

FCC 47 CFR PART 15 SUBPART E

FCC ID: GKRWM3BAB32

TEST REPORT

For

Wireless LAN module built in Notebook PC

Model No.: CL32

Trade Name: acer / Compal

Prepared for

Compal Electronics Inc. No. 581, Jui Kuang Rd., Neihu, Taipei, (114) Taiwan, R.O.C.

Prepared by

Compliance Certification Services Inc. No. 81-1, Lane 210, Bade Rd. 2, Luchu Hsiang, Taoyuan Hsien, (338) Taiwan, R.O.C. TEL: 886-3-324-0332 FAX: 886-3-324-5235

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. Ltd. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

TABLE OF CONTENTS

1.	TES	T RESULT CERTIFICATION	3
2.	EUT	DESCRIPTION	4
3.	тгс'	T METHODOLOGY	5
э.	ILS		
	3.1	EUT CONFIGURATION	
	3.2	EUT EXERCISE	
	3.3	GENERAL TEST PROCEDURES	
	3.4	FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS	
	3.5	DESCRIPTION OF TEST MODES	6
4.	INST	FRUMENT CALIBRATION	7
5.	FAC	ILITIES AND ACCREDITATIONS	
4	5.1	FACILITIES	
	5.2	EQUIPMENT	
	5.3	LABORATORY ACCREDITATIONS AND LISTING	
	5.4	TABLE OF ACCREDITATIONS AND LISTINGS	
6.	SET	UP OF EQUIPMENT UNDER TEST	
		-	
6	SET 5.1 5.2	UP OF EQUIPMENT UNDER TEST SETUP CONFIGURATION OF EUT SUPPORT EQUIPMENT	
6	5.1 5.2	SETUP CONFIGURATION OF EUT	
((7.	5.1 5.2 FCC	SETUP CONFIGURATION OF EUT SUPPORT EQUIPMENT PART 15 REQUIREMENTS	
((7.	5.1 5.2 FCC 7.1	SETUP CONFIGURATION OF EUT SUPPORT EQUIPMENT PART 15 REQUIREMENTS BAND EDGES MEASUREMENT	
7.	5.1 5.2 FCC	SETUP CONFIGURATION OF EUT SUPPORT EQUIPMENT PART 15 REQUIREMENTS BAND EDGES MEASUREMENT POWERLINE CONDUCTED EMISSION (15.207)	
7.	5.1 5.2 FCC 7.1 7.2	SETUP CONFIGURATION OF EUT SUPPORT EQUIPMENT PART 15 REQUIREMENTS BAND EDGES MEASUREMENT POWERLINE CONDUCTED EMISSION (15.207) 26 DB EMISSION BANDWITH (15.403)	
7.	5.1 5.2 FCC 7.1 7.2 7.3	SETUP CONFIGURATION OF EUT SUPPORT EQUIPMENT PART 15 REQUIREMENTS BAND EDGES MEASUREMENT POWERLINE CONDUCTED EMISSION (15.207)	10 10 11 11 11 16 20 23
7.	5.1 5.2 FCC 7.1 7.2 7.3 7.4	SETUP CONFIGURATION OF EUT SUPPORT EQUIPMENT PART 15 REQUIREMENTS BAND EDGES MEASUREMENT POWERLINE CONDUCTED EMISSION (15.207) 26 DB EMISSION BANDWITH (15.403) PEAK POWER (15.407) PEAK POWER SPECTRAL DENSITY (15.407)	10 10 11 11 11 16 20 23 27
7.	5.1 5.2 FCC 7.1 7.2 7.3 7.4 7.5	SETUP CONFIGURATION OF EUT SUPPORT EQUIPMENT PART 15 REQUIREMENTS BAND EDGES MEASUREMENT POWERLINE CONDUCTED EMISSION (15.207) 26 DB EMISSION BANDWITH (15.403) PEAK POWER (15.407)	10 10 11 11 11 16 20 23 27 31
7.	5.1 5.2 FCC 7.1 7.2 7.3 7.4 7.5 7.6	SETUP CONFIGURATION OF EUT SUPPORT EQUIPMENT PART 15 REQUIREMENTS BAND EDGES MEASUREMENT POWERLINE CONDUCTED EMISSION (15.207) 26 DB EMISSION BANDWITH (15.403) PEAK POWER (15.407) PEAK POWER SPECTRAL DENSITY (15.407) PEAK EXCURSION (15.407)	10 10 11 11 11 16 20 23 23 27 31 34
7.	5.1 5.2 FCC 7.1 7.2 7.3 7.4 7.5 7.6 7.7	SETUP CONFIGURATION OF EUT SUPPORT EQUIPMENT PART 15 REQUIREMENTS BAND EDGES MEASUREMENT POWERLINE CONDUCTED EMISSION (15.207) 26 DB EMISSION BANDWITH (15.403) PEAK POWER (15.407) PEAK POWER (15.407) PEAK POWER SPECTRAL DENSITY (15.407) PEAK EXCURSION (15.407) CONDUCTED UNDESIRABLE EMISSION (15.407)	10 10 11 11 11 16 20 23 27 27 31 34 37
7.	5.1 5.2 FCC 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8	SETUP CONFIGURATION OF EUT SUPPORT EQUIPMENT PART 15 REQUIREMENTS BAND EDGES MEASUREMENT POWERLINE CONDUCTED EMISSION (15.207) 26 DB EMISSION BANDWITH (15.403) PEAK POWER (15.407) PEAK POWER (15.407) PEAK POWER SPECTRAL DENSITY (15.407) PEAK EXCURSION (15.407) CONDUCTED UNDESIRABLE EMISSION (15.407) RADIATED UNDESIRABLE EMISSION (15.407)	10 10 11 11 11 16 20 23 23 27 31 31 34 37 49
7.	5.1 5.2 FCC 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	SETUP CONFIGURATION OF EUT SUPPORT EQUIPMENT PART 15 REQUIREMENTS BAND EDGES MEASUREMENT POWERLINE CONDUCTED EMISSION (15.207) 26 DB EMISSION BANDWITH (15.403) PEAK POWER (15.407) PEAK POWER (15.407) PEAK POWER SPECTRAL DENSITY (15.407) PEAK EXCURSION (15.407) CONDUCTED UNDESIRABLE EMISSION (15.407) RADIATED UNDESIRABLE EMISSION (15.407) TRANSMISSION IN ABSENCE OF DATA (15.407)	10 10 11 11 11 16 20 23 23 27 27 31 34 34 37 49 50 51

