	-25.15	T4	1.4, 1.0
		15MHz	376500	2669M	7.22	-39.70		2.00	46.92	20.00	-26.92	T4	
		10MHz	376500	2669M	7.49	-38.00		2.00	45.49	20.00	-25.49	T4	
NR n25		5MHz	376500	2669M	7.48	-38.69		2.00	46.17	20.00	-26.17	T4	
NK HZ5		40MHz	376500	2669M	0.20	-44.69			44.89	20.00	-24.89	T4	
		30MHz	376500	2669M	0.16	-44.76			44.92	20.00	-24.92	T4	
		25MHz	376500	2669M	0.27	-44.06			44.33	20.00	-24.33	T4	
	Radial	20MHz	376500	2669M	0.34	-45.49	-59.52	N/A	45.83	20.00	-25.83	T4	1.4, 0.2
		15MHz	376500	2669M	0.08	-45.49			45.57	20.00	-25.57	T4	
		10MHz	376500	2669M	0.24	-45.19			45.43	20.00	-25.43	T4	
		5MHz	376500	2669M	0.19	-45.37			45.56	20.00	-25.56	T4	

Table 10-34 Raw Data Results for NR n25 - ANT F

Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		40MHz	376500	2669M	7.32	-36.17		2.00	43.49	20.00	-23.49	T4	
		30MHz	380000	2669M	7.63	-36.79		2.00	44.42	20.00	-24.42	T4	
		30MHz	376500	2669M	7.41	-35.79		2.00	43.20	20.00	-23.20	T4	
		30MHz	373000	2669M	7.67	-37.79		2.00	45.46	20.00	-25.46	T4	
	Axial	25MHz	376500	2669M	7.32	-36.34	-59.35	2.00	43.66	20.00	-23.66	T4	1.4, 1.0
		20MHz	376500	2669M	7.50	-36.00		2.00	43.50	20.00	-23.50	T4	
		15MHz	376500	2669M	7.06	-36.52		2.00	43.58	20.00	-23.58	T4	
		10MHz	376500	2669M	7.26	-36.63		2.00	43.89	20.00	-23.89	T4	
NR n25		5MHz	376500	2669M	7.25	-37.57		2.00	44.82	20.00	-24.82	T4	
NK HZ5		40MHz	376500	2669M	0.12	-42.36			42.48	20.00	-22.48	T4	
		30MHz	380000	2669M	0.50	-41.84			42.34	20.00	-22.34	T4	
		30MHz	376500	2669M	0.24	-42.00			42.24	20.00	-22.24	T4	
		30MHz	373000	2669M	0.42	-44.22			44.64	20.00	-24.64	T4	
	Radial	25MHz	376500	2669M	0.18	-43.63	-59.52	N/A	43.81	20.00	-23.81	T4	1.4, 0.2
		20MHz	376500	2669M	0.28	-43.16			43.44	20.00	-23.44	T4	
		15MHz	376500	2669M	0.04	-44.39			44.43	20.00	-24.43	T4	
		10MHz	376500	2669M	0.12	-44.22			44.34	20.00	-24.34	T4	
		5MHz	376500	2669M	0.16	-44.24			44.40	20.00	-24.40	T4	

Table 10-35 Raw Data Results for NR n30 - ANT A

							•	,, ,,,,,,,,,	, , , , , , ,					
	Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
ſ		Avial	10MHz	462000	2669M	7.65	-38.39	-59.35	2.00	46.04	20.00	-26.04	T4	1.4, 1.0
	NDco	Axial Radial	5MHz	462000	2669M	7.47	-37.92	-59.55	2.00	45.39	20.00	-25.39	T4	1.4, 1.0
	NR n30		10MHz	462000	2669M	0.23	-44.94	-59.52	N/A	45.17	20.00	-25.17	T4	1.4. 0.2
		Radiai	5MHz	462000	2669M	0.32	-45.54	-59.52	IN/A	45.86	20.00	-25.86	T4	1.4, 0.2

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 47 of 119

Table 10-36 Raw Data Results for NR n30 - ANT F

Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011	Test Coordinates
	Axial	10MHz	462000	2669M	7.70	-41.12	-59.35	2.00	48.82	20.00	-28.82	T4	1.4. 1.0
NR n30	Axiai	5MHz	462000	2669M	7.82	-39.44	-59.55	2.00	47.26	20.00	-27.26	T4	1.4, 1.0
NK 1130	Radial	10MHz	462000	2669M	0.42	-48.71	-59.52	N/A	49.13	20.00	-29.13	T4	1.4. 0.2
	Radiai	5MHz	462000	2669M	0.33	-48.99	-59.52	IVA	49.32	20.00	-29.32	T4	1.4, 0.2

Table 10-37 Raw Data Results for NR n7 - ANT B

Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		40MHz	507000	2669M	7.37	-40.73		2.00	48.10	20.00	-28.10	T4	
		30MHz	507000	2669M	7.30	-40.28		2.00	47.58	20.00	-27.58	T4	
		25MHz	507000	2669M	7.49	-40.48		2.00	47.97	20.00	-27.97	T4	
	Axial	20MHz	507000	2669M	7.65	-39.12	-59.35	2.00	46.77	20.00	-26.77	T4	1.4, 1.0
		15MHz	507000	2669M	7.38	-40.90		2.00	48.28	20.00	-28.28	T4	
		10MHz	507000	2669M	7.26	-40.78		2.00	48.04	20.00	-28.04	T4	
		5MHz	507000	2669M	7.47	-40.18		2.00	47.65	20.00	-27.65	T4	
NR n7		40MHz	507000	2669M	0.41	-46.16			46.57	20.00	-26.57	T4	
		30MHz	507000	2669M	0.44	-46.08			46.52	20.00	-26.52	T4	
		25MHz	507000	2669M	0.59	-44.56			45.15	20.00	-25.15	T4	
	Radial	20MHz	507000	2669M	0.60	-44.44	-59.52		45.04	20.00	-25.04	T4	1.4, 0.2
		15MHz	507000	2669M	0.53	-46.39			46.92	20.00	-26.92	T4	
		10MHz	507000	2669M	0.39	-46.42			46.81	20.00	-26.81	T4	
		5MHz	507000	2669M	0.61	-46.94			47.55	20.00	-27.55	T4	1

Table 10-38 Raw Data Results for NR n7 - ANT F

Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates											
		40MHz	507000	2669M	7.56	-40.56		2.00	48.12	20.00	-28.12	T4												
		30MHz	507000	2669M	7.74	-39.49		2.00	47.23	20.00	-27.23	T4												
		25MHz	507000	2669M	7.65	-39.72		2.00	47.37	20.00	-27.37	T4												
	Axial	20MHz	507000	2669M	7.55	-40.93	-59.35	2.00	48.48	20.00	-28.48	T4	1.4, 1.0											
		15MHz	507000	2669M	7.74	-38.89		2.00	46.63	20.00	-26.63	T4												
		10MHz	507000	2669M	7.46	-40.52		2.00	47.98	20.00	-27.98	T4												
ND -7		5MHz	507000	2669M	7.45	-40.68		2.00	48.13	20.00	-28.13	T4												
NR n7		40MHz	507000	2669M	0.38	-46.87			47.25	20.00	-27.25	T4												
		30MHz	507000	2669M	0.37	-45.40			45.77	20.00	-25.77	T4												
		25MHz	507000	2669M	0.43	-45.46			45.89	20.00	-25.89	T4												
	Radial	20MHz	507000	2669M	0.38	-45.14	-59.52		45.52	20.00	-25.52	T4	1.4, 0.2											
		15MHz	507000	2669M	0.37	-45.58	1	7 .								-45.58	-45.58	8			45.95	20.00	-25.95	T4
		10MHz	507000	2669M	0.31	-45.98			46.29	20.00	-26.29	T4												
		5MHz	507000	2669M	0.39	-45.81			46.20	20.00	-26.20	T4												

	alamant		Approved by:
FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Managing Director
Filename:	Test Dates:	DUT Type:	Page 48 of 119
1M2209010097-23.A3L	10/3/2022 - 11/8/2022	Portable Handset	Page 46 01 119

Table 10-39 Raw Data Results for NR n41 Power Class 2 - ANT B

Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates							
		100MHz	518598	2669M	7.41	-32.31		2.00	39.72	20.00	-19.72	T4								
		90MHz	518598	2669M	7.46	-30.49		2.00	37.95	20.00	-17.95	T4								
		80MHz	518598	2669M	7.20	-30.53		2.00	37.73	20.00	-17.73	T4								
		70MHz	518598	2669M	7.52	-30.26		2.00	37.78	20.00	-17.78	T4								
		60MHz	518598	2669M	7.32	-29.87		2.00	37.19	20.00	-17.19	T4								
	Axial	50MHz	518598	2669M	7.11	-30.28	-59.35	2.00	37.39	20.00	-17.39	T4	1.4, 1.0							
		40MHz	518598	2669M	7.61	-30.56		2.00	38.17	20.00	-18.17	T4								
		30MHz	518598	2669M	7.53	-30.39).39).42).51	2.00	37.92	20.00	-17.92	T4								
		20MHz	518598	2669M	7.48	-30.39		2.00	37.87	20.00	-17.87	T4								
		15MHz	518598	2669M	7.47	-30.42		2.00	37.89	20.00	-17.89	T4								
NR n41		10MHz	518598	2669M	7.41	-30.51		2.00	37.92	20.00	-17.92	T4								
(PC2)		100MHz	518598	2669M	0.28	-32.30				32.58	20.00	-12.58	T4							
		90MHz	518598	2669M	0.19	-32.30			32.49	20.00	-12.49	T4								
		80MHz	518598	2669M	0.27	-32.12			32.39	20.00	-12.39	T4								
		70MHz	518598	2669M	0.23	-31.88			32.11	20.00	-12.11	T4								
		60MHz	518598	2669M	0.31	-31.64			31.95	20.00	-11.95	T4								
	Radial	50MHz	518598	2669M	0.14	-31.49	-58.75	N/A	31.63	20.00	-11.63	T4	1.4, 0.2							
	radia	40MHz	518598	2669M	0.33	-31.85			32.18	20.00	-12.18	T4								
		30MHz	518598	2669M	0.27	-31.76	3					32.03	20.00	-12.03	T4					
		20MHz	518598	2669M	0.32	-31.78					8	′8				'8	78	78		32.10
		15MHz	518598	2669M	0.34	-31.65			31.99	20.00	-11.99	T4								
		10MHz	518598	2669M	0.20	-31.72			31.92	20.00	-11.92	T4								

Table 10-40 Raw Data Results for NR n41 Power Class 2 - ANT F

Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		100MHz	518598	2669M	7.63	-28.05		2.00	35.68	20.00	-15.68	T4	
		90MHz	518598	2669M	7.47	-28.01		2.00	35.48	20.00	-15.48	T4	
		80MHz	529998	2669M	7.64	-28.52		2.00	36.16	20.00	-16.16	T4	
		80MHz	524298	2669M	7.29	-27.79		2.00	35.08	20.00	-15.08	T4	
		80MHz	518598	2669M	7.33	-28.07		2.00	35.40	20.00	-15.40	T4	
		80MHz	512898	2669M	7.50	-29.67		2.00	37.17	20.00	-17.17	T4	
		80MHz	507204	2669M	7.60	-27.40		2.00	35.00	20.00	-15.00	T4	
	Axial	70MHz	518598	2669M	7.50	-27.94	-59.35	2.00	35.44	20.00	-15.44	T4	1.4, 1.0
		60MHz	518598	2669M	7.51	-29.51		2.00	37.02	20.00	-17.02	T4	
		50MHz	518598	2669M	7.46	-29.33		2.00	36.79	20.00	-16.79	T4	
		40MHz	518598	2669M	7.58	-30.09		2.00	37.67	20.00	-17.67	T4	
		30MHz	518598	2669M	7.69	-30.28	1	2.00	37.97	20.00	-17.97	T4	
NR n41		20MHz	518598	2669M	7.69	-30.02		2.00	37.71	20.00	-17.71	T4	
(PC2)		15MHz	518598	2669M	7.56	-30.09		2.00	37.65	20.00	-17.65	T4	
		10MHz	518598	2669M	7.64	-29.69		2.00	37.33	20.00	-17.33	T4	
		100MHz	518598	2669M	0.41	-25.35			25.76	20.00	-5.76	Т3	
		90MHz	518598	2669M	0.51	-25.33			25.84	20.00	-5.84	Т3	
		80MHz	518598	2669M	0.31	-25.34			25.65	20.00	-5.65	Т3	
		70MHz	518598	2669M	0.26	-25.29			25.55	20.00	-5.55	Т3	
		60MHz	518598	2669M	0.34	-26.75			27.09	20.00	-7.09	Т3	
	Radial	50MHz	518598	2669M	0.23	-26.67	-58.75	N/A	26.90	20.00	-6.90	Т3	1.4, 0.2
		40MHz	518598	2669M	0.35	-27.08			27.43	20.00	-7.43	Т3	
		30MHz	518598	2669M	0.28	-27.04			27.32	20.00	-7.32	Т3	
		20MHz	518598	2669M	0.24	-26.75			26.99	20.00	-6.99	Т3	
		15MHz	518598	2669M	0.50	-26.72			27.22	20.00	-7.22	Т3	
		10MHz	518598	2669M	0.50	-26.82			27.32	20.00	-7.32	T3	

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 49 of 119

Table 10-41 Raw Data Results for NR n77 DoD Power Class 2

			Itaw	Data N	Courto	IOI INIX	n// Dor	J I OWE	Class				
Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		100MHz	633334	2669M	7.65	-28.83		2.00	36.48	20.00	-16.48	T4	
		90MHz	633334	2669M	7.57	-29.30		2.00	36.87	20.00	-16.87	T4	
		80MHz	633334	2669M	7.56	-29.53		2.00	37.09	20.00	-17.09	T4	
		70MHz	633334	2669M	7.51	-29.49		2.00	37.00	20.00	-17.00	T4	
		60MHz	633334	2669M	7.58	-29.32		2.00	36.90	20.00	-16.90	T4	
	Axial	50MHz	633334	2669M	7.47	-29.36	-59.35	2.00	36.83	20.00	-16.83	T4	1.4, 1.0
	Axiai	40MHz	633334	2669M	7.48	-28.51	-59.55	2.00	35.99	20.00	-15.99	T4	1.4, 1.0
		30MHz	633334	2669M	7.58	-28.54		2.00	36.12	20.00	-16.12	T4	
		25MHz	633334	2669M	7.72	-28.80		2.00	36.52	20.00	-16.52	T4	
		20MHz	633334	2669M	7.50	-28.39		2.00	35.89	20.00	-15.89	T4	
		15MHz	633334	2669M	7.38	-28.50		2.00	35.88	20.00	-15.88	T4	
		10MHz	633334	2669M	7.45	-28.49		2.00	35.94	20.00	-15.94	T4	
		100MHz	633334	2669M	0.38	-24.25			24.63	20.00	-4.63	Т3	
NR n77,		90MHz	633334	2669M	0.36	-24.25			24.61	20.00	-4.61	Т3	
DOD		80MHz	633334	2669M	0.15	-24.57			24.72	20.00	-4.72	Т3	
		70MHz	633334	2669M	0.21	-24.42	1		24.63	20.00	-4.63	Т3	
		60MHz	633334	2669M	0.33	-24.33		24.66	20.00	-4.66	Т3		
		50MHz	633334	2669M	0.32	-24.42	1		24.74	20.00	-4.74	Т3	
		40MHz	633334	2669M	0.36	-23.64	1		24.00	20.00	-4.00	Т3	
	Radial	30MHz	633334	2669M	0.45	-23.71	50.75	N/A	24.16	20.00	-4.16	Т3	44.00
	Radiai	25MHz	633334	2669M	0.35	-23.70	-58.75	IN/A	24.05	20.00	-4.05	Т3	1.4, 0.2
		20MHz	636000	2669M	0.29	-23.74			24.03	20.00	-4.03	Т3	
		20MHz	634666	2669M	0.47	-24.06			24.53	20.00	-4.53	Т3	
		20MHz	633334	2669M	0.18	-23.76			23.94	20.00	-3.94	Т3	
		20MHz	632000	2669M	0.12	-23.25			23.37	20.00	-3.37	T3	1
		20MHz	630668	2669M	0.21	-23.25	25 77		23.46	20.00	-3.46	T3	1
		15MHz	633334	2669M	0.28	-23.77			24.05	20.00	-4.05	T3]
		10MHz	633334	2669M	0.41	-23.74			24.15	20.00	-4.15	Т3	

Table 10-42 Raw Data Results for NR n48

Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		40MHz	641666	2669M	7.64	-38.40		2.00	46.04	20.00	-26.04	T4	
		30MHz	641666	2669M	7.59	-38.46		2.00	46.05	20.00	-26.05	T4	
	Axial	20MHz	641666	2669M	7.50	-37.34	-59.35	2.00	44.84	20.00	-24.84	T4	1.4, 1.0
		15MHz	641666	2669M	7.37	-37.77		2.00	45.14	20.00	-25.14	T4	
NR n48		10MHz	641666	2669M	7.61	-36.76		2.00	44.37	20.00	-24.37	T4	
NK 1140		40MHz	641666	2669M	0.13	-33.72			33.85	20.00	-13.85	T4	
		30MHz	641666	2669M	0.10	-33.83			33.93	20.00	-13.93	T4	
	Radial	20MHz	641666	2669M	0.23	-33.74	-58.75	N/A	33.97	20.00	-13.97	T4	1.4, 0.2
		15MHz	641666	2669M	0.50	-33.81			34.31	20.00	-14.31	T4	
		10MHz	641666	2669M	0.20	-33.70			33.90	20.00	-13.90	T4	