1. TEST RESULT CERTIFICATION

Applicant:	COMPAL ELECTRONICS, INC. No. 581, Jui Kuang Rd., Neihu, Taipei, (114) Taiwan, R.O.C.
Equipment Under Test:	Wireless LAN module built in Notebook PC
Trade Name:	acer / Compal
Model:	CL32
Model Difference:	N/A
Report Number:	B30827206-RP
Date of Test:	September 3 ~ 4, 2003

APPLICABLE STANDARDS			
STANDARD	TEST RESULT		
FCC Part 15 Subpart E	No non-compliance noted		

We hereby certify that:

Compliance Certification Services Inc. tested the above equipment. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4 (1992) and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rules Part 15.407.

The test results of this report relate only to the tested sample identified in this report.

Approved by:

on L

Jonson Lee Director of Linkou Laboratory Compliance Certification Services Inc.

Reviewed by:

Eric Wong Section Manager Compliance Certification Services Inc.

2. EUT DESCRIPTION

Product	Wireless LAN module built in Notebook PC
Trade Name	acer / Compal
Model No.	CL32
Model Discrepancy	None
Power Supply	ADP-65DB (Input: 100-240V, 50-60Hz, 1500mA Output: 19V, 3420mA)
Frequency Range	801.11a: 5.15 ~ 5.35GHz 801.11b: 2412 ~ 2462 MHz
Transmit Power	801.11a: 14dBm 801.11b: 16 dBm
Modulation Technique	801.11a: OFDM 801.11b: DSSS (CCK; DQPSK; DBPSK)
Transmitting Speed	801.11a: 54 Mbps 801.11b: 11, 5, 5, 2, 1 Mbps
Number of Channels	801.11a: Up to 8 non-overlapping Channels 801.11b: Up to 14 Channels
Antenna Designation	PIFA antenna Embedded non-user changeable, two provided. Tx and Rx Diversity

Operation Frequency:

UNLICENSED NATIONAL INFORMATION INFRASTRUCTURE (U-NII)		
CHANNEL	MHz	
1	5180	
2	5200	
3	5220	
4	5240	
5	5260	
6	5280	
7	5300	
8	5320	

Note: This submittal(s) (test report) is intended for FCC ID: <u>GKRWM3BAB32</u> filing to comply with Section 15.407 of the FCC Part 15, Subpart E Rules. The composite system (digital device) is in compliance with Subpart B authorized under a DoC procedure.

Note: The 5.2 GHz U-NII band is applicable to this report; another bands of operation (2.4 GHz) is documented in a separate report.

3. TEST METHODOLOGY

Both conducted and radiated testing was performed according to the procedures in ANSI C63.4-1992. Radiated testing was performed at an antenna to EUT distance 3 meters.

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed for RF field strength measurement to meet the Commissions requirement, and is operated in a manner intended to generate the maximum emission in a continuous normal application.

3.2 EUT EXERCISE

The EUT (Wireless LAN module built in Notebook PC) is operated in the engineering mode to fix the Tx frequency for the purposes of measurement.

According to its specifications, the EUT must comply with the requirements of Section 15.407 under the FCC Rules Part 15 Subpart E. The composite system (Digital device) is in compliance with Subpart B authorized under the DoC procedure.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is positioned at 0.8 m above the ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4-1992, the conducted emission from the EUT is measured in the frequency range between 0.15 MHz and 30MHz, using the CISPR Quasi-Peak detector mode.

Radiated Emissions

The EUT is placed on the turntable, which is 0.8 m above the ground plane. The turntable is then rotated for 360 degrees to determine the proper orientation for the maximum emission level. The EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission level. And, each emission is to be maximized by changing the horizontal and vertical polarization of the receiving antenna. In order to find out the maximum emission level, the relative positions of the EUT was rotated in each of the three orthogonal axes, according to the requirements in Section 13.1.4.1 of ANSI C63.4-1992.

3.4 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	(²)
13.36 - 13.41	322 - 335.4		

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

3.5 DESCRIPTION OF TEST MODES

The EUT has been tested under the operating condition.

Software used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Channel 1 (5180MHz), Channel 5 (5260MHz) and Channel 8 (5320MHz), which give the highest data rate of 54Mbps, are chosen for full testing.

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

Compliance Certification Services Inc. Report No: B30827206-RP FCC ID: GKRWM3BAB32

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No. 81-1, Lane 210, Bade Rd. 2, Luchu Hsiang, Taoyuan Hsien, Taiwan, R.O.C.

No. 199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4-1992 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 LABORATORY ACCREDITATIONS AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code: 200600-0 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government. In addition, the test facilities are listed with Federal Communications Commission (registration no: 93105 and 90471).

5.4 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	NVLAP*	EN 55011, EN 55014-1, AS/NZS 1044, CNS 13783-1, EN 55022, CNS 13438, EN 61000-3-2, EN 61000-3-3, ANSI C63.4, FCC OST/MP-5, AS/NZS 3548IEC 61000-4-2, IEC 61000-4-3, IEC 61000-4-4, IEC 61000-4-5, IEC 61000-4-6, IEC 61000-4-8, IEC 61000-4-11	NVLAD 200600-0
USA	FCC	3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements	FC 93105, 90471
Japan	VCCI	4 3/10 meter Open Area Test Sites to perform conducted/radiated measurements	VCCI R-393/1066/725/879 C-402/747/912
Norway	NEMKO	EN 50081-1/2, EN 50082-1/2, IEC 61000-6-1/2, EN 50091-2, EN 50130-4, EN 55011, EN 55013, EN 55014-1/2, EN 55015, EN 55022, EN 55024, EN 61000-3-2/3, EN 61326-1, IEC 61000-4-2/3/4/5/6/8/11, EN 60601-1-2, EN 300 328-2, EN 300 422-2, EN 301 419-1, EN 301 489-01/03/07/08/09/17, EN 301 419-2/3, EN 300 454-2, EN 301 357-2	ELA 124a ELA 124b ELA 124c
Taiwan	CNLA	EN 300 328-1, EN 300 328-2, EN 300 220-1, EN 300 220-2, EN 300 220-3, 47 CFR FCC Part 15 Subpart C, EN 61000-3-2, EN 61000-3-3, CNS 13439, CNS 13783-1, CNS 14115, CNS 13438, AS/NZS 3548, CNS 13022-1, IEC 1000-4-3/4/5/6/8/11, CNS 13022-2/3	0 3 6 3 ILAC MRA
Taiwan	BSMI	CNS 13438, CNS 13783-1, CNS 13439, CNS 14115	SL2-IS-E-0014 SL2-IN-E-0014 SL2-A1-E-0014 SL2-R1-E-0014 SL2-R2-E-0014 SL2-L1-E-0014
Canada	Industry Canada	RSS212, Issue 1	Canada IC 3991-3 IC 3991-4

* No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government.

6. SETUP OF EQUIPMENT UNDER TEST

6.1 SETUP CONFIGURATION OF EUT

6.2 SUPPORT EQUIPMENT

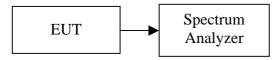
Device Type	Brand	Model	FCC ID	Series No.	Data Cable	Power Cord
USB Keyboard	Logitech	M-MM43	FCC DoC	LZE94052771	N/A	Unshielded, 1.8m
USB Mouse	Logitech	M-CAA43	FCC DoC	PHB02400489	N/A	Unshielded, 1.8m
Printer	HP	3137S01428	FCC DoC	DSI6XU2225	Unshielded, 1.8m	Unshielded, 1.8m

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

7. FCC PART 15 REQUIREMENTS

7.1 BAND EDGES MEASUREMENT


LIMIT

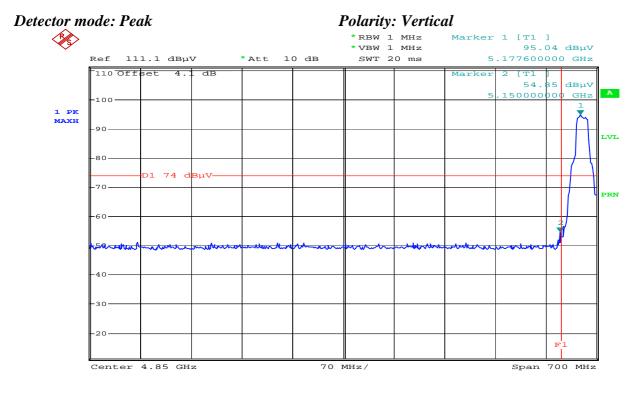
According to §15.407(c), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

MEASUREMENT EQUIPMENT USED

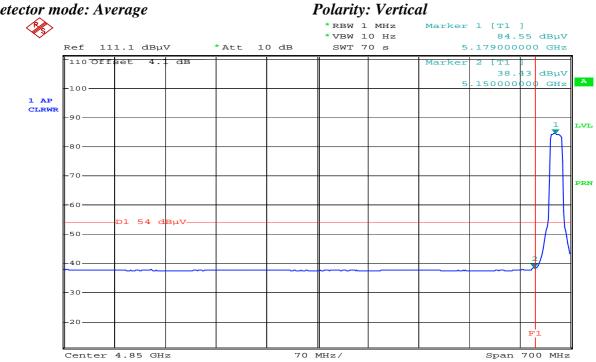
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	US42510252	04/27/2004
Spectrum Analyzer	R&S	FSP30	1093.4495.30	07/22/2004
Low loss cable	Huber + Suhner	Sucoflex 104	N/A	N/A

TEST CONFIGURATION

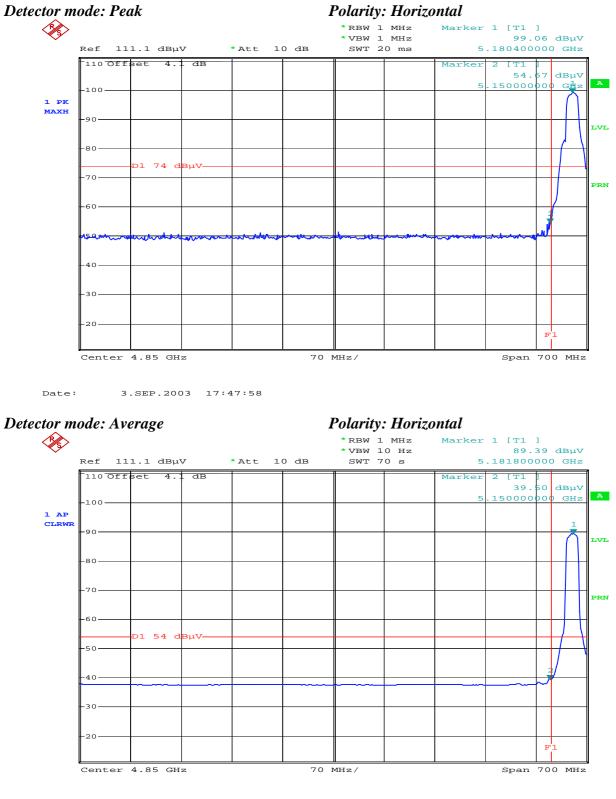
TEST PROCEDURE


- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
 - (b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO
- 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