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 50 of 119
1M2209010097-23.A3L	10/3/2022 - 11/8/2022	Portable Handset	Page 50 of 119

Table 10-43
Raw Data Results for NR n77 Power Class 2

				an batt	· · · · · ·	.0 .0	(IX 11// F	01101 0					
Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		100MHz	656000	2669M	7.64	-30.57		2.00	38.21	20.00	-18.21	T4	
		90MHz	656000	2669M	7.25	-31.37		2.00	38.62	20.00	-18.62	T4	
		80MHz	656000	2669M	7.57	-30.81		2.00	38.38	20.00	-18.38	T4	
		70MHz	656000	2669M	7.54	-30.82		2.00	38.36	20.00	-18.36	T4	
		60MHz	656000	2669M	7.34	-31.29		2.00	38.63	20.00	-18.63	T4	
	Axial	50MHz	656000	2669M	7.72	-29.96	-59.35	2.00	37.68	20.00	-17.68	T4	1.4, 1.0
	Axiai	40MHz	656000	2669M	7.57	-29.65	-59.55	2.00	37.22	20.00	-17.22	T4	1.4, 1.0
		30MHz	656000	2669M	7.46	-29.62		2.00	37.08	20.00	-17.08	T4	
		25MHz	656000	2669M	7.53	-29.97		2.00	37.50	20.00	-17.50	T4	
		20MHz	656000	2669M	7.49	-30.04		2.00	37.53	20.00	-17.53	T4	
		15MHz	656000	2669M	7.52	-29.78		2.00	37.30	20.00	-17.30	T4	
NR n77		10MHz	656000	2669M	7.31	-29.76		2.00	37.07	20.00	-17.07	T4	
(PC2)		100MHz	656000	2669M	0.20	-25.75			25.95	20.00	-5.95	Т3	
		90MHz	656000	2669M	0.32	-25.70			26.02	20.00	-6.02	Т3	
		80MHz	656000	2669M	0.21	-26.09			26.30	20.00	-6.30	Т3	
		70MHz	656000	2669M	0.34	-25.89			26.23	20.00	-6.23	Т3	
		60MHz	656000	2669M	0.18	-25.57			25.75	20.00	-5.75	Т3	
	Radial	50MHz	656000	2669M	0.32	-26.05	-59.52	N/A	26.37	20.00	-6.37	Т3	1.4, 0.2
	Italiai	40MHz	656000	2669M	0.42	-25.22	-09.02	IVA	25.64	20.00	-5.64	Т3	1.4, 0.2
		30MHz	656000	2669M	0.35	-25.24			25.59	20.00	-5.59	T3	
		25MHz	656000	2669M	0.37	-25.27			25.64	20.00	-5.64	T3	
		20MHz	656000	2669M	0.30	-25.37			25.67	20.00	-5.67	T3	
		15MHz	656000	2669M	0.40	-25.34			25.74	20.00	-5.74	T3	
		10MHz	656000	2669M	0.26	-25.30			25.56	20.00	-5.56	T3	

Table 10-44
Raw Data Results for 2.4GHz WIFI

				I TUIT D	utu itos	uits ioi 2		V				
Mode	Orientation	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
IEEE	Axial	6	2679M	3.26	-40.00	-60.50	2.00	43.26	20.00	-23.26	T4	1.4, 1.0
802.11b	Radial	6	2679M	-3.60	-38.75	-61.82	N/A	35.15	20.00	-15.15	T4	1.4, 0.2
IEEE	Axial	6	2679M	3.42	-40.90	-60.50	2.00	44.32	20.00	-24.32	T4	1.4, 1.0
802.11g	Radial	6	2679M	-4.08	-38.30	-61.82	N/A	34.22	20.00	-14.22	T4	1.4, 0.2
		1	2679M	3.13	-40.52		1.98	43.65	20.00	-23.65	T4	
IEEE	Axial	6	2679M	3.52	-39.62	-60.50	2.00	43.14	20.00	-23.14	T4	1.4, 1.0
802.11n		11	2679M	3.66	-40.47		1.92	44.13	20.00	-24.13	T4	
	Radial	6	2679M	-4.04	-38.80	-61.82	N/A	34.76	20.00	-14.76	T4	1.4, 0.2
	Axial	6	2679M	3.35	-39.86	-60.50	2.00	43.21	20.00	-23.21	T4	1.4, 1.0
IEEE		1	2679M	-4.07	-36.65			32.58	20.00	-12.58	T4	
802.11ax SU	Radial	6	2679M	-4.06	-37.82	-61.82	N/A	33.76	20.00	-13.76	T4	1.4, 0.2
		11	2679M	-4.16	-37.09			32.93	20.00	-12.93	T4	
IEEE	Axial	6	2679M	3.66	-40.23	-60.50	1.96	43.89	20.00	-23.89	T4	1.4, 1.0
802.11ax RU	Radial	6	2679M	-4.18	-38.76	-61.82	N/A	34.58	20.00	-14.58	T4	1.4, 0.2

Table 10-45 Raw Data Results for 5GHz WIFI IEEE 802.11a

Мо	ode	Orientation	Bandwidth	U-NII	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)		Test Coordinates
		Axial	20MHz	1	40	2679M	3.57	-39.65	-60.50	1.95	43.22	20.00	-23.22	T4	1.4, 1.0
IEEE 8	02.11a														
		Radial	20MHz	1	40	2679M	-4.02	-38.65	-61.82	N/A	34.63	20.00	-14.63	T4	1.4, 0.2

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 51 of 119

Table 10-46 Raw Data Results for 5GHz WIFI IEEE 802.11n

Mode	Orientation	Bandwidth	U-NII	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	Rating	Test Coordinates
	Axial	40MHz	1	38	2679M	3.50	-40.10	-60.50	2.00	43.60	20.00	-23.60	T4	1.4, 1.0
	7 Ducii	20MHz	1	40	2679M	3.76	-40.81	00.00	2.00	44.57	20.00	-24.57	T4	1.1, 1.0
		40MHz	1	38	2679M	-3.79	-40.78			36.99	20.00	-16.99	T4	
		20MHz	1	40	2679M	-3.53	-36.16			32.63	20.00	-12.63	T4	
		40MHz	2A	54	2679M	-4.26	-36.20	-61.82		31.94	20.00	-11.94	T4	
IEEE		20MHz	2A	56	2679M	-3.83	-36.07			32.24	20.00	-12.24	T4	
802.11n		40MHz	2C	118	2679M	-3.89	-37.16			33.27	20.00	-13.27	T4	
002.1111	Radial	20MHz	2C	100	2679M	-3.98	-35.42		N/A	31.44	20.00	-11.44	T4	1.4, 0.2
	Naulai	20MHz	2C	120	2679M	-4.14	-35.96	-01.02	IVA	31.82	20.00	-11.82	T4	1.4, 0.2
		20MHz	2C	144	2679M	-3.94	-36.83			32.89	20.00	-12.89	T4	
		40MHz	3	151	2679M	-3.87	-36.67			32.80	20.00	-12.80	T4	
		20MHz	3	157	2679M	-3.85	-37.38	3		33.53	20.00	-13.53	T4	
		40MHz	4	175	2679M	-4.07	-37.17			33.10	20.00	-13.10	T4	
		40MHz	4	177	2679M	-3.84	-36.68			32.84	20.00	-12.84	T4	

Table 10-47 Raw Data Results for 5GHz WIFI IEEE 802.11ac

Mode	Orientation	Bandwidth	U-NII	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
	Avial	40MHz	1	38	2679M	3.36	-39.55	-60.50	1.94	42.91	20.00	-22.91	T4	1.4, 1.0
Axial	20MHz	1	40	2679M	3.82	-39.37	-60.50	1.95	43.19	20.00	-23.19	T4	1.4, 1.0	
802.11ac														
002.1140	Dodial	40MHz	1	38	2679M	-3.61	-38.86	61.00	NVA	35.25	20.00	-15.25	T4	1.4. 0.2
Radial	20MHz	1	40	2679M	-3.96	-37.59 -61.82	-61.82 N/A	33.63	20.00	-13.63	T4	1.4, 0.2		

Table 10-48 Raw Data Results for 5GHz WIFI IEEE 802.11ax

				INGW D	ala Nes	uito io		. ****		I IUA				
Mode	Orientation	Bandwidth	U-NII	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		40MHz	1	38	2679M	3.20	-39.77		2.00	42.97	20.00	-22.97	T4	
		20MHz	1	40	2679M	3.16	-39.73		1.98	42.89	20.00	-22.89	T4	
		40MHz	2A	54	2679M	3.06	-38.84		2.00	41.90	20.00	-21.90	T4	
		20MHz	2A	56	2679M	3.02	-39.32		2.00	42.34	20.00	-22.34	T4	
		40MHz	2C	110	2679M	3.11	-39.04		2.00	42.15	20.00	-22.15	T4	
		20MHz	2C	116	2679M	3.24	-38.24		1.91	41.48	20.00	-21.48	T4	
	Axial	40MHz	3	151	2679M	3.19	-38.00	-61.17	2.00	41.19	20.00	-21.19	T4	1.4, 1.0
		40MHz	3	159	2679M	3.19	-39.68		1.90	42.87	20.00	-22.87	T4	ĺ
IEEE		20MHz	3	157	2679M	3.21	-39.45		2.00	42.66	20.00	-22.66	T4	
802.11ax SU		40MHz	4	175	2679M	2.77	-39.85		1.95	42.62	20.00	-22.62	T4	ĺ
		20MHz	4	177	2679M	2.96	-39.26		2.00	42.22	20.00	-22.22	T4	
		40MHz	5	3	2679M	2.86	-39.10		1.94	41.96	20.00	-21.96	T4	ĺ
		20MHz	5	5	2679M	2.75	-39.15		1.99	41.90	20.00	-21.90	T4	
		40MHz	1	38	2679M	-4.22	-38.69		NIA	34.47	20.00	-14.47	T4	
	Radial	20MHz	1	40	2679M	-4.16	-38.07	04.00		33.91	20.00	-13.91	T4	4400
	Radiai	40MHz	5	3	2679M	-3.85	-38.55	-61.82	N/A	34.70	20.00	-14.70	T4	1.4, 0.2
		20MHz	5	5	2679M	-4.23	-37.95			33.72	20.00	-13.72	T4	
		40MHz	1	38	2679M	3.19	-39.81		2.00	43.00	20.00	-23.00	T4	
	A	20MHz	1	40	2679M	3.19	-39.77	-61.17	2.00	42.96	20.00	-22.96	T4	1.4, 1.0
	Axial	40MHz	5	3	2679M	3.01	-39.43	-01.17	2.00	42.44	20.00	-22.44	T4	1.4, 1.0
		20MHz	5	5	2679M	2.79	-39.19		1.94	41.98	20.00	-21.98	T4	
IEEE 802.11ax RU														
002. 1 18X RU		40MHz	1	38	2679M	-4.20	-38.19	-61.82		33.99	20.00	-13.99	T4	
	Destin	20MHz	1	40	2679M	-4.20	-39.18		N/ 0	34.98	20.00	-14.98	T4	4400
	Radial	40MHz	5	3	2679M	-4.34	-39.57		N/A	35.23	20.00	-15.23	T4	1.4, 0.2
		20MHz	5	5	2679M	-4.10	-38.86		34.76	20.00	-14.76	T4		

Table 10-49 Raw Data Results for EDGE (OTT VoIP)

Mode	Orientation	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
EDGE850	Axial	190	2679M	8.18	-28.51	-61.82	1.40	36.69	20.00	-16.69	T4	1.4, 1.0
EDGE030	Radial	190	2679M	-0.49	-26.12	-61.75	N/A	25.63	20.00	-5.63	Т3	1.4, 0.2
EDGE1900	Axial	661	2679M	7.70	-29.56	-61.82	1.45	37.26	20.00	-17.26	T4	1.4, 1.0
EDGE1900	Radial	661	2679M	-0.23	-30.85	-61.75	N/A	30.62	20.00	-10.62	T4	1.4, 0.2

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by:
FCC ID. ASESMISS 100	G cicilicin	HAC (1-COIL) TEST REPORT	Managing Director
Filename:	Test Dates:	DUT Type:	Page 52 of 119
1M2209010097-23.A3L	10/3/2022 - 11/8/2022	Portable Handset	Fage 52 01 119

Table 10-50 Raw Data Results for HSPA (OTT VoIP)

				<u> </u>		<u> </u>	. <i>.</i> . , .	, , , , , , , , , , , , , , , , , , ,					
Mode	Orientation	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates	
HSPA V	Axial	4183	2679M	7.88	-41.62	-61.37	1.18	49.50	20.00	-29.50	T4	1.4, 1.0	
пога у	Radial	4183	2679M	0.16	-41.54	-61.78	N/A	41.70	20.00	-21.70	T4	1.4, 0.2	
HSPA IV	Axial	1412	2679M	8.00	-42.02	-61.37	1.24	50.02	20.00	-30.02	T4	1.4, 1.0	
HOPAIV	Radial	1412	2679M	-0.72	-41.96	-61.78	N/A	41.24	20.00	-21.24	T4	1.4, 0.2	
HSPA II	Axial	9400	2679M	7.94	-42.28	-61.37	1.31	50.22	20.00	-30.22	T4	1.4, 1.0	
пораш	Radial	9400	2679M	-0.01	-42.55	-61.78	N/A	42.54	20.00	-22.54	T4	1.4, 0.2	

Table 10-51 Raw Data Results for LTE FDD B66 - ANT F (OTT VoIP)

Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	132322	2679M	8.16	-29.99		1.28	38.15	20.00	-18.15	T4	
		15MHz	132322	2679M	8.00	-30.28		1.26	38.28	20.00	-18.28	T4	
		10MHz	132322	2679M	7.89	-29.92		1.55	37.81	20.00	-17.81	T4	
	Axial	5MHz	132322	2679M	7.95	-29.78	-61.82	1.39	37.73	20.00	-17.73	T4	1.4, 1.0
	Axidi	3MHz	132322	2679M	7.79	-29.89	-01.02	1.49	37.68	20.00	-17.68	T4	1.4, 1.0
		1.4MHz	132665	2679M	7.79	-29.04		1.46	36.83	20.00	-16.83	T4	1
		1.4MHz	132322	2679M	7.76	-29.81		1.57	37.57	20.00	-17.57	T4	1
LTE Band 66		1.4MHz	131979	2679M	7.84	-29.55		1.50	37.39	20.00	-17.39	T4	1
LIE Band 66		20MHz	132322	2679M	-0.35	-36.27			35.92	20.00	-15.92	T4	
		15MHz	132322	2679M	-0.11	-36.01			35.90	20.00	-15.90	T4	
		10MHz	132322	2679M	-0.40	-36.56			36.16	20.00	-16.16	T4	
	Radial	5MHz	132322	2679M	-0.51	-36.35	-61.75	N/A	35.84	20.00	-15.84	T4	1.4, 0.2
	Radiai	3MHz	132657	2679M	-0.50	-35.41	-01.75	IN/A	34.91	20.00	-14.91	T4	1.4, 0.2
		3MHz	132322	2679M	-0.40	-36.07			35.67	20.00	-15.67	T4]
		3MHz	131987	2679M	-0.36	-36.53			36.17	20.00	-16.17	T4]
		1.4MHz	132322	2679M	-0.27	-36.57			36.30	20.00	-16.30	T4	

Table 10-52 Raw Data Results for LTE TDD B41 (PC2) - ANT F (OTT VolP)

		114	w Data	rtocuito			,	_, ,					
Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	40620	2679M	7.93	-22.53		1.35	30.46	20.00	-10.46	T4	
		15MHz	40620	2679M	7.88	-22.54		1.43	30.42	20.00	-10.42	T4	
		10MHz	41490	2679M	7.76	-22.83		1.49	30.59	20.00	-10.59	T4	
	Axial	10MHz	41055	2679M	7.77	-20.91	-61.82	1.42	28.68	20.00	-8.68	Т3	1.4, 1.0
	Axidi	10MHz	40620	2679M	7.81	-22.49	-01.02	1.33	30.30	20.00	-10.30	T4	1.4, 1.0
		10MHz	40185	2679M	7.79	-22.35		1.21	30.14	20.00	-10.14	T4	
		10MHz	39750	2679M	7.82	-21.04		1.49	28.86	20.00	-8.86	Т3	
LTE Band 41		5MHz	40620	2679M	7.87	-22.51		1.47	30.38	20.00	-10.38	T4	
(PC2)		20MHz	40620	2679M	-0.13	-27.63			27.50	20.00	-7.50	Т3	
		15MHz	40620	2679M	-0.29	-27.81			27.52	20.00	-7.52	Т3	
		10MHz	41490	2679M	-0.14	-27.88			27.74	20.00	-7.74	Т3	
	Radial	10MHz	41055	2679M	-0.44	-25.83	-61.75	N/A	25.39	20.00	-5.39	Т3	1.4, 0.2
	radiai	10MHz	40620	2679M	-0.39	-27.58	-01.75	IWA	27.19	20.00	-7.19	T3	1.4, 0.2
		10MHz	40185	2679M	-0.19	-27.48			27.29	20.00	-7.29	T3	
		10MHz	39750	2679M	-0.32	-26.09	9		25.77	20.00	-5.77	T3	
		5MHz	40620	2679M	-0.35	-27.62			27.27	20.00	-7.27	Т3	