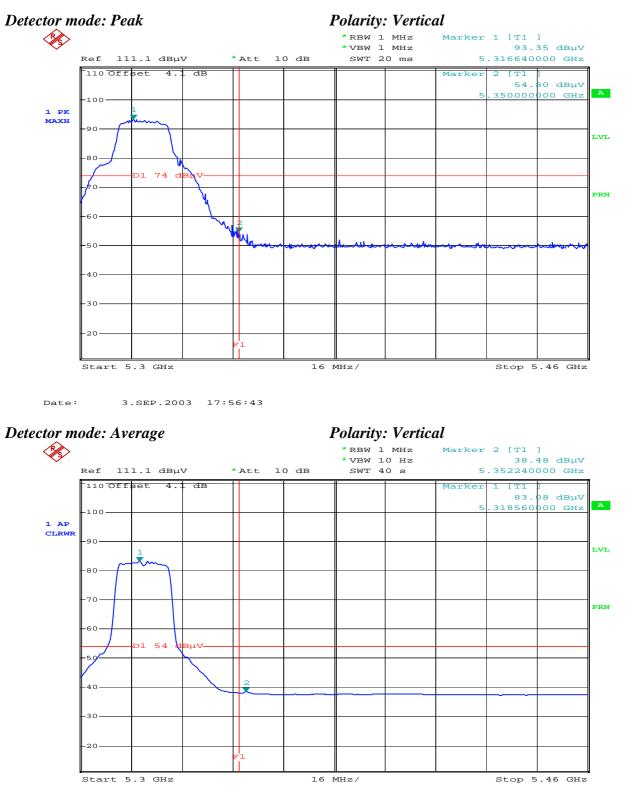
TEST RESULTS

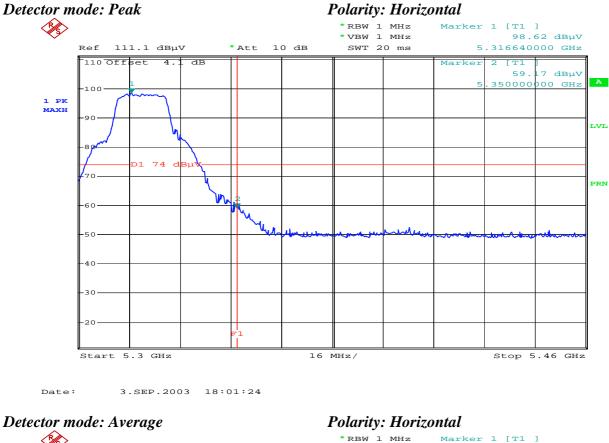

Refer to attach spectrum analyzer data chart.

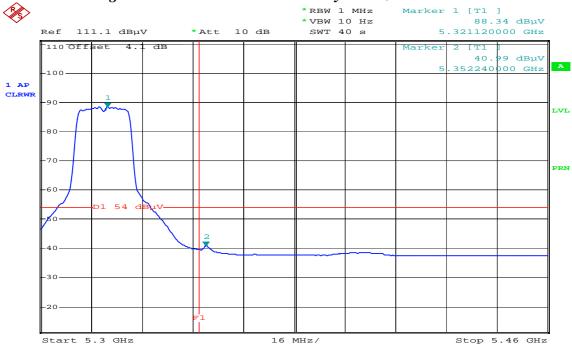
Band Edges (CH-Low)


3.SEP.2003 17:52:58 Date:

Detector mode: Average


Date: 3.SEP.2003 17:52:09




Band Edges (CH-High)

^{3.}SEP.2003 17:58:39 Date:

7.2 POWERLINE CONDUCTED EMISSION (15.207)

LIMIT

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range (MHz)	Limits (dBµV)			
Frequency Range (WIIIZ)	Quasi-peak	Average		
0.15 to 0.50	66 to 56	56 to 46		
0.50 to 5	56	46		
5 to 30	60	50		

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (*Live Line* and *Neutral Line*) and ground at the power terminals.

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESCS30	847793/012	12/20/2003
LISN	R&S	ESH2-Z5	843285/010	12/15/2003
LISN	EMCO	3825/2	9003-1628	07/25/2004
Spectrum Analyzer	ADVANTEST	R3261A	91720031	N/A
2X2 WIRE ISN	R&S	ENY22	100020	06/19/2004
FOUR WIRE ISN	R&S	ENY41	100006	06/19/2004

MEASUREMENT EQUIPMENT USED

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST CONFIGURATION

- 1. The conducted emission tests were performed in the test site, using the setup in accordance with the ANSI C63.4-1992.
- 2. The EUT was plug-in the host PC via USB port. The host PC system was placed on the center of the back edge on the test table. The peripherals like modem, monitor printer, K/B, and mouse were placed on the side of the host PC system. The rear of the EUT and peripherals were placed flushed with the rear of the tabletop.
- 3. The keyboard was placed directly in the front of the monitor, flushed with the front tabletop. The mouse was placed next to the Keyboard, flushed with the back of keyboard.
- 4. The spacing between the peripherals was 10 centimeters.
- 5. External I/O cables were draped along the edge of the test table and bundle when necessary.
- 6. The host PC system was connected with 110Vac/60Hz power source.

The EUT is set to transmit in a continuous mode.

TEST PROCEDURE

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

TEST RESULTS

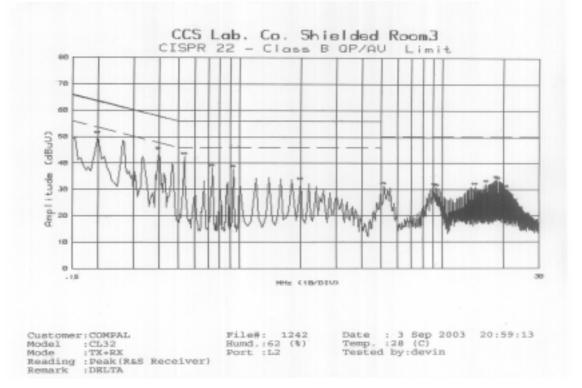
The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Operation Mode:	Tx + Rx mode	Test Date:	September 3, 2003
Temperature:	28°C	Tested by:	Devin
Humidity:	62% RH		

EDEO	P.K.	Q.P.	AVG	Q.P.	AVG	Q.P.	AVG	
FREQ	Raw	Raw	Raw	Limit	Limit	Margin	Margin	NOTE
MHz	dBuV	dBuV	dBuV	dBuV	dBuV	dB	dB	
0.152	69.00	55.60	38.00	65.89	55.89	-10.29	-17.89	L1
0.225	58.80	46.40	23.80	62.63	52.63	-16.23	-28.83	L1
0.301	52.20	39.80	17.80	60.22	50.22	-20.42	-32.42	L1
0.365	48.80	35.80	15.50	58.61	48.61	-22.81	-33.11	L1
0.438	44.40			57.10	47.10			L1
0.562	43.40			56.00	46.00			L1
0.174	68.60	53.70	31.80	64.77	54.77	-11.07	-22.97	L2
0.235	57.00	45.20	23.80	62.27	52.27	-17.07	-28.47	L2
0.361	51.40	37.80	18.10	58.71	48.71	-20.91	-30.61	L2
0.462	46.40	33.10	14.20	56.66	46.66	-23.56	-32.46	L2
0.505	43.80			56.00	46.00			L2
0.575	41.20			56.00	46.00			L2

Note:

1. Measuring frequencies from 0.15 MHz to 30MHz.

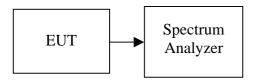

- 2. The emissions measured in frequency range from 0.15 MHz to 30MHz were made with an instrument using Quasi-Peak detector and Average detector.
- 3. "---" denotes the emission level was or more than 2dB below the Average limit
- 4. The IF bandwidth of SPA between 0.15MHz to 30MHz was 10KHz; the IF bandwidth of Test Receiver between 0.15MHz to 30MHz was 9KHz;
- 5. *L1* = *Line One (Live Line) / L2* = *Line Two (Neutral Line)*

Test Data Plots Conducted emissions (Line 1)

Conducted emissions (Line 2)

7.3 26 dB EMISSION BANDWITH (15.403)

LIMIT


For purposes of this subpart, the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum level of the modulated carrier. Determination of the emissions bandwidth is based on the use of measurement instrumentation employing a peak detector function with an instrument resolutions bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.

MEASUREMENT EQUIPMENT USED

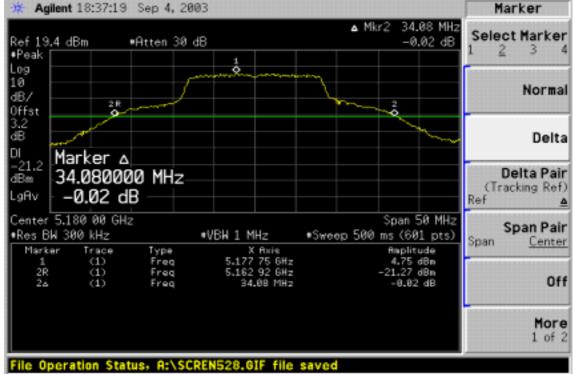
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	US42510252	4/28/2004
Low Loss Cable	Huber + Suhner	Sucoflex 104	N/A	N/A

Remark: Each piece of equipment is scheduled for calibration once a year.

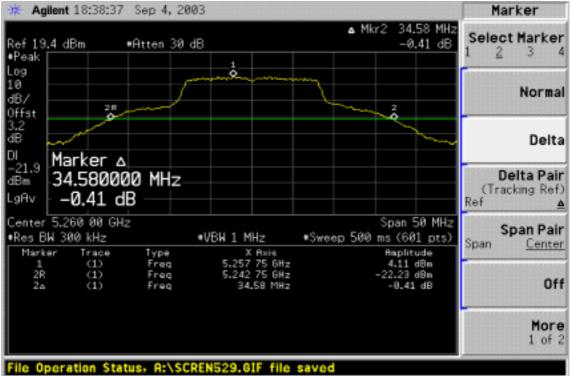
TEST CONFIGURATION

TEST PROCEDURE

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low-loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW = 1%EBW, VBW = RBW, Span = 50MHz / 100MHz (Turbo Mode), and Sweep = auto.
- 4. Mark the peak frequency and –26dBc (upper and lower) frequency.
- 5. Repeat until all the rest channels were investigated.


TEST RESULTS

Channel	Frequency (MHz)	Bandwidth (B) (MHz)
Low	5180	34.08
M id	5260	34.58
High	5320	34.58



Test Plot


26dB Bandwidth CH Low

26dB Bandwidth CH Mid

26dB Bandwidth CH High

7.4 PEAK POWER (15.407)

LIMIT

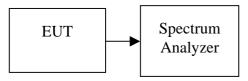
- For the band 5.15-5.35 GHz, the peak transmit power over the frequency band of operation shall not exceed the lesser of 50mW (17dBm) or 4dBm + 10log B, where B is the 26dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 4dBm in any 1 MHz band.
- For the band 5.25-5.35 GHz, the peak transmit power over the frequency band of operation shall not exceed the lesser of 250mW (24dBm) or 11dBm + 10logB, where B is the 26dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 11dBm in any 1 MHz band.
- For the band 5.725-5.825 GHz, the peak transmit power over the frequency band of operation shall not exceed the lesser of 1mW (30dBm) or 17dBm + 10logB, where B is the 26dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 17dBm in any 1 MHz band.

If transmitting antennas of directional gain greater than 6dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. The peak power shall not exceeded the limit as follows:

Channel	Frequency (MHz)	10 Log B (dB)	4 + 10 Log B or 11 + 10 Log B (dBm)	Power Limit (dBm)
Low	5180	14.8	18.8	17
Middle	5260	15.51	26.51	24
High	5320	14.73	25.73	24

Specified Limit of the Peak Power

(Note: Maximum antenna gain = 2.44dBi, therefore there is no reduction due to antenna gain.)



MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	US42510252	4/28/2004
Low Loss Cable	Huber + Suhner	Sucoflex 104	N/A	N/A

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST CONFIGURATION

The EUT was connected to a spectrum analyzer through a 50 RF cable.