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by:
			Managing Director
Filename:	Test Dates:	DUT Type:	Page 53 of 119
1M2209010097-23.A3L	10/3/2022 - 11/8/2022	Portable Handset	rage 55 of 119

Table 10-53 Raw Data Results for NR FDD n66 - ANT A (OTT VoIP)

	Naw Data Results for MRT DD floo - AMT A (OTT VOIL)												
Mode	Orientation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		40MHz	349000	2669M	7.99	-36.30		1.13	44.29	20.00	-24.29	T4	
		30MHz	349000	2669M	7.60	-36.91		1.17	44.51	20.00	-24.51	T4	
		25MHz	353500	2669M	8.51	-33.95		1.22	42.46	20.00	-22.46	T4	
		25MHz	349000	2669M	8.08	-36.16		1.24	44.24	20.00	-24.24	T4	
	Axial	25MHz	344500	2669M	8.28	-34.45	-59.79	1.46	42.73	20.00	-22.73	T4	1.4, 1.0
		20MHz	349000	2669M	7.84	-37.12		1.23	44.96	20.00	-24.96	T4	
		15MHz	349000	2669M	7.76	-36.92		1.41	44.68	20.00	-24.68	T4	
		10MHz	349000	2669M	7.81	-38.61		1.27	46.42	20.00	-26.42	T4	
NR n66		5MHz	349000	2669M	8.18	-38.52		1.30	46.70	20.00	-26.70	T4	
INK 1100		40MHz	349000	2669M	0.02	-43.50			43.52	20.00	-23.52	T4	
		30MHz	349000	2669M	0.17	-43.19			43.36	20.00	-23.36	T4	
		25MHz	353500	2669M	0.60	-42.25			42.85	20.00	-22.85	T4	
		25MHz	349000	2669M	0.08	-42.93			43.01	20.00	-23.01	T4	
	Radial	25MHz	344500	2669M	0.24	-42.14	-59.33	N/A	42.38	20.00	-22.38	T4	1.4, 0.2
		20MHz	349000	2669M	0.45	-43.76			44.21	20.00	-24.21	T4	
		15MHz	349000	2669M	0.45	-44.15			44.60	20.00	-24.60	T4	
		10MHz	349000	2669M	0.54	-44.01			44.55	20.00	-24.55	T4	
		5MHz	349000	2669M	0.25	-43.98			44.23	20.00	-24.23	T4	

Table 10-54 Raw Data Results for NR TDD n77 (DoD. PC2) (OTT VoIP)

Mode	Orientation												
	Onemation	Bandwidth	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		100MHz	633334	2669M	7.90	-29.92		1.48	37.82	20.00	-17.82	T4	
		90MHz	633334	2669M	8.07	-29.92		1.20	37.99	20.00	-17.99	T4	
		80MHz	633334	2669M	8.13	-29.96		1.58	38.09	20.00	-18.09	T4	
		70MHz	633334	2669M	8.04	-30.06		1.39	38.10	20.00	-18.10	T4	
		60MHz	633334	2669M	8.22	-29.91		1.16	38.13	20.00	-18.13	T4	
		50MHz	633334	2669M	8.16	-29.92		1.58	38.08	20.00	-18.08	T4	
		40MHz	633334	2669M	8.09	-28.94		1.41	37.03	20.00	-17.03	T4	
	Axial	30MHz	633334	2669M	8.09	-29.27	-59.79	1.08	37.36	20.00	-17.36	T4	1.4, 1.0
	Axiai	25MHz	633334	2669M	8.20	-29.20	-39.79	1.13	37.40	20.00	-17.40	T4	1.4, 1.0
		20MHz	633334	2669M	8.16	-29.32		1.09	37.48	20.00	-17.48	T4	
		15MHz	636166	2669M	7.74	-29.50		1.45	37.24	20.00	-17.24	T4	
		15MHz	634750	2669M	8.00	-30.17		1.31	38.17	20.00	-18.17	T4	
		15MHz	633334	2669M	7.83	-29.00		1.62	36.83	20.00	-16.83	T4	
		15MHz	631916	2669M	7.84	-29.80		1.70	37.64	20.00	-17.64	T4	
		15MHz	630500	2669M	8.08	-29.80		1.47	37.88	20.00	-17.88	T4	
NR n77 DoD		10MHz	633334	2669M	8.20	-29.26	_	1.17	37.46	20.00	-17.46	T4	
(PC2)		100MHz	633334	2669M	0.10	-25.00			25.10	20.00	-5.10	Т3	
		90MHz	633334	2669M	0.04	-25.05			25.09	20.00	-5.09	Т3	
		80MHz	633334	2669M	0.52	-25.14			25.66	20.00	-5.66	Т3	
		70MHz	633334	2669M	0.11	-25.09			25.20	20.00	-5.20	Т3	
		60MHz	633334	2669M	0.54	-25.04			25.58	20.00	-5.58	Т3	
		50MHz	633334	2669M	0.56	-24.98			25.54	20.00	-5.54	Т3	
		40MHz	633334	2669M	0.54	-24.51			25.05	20.00	-5.05	Т3	
	Radial	30MHz	633334	2669M	0.54	-24.52	-59.33	N/A	25.06	20.00	-5.06	Т3	1.4, 0.2
	Raulai	25MHz	633334	2669M	0.06	-24.98	-59.55	INA	25.04	20.00	-5.04	Т3	1.4, 0.2
		20MHz	633334	2669M	0.31	-24.54			24.85	20.00	-4.85	T3	
		15MHz	636166	2669M	0.46	-24.53			24.99	20.00	-4.99	Т3	
		15MHz	634750	2669M	0.11	-24.75			24.86	20.00	-4.86	Т3	
		15MHz	633334	2669M	0.10	-24.53			24.63	20.00	-4.63	Т3	
		15MHz	631916	2669M	0.42	-23.93			24.35	20.00	-4.35	Т3	
		15MHz	630500	2669M	0.52	-23.25			23.77	20.00	-3.77	Т3	
		10MHz	633334	2669M	0.24	-24.46			24.70	20.00	-4.70	Т3	

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 54 of 119
1M2209010097-23.A3L	10/3/2022 - 11/8/2022	Portable Handset	3 -

Table 10-55 Raw Data Results for 2.4GHz WIFI (OTT VoIP)

	Raw Data Results for 2.4GHZ WIFT (OTT VOIP)											
Mode	Orientation	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		1	2679M	8.01	-37.96		1.32	45.97	20.00	-25.97	T4	
	Axial	6	2679M	8.12	-38.16	-61.37	1.31	46.28	20.00	-26.28	T4	1.4, 1.0
IEEE		11	2679M	7.95	-37.73		1.49	45.68	20.00	-25.68	T4	
802.11b		1	2679M	-0.10	-40.37			40.27	20.00	-20.27	T4	
	Radial	6	2679M	-0.31	-40.40	-61.78	N/A	40.09	20.00	-20.09	T4	1.4, 0.2
		11	2679M	-0.39	-40.50			40.11	20.00	-20.11	T4	
IEEE	Axial	6	2679M	8.11	-39.81	-61.37	1.41	47.92	20.00	-27.92	T4	1.4, 1.0
802.11g	Radial	6	2679M	-0.57	-43.08	-61.78	N/A	42.51	20.00	-22.51	T4	1.4, 0.2
IEEE	Axial	6	2679M	8.61	-41.13	-61.37	1.68	49.74	20.00	-29.74	T4	1.4, 1.0
802.11n	Radial	6	2679M	-0.52	-41.67	-61.78	N/A	41.15	20.00	-21.15	T4	1.4, 0.2
IEEE	Axial	6	2679M	8.01	-40.35	-61.37	1.43	48.36	20.00	-28.36	T4	1.4, 1.0
802.11ax SU	Radial	6	2679M	-0.18	-42.10	-61.78	N/A	41.92	20.00	-21.92	T4	1.4, 0.2
IEEE	Axial	6	2679M	8.25	-40.71	-61.37	1.42	48.96	20.00	-28.96	T4	1.4, 1.0
802.11ax RU	Radial	6	2679M	-0.15	-40.65	-61.78	N/A	40.50	20.00	-20.50	T4	1.4, 0.2

Table 10-56

Raw Data Results for 5GHz WIFI IEEE 802.11a (OTT VoIP)

Mode	Orientation	Bandwidth	U-NII	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011	Test Coordinates
IEEE	Axial	20MHz	1	40	2679M	7.83	-40.19	-61.37	1.48	48.02	20.00	-28.02	T4	1.4, 1.0
802.11a														
002.11a	Radial	20MHz	1	40	2679M	-0.13	-40.28	-61.78	N/A	40.15	20.00	-20.15	T4	1.4, 0.2

Table 10-57

Raw Data Results for 5GHz WIFI IEEE 802.11n (OTT VoIP)

Мо	de	Orientation	Bandwidth	U-NII	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		Axial	40MHz	1	38	2679M	8.00	-40.14	-61.37	1.36	48.14	20.00	-28.14	T4	1.4, 1.0
IEI		Axiai	20MHz	1	40	2679M	7.85	-41.05	-01.37	1.23	48.90	20.00	-28.90	T4	1.4, 1.0
802.															
002.		Radial	40MHz	1	38	2679M	-0.42	-41.12	-61.78	N/A	40.70	20.00	-20.70	T4	1.4, 0.2
		rvadiai	20MHz	1	40	2679M	-0.21	-41.22	-01.76	IVA	41.01	20.00	-21.01	T4	1.4, 0.2

Table 10-58

Raw Data Results for 5GHz WIFLIFFF 802 11ac (OTT VolP)

			Raw	Data Re	รอนแอ เ	u agn	Z VVIFI		72. I I a C	(OII)	VOIP)			
Mode	Orientation	Bandwidth	U-NII	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		40MHz	1	38	2679M	8.04	-39.30		1.51	47.34	20.00	-27.34	T4	
		20MHz	1	36	2679M	8.08	-40.53		2.00	48.61	20.00	-28.61	T4	
		20MHz	1	40	2679M	7.91	-39.42		1.38	47.33	20.00	-27.33	T4	
		20MHz	1	48	2679M	8.33	-40.23		2.00	48.56	20.00	-28.56	T4	
		40MHz	2A	54	2679M	7.60	-40.55		1.24	48.15	20.00	-28.15	T4	
	Axial	20MHz	2A	56	2679M	7.75	-40.20	-61.37	1.41	47.95	20.00	-27.95	T4	1.4, 1.0
	Polici	40MHz	2C	110	2679M	7.81	-40.99	-01.07	1.31	48.80	20.00	-28.80	T4	1.4, 1.0
		20MHz	2C	116	2679M	7.95	-40.86		1.37	48.81	20.00	-28.81	T4	
		40MHz	3	151	2679M	7.95	-39.51		1.38	47.46	20.00	-27.46	T4	
		20MHz	3	157	2679M	7.87	-39.56		1.24	47.43	20.00	-27.43	T4	
		40MHz	4	175	2679M	7.77	-40.62		1.39	48.39	20.00	-28.39	T4	
IEEE		20MHz	4	177	2679M	7.83	-40.93		1.29	48.76	20.00	-28.76	T4	
802.11ac														
002.1100		40MHz	1	38	2679M	-0.21	-40.80			40.59	20.00	-20.59	T4	
		20MHz	1	36	2679M	-0.20	-40.45			40.25	20.00	-20.25	T4	
		20MHz	1	40	2679M	-0.19	-39.67			39.48	20.00	-19.48	T4	
		20MHz	1	48	2679M	-0.27	-41.26			40.99	20.00	-20.99	T4	
	Radial	40MHz	2A	54	2679M	-0.10	-40.19			40.09	20.00	-20.09	T4	
	Naulai	20MHz	2A	56	2679M	-0.41	-40.63	-61.78	N/A	40.22	20.00	-20.22	T4	1.4, 0.2
		40MHz	2C	110	2679M	-0.12	-41.03	-01.76	IVA	40.91	20.00	-20.91	T4	1.4, 0.2
		20MHz	2C	116	2679M	-0.66	-41.06			40.40	20.00	-20.40	T4	
		40MHz	3	151	2679M	-0.56	-40.63			40.07	20.00	-20.07	T4	
		20MHz	3	157	2679M	-0.23	-40.62			40.39	20.00	-20.39	T4	
		40MHz	4	175	2679M	-0.14	-39.67			39.53	20.00	-19.53	T4	
		20MHz	4	177	2679M	-0.60	-40.79			40.19	20.00	-20.19	T4	

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 55 of 119

Table 10-59 Raw Data Results for 5GHz WIFI IEEE 802.11ax (OTT VoIP)

			I La VV	Data Ne	Jourto I	JI JUII	~ ** !! !		Z. I Iax	(011)	<i>,</i> OII <i>j</i>			
Mode	Orientation	Bandwidth	U-NII	Channel	Device SN	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		40MHz	1	38	2679M	7.82	-40.50		1.39	48.32	20.00	-28.32	T4	
	Axial	20MHz	1	40	2679M	7.80	-40.27	-61.37	1.43	48.07	20.00	-28.07	T4	1.4, 1.0
IEEE	Axiai	40MHz	5	3	2679M	7.92	-39.45	-01.37	1.39	47.37	20.00	-27.37	T4	1.4, 1.0
802.11ax SU		20MHz	5	5	2679M	8.26	-39.78		1.99	48.04	20.00	-28.04	T4	
002.11ax 30														
		40MHz	1	38	2679M	-0.20	-40.83			40.63	20.00	-20.63	T4	
	Radial	20MHz	1	40	2679M	-0.65	-40.94	-61.78	N/A	40.29	20.00	-20.29	T4	1.4, 0.2
	Raulai	40MHz	5	3	2679M	-0.70	-41.68	-01.76	IVA	40.98	20.00	-20.98	T4	1.4, 0.2
		20MHz	5	5	2679M	-0.49	-40.94			40.45	20.00	-20.45	T4	
		40MHz	1	38	2679M	7.85	-40.73		1.40	48.58	20.00	-28.58	T4	
	Axial	20MHz	1	40	2679M	7.93	-40.12	-61.37	1.47	48.05	20.00	-28.05	T4	1.4, 1.0
IEEE	Axiai	40MHz	5	3	2679M	8.11	-40.05	-01.37	1.10	48.16	20.00	-28.16	T4	1.4, 1.0
802.11ax RU		20MHz	5	5	2679M	8.20	-40.18		1.97	48.38	20.00	-28.38	T4	
002.11ax RO														
		40MHz	1	38	2679M	-0.15	-40.45			40.30	20.00	-20.30	T4	
	Radial	20MHz	1	40	2679M	-0.17	-40.19	-61.78	N/A	40.02	20.00	-20.02	T4	14.02
	Radiai	40MHz	5	3	2679M	-0.30	-41.22		IWA	40.92	20.00	-20.92	T4	1.4, 0.2
		20MHz	5	5	2679M	-0.47	-41.15			40.68	20.00	-20.68	T4	

II. **Test Notes**

A. General

- 1. Phone Condition: Mute on; Backlight off; Max Volume; Max Contrast
- 2. 'Radial' orientation refers to radial transverse.
- 3. Hearing Aid Mode (Phone → Call settings → Other call settings → Hearing aid compatibility) was set to ON for Frequency Response compliance
- 4. Speech Signal: 3GPP2 Normal Test Signal
- 5. Bluetooth and WIFI were disabled while testing 2G/3G/4G/5G modes.
- 6. Licensed data modes and Bluetooth were disabled while testing WIFI modes.
- 7. The Margin from FCC limit column indicates a margin from the FCC limit for compliance (T3).

B. GSM

- 1. Power Configuration: GSM850: PCL=5, GSM1900: PCL=0;
- 2. Vocoder Configuration: EFR (GSM);

C. UMTS

- 1. Power Configuration: TPC= "All 1s";
- 2. Vocoder Configuration: WB AMR 6.60kbps (UMTS);

D. LTE FDD

- 1. Power Configuration: TPC = "Max Power"
- 2. Radio Configuration: 16QAM, 1RB, 50%RB offset
- 3. Vocoder Configuration: WB AMR 6.60kbps
- 4. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low and high channels for those combinations. LTE Band 66 - ANT F at 20MHz is the worstcase for both the Axial and Radial probe orientations.

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 56 of 119
1M2209010097-23.A3L	10/3/2022 - 11/8/2022	Portable Handset	

E. LTE TDD

- 1. Power Configuration: TPC = "Max Power"
- 2. Radio Configuration: 16QAM, 1RB, 50%RB offset
- 3. Power Class 3 Uplink-Downlink configuration: 2
- 4. Power Class 2 Uplink-Downlink configuration: 2
- 5. Vocoder Configuration: WB AMR 6.60kbps
- 6. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low, low-mid, high-mid, and high channels for those combinations. LTE Band 41 (Power Class 2) ANT F at 20MHz is the worst-case for both the Axial and Radial probe orientations.

F. NR FDD

- 1. Power Configuration: TPC = "Max Power"
- 2. Radio Configuration: CP-OFDM, QPSK, 1RB, 99%RB offset
- 3. Vocoder Configuration: WB AMR 6.60kbps
- 4. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low and high channels for those combinations. NR n25 ANT F at 30MHz is the worst-case for both the Axial and Radial probe orientations.

G. NR TDD

- 1. Power Configuration: TPC = "Max Power"
- 2. Radio Configuration: CP-OFDM, QPSK, 1RB, 99%RB offset
- 3. Vocoder Configuration: WB AMR 6.60kbps
- 4. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low, low-mid, high-mid, and high channels for those combinations. NR n41 (Power Class 2) ANT F at 80MHz is the worst-case for the Axial probe orientation. NR n77 DoD (Power Class 2) ANT F at 20MHz is the worst-case for the Radial probe orientation.

H. WIFI

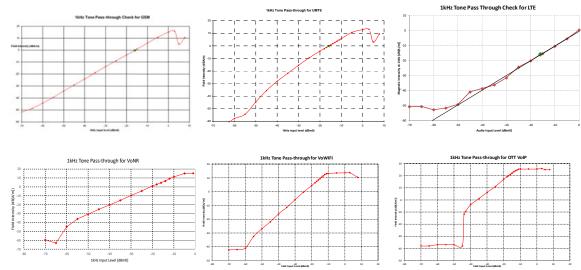
- 1. Radio Configuration
 - a. IEEE 802.11b: DSSS, 2Mbps
 - b. IEEE 802.11g/a: BPSK, 6Mbps
 - c. IEEE 802.11n/ac 20MHz: QPSK, MCS 1
 - d. IEEE 802.11ax SU 20MHz: QPSK, MCS 1
 - e. IEEE 802.11n/ac 40MHz: QPSK, MCS 2
 - f. IEEE 802.11ax SU 40MHz: BPSK, MCS 0

2. RU Index

- a. IEEE 802.11ax RU 20MHz: RU Index 0
- b. IEEE 802.11ax RU 40MHz: RU Index 44
- 3. Vocoder Configuration: WB AMR 6.60kbps
- 4. The worst-case standard for 2.4GHz WIFI in each probe orientation is additionally tested on the low and high channels. IEEE 802.11n is the worst-case for the Axial probe orientation. IEEE 802.11ax SU is the worst-case for the Radial probe orientation.
- 5. The worst-case standard for 5GHz WIFI in each probe orientation is additionally tested on higher U-NII bands as well as applicable low and high channels. IEEE 802.11ax SU 40MHz (U-NII 3) is the worst-case for the Axial probe orientation. IEEE 802.11n 20MHz (U-NII 2C) is the worst-case for the Radial probe orientation.
- 6. U-NII 5 testing was performed using IEEE 802.11ax, because no other IEEE standard supports U-NII 5 operations.

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 57 of 119

I. OTT VoIP


- 1. Vocoder Configuration: 6kbps
- 2. EDGE Configuration
 - a. MCS Index: 7
 - b. Number of TX slots: 2
- 3. HSPA Configuration:
 - a. Release: 6
 - b. 3GPP 34.121 Subtest 1
- 4. LTE FDD Configuration:
 - a. Power Configuration: TPC = "Max Power"
 - b. Radio Configuration: 16QAM, 1RB, 50%RB offset
 - c. LTE Band 66 ANT F was the worst-case band from Table 8-6 and was used to test both Axial and Radial probe orientations.
 - d. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low and high channels for those combinations. LTE Band 66 -ANT F at 1.4MHz is the worst-case for the Axial probe orientation. LTE Band 66 - ANT F at 3MHz is the worst-case for the Radial probe orientation.
- 5. LTE TDD Configuration:
 - a. Power Configuration: TPC = "Max Power"
 - b. Radio Configuration: 16QAM, 1RB, 50%RB offset
 - c. Power Class 2 Uplink-Downlink configuration: 2
 - d. LTE Band 41 (Power Class 2) ANT F was the worst-case band from Table 8-7 and was used to test both Axial and Radial probe orientations.
 - e. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low, low-mid, high-mid, and high channels for those combinations. LTE Band 41 (Power Class 2) - ANT F at 10MHz is the worst-case for both the Axial and Radial probe orientations.
- 6. NR FDD Configuration:
 - a. Power Configuration: TPC = "Max Power"
 - b. Radio Configuration: CP-OFDM, QPSK, 1RB, 99%RB offset
 - c. NR n66 ANT A was the worst-case band from Table 8-10 and was used to test both Axial and Radial probe orientations.
 - d. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low and high channels for those combinations. NR n66 - ANT A at 25MHz is the worst-case for both the Axial and Radial probe orientations.
- 7. NR TDD Configuration:
 - a. Power Configuration: TPC = "Max Power"
 - b. Radio Configuration: CP-OFDM, QPSK, 1RB, 99%RB offset
 - NR n77 (DoD, Power Class 2) was the worst-case band from Table 8-11 and was used to test both Axial and Radial probe orientations.
 - The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low, low-mid, high-mid, and high channels for those combinations. NR n77 (DoD, Power Class 2) at 15MHz is the worst-case for both the Axial and Radial probe orientations.

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 58 of 119

8. WIFI Configuration:

- a. Radio Configuration
 - i. IEEE 802.11b: DSSS, 2Mbps
 - ii. IEEE 802.11g/a: BPSK, 6Mbps
 - iii. IEEE 802.11n/ac 20MHz; QPSK, MCS 1
 - iv. IEEE 802.11ax SU 20MHz: QPSK, MCS 1
 - v. IEEE 802.11n/ac 40MHz: QPSK, MCS 2
 - vi. IEEE 802.11ax SU 40MHz: BPSK, MCS 0
- b. RU Index
 - i. IEEE 802.11ax RU 20MHz: RU Index 0
 - ii. IEEE 802.11ax RU 40MHz: RU Index 44
- c. The worst-case standard for 2.4GHz WIFI in each probe orientation is additionally tested on the low and high channels. IEEE 802.11b is the worst-case for both the Axial and Radial probe orientations.
- d. The worst-case standard for 5GHz WIFI in each probe orientation is additionally tested on higher U-NII bands as well as applicable low and high channels. IEEE 802.11ac 20MHz (U-NII 1) is the worst-case for both the Axial and Radial probe orientations.
- e. U-NII 5 testing was performed using IEEE 802.11ax, because no other IEEE standard supports U-NII 5 operations.

III. 1 kHz Vocoder Application Check

This model was verified to be within the linear region for ABM1 measurements at -16 dBm0 for GSM, UMTS, and VoLTE over IMS, and VoNR over IMS. This model was verified to be within the linear region for ABM1 measurements at -20dBm0 for VoWIFI over IMS and OTT VoIP. This measurement was taken in the axial configuration above the maximum location.

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 59 of 119

IV. T-Coil Validation Test Results

Table 10-60
Helmholtz Coil Verification Table of Results – 10/03/2022 (TEM 1)

TICIIIIIOILE COII VETITICA	tion rabio of recount	3 10/00/2022 (12	/
ltem	Target	Result	Verdict
Axial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-10.200	PASS
Environmental Noise	< -58 dBA/m	-60.50	PASS
Frequency Response, from limits	> 0 dB	0.70	PASS
Radial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-10.149	PASS
Environmental Noise	< -58 dBA/m	-60.93	PASS
Frequency Response, from limits	> 0 dB	0.70	PASS

Table 10-61
Helmholtz Coil Verification Table of Results – 10/10/2022 (TEM 1)

Item	Target	Result	Verdict
Axial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-10.184	PASS
Environmental Noise	< -58 dBA/m	-61.17	PASS
Frequency Response, from limits	> 0 dB	0.70	PASS
Radial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-10.127	PASS
Environmental Noise	< -58 dBA/m	-61.82	PASS
Frequency Response, from limits	> 0 dB	0.70	PASS

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 60 of 119

Table 10-62 Helmholtz Coil Verification Table of Results - 10/17/2022 (TEM 2)

Item	Target	Result	Verdict
Axial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-9.931	PASS
Environmental Noise	< -58 dBA/m	-61.82	PASS
Frequency Response, from limits	> 0 dB	0.70	PASS
Radial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-9.899	PASS
Environmental Noise	< -58 dBA/m	-61.75	PASS
Frequency Response, from limits	> 0 dB	0.70	PASS

Table 10-63 Helmholtz Coil Verification Table of Results - 10/24/2022 (TEM 1)

Item	Target	Result	Verdict
Axial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-10.174	PASS
Environmental Noise	< -58 dBA/m	-61.37	PASS
Frequency Response, from limits	> 0 dB	0.70	PASS
Radial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-10.114	PASS
Environmental Noise	< -58 dBA/m	-61.78	PASS
Frequency Response, from limits	> 0 dB	0.70	PASS

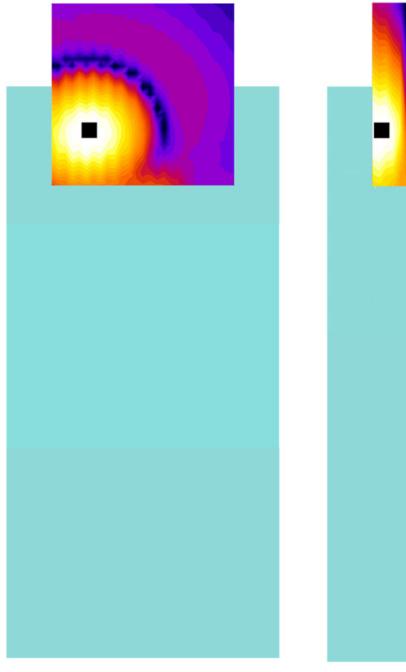
FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 61 of 119

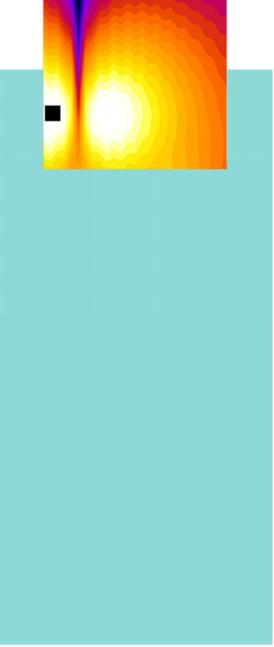
Table 10-64 Helmholtz Coil Verification Table of Results - 10/24/2022 (TEM 2)

Tienmone don vermeation rable of Regults - 10/24/2022 (Tell 2)			
ltem	Target	Result	Verdict
Axial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-10.011	PASS
Environmental Noise	< -58 dBA/m	-59.35	PASS
Frequency Response, from limits	> 0 dB	0.70	PASS
Radial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-10.040	PASS
Environmental Noise	< -58 dBA/m	-58.75	PASS
Frequency Response, from limits	> 0 dB	0.70	PASS

Table 10-65 Helmholtz Coil Verification Table of Results - 10/31/2022 (TEM 2)

Item	Target	Result	Verdict
Axial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-10.160	PASS
Environmental Noise	< -58 dBA/m	-59.27	PASS
Frequency Response, from limits	> 0 dB	0.70	PASS
Radial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-10.241	PASS
Environmental Noise	< -58 dBA/m	-59.52	PASS
Frequency Response, from limits	> 0 dB	0.70	PASS


FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 62 of 119


Table 10-66 Helmholtz Coil Verification Table of Results - 11/7/2022 (TEM 2)

Item	Target	Result	Verdict
Axial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-10.233	PASS
Environmental Noise	< -58 dBA/m	-59.79	PASS
Frequency Response, from limits	> 0 dB	0.70	PASS
Radial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-10.142	PASS
Environmental Noise	< -58 dBA/m	-59.33	PASS
Frequency Response, from limits	> 0 dB	0.70	PASS

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 63 of 119
1M2209010097-23.A3L	10/3/2022 - 11/8/2022	Portable Handset	

ABM1 Magnetic Field Distribution Scan Overlays ٧.

Axial

Radial (Transverse)

Figure 10-1
T-Coil Scan Overlay Magnetic Field Distributions

Notes:

- 1. Final measurement locations are indicated by a cursor on the contour plots.
- 2. See Test Setup Photographs for actual WD overlay.

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 64 of 119

MEASUREMENT UNCERTAINTY 11.

Table 11-1 Uncertainty Estimation Table

Contribution	Data +/- %	Data +/- dB	Data Type	Probability distribution	Divisor	Standard uncertainty	Standard Uncertainty (dB)
ABM Noise	7.0%	0.29	Std. Dev.	Normal k=1	1.00	7.0%	
RF Reflections	4.7%	0.20	Specification	Rectangular	1.73	2.7%	
Reference Signal Level	12.2%	0.50	Specification	Rectangular	1.73	7.0%	
Positioning Accuracy	10.0%	0.41	Uncertainty	Rectangular	1.73	5.8%	
Probe Coil Sensitivity	12.2%	0.50	Specification	Rectangular	1.73	7.0%	
Probe Linearity	2.4%	0.10	Std. Dev.	Normal k=1	1.00	2.4%	
Cable Loss	2.8%	0.12	Specification	Rectangular	1.73	1.6%	
Frequency Analyzer	5.0%	0.21	Specification	Rectangular	1.73	2.9%	
System Repeatability	5.0%	0.21	Std. Dev.	Normal k=1	1.00	5.0%	
WD Repeatability	9.0%	0.37	Std. Dev.	Normal k=1	1.00	9.0%	
Positioner Accuracy	1.0%	0.04	Specification	Rectangular	1.73	0.6%	
Combined standard uncertainty, uc (k=1)						17.7%	0.71
Expanded uncertainty (k=2), 95% confidence level						35.3%	1.31

Notes:

- Test equipments are calibrated according to techniques outlined in NIS81, NIS3003 and NIST Tech Note 1297.
- All equipments have traceability according to NIST. Measurement Uncertainties are defined in further detail in NIS 81 and NIST Tech Note 1297 and UKAS M3003.

Measurement uncertainty reflects the quality and accuracy of a measured result as compared to the true value. Such statements are generally required when stating results of measurements so that it is clear to the intended audience that the results may differ when reproduced by different facilities. Measurement results vary due to the measurement uncertainty of the instrumentation, measurement technique, and test engineer. Most uncertainties are calculated using the tolerances of the instrumentation used in the measurement, the measurement setup variability, and the technique used in performing the test. While not generally included, the variability of the equipment under test also figures into the overall measurement uncertainty. Another component of the overall uncertainty is based on the variability of repeated measurements (so-called Type A uncertainty). This may mean that the Hearing Aid compatibility tests may have to be repeated by taking down the test setup and resetting it up so that there are a statistically significant number of repeat measurements to identify the measurement uncertainty. By combining the repeat measurement results with that of the instrumentation chain using the technique contained in NIS 81 and NIS 3003, the overall measurement uncertainty was estimated.