TEST PROCEDURE

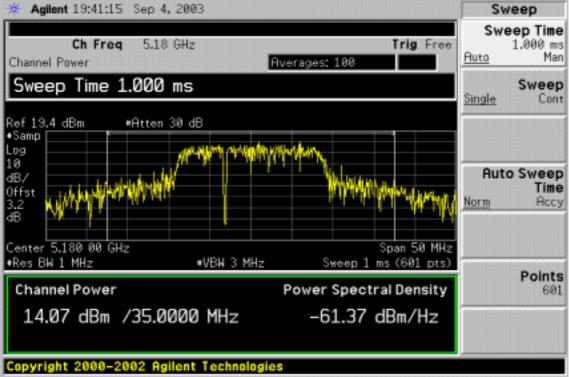
Set span to encompass the entire emission bandwidth (EBW) of the signal.

Set RBW = 1 MHz / Set VBW = 3 MHz.

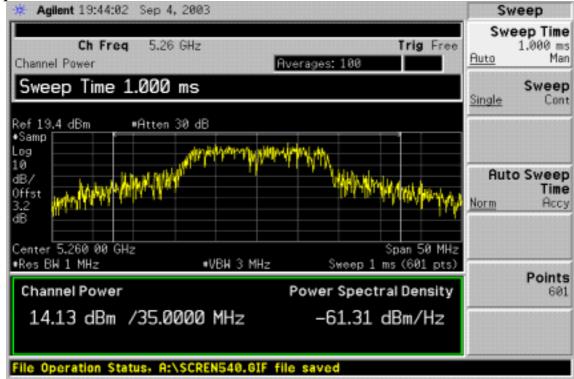
Use sample detector mode if bin width (i.e., span/number of points in spectrum display) < 0.5 RBW. Otherwise use peak detector mode. Use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at full control power for entire sweep of every sweep. If the device transmits continuously, with no off intervals or reduced power intervals, the trigger may be set to "free run". Trace average 100 traces in power averaging mode. Compute power by integrating the spectrum across the 26 dB EBW of the signal. The integration can be performed using the spectrum analyzer's band power measurement function with band limits set equal to the EBW band edges or by summing power levels in each 1 MHz band in linear power terms. The 1 MHz band power levels to be summed can be obtained by averaging, in linear power terms, power levels in each frequency bin across the 1 MHz.

TEST RESULTS

No non-compliance noted

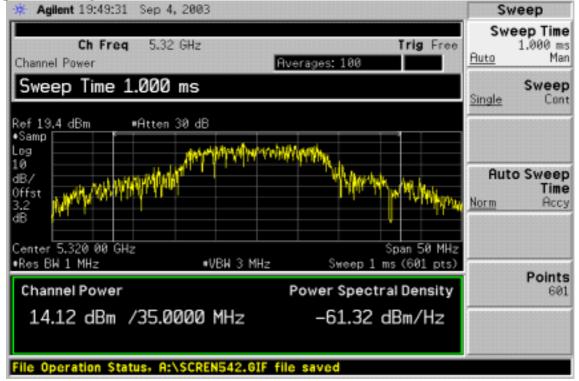

TEST DATA

Channel	Frequency (MHz)	Reading (dBm)	Factor (dB)	Output Power (dBm)	Limit (dBm)
Low	5180	10.87	3.20	14.07	17
Mid	5260	10.93	3.20	14.13	24
High	5320	10.92	3.20	14.12	24



Test Plot

Peak power Ch Low

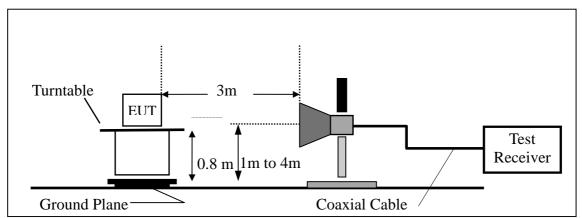


Peak power Ch Mid

Peak power Ch High

7.5 PEAK POWER SPECTRAL DENSITY (15.407)

LIMIT


- For the band 5.15-5.35 GHz, the peak transmit power over the frequency band of operation shall not exceed the lesser of 50mW or 4dBm + 10logB, where B is the 26dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 4dBm in any 1MHz band.
- For the band 5.25-5.35 GHz, the peak transmit power over the frequency band of operation shall not exceed the lesser of 250mW or 11dBm + 10logB, where B is the 26dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 11dBm in any 1MHz band.

If transmitting antennas of directional gain greater than 6dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

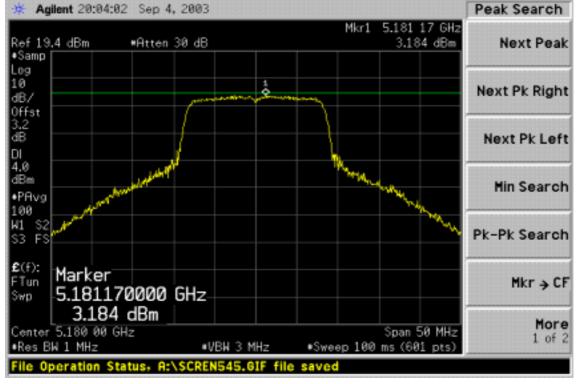
MEASUREMENT EQUIPMENT USED

EQUIPMENT TYPE	MFR	Model No.	Serial No.	Cal. Due.
Spectrum Analyzer	Agilent	E4446A	US42510252	04/27/2004
Low Loss Cable	Huber + Suhner	Sucoflex 104	N/A	N/A

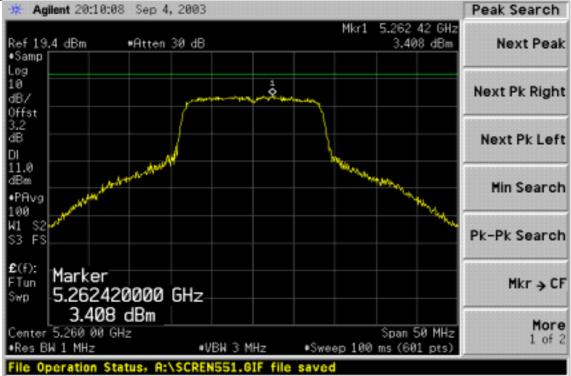
TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - (b) PEAK: RBW=VBW=1MHz / Sweep=AUTO
 - (c) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO
- 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.