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 65 of 119

12. **EQUIPMENT LIST**

Table 12-1 Equipment List

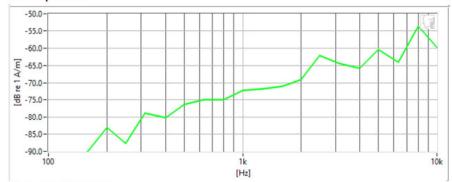
		Equipment Elst				
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Lenovo	Thinkpad T15 Gen1	SoundCheck Acoustic Analyzer Laptop	N/A		N/A	PF-1WDG3V
Listen	SoundConnect	Microphone Power Supply	8/10/2022	Biennial	8/10/2024	PS2612
Listen	SoundConnect	Microphone Power Supply	3/29/2021	Biennial	3/29/2023	PS3099
RME	Fireface UC	Soundcheck Acoustic Analyzer External Audio Interface	8/23/2022	Biennial	8/23/2024	23528889
RME	Fireface UC	Soundcheck Acoustic Analyzer External Audio Interface	3/29/2021	Biennial	3/29/2023	23857555
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	2/17/2022	Annual	2/17/2023	161662
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	4/8/2022	Annual	4/8/2023	162125
Rohde & Schwarz	CMW500	Radio Communication Tester	8/25/2022	Annual	8/25/2023	140144
Rohde & Schwarz	CMX500	Radio Communication Tester	N/A		N/A	100298
Seekonk	NC-100	Torque Wrench (8" lb)	N/A		N/A	21053
TEM	Axial T-Coil Probe	Axial T-Coil Probe	8/10/2022	Biennial	8/10/2024	TEM-1122
TEM	Radial T-Coil Probe	Radial T-Coil Probe	8/10/2022	Biennial	8/10/2024	TEM-1128
TEM	Axial T-Coil Probe	Axial T-Coil Probe	3/29/2021	Biennial	3/29/2023	TEM-1139
TEM	Radial T-Coil Probe	Radial T-Coil Probe	3/29/2021	Biennial	3/29/2023	TEM-1133
TEM		HAC Positioner	N/A		N/A	N/A
TEM		HAC System Controller with Software	N/A		N/A	N/A
TEM	Helmholtz Coil	Helmholtz Coil	9/15/2022	Biennial	9/15/2024	SBI 1052
TEM	C63.19	Helmholtz Coil	3/29/2021	Biennial	3/29/2023	925
YellowTec	YT4211	USB Audio Interface	N/A		N/A	20000365
Control Company	4040	Therm./ Clock/ Humidity Monitor	3/12/2021	Biennial	3/12/2023	210202053
Netgear	XS708E	Ethernet Switch	N/A		N/A	4FU3875C001A8

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 66 of 119
1M2209010097-23.A3L	10/3/2022 - 11/8/2022	Portable Handset	

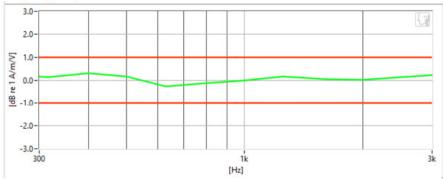
13. TEST DATA

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 67 of 119
1M2209010097-23.A3L	10/3/2022 - 11/8/2022	Portable Handset	

DUT: HH Coil - SN: 925


Type: HH Coil Serial: 925

Measurement Standard: ANSI C63.19-2011


Equipment:

- Probe: Axial T-Coil Probe SN: TEM-1139; Calibrated: 3/29/2021
- Helmholtz Coil SN: 925; Calibrated: 3/29/2021

Noise Spectrum

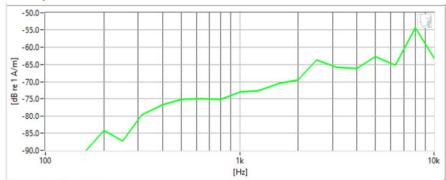
Frequency Response

Verification 1kHz Intensity	-10.2 dB	•	Max/Min	-9.5/-10.5	
Verification ABM2	-60.5 dB	•	Maximum	-58.0	
Frequency Response Margin	700m dB	•	Tolerance curves	Aligned Data	

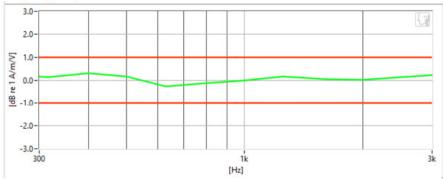
FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 68 of 119

DUT: HH Coil - SN: 925

Type: HH Coil Serial: 925


Measurement Standard: ANSI C63.19-2011

Equipment:


Probe: Axial T-Coil Probe - SN: TEM-1139; Calibrated: 3/29/2021

Helmholtz Coil - SN: 925; Calibrated: 3/29/2021

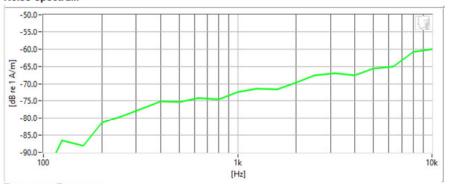
Noise Spectrum

Frequency Response

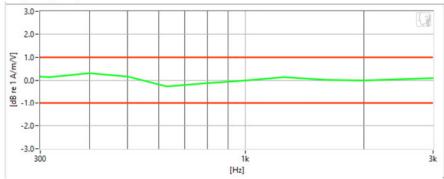
Verification 1kHz Intensity	-10.184 dB	•	Max/Min	-9.5/-10.5
Verification ABM2	-61.17 dB	•	Maximum	-58.0
Frequency Response Margin	700m dB	•	Tolerance curves	Aligned Data

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 69 of 119

DUT: HH Coil - SN: SBI 1052


Type: HH Coil Serial: SBI 1052

Measurement Standard: ANSI C63.19-2011


Equipment:

- Probe: Axial T-Coil Probe SN: TEM-1122; Calibrated: 8/10/2022
- Helmholtz Coil SN: SBI 1052; Calibrated: 9/15/2022

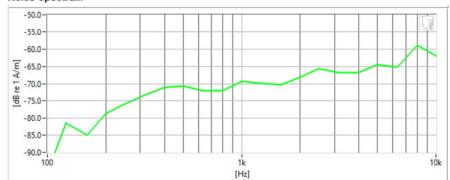
Noise Spectrum

Frequency Response

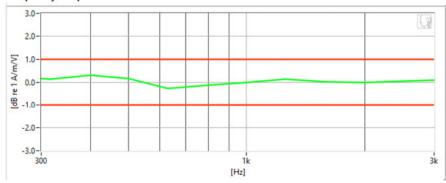
Verification 1kHz Intensity	-9.931 dB	•	Max/Min	-9.5/-10.5	
Verification ABM2	-61.82 dB	•	Maximum	-58.0	
Frequency Response Margin	700m dB	•	Tolerance curves	Aligned Data	

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 70 of 119

DUT: HH Coil - SN: SBI 1052


Type: HH Coil Serial: SBI 1052

Measurement Standard: ANSI C63.19-2011


Equipment:

- Probe: Axial T-Coil Probe SN: TEM-1122; Calibrated: 8/10/2022
- Helmholtz Coil SN: SBI 1052; Calibrated: 9/15/2022

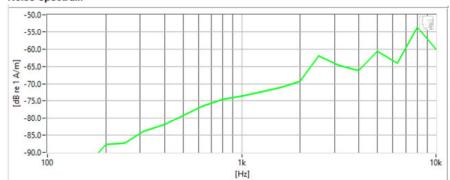
Noise Spectrum

Frequency Response

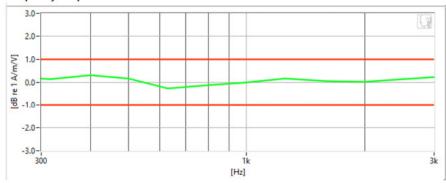
Verification 1kHz Intensity	-10.011 dB	•	Max/Min	-9.5/-10.5
Verification ABM2	-59.35 dB	•	Maximum	-58.0
Frequency Response Margin	700m dB	•	Tolerance curves	Aligned Data

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 71 of 119

DUT: HH Coil - SN: 925


Type: HH Coil Serial: 925

Measurement Standard: ANSI C63.19-2011


Equipment:

- Probe: Radial T-Coil Probe SN: TEM-1133; Calibrated: 3/29/2021
- Helmholtz Coil SN: 925; Calibrated: 3/29/2021

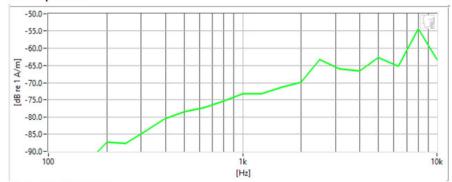
Noise Spectrum

Frequency Response

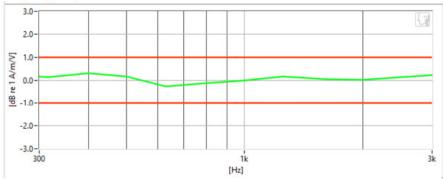
Verification 1kHz Intensity	-10.149 dB	\checkmark	Max/Min	-9.5/-10.5	
Verification ABM2	-60.93 dB	\checkmark	Maximum	-58.0	
Frequency Response Margin	700m dB	•	Tolerance curves	Aligned Data	

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 72 of 119

DUT: HH Coil - SN: 925


Type: HH Coil Serial: 925

Measurement Standard: ANSI C63.19-2011


Equipment:

- Probe: Radial T-Coil Probe SN: TEM-1133; Calibrated: 3/29/2021
- Helmholtz Coil SN: 925; Calibrated: 3/29/2021

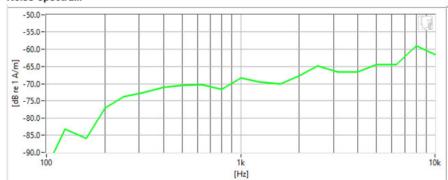
Noise Spectrum

Frequency Response

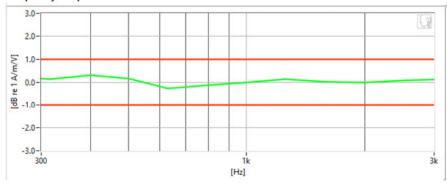
		_			
Verification 1kHz Intensity	-10.127 dB	\checkmark	Max/Min	-9.5/-10.5	
Verification ABM2	-61.82 dB	•	Maximum	-58.0	
Frequency Response Margin	700m dB	•	Tolerance curves	Aligned Data	

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 73 of 119

DUT: HH Coil - SN: SBI 1052


Type: HH Coil Serial: SBI 1052

Measurement Standard: ANSI C63.19-2011


Equipment:

- Probe: Radial T-Coil Probe SN: TEM-1128; Calibrated: 8/10/2022
- Helmholtz Coil SN: SBI 1052; Calibrated: 9/15/2022

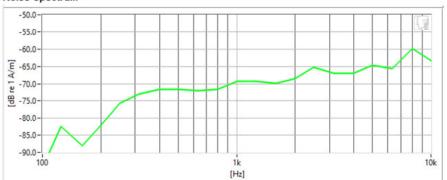
Noise Spectrum

Frequency Response

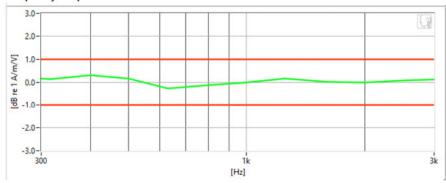
Verification 1kHz Intensity	-10.04 dB	•	Max/Min	-9.5/-10.5	
Verification ABM2	-58.75 dB	•	Maximum	-58.0	
Frequency Response Margin	700m dB	•	Tolerance curves	Aligned Data	

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 74 of 119

DUT: HH Coil - SN: SBI 1052


Type: HH Coil Serial: SBI 1052

Measurement Standard: ANSI C63.19-2011


Equipment:

- Probe: Radial T-Coil Probe SN: TEM-1128; Calibrated: 8/10/2022
- Helmholtz Coil SN: SBI 1052; Calibrated: 9/15/2022

Noise Spectrum

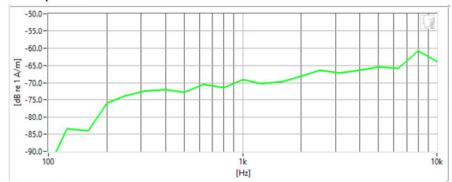
Frequency Response

Verification 1kHz Intensity	-10.241 dB	\checkmark	Max/Min	-9.5/-10.5	
Verification ABM2	-59.52 dB	•	Maximum	-58.0	
Frequency Response Margin	700m dB	•	Tolerance curves	Aligned Data	

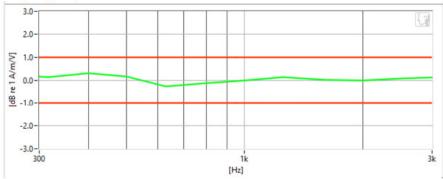
FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 75 of 119

DUT: HH Coil - SN: SBI 1052

Type: HH Coil Serial: SBI 1052


Measurement Standard: ANSI C63.19-2011

Equipment:


 Probe: Radial T-Coil Probe – SN: TEM-1128; Calibrated: 8/10/2022

Helmholtz Coil – SN: SBI 1052; Calibrated: 9/15/2022

Noise Spectrum

Frequency Response

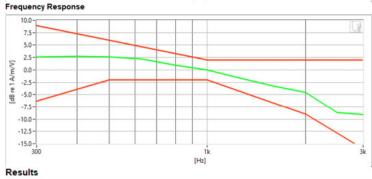
Verification 1kHz Intensity	-10.142 dB	•	Max/Min	-9.5/-10.5	
Verification ABM2	-59.33 dB	•	Maximum	-58.0	
Frequency Response Margin	700m dB	•	Tolerance curves	Aligned Data	

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 76 of 119

DUT: A3LSMS916U

Type: Portable Handset Serial: 2679M

Measurement Standard: ANSI C63.19-2011


Equipment:

• Probe: Axial T-Coil Probe – SN: TEM-1139; Calibrated: 3/29/2021

Test Configuration:

- Mode: GSM850 Channel: 128
- Speech Signal: 3GPP2 Normal Test Signal

Noise Spectrum 10.0 0.0 -10.0 -20.0 -20.0--30.0--40.0--50.0--60.0--70.0 -80.0--90.0-[Hz]

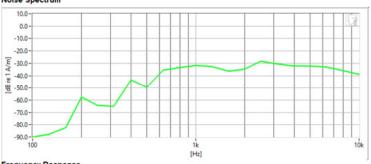
	uits						
Д	BM1	11.2	dB	•	Minimum	-18.0	
Д	BM2	-26.72	dB	\checkmark	Maximum	0.0	
S	NNR	37.92	dB	•	Minimum	20.0	
Д	ligned Response - Normal	2	dB	•	Tolerance curves	Aligned Data	

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 77 of 119

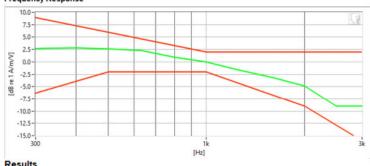
DUT: A3LSMS916U

Type: Portable Handset Serial: 2679M

Measurement Standard: ANSI C63.19-2011


Equipment:

• Probe: Axial T-Coil Probe – SN: TEM-1139; Calibrated: 3/29/2021


Test Configuration:

- Mode: GSM1900 Channel: 512
- Speech Signal: 3GPP2 Normal Test Signal

Noise Spectrum

Frequency Response

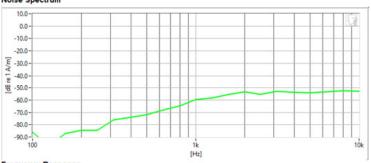
ABM1	11.25 dB	•	Minimum	-18.0	
ABM2	-25.1 dB	•	Maximum	0.0	
SNNR	36.35 dB	•	Minimum	20.0	
Aligned Response - Normal	2 dB	•	Tolerance curves	Aligned Data	

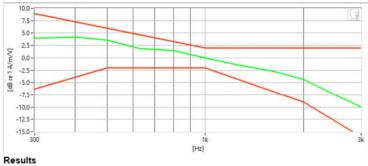
FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 78 of 119
1M2209010097-23.A3L	10/3/2022 - 11/8/2022	Portable Handset	

DUT: A3LSMS916U

Type: Portable Handset Serial: 2679M

Measurement Standard: ANSI C63.19-2011


Equipment:


• Probe: Axial T-Coil Probe – SN: TEM-1139; Calibrated: 3/29/2021

Test Configuration:

- Mode: UMTS V Channel: 4233
- Speech Signal: 3GPP2 Normal Test Signal

Noise Spectrum

ABM1	7.08 dE	•	Minimum	-18.0
ABM2	-50.12 dE	€	Maximum	0.0
SNNR	57.2 dE	•	Minimum	20.0
Aligned Response - Normal	1.83 dE	· •	Tolerance curves	Aligned Data

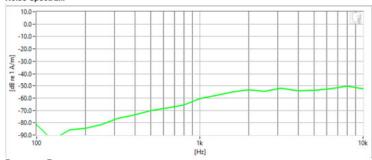
FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 79 of 119

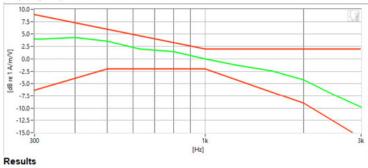
DUT: A3LSMS916U

Type: Portable Handset Serial: 2679M

Measurement Standard: ANSI C63.19-2011

Equipment:


• Probe: Axial T-Coil Probe – SN: TEM-1139; Calibrated: 3/29/2021


Test Configuration:

 Mode: UMTS IV Channel: 1312

Speech Signal: 3GPP2 Normal Test Signal

Noise Spectrum

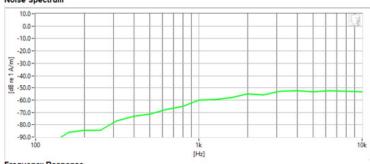
ABM1	7.4	dB	•	Minimum	-18.0
ABM2	-49.84	dB	\checkmark	Maximum	0.0
SNNR	57.24	dB	•	Minimum	20.0
Aligned Response - Normal	1.77	dB	•	Tolerance curves	Aligned Data

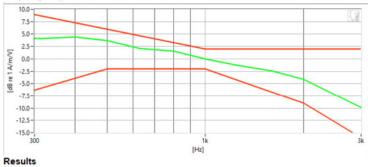
FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 80 of 119
11V12203010037-23.A3L	10/3/2022 - 11/0/2022	Fortable Halluset	

DUT: A3LSMS916U

Type: Portable Handset Serial: 2679M

Measurement Standard: ANSI C63.19-2011


Equipment:


• Probe: Axial T-Coil Probe – SN: TEM-1139; Calibrated: 3/29/2021

Test Configuration:

- Mode: UMTS II Channel: 9262
- Speech Signal: 3GPP2 Normal Test Signal

Noise Spectrum

ABM1	7.24	dB	•	Minimum	-18.0
ABM2	-50.94	dB	\checkmark	Maximum	0.0
SNNR	58.18	dB	•	Minimum	20.0
Aligned Response - Normal	1.69	dB	•	Tolerance curves	Aligned Data

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 81 of 119

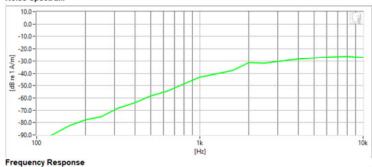
DUT: A3LSMS916U

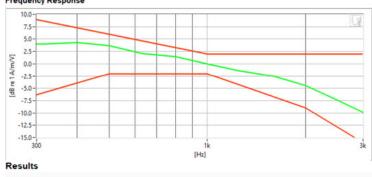
Type: Portable Handset Serial: 2679M

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1139; Calibrated: 3/29/2021


Test Configuration:


Mode: LTE FDD Band 66 Bandwidth: 20MHz Channel: 132072

Antenna Configuration: Ant F

Speech Signal: 3GPP2 Normal Test Signal

Noise Spectrum

Results						
ABM1	6.94	dB	•	Minimum	-18.0	
ABM2	-28.5	dB	•	Maximum	0.0	
SNNR	35.44	dB	•	Minimum	20.0	
Aligned Response - Normal	1.8	dB	•	Tolerance curves	Aligned Data	

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 82 of 119

DUT: A3LSMS916U

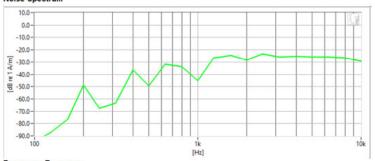
Type: Portable Handset Serial: 2679M

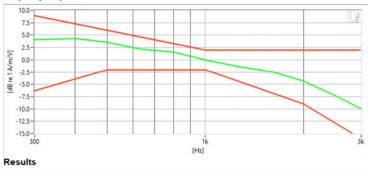
Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1139; Calibrated: 3/29/2021

Test Configuration:


Mode: LTE TDD Band 41 (PC2)


Bandwidth: 20MHz Channel: 39750

Antenna Configuration: Ant F

Speech Signal: 3GPP2 Normal Test Signal

Noise Spectrum

ABM1	7.09	dB	•	Minimum	-18.0
ABM2	-20.61	dB	•	Maximum	0.0
SNNR	27.7	dB	•	Minimum	20.0
Aligned Response - Normal	1.76	dB	•	Tolerance curves	Aligned Data

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 83 of 119

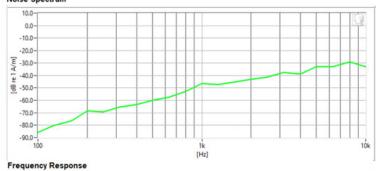
DUT: A3LSMS916U

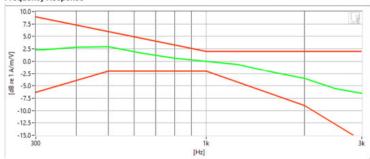
Type: Portable Handset Serial: 2669M

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1122; Calibrated: 8/10/2022


Test Configuration:


Mode: NR FDD Band 25 Bandwidth: 30MHz Channel: 376500

Antenna Configuration: Ant F

Speech Signal: 3GPP2 Normal Test Signal

Noise Spectrum

Results					
ABM1	7.41	dB	•	Minimum	-18.0
ABM2	-35.79	dB	•	Maximum	0.0
SNNR	43.2	dB	•	Minimum	20.0
Aligned Response - Normal	2	dB	•	Tolerance curves	Aligned Data

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 84 of 119

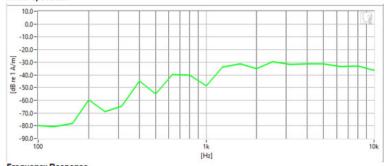
DUT: A3LSMS916U

Type: Portable Handset Serial: 2669M

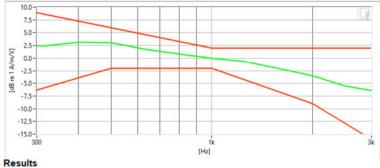
Measurement Standard: ANSI C63.19-2011

Equipment:

• Probe: Axial T-Coil Probe – SN: TEM-1122; Calibrated: 8/10/2022


Test Configuration:

 Mode: NR TDD Band 41 Bandwidth: 80MHz Channel: 507204


Speech Signal: 3GPP2 Normal Test Signal

Antenna Configuration: Ant F

Noise Spectrum

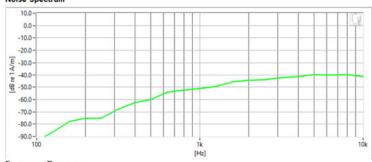
ABM	1	7.6	dB	•	Minimum	-18.0	
ABM	2	-27.41	dB	•	Maximum	0.0	
SNN	t	35	dB	•	Minimum	20.0	
Align	ed Response - Normal	2	dB	•	Tolerance curves	Aligned Data	

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 85 of 119

DUT: A3LSMS916U

Type: Portable Handset Serial: 2679M

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1139; Calibrated: 3/29/2021

Test Configuration:

- Mode: 2.4GHz WLAN
- Standard: IEEE 802.11n
- Channel: 6
- Speech Signal: 3GPP2 Normal Test Signal

Noise Spectrum

Frequency Response

ABM1 3.52 dB ABM2 -39.63 dB

ABM2	-39.63	dB	$ \checkmark $	Maximum	0.0	
SNNR	43.14	dB	$ \checkmark $	Minimum	20.0	
Aligned Response - Normal	2	dB	•	Tolerance curves	Aligned Data	

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 86 of 119

DUT: A3LSMS916U

Type: Portable Handset Serial: 2679M

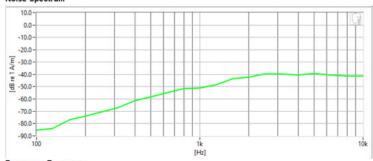
Measurement Standard: ANSI C63.19-2011

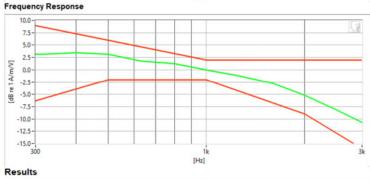
Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1139; Calibrated: 3/29/2021

Test Configuration:

Mode: 5GHz WLAN


Standard: IEEE 802.11ax (SU)


Bandwidth: 40MHz

Channel: 151

Speech Signal: 3GPP2 Normal Test Signal

Noise Spectrum

R	esults						
	ABM1	3.19	dB	\checkmark	Minimum	-18.0	
	ABM2	-38	dB	•	Maximum	0.0	
	SNNR	41.19	dB	•	Minimum	20.0	
	Aligned Response - Normal	2	dB	•	Tolerance curves	Aligned Data	

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 87 of 119

DUT: A3LSMS916U

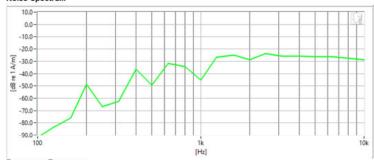
Type: Portable Handset Serial: 2679M

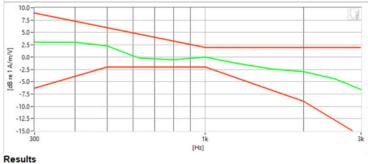
Measurement Standard: ANSI C63.19-2011

Equipment:

• Probe: Axial T-Coil Probe – SN: TEM-1122; Calibrated: 8/10/2022

Test Configuration:


 VoIP Application: Google Meet Mode: LTE TDD Band 41 (PC2)


Bandwidth: 10MHz Channel: 41055

Antenna Configuration: Ant F

Speech Signal: 3GPP2 Normal Test Signal

Noise Spectrum

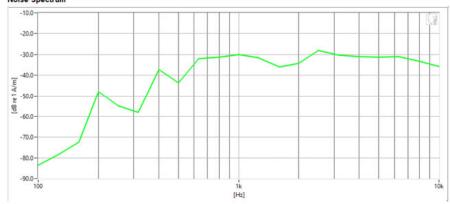
ABM1	7.77	dB	•	Minimum	-18.0
ABM2	-20.91	dB	•	Maximum	0.0
SNNR	28.68	dB	~	Minimum	20.0
Aligned Response - Normal	1,42	dB	\checkmark	Tolerance curves	Aligned Data

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 88 of 119

DUT: A3LSMS916U

Type: Portable Handset Serial: 2679M

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1133; Calibrated: 3/29/2021

Test Configuration:

Mode: GSM850Channel: 128

Noise Spectrum

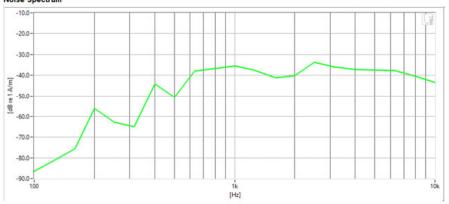
ABM1	3.24 dB	•	Minimum	-18.0	
ABM2	-23.13 dB	•	Maximum	0.0	
SNNR	26.38 dB	•	Minimum	20.0	

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 89 of 119
1M2209010097-23.A3L	10/3/2022 - 11/8/2022	Portable Handset	

DUT: A3LSMS916U

Type: Portable Handset Serial: 2679M

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1133; Calibrated: 3/29/2021

Test Configuration:

Mode: GSM1900Channel: 810

Noise Spectrum

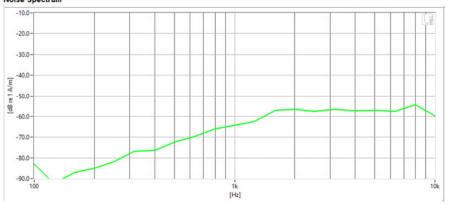
ABM1	3.15 dB	•	Minimum	-18.0	
ABM2	-28.9 dB	•	Maximum	0.0	
SNNR	32.04 dB	•	Minimum	20.0	

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 90 of 119

DUT: A3LSMS916U

Type: Portable Handset Serial: 2679M

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1133; Calibrated: 3/29/2021

Test Configuration:

Mode: UMTS VChannel: 4132

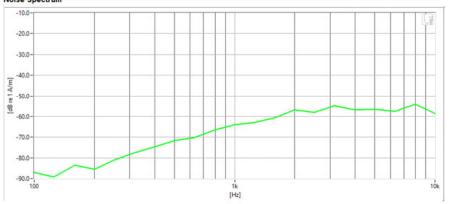
Noise Spectrum

ABM1	380m dB	•	Minimum	-18.0
ABM2	-53.05 dB	•	Maximum	0.0
SNNR	53.43 dB	•	Minimum	20.0

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 91 of 119
11V12209010097-23.A3L	10/3/2022 - 11/0/2022	Portable natiuset	

DUT: A3LSMS916U

Type: Portable Handset Serial: 2679M


Measurement Standard: ANSI C63.19-2011

Probe: Radial T-Coil Probe – SN: TEM-1133; Calibrated: 3/29/2021

Test Configuration:

 Mode: UMTS IV Channel: 1412

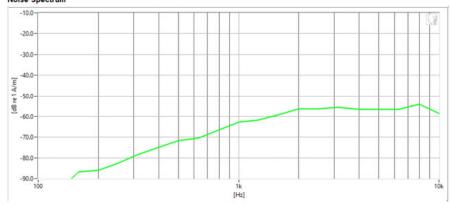
Noise Spectrum

ABM1	310m dB	•	Minimum	-18.0
ABM2	-53.5 dB	•	Maximum	0.0
SNNR	53.8 dB	•	Minimum	20.0

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 92 of 119
1M2209010097-23.A3L	10/3/2022 - 11/8/2022	Portable Handset	

DUT: A3LSMS916U

Type: Portable Handset Serial: 2679M


Measurement Standard: ANSI C63.19-2011

Probe: Radial T-Coil Probe – SN: TEM-1133; Calibrated: 3/29/2021

Test Configuration:

 Mode: UMTS II Channel: 9262

Noise Spectrum

ABM1	270m dB	Minimum	-18.0
ABM2	-52.87 dB	Maximum	0.0
SNNR	53.14 dB	Minimum	20.0

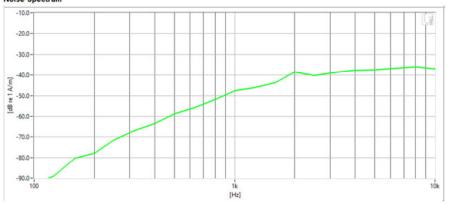
FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 93 of 119

DUT: A3LSMS916U

Type: Portable Handset Serial: 2679M

Measurement Standard: ANSI C63.19-2011

Equipment:


• Probe: Radial T-Coil Probe - SN: TEM-1133; Calibrated: 3/29/2021

Test Configuration:

Mode: LTE FDD Band 66Bandwidth: 20MHzChannel: 132072

Antenna Configuration: Ant F

Noise Spectrum

ABM1	120m dB 🗸	Minimum	-18.0
ABM2	-36.24 dB	Maximum	0.0
SNNR	36.36 dB	Minimum	20.0

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 94 of 119

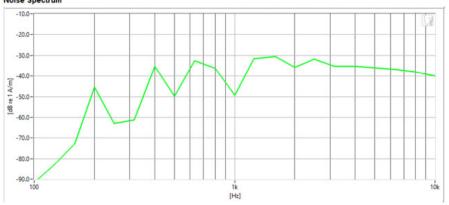
DUT: A3LSMS916U

Type: Portable Handset Serial: 2679M

Measurement Standard: ANSI C63.19-2011

Equipment:

• Probe: Radial T-Coil Probe - SN: TEM-1133; Calibrated: 3/29/2021


Test Configuration:

Mode: LTE TDD Band 41 (PC2)

Bandwidth: 20MHzChannel: 39750

Antenna Configuration: Ant F

Noise Spectrum

ABM1	300m dB 🗸	Minimum	-18.0
ABM2	-25.04 dB	Maximum	0.0
SNNR	25.34 dB	Minimum	20.0

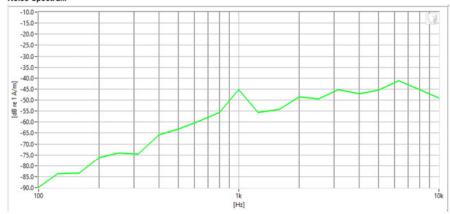
FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 95 of 119
1M2209010097-23.A3L	10/3/2022 - 11/8/2022	Portable Handset	

DUT: A3LSMS916U

Type: Portable Handset Serial: 2669M

Measurement Standard: ANSI C63.19-2011

Equipment:


• Probe: Radial T-Coil Probe – SN: TEM-1128; Calibrated: 8/10/2022

Test Configuration:

 Mode: NR FDD Band 25 Bandwidth: 30MHz Channel: 376500

Antenna Configuration: Ant F

Noise Spectrum

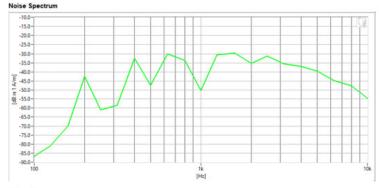
ABM1	240m	dB	•	Minimum	-18.0
ABM2	-42	dB	•	Maximum	0.0
SNNR	42,24	dB	•	Minimum	20.0

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 96 of 119

DUT: A3LSMS916U

Type: Portable Handset Serial: 2669M

Measurement Standard: ANSI C63.19-2011


Equipment:

• Probe: Radial T-Coil Probe – SN: TEM-1128; Calibrated: 8/10/2022

Test Configuration:

Mode: NR TDD Band 77 DoD

Bandwidth: 20MHzChannel: 632000

ABM1	120m dB	~	Minimum	-18.0
ABM2	-23.24 dB	V	Maximum	0.0
SNNR	23.37 dB	V	Minimum	20.0

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 97 of 119

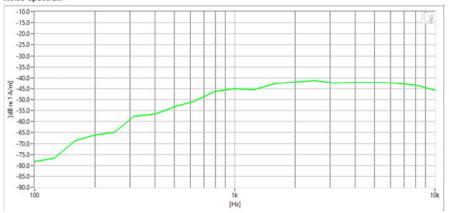
DUT: A3LSMS916U

Type: Portable Handset Serial: 2679M

Measurement Standard: ANSI C63.19-2011

Equipment:

• Probe: Radial T-Coil Probe - SN: TEM-1133; Calibrated: 3/29/2021


Test Configuration:

Mode: 2.4GHz WLAN

Standard: IEEE 802.11ax (SU)

Channel: 1

Noise Spectrum

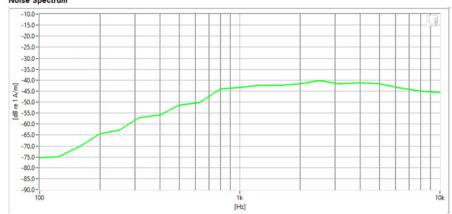
ABM1	-4.07 dB	Minimum	-18.0	
ABM2	-36.66 dB	Maximum	0.0	
SNNR	32.58 dB	Minimum	20.0	

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 98 of 119
1M2209010097-23.A3L	10/3/2022 - 11/8/2022	Portable Handset	

DUT: A3LSMS916U

Type: Portable Handset Serial: 2679M

Measurement Standard: ANSI C63.19-2011


Equipment:

• Probe: Radial T-Coil Probe - SN: TEM-1133; Calibrated: 3/29/2021

Test Configuration:

 Mode: 5GHz WLAN Standard: IEEE 802.11n Bandwidth: 20MHz Channel: 100

Noise Spectrum

ABM1	-3,98 dB	•	Minimum	-18.0	
ABM2	-35.42 dB	•	Maximum	0.0	
SNNR	31.44 dB	•	Minimum	20.0	

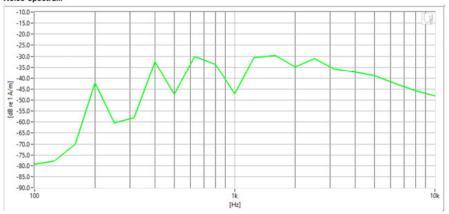
FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 99 of 119

DUT: A3LSMS916U

Type: Portable Handset Serial: 2669M

Measurement Standard: ANSI C63.19-2011

Equipment:


• Probe: Radial T-Coil Probe – SN: TEM-1128; Calibrated: 8/10/2022

Test Configuration:

 VolP Application: Google Meet Mode: NR TDD Band 77 DoD Bandwidth: 15MHz

Channel: 630500

Noise Spectrum

ABM1	520m dB	Minimum	-18.0
ABM2	-23.24 dB	Maximum	0.0
SNNR	23.77 dB	Minimum	20.0

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 100 of 119
1M2209010097-23.A3L	10/3/2022 - 11/8/2022	Portable Handset	

14. **CALIBRATION CERTIFICATES**

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 101 of 119

West Caldwell Calibration Laboratories Inc.