Limit PPSD Margin Frequency Channel $(\mathbf{M} \mathbf{H} \mathbf{z})$ $(\mathbf{d} \mathbf{B} \mathbf{m})$ $(\mathbf{d} \mathbf{B} \mathbf{m})$ $(\mathbf{d}\mathbf{B})$ 5180 3.184 4 -0.816 Low M id 5260 3.408 11 -7.592 High 5320 3.497 11 -7.503

TEST RESULTS



Test Plot

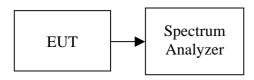
Out of Band Test Data CH-Low

Out of Band Test Data CH-Mid

Out of Band Test Data CH-High

7.6 PEAK EXCURSION (15.407)

LIMIT


The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	US42510252	4/27/2004
Low-Loss RF Cable	Huber + Suhner	Sucoflex 104	N/A	N/A

Remark: Each piece of equipment is scheduled for calibration once a year.

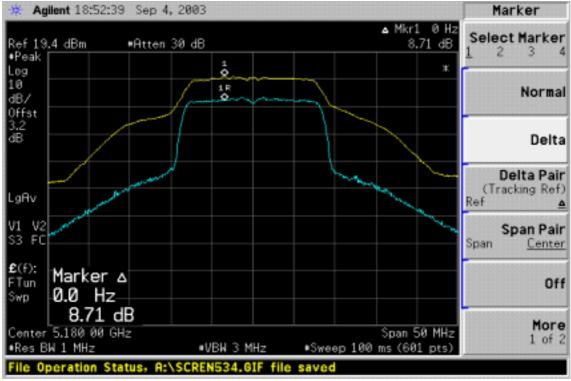
TEST CONFIGURATION

TEST PROCEDURE

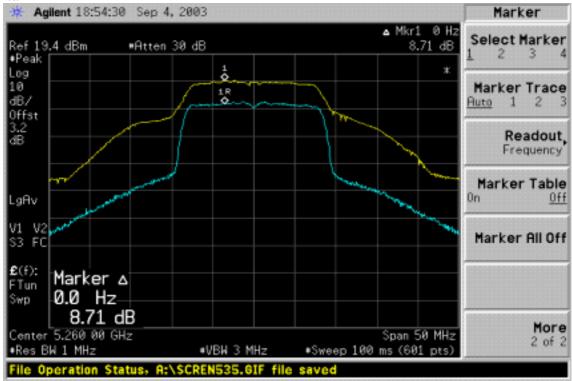
The test is performed in accordance with <FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices> – Part 15, Subpart E, August 2002.

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to spectrum.
- 3. Trace A, Set RBW =1MHz, VBW = 3MHz, Span = 25MHz (Base Mode) / 50MHz (Turbo Mode), Max. hold.
- 4. Trace B, Set RBW = 1MHz, VBW = 30kHz, Span = 25MHz (Base Mode) / 50MHz(Turbo Mode), Max. hold.
- 5. Delta Mark trace A Maximum frequency and trace B same frequency.
- 6. Repeat the above procedure until measurements for all frequencies were complete.

Channel	Frequency (MHz)	Peak Excursion (dB)	Limit (dB)	Margin (dB)
Low	5180	8.71	13	-4.29
M id	5260	8.71	13	-4.29
High	5320	8.50	13	-4.50

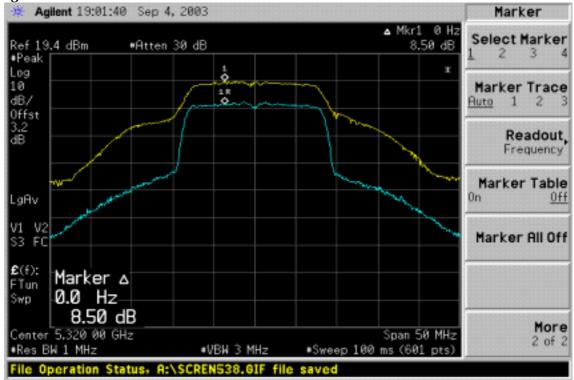

TEST RESULTS

(Note: Maximum antenna gain = $5.2 \, dBi$, therefore there is no reduction due to antenna gain.)



Test Plot

CH-Low



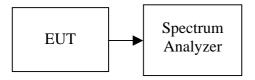
CH-Mid

CH-High

7.7 CONDUCTED UNDESIRABLE EMISSION (15.407)

LIMIT

Transmitters operating in the 5.15-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27dBm / MHz. Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.


The provisions of §15.205 apply to intentional radiators operating under this section.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	US42510252	4/27/2004
Low-Loss RF Cable	Huber + Suhner	Sucoflex 104	N/A	N/A

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

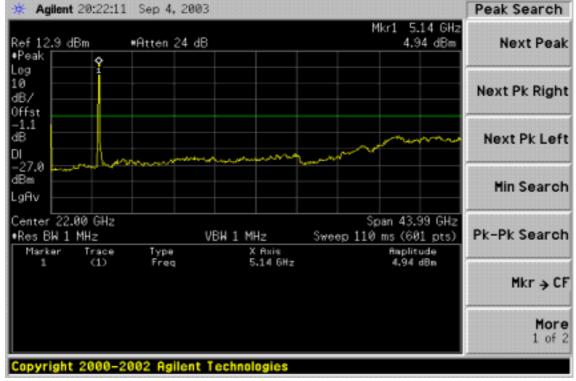
TEST PROCEDURE

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

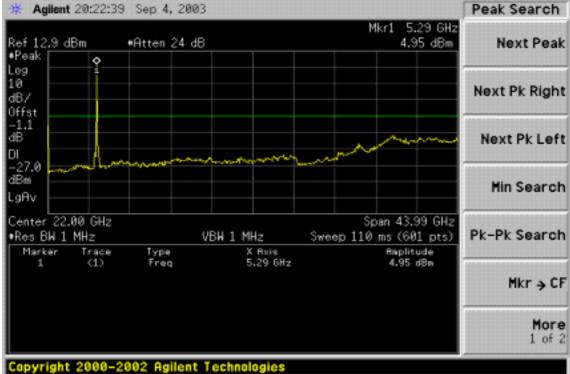
The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detection measurements are compared to the average EIRP limit, adjusted for the maximum antenna gain. If necessary, additional average detection measurements are made.