Certificate of Calibration

for

AXIAL T COIL PROBE

Manufactured by:

TEM CONSULTING, LP AXIAL T COIL PROBE

Model No: Serial No:

TEM-1139

Calibration Recall No: 31813

4/7/202

Customer:

ANDREW HARWELL

Submitted By:

Company:

PCTEST ENGINEERING LAB 7185 OAKLAND MILLS ROAD

Address: 7185 OAKLA COLUMBIA

MD 21046

The subject instrument was calibrated to the indicated specification using standards traceable to the SI through the National Institute of Standards and Technology or to accepted values of natural physical constants. This document certifies that the instrument met the following specification upon its return to the submitter.

West Caldwell Calibration Laboratories Procedure No.

AXIAL T C TEM C

Upon receipt for Calibration, the instrument was found to be:

Within (X

tolerance of the indicated specification. See attached Report of Calibration.

The information supplied relates to the calibrated item listed above and statement of conformance for ALL given specifications and standards fall under the decision rule: A= (L-(U95)*M), where A is acceptance limit, L is manufacturer specifications, U95 is confidence level of 95% at k=2, and M is managed guard-band multiplier. The guard-band multiplier increases false-accept risk in favor of decreasing false-reject risk. Although the false accept risk increases, it is still below the Z540.3 2% risk requirement. The decision rule has been communicated and approved by customer during contract review.

West Caldwell Calibration Laboratories' calibration control system meets the following requirements, ISO 10012-1 MIL STD 45662A, ANSI/NCSL Z540-1, IEC Guide 25, ISO 9001:2015, and ISO 17025

Note: With this Certificate, Report of Calibration is included.

Approved by:

Calibration Date:

29-Mar-21

James Zhu

Certificate No:

31813 - 3

West Caldwell

Quality Manager

QA Doc. #1051 Rev. 3.0 5/29/20

Certificate Page 1 of 1

Calibration
Laboratories, Inc.

1575 State Route 96, Victor, NY 14564, U.S.A.

Calibration Lab. Cert. # 1533.01

 FCC ID: A3LSMS916U
 element
 HAC (T-COIL) TEST REPORT
 Approved by: Managing Director

 Filename:
 Test Dates:
 DUT Type:
 Page 102 of 119

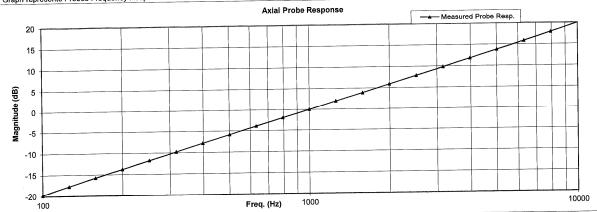
 1M2209010097-23.A3L
 10/3/2022 - 11/8/2022
 Portable Handset

ISO/IEC 17025: 2017

West Caldwell Calibration uncompromised calibration Laboratories, Inc.

1575 State Route 96, Victor NY 14564

REPORT OF CALIBRATION


TEM Consulting LP Axial T Coil Probe Company: PCTest Engineering Lab

Model No.: Axial T Coil Probe

Serial No.: TEM-1139 I. D. No.: XXXX

Calibration results: Probe Sensitivity measured with Helmholtz Coil Before & after data same: ... X ... Helmholtz Coil: the number of turns on each coil; 10 No. Laboratory Environment: 0.204 m the radius of each coil, in meters; ٥С 20.4 Ambient Temperature: the current in the coils, in amperes.; 0.08 Α % RH 29.3 Ambient Humidity: A/m/V Helmholtz Coil Constant; 7.09 99.394 kPa Ambient Pressure: Helmholtz Coil magnetic field; 5.92 A/m 29-Mar-2021 Calibration Date: Calibration Due: 1000 Hz. Probe Sensitivity at 31813 -3 Report Number: dBV/A/m -60.26 31813 Control Number: 0.970 mV/A/m Ohms Probe resistance 873 The above listed instrument meets or exceeds the tested manufacturer's specifications. 684.07/O-0000001126-20 This Calibration is traceable through NIST test numbers: The expanded uncertainty of calibration: 0.30dB at 95% confidence level with a coverage factor of k=2.

Graph represents Probes Frequency Response.

The above listed instrument was checked using calibration procedure documented in West Caldwell

Calibration Laboratories Inc. procedure : Calibration was performed by West Caldwell Calibration Laboratories Inc. under Operating Procedures Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCATEMC

intended to implement the requirements of ISO10012-1, IEC Guide 25, ANSI/NCSL Z540-1, (MIL-STD-45662A) and ISO 9001:2015/150 17025

Cal. Date: 29-Mar-2021

Measurements performed by:

James Zhu

Calibrated on WCCL system type 9700 This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

, Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCATEMC

Page 1 of 2

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 103 of 119

HCATEMC_TEM-1139_Mar-29-2021.xls

West Caldwell Calibration Laboratories Inc.

1575 State Route 96, Victor NY 14564 Tel. (585) 586-3900 FAX (585) 586-4327

Calibration Data Record

TEM Consulting LP Axial T Coil Probe Company: PCTest Engineering Lab

for Model No.: Axial T Coil Probe

Serial No.: TEM-1139

Test	Function	Tolerar	nce	Measured values		
				Before	Out	Remarks
1.0	Probe Sensitivity at	1000 Hz.	dBV/A/m	-60.26		
			dB			
2.0	Probe Level Linearity		6	5.94		
	-	Ref. (0 dB)	0	0.00		
			-6	-6.03		
			-12	-12.04		
			Hz			
3.0	Probe Frequency Response		100	-19.8		
			126	-17.8		
			158	-15.7		
			200	-13.8		
			251	-11.8		
			316	-9.8		
			398	-7.8		
			501	-5.9		
			631	-3.9		
			794	-2.0		
		Ref. (0 dB)	1000	0.0		
			1259	2.0		
			1585	3.9		
			1995	5.9		
			2512	7.9		
			3162	9.8		
			3981	11.8		
			5012	13.8		
			6310	15.8		
			7943	17.9		
			10000	20.0		

nts used for calibration:		Date of Cal.	Traceablity No.	Due Date
IP 3440	01A S/N US36)641 2-Jul-2020	,610119	2-Jul-2021
" [] []		1024 2-Jul-2020	,610119	2-Jul-2021
"		0437 2-Jul-2020	.610119	2-Jul-2021
			684.07/O-0000001126-20	1-Jul-2021
IP 3440 IP 3312 BK 2133	20A S/N US36	0437 2-Jul-2020	•	2-

Cal. Date: 29-Mar-2021

Tested by: James Zhu

Calibrated on WCCL system type 9700

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCATEMC

Page 2 of 2

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 104 of 119

West Caldwell Calibration Laboratories Inc.

Certificate of Calibration

Axial T Coil Probe

Manufactured by:

LISTEN INC. AXIAL T COIL PROBE

Model No:

TEM-1122

Serial No: Calibration Recall No:

Submitted By:

Customer:

Tae Kim

Company: Address:

Element Materials Technology Washington DC LLC

7185 Oakland Mills Road

Columbia

MD 21046

The subject instrument was calibrated to the indicated specification using standards traceable to the SI through the National Institute of Standards and Technology or to accepted values of natural physical constants. This document certifies that the instrument met the following specification upon its return to the submitter.

West Caldwell Calibration Laboratories Procedure No.

AXIAL T C LISTE

9/2/2022

Upon receipt for Calibration, the instrument was found to be:

Within (X)

tolerance of the indicated specification. See attached Report of Calibration. The information supplied certifies that the item listed above meets acceptance criteria under the decision rule: A=(L-(U95)), where A is the acceptance criteria, L is manufacturer specifications, and U95 is confidence level of 95% at k=2. The decision rule has been communicated and approved by customer during contract review. Measurements marked with (*) are not covered by the scope of current A2LA accreditation.

West Caldwell Calibration Laboratories' calibration control system meets the following requirements: ANSI/NCSL Z540-1, ISO 9001, and ISO 17025.

Note: With this Certificate, Report of Calibration is included.

Approved by:

Calibration Date:

10-Aug-22

01-Sep-22 Rev 2.0 Certificate Issue Date:

Certificate No:

33271 -1

James Zhu

Quality Manager

OA Doc. #1051 Rev. 3.0 5/29/20

Certificate Page 1 of 1

ISO/IEC 17025

West Caldwell Calibration Laboratories, Inc.

uncompromised calibration 1575 State Route 96, Victor, NY 14564, U.S.A.

Calibration Lab. Cert. # 1533.01

Approved by: FCC ID: A3LSMS916U element HAC (T-COIL) TEST REPORT Managing Director Filename: Test Dates: **DUT Type:** Page 105 of 119 Portable Handset 1M2209010097-23.A3L 10/3/2022 - 11/8/2022

HCATEMC_TEM-1122_Aug-10-2022

ACCREDITED
Calibration Lab. Cert. #1533.01

1575 State Route 96, Victor NY 14564

REPORT OF CALIBRATION

for

TEM Consulting LP Axial T Coil Probe

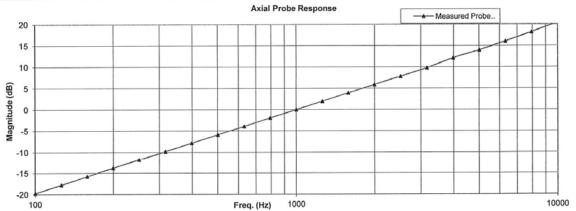
Model No.: Axial T Coil Probe

Serial No.: TEM-1122

I. D. No.: XXXX

Company: Element Materials Technology Washington D.C. LLC.

Calibration results: Probe Sensitivity measured with Helmholtz Coil Before & after data same: ... X... Helmholtz Coil: the number of turns on each coil; Laboratory Environment: 0.204 the radius of each coil, in meters; m 0.08 Ambient Temperature: 20.5 °C the current in the coils, in amperes.; % RH Helmholtz Coil Constant; 7.09 A/m/V Ambient Humidity: 43.5 Helmholtz Coil magnetic field; 5.88 A/m Ambient Pressure: 99.709 kPa Calibration Date: 10-Aug-2022 Probe Sensitivity at 1000 Hz. Re-calibration Due: -60.15 dBV/A/m Report Number: 33271 -1 was mV/A/m Control Number: 33271 0.983 Probe resistance 893 Ohms


The above listed instrument meets or exceeds the tested manufacturer's specifications.

This Calibration is traceable through NIST test numbers:

,682636

The expanded uncertainty of calibration: 0.30dB at 95% confidence level with a coverage factor of k=2.

Graph represents Probes Frequency Response.

The above listed instrument was checked using calibration procedure documented in West Caldwell

Calibration Laboratories Inc. procedure :

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCATEMC

Calibration was performed by West Caldwell Calibration Laboratories Inc. under Operating Procedures

intended to implement the requirements of ANSI/NCSL Z540-1, ISO 9001, and ISO 17025.

Measurements performed by:

Cal. Date: 10-Aug-2022
Calibrated on WCCL system type 9700

modeli omomo ponomio a ay.

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

James Zhu Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCATEMC

Page 1 of 2

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 106 of 119

HCATEMC_TEM-1122_Aug-10-2022

West Caldwell Calibration Laboratories Inc.

1575 State Route 96, Victor NY 14564 Tel. (585) 586-3900 FAX (585) 586-4327

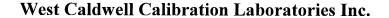
Calibration Data Record

for Model No.: Axial T Coil Probe **TEM Consulting LP Axial T Coil Probe** Company: Element Materials Technology Washington D.C. LLC.

Serial No.: TEM-1122

Test	Function	Tolera	Measured values			
1001				Before	Out	Remarks
1.0	Probe Sensitivity at	1000 Hz.	dBV/A/m	-60.15		
			dB			
2.0	Probe Level Linearity		6	6.03		
	, , , , , , , , , , , , , , , , , , , ,	Ref. (0 dB)	0	0.00		1
		-6	-6.03			
			-12	-12.06		
			Hz			
3.0 Probe Frequency Response	Probe Frequency Response		100	-19.7		
		126	-17.8			
		158	-15.8			
		200	-13.8			
		251	-11.8			
			316	-9.8		
			398	-7.8		
			501	-5.9		
			631	-3.9		
			794	-2.0		İ
		Ref. (0 dB)	1000	0.0		
			1259	2.0		
			1585	3.9		
			1995	5.9		
			2512	7.8		
			3162	9.8		
			3981	12.1		
I			5012	14.0		
			6310	16.0		1
			7943	18.2		
			10000	20.5		
				I .	I	

Instruments used for calibration: HP 34401A S/N US360641 HP 34401A S/N US361024 HP 33120A S/N US360437 B&K 2133 S/N 1583254	Date of Cal.	Traceablity No.	Due Date
	24-Jun-2022	,682636	24-Jun-2023
	24-Jun-2022	,682636	24-Jun-2023
	24-Jun-2022	,682636	24-Jun-2023
	5-Jul-2022	,682636	5-Jul-2023


Cal. Date: 10-Aug-2022

Calibrated on WCCL system type 9700 This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. inc. Tested by: James Zhu

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCATEMC

Page 2 of 2

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 107 of 119

Certificate of Calibration

RADIAL T COIL PROBE

Manufactured by: TEM CONSULTING, LP Model No: RADIAL T COIL PROBE

Serial No: TEM-1133 Calibration Recall No: 31813

Submitted By:

ANDREW HARWELL Customer:

PCTEST ENGINEERING LAB Company: Address: 7185 OAKLAND MILLS ROAD

> **COLUMBIA** MD 21046

The subject instrument was calibrated to the indicated specification using standards traceable to the SI through the National Institute of Standards and Technology or to accepted values of natural physical constants. This document certifies that the instrument met the following specification upon its return to the submitter.

West Caldwell Calibration Laboratories Procedure No.

RADIAL T TEM C

Upon receipt for Calibration, the instrument was found to be:

Within (\mathbf{x})

tolerance of the indicated specification. See attached Report of Calibration.

The information supplied relates to the calibrated item listed above and statement of conformance for ALL given specifications and standards fall under the decision rule: A=(L-(U95)*M), where A is acceptance limit, L is manufacturer specifications, U95 is confidence level of 95% at k=2, and M is managed guard-band mulitiplier. The guard-band multiplier increases false-accept risk in favor of decreasing false-reject risk. Although the false accept risk increases, it is still below the Z540.3 2% risk requirement. The decision rule has been communicated and approved by customer during contract review.

West Caldwell Calibration Laboratories' calibration control system meets the following requirements, ISO 10012-1 MIL STD 45662A, ANSI/NCSL Z540-1, IEC Guide 25, ISO 9001:2015, and ISO 17025

Note: With this Certificate, Report of Calibration is included.

Approved by:

Calibration Date: 29-Mar-21 James Zhu

Certificate No: 31813 - 2 Quality Manager ISO/IEC 17025:2017

QA Doc. #1051 Rev. 3.0 5/29/20

Certificate Page 1 of 1

ACCREDITED

Calibration uncompromised calibration Laboratories, Inc.

West Caldwell

Calibration Lab. Cert. # 1533.01

1575 State Route 96, Victor, NY 14564, U.S.A.

Approved by: FCC ID: A3LSMS916U element HAC (T-COIL) TEST REPORT Managing Director Filename: Test Dates: **DUT Type:** Page 108 of 119 1M2209010097-23.A3L 10/3/2022 - 11/8/2022 Portable Handset

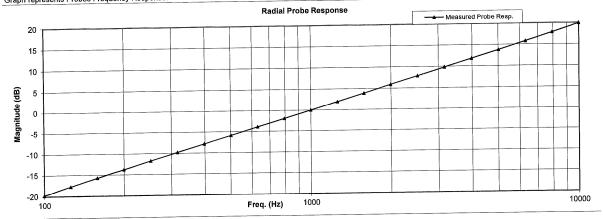
ISO/IEC 17025: 2017

West Caldwell Calibration Laboratories, Inc. uncompromised calibration

1575 State Route 96, Victor NY 14564

REPORT OF CALIBRATION

TEM Consulting LP Radial T Coil Probe Company: PCTest Engineering Lab


Model No.: Radial T Coil Probe

Serial No.: TEM-1133 I. D. No.: XXXX

Calibration results: Probe Sensitivity measured with Helmholtz Coil Before & after data same: ...X... Helmholtz Coil; 10 No. the number of turns on each coil; Laboratory Environment: the radius of each coil, in meters; 0.204 m 20.4 °C Ambient Temperature: 0.09 Α the current in the coils, in amperes.; 29.3 % RH Ambient Humidity: Helmholtz Coil Constant; 7.09 A/m/V 99.394 kPa Ambient Pressure: Helmholtz Coil magnetic field; 5.97 A/m 29-Mar-2021 Calibration Date: Re-calibration Due: 1000 Hz. Probe Sensitivity at 31813 -2 Report Number: -60.18 dBV/A/m 31813 Control Number: mV/A/m 0.980 896 Ohms Probe resistance The above listed instrument meets or exceeds the tested manufacturer's specifications. 684.07/O-0000001126-20

This Calibration is traceable through NIST test numbers: The expanded uncertainty of calibration: 0.30dB at 95% confidence level with a coverage factor of k=2.

Graph represents Probes Frequency Response.

The above listed instrument was checked using calibration procedure documented in West Caldwell

Calibration Laboratories Inc. procedure :

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCRTEMC

Calibration was performed by West Caldwell Calibration Laboratories Inc. under Operating Procedures

intended to implement the requirements of ISO10012-1, IEC Guide 25, ANSI/NCSL Z540-1, (MIL-STD-45662A) and ISO 9001:2015, ISO 17025

Cal. Date: 29-Mar-2021

Measurements performed by:

James Zhu

Calibrated on WCCL system type 9700 This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCRTEMC

Page 1 of 2

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 109 of 119

HCRTEMC_TEM-1133_Mar-29-2021.xls

West Caldwell Calibration Laboratories Inc.

1575 State Route 96, Victor NY 14564 Tel. (585) 586-3900 FAX (585) 586-4327

Calibration Data Record

TEM Consulting LP Radial T Coil Probe Company: PCTest Engineering Lab

for Model No.: Radial T Coil Probe

Serial No.: TEM-1133

Test	Function	Tolerance		Measured values		
				Before	Out	Remarks
1.0	Probe Sensitivity at	1000 Hz.	dBV/A/m	-60.18		
			dB			
2.0	Probe Level Linearity		6	6.04		
		Ref. (0 dB)	0	0.00		
			-6	-6.03		
			-12	-12.06		
			Hz			
3.0	Probe Frequency Response		100	-19.8		
			126	-17.8		
			158	-15.7		
			200	-13.8		
			251	-11.8		
			316	-9.8		
			398	-7.8		
			501	-5.9		
			631	-3.9		
			794	-2.0		
		Ref. (0 dB)	1000	0.0		
			1259	2.0		1
			1585	3.9		
			1995	5.9		
			2512	7.8		İ
			3162	9.8		
			3981	11.8		
			5012	13.8		
			6310	15.8		
			7943	17.8		
			10000	20.0		

Instruments used for o	calibration:		Date of Cal.	Traceability No.	Due Date
HP	34401A 34401A	S/N US360641 S/N US361024	2-Jul-2020 2-Jul-2020	,610119 .610119	2-Jul-2021 2-Jul-2021
HP HP	33120A	S/N US360437	2-Jul-2020	,610119	2-Jul-2021
B&K	2133	S/N 1583254	1-Jul-2020	684.07/O-0000001126-20	1-Jul-2021

Cal. Date: 29-Mar-2021

Calibrated on WCCL system type 9700

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Tested by: James Zhu

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCRTEMC

Page 2 of 2

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 110 of 119

West Caldwell Calibration Laboratories Inc.

Certificate of Calibration

Radial T Coil Probe

Manufactured by:

LISTEN INC.

Model No:

RADIAL T COIL PROBE

Serial No:

Calibration Recall No:

Submitted By:

Customer:

Tae Kim

Company: Address:

Element Materials Technology Washington DC LLC

7185 Oakland Mills Road

Columbia

MD 21046

The subject instrument was calibrated to the indicated specification using standards traceable to the SI through the National Institute of Standards and Technology or to accepted values of natural physical constants. This document certifies that the instrument met the following specification upon its return to the submitter.

West Caldwell Calibration Laboratories Procedure No.

RADIAL T LISTE

Upon receipt for Calibration, the instrument was found to be:

tolerance of the indicated specification. See attached Report of Calibration. The information supplied certifies that the item listed above meets acceptance criteria under the decision rule: A=(L-(U95)), where A is the acceptance criteria, L is manufacturer specifications, and U95 is confidence level of 95% at k=2. The decision rule has been communicated and approved by customer during contract review. Measurements marked with (*) are not covered by the scope of current A2LA accreditation.

West Caldwell Calibration Laboratories' calibration control system meets the following requirements: ANSI/NCSL Z540-1, ISO 9001, and ISO 17025.

Note: With this Certificate, Report of Calibration is included.

Approved by:

Calibration Date: Certificate Issue Date: 10-Aug-22 01-Sep-22 Rev 2.0

33271 - 2

James Zhu

Quality Manager

Certificate No: QA Doc. #1051 Rev. 3.0 5/29/20

Certificate Page 1 of 1

Calibration Lab. Cert. # 1533.01

West Caldwell Calibration Laboratories, Inc. uncompromised calibration

1575 State Route 96, Victor, NY 14564, U.S.A.

FCC ID: A3LSMS916U

element

HAC (T-COIL) TEST REPORT

Approved by: Managing Director

Page 111 of 119

Filename: 1M2209010097-23.A3L Test Dates:

10/3/2022 - 11/8/2022

DUT Type:

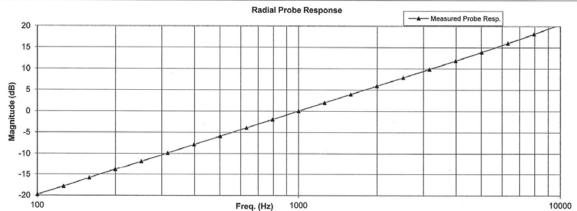
Portable Handset

HCRTEMC_TEM-1128_Aug-10-2022

ISO/IEC 17025

1575 State Route 96, Victor NY 14564

REPORT OF CALIBRATION


TEM Consulting LP Radial T Coil Probe Model No.: Radial T Coil Probe Company: Element Materials Technology Washington D.C. LLC.

Serial No.: TEM-1128 I. D. No.: XXXX

		_			
Calibration results:					
Probe Sensitivity measured wi	ith Helmholf	tz Coil			
Helmholtz Coil;			Before & after data same:	X	
the number of turns on each coil;	10	No.			
the radius of each coil, in meters;	0.204	m	Laboratory Environment:		
the current in the coils, in amperes.;	0.09	Α	Ambient Temperature:	20.5	°C
Helmholtz Coil Constant;	7.09	A/m/V	Ambient Humidity:	43.5	% RH
Helmholtz Coil magnetic field;	5.96	A/m	Ambient Pressure:	99.709	kPa
			Calibration Date:	10-Aug-2022	
Probe Sensitivity at	1000	Hz.	Re-calibration Due:		
was	-60.02	dBV/A/m	Report Number:	33271	-2
	0.997	mV/A/m	Control Number:	33271	
Probe resistance	902	Ohms			
The above listed instrument meets or exceeds	the tested n	nanufacturer's spe	cifications.		
This Calibration is traceable through NIST test number	rs:	,682636			

The expanded uncertainty of calibration: 0.30dB at 95% confidence level with a coverage factor of k=2

Graph represents Probes Frequency Response.

The above listed instrument was checked using calibration procedure documented in West Caldwell

Calibration Laboratories Inc. procedure :

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCRTEMC

Calibration was performed by West Caldwell Calibration Laboratories Inc. under Operating Procedures intended to implement the requirements of ANSI/NCSL Z540-1, ISO 9001, and ISO 17025.

Cal. Date: 10-Aug-2022 Calibrated on WCCL system type 9700

Measurements performed by:

James/Zhu

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCRTEMC

Page 1 of 2

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 112 of 119

HCRTEMC_TEM-1128_Aug-10-2022

West Caldwell Calibration Laboratories Inc.

1575 State Route 96, Victor NY 14564 Tel. (585) 586-3900 FAX (585) 586-4327

Calibration Data Record

TEM Consulting LP Radial T Coil Probe

for Model No.: Radial T Coil Probe

Serial No.: TEM-1128

company:	Element	Materials	Technology	Washington	D.C. LLC.

Test	Function	Tolerance		Measured values		
						Remarks
1.0	Probe Sensitivity at	1000 Hz.	dBV/A/m	-60.02		
2.0	Drobe Level Live vit		dB		*****	
2.0	Probe Level Linearity		6	6.03		
		Ref. (0 dB)	0	0.00		
			-6	-6.03		
			-12	-12.05		
-		·····	Hz	1	·	
3.0	Probe Frequency Response		100	-19.8		
			126	-17.8		
			158	-15.8		
			200	-13.8		
			251	-11.9		1
			316	-9.9		
			398	-7.9		
			501	-5.9		
			631	-3.9		1
			794	-2.0		
		Ref. (0 dB)	1000	0.0		
			1259	2.0		İ
			1585	4.0		
			1995	5.9		
			2512	7.9		
			3162	9.9		
			3981	11.9		
			5012	13.9		
			6310	16.0		
			7943	18.2		
			10000	20.5		
						1

Instruments used for	calibration:		Date of Cal.	Traceability No.	Due Date
HP	34401A	S/N US360641	24-Jun-2022	.682636	24-Jun-2023
HP	34401A	S/N US361024	24-Jun-2022	,682636	24-Jun-2023
HP	33120A	S/N US360437	24-Jun-2022	,682636	24-Jun-2023
B&K	2133	S/N 1583254	5-Jul-2022	,682636	5-Jul-2023

Cal. Date: 10-Aug-2022

Calibrated on WCCL system type 9700

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Tested by: James Zhu

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCRTEMC

Page 2 of 2

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 113 of 119
1M2209010097-23.A3L	10/3/2022 - 11/8/2022	Portable Handset	

15. CONCLUSION

The measurements indicate that the wireless communications device complies with the HAC limits specified in accordance with the ANSI C63.19 Standard and FCC WT Docket No. 01-309 RM-8658. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters specific to the test. The test results and statements relate only to the item(s) tested.

The measurement system and techniques presented in this evaluation are proposed in the ANSI standard as a means of best approximating wireless device compatibility with a hearing-aid. The literature is under continual re-construction.

FCC ID: A3LSMS916U	element HAC (T-COIL) TEST REPORT		Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 114 of 119

16. REFERENCES

- ANSI C63.19-2011, American National Standard for Methods of Measurement of Compatibility between Wireless communication devices and Hearing Aids.", New York, NY, IEEE, May 2011
- FCC Office of Engineering and Technology KDB, "285076 D01 HAC Guidance v06r02," September 19, 2022
- FCC Office of Engineering and Technology KDB, "285076 D02 T-Coil Testing for CMRS IP v04," February 23, 2022
- 4. FCC Public Notice DA 06-1215, Wireless Telecommunications Bureau and Office of Engineering and Technology Clarify Use of Revised Wireless Phone Hearing Aid Compatibility Standard, June 6, 2006
- 5. FCC 3G Review Guidance, Laboratory Division OET FCC, May/June 2006
- 6. Berger, H. S., "Compatibility Between Hearing Aids and Wireless Devices," Electronic Industries Forum, Boston, MA, May, 1997
- 7. Berger, H. S., "Hearing Aid and Cellular Phone Compatibility: Working Toward Solutions," Wireless Telephones and Hearing Aids: New Challenges for Audiology, Gallaudet University, Washington, D.C., May, 1997 (To be reprinted in the American Journal of Audiology).
- Berger, H. S., "Hearing Aid Compatibility with Wireless Communications Devices, " IEEE International Symposium on Electromagnetic Compatibility, Austin, TX, August, 1997.
- Bronaugh, E. L., "Simplifying EMI Immunity (Susceptibility) Tests in TEM Cells," in the 1990 IEEE International Symposium on Electromagnetic Compatibility Symposium Record, Washington, D.C., August 1990, pp. 488-491
- 10. Byme, D. and Dillon, H., The National Acoustics Laboratory (NAL) New Procedure for Selecting the Gain and Frequency Response of a Hearing Aid, Ear and Hearing 7:257-265, 1986.
- 11. Crawford, M. L., "Measurement of Electromagnetic Radiation from Electronic Equipment using TEM Transmission Cells, "U.S. Department of Commerce, National Bureau of Standards, NBSIR 73-306, Feb. 1973.
- 12. Crawford, M. L., and Workman, J. L., "Using a TEM Cell for EMC Measurements of Electronic Equipment," U.S. Department of Commerce, National Bureau of Standards. Technical Note 1013, July 1981.
- EHIMA GSM Project, Development phase, Project Report (1st part) Revision A. Technical-Audiological Laboratory and Telecom Denmark, October 1993.
- 14. EHIMA GSM Project, Development phase, Part II Project Report. Technical-Audiological Laboratory and Telecom Denmark, June 1994.
- 15. EHIMA GSM Project Final Report, Hearing Aids and GSM Mobile Telephones: Interference Problems, Methods of Measurement and Levels of Immunity. Technical-Audiological Laboratory and Telecom Denmark, 1995.

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename:	Test Dates:	DUT Type:	Page 115 of 119
1M2209010097-23.A3L	10/3/2022 - 11/8/2022	Portable Handset	

- 16. HAMPIS Report, Comparison of Mobile phone electromagnetic near field with an upscaled electromagnetic far field, using hearing aid as reference, 21 October 1999.
- 17. Hearing Aids/GSM, Report from OTWIDAM, Technical-Audiological Laboratory and Telecom Denmark, April 1993.
- 18. IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition.
- 19. Joyner, K. H, et. al., Interference to Hearing Aids by the New Digital Mobile Telephone System, Global System for Mobile (GSM) Communication Standard, National Acoustic Laboratory, Australian Hearing Series, Sydney 1993.
- Joyner, K. H., et. al., Interference to Hearing Aids by the Digital Mobile Telephone System, Global System for Mobile Communications (GSM), NAL Report #131, National Acoustic Laboratory, Australian Hearing Series, Sydney, 1995.
- 21. Kecker, W. T., Crawford, M. L., and Wilson, W. A., "Contruction of a Transverse Electromagnetic Cell", U.S. Department of Commerce, National Bureau of Standards, Technical Note 1011, Nov. 1978.
- 22. Konigstein, D., and Hansen, D., "A New Family of TEM Cells with enlarged bandwidth and Optimized working Volume," in the Proceedings of the 7th International Symposium on EMC, Zurich, Switzerland, March 1987; 50:9, pp. 127-132.
- 23. Kuk, F., and Hjorstgaard, N. K., "Factors affecting interference from digital cellular telephones," Hearing Journal, 1997; 50:9, pp 32-34.
- 24. Ma, M. A., and Kanda, M., "Electromagnetic Compatibility and Interference Metrology," U.S. Department of Commerce, National Bureau of Standards, Technical Note 1099, July 1986, pp. 17-43.
- 25. Ma, M. A., Sreenivashiah, I., and Chang, D. C., "A Method of Determining the Emission and Susceptibility Levels of Electrically Small Objects Using a TEM Cell," U.S. Department of Commerce, National Bureau of Standards, Technial Note 1040, July 1981.
- 26. McCandless, G. A., and Lyregaard, P. E., Prescription of Gain/Output (POGO) for Hearing Aids, Hearing Instruments 1:16-21, 1983
- 27. Skopec, M., "Hearing Aid Electromagnetic Interference from Digital Wireless Telephones, "IEEE Transactions on Rehabilitation Engineering, vol. 6, no. 2, pp. 235-239, June 1998.
- 28. Technical Report, GSM 05.90, GSM EMC Considerations, European Telecommunications Standards Institute, January 1993.
- 29. Victorian, T. A., "Digital Cellular Telephone Interference and Hearing Aid Compatibility—an Update," Hearing Journal 1998; 51:10, pp. 53-60
- 30. Wong, G. S. K., and Embleton, T. F. W., eds., AIP Handbook of Condenser Microphones: Theory, Calibration and Measurements, AIP Press.

FCC ID: A3LSMS916U	element	HAC (T-COIL) TEST REPORT	Approved by: Managing Director
Filename: 1M2209010097-23.A3L	Test Dates: 10/3/2022 - 11/8/2022	DUT Type: Portable Handset	Page 116 of 119