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

TEST RESULTS

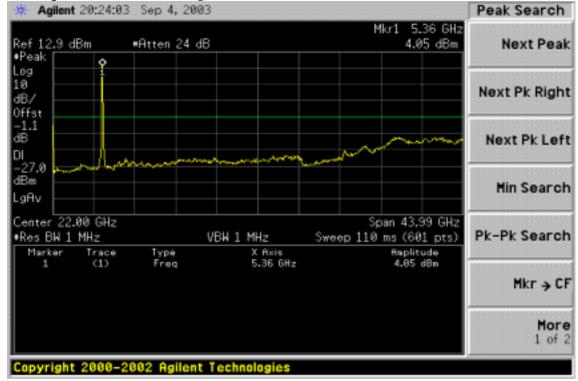

No non-compliance noted

(*Note:* Maximum antenna gain = 2.44 dBi, therefore there is no reduction due to antenna gain.)



Test Plot

Conducted Spurious Emissions-Low



Conducted Spurious Emissions-Mid

Conducted Spurious Emissions-High

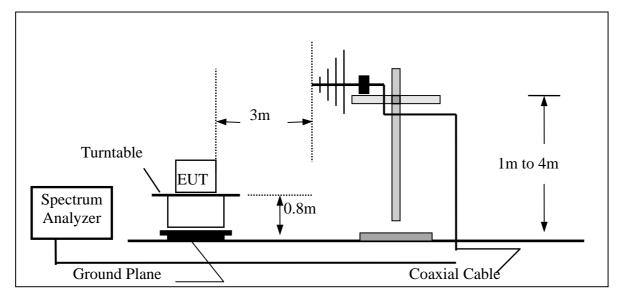
7.8 RADIATED UNDESIRABLE EMISSION (15.407)

LIMIT

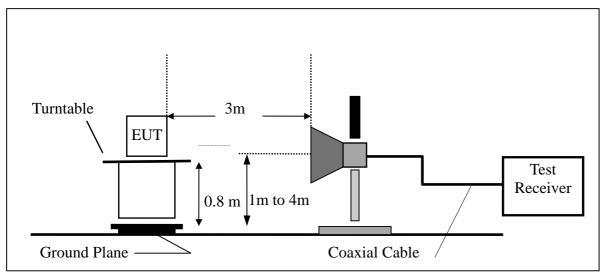
For transmitters operating in the 5.15-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27dBm / MHz. Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.

The provisions of \$15.205 apply to intentional radiators operating under this section. The EUT is set to transmit in a continuous mode.

Open Area Test Site # 3								
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due				
Spectrum Analyzer	Agilent	E4446A	US42510252	4/27/2004				
EMI Test Receiver	R&S	ESVS20	838804/004	01/04/2004				
Pre-Amplifier	HP	8447D	2944A09173	03/03/2004				
Bilog Antenna	SCHWAZBECK	VULB9163	145	07/05/2004				
Turn Table	EMCO	2081-1.21	9709-1885	N.C.R				
Antenna Tower	EMCO	2075-2	9707-2060	N.C.R				
Controller	EMCO	2090	9709-1256	N.C.R				
RF Switch	ANRITSU	MP59B	M53867	N.C.R				
Site NSA	C&C	N/A	N/A	09/06/2004				
Horn antenna	Schwarzbeck	BBHA 9120	D210	02/23/2004				
Loop Antenna	EMCO	6502	2356	07/10/2004				
Pre-Amplifier	HP	8449B	3008B00965	10/02/2003				


MEASUREMENT EQUIPMENT USED

Remark: Each piece of equipment is scheduled for calibration once a year.



TEST CONFIGURATION

For Frequencies Below 1 GHz

For Frequencies Above 1 GHz

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

Note: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 100kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.

FACTOR CALCULATION

The Factor is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

EIRP Calculation

Given
$$E = \frac{\sqrt{(30 \times P \times G)}}{100}$$

dWhere $E = Field \ strength \ (Volts/Meter)$ $P = Power \ (Watts)$ $G = Numeric \ antenna \ gain$ $d = Distance \ (Meter)$

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields

$$P \times G = \frac{(d \times E)^2}{30}$$

Re-arranging the terms yields

$$P(mW) = P(W) / 1000 and$$

 $d(cm) = 100 * d(m)$

Converting to the logarithmic form and changing to units of mW and μ V/m, using

$$P(mW) = P(W) / 1000 \text{ and } E(uV/m) = E(V/m) / 1000000$$

Yields

$$10\log(P \times G) = 10\log d^2 + 10\log E^2 - 10\log 30 - 10\log 10^9 = 20\log d + 20\log E - 104.77$$

Where $10 \log (P * G)$ is PG in dBm and $20 \log (E)$ is E in dBuV/m

Since

EIRP = P * G

Then, at a specification distance of 3 meters, the EIRP, in terms of field strength, is

EIRP(dBm) = P * G(dBm) = E(dBuV/m) - 95.2

TEST RESULTS

Radiated Spurious Emission Measurement Result (Below 1GHz)							
Operation	Mode:	TX CH L	low Mode	Test Da	ate:	Septemb	oer 4, 2003
Temperatur	re:	$30^{\circ}C$		Tested	By:	Devin	
Humidity:		70 %		Pol:		Ver./Hor	
Freq.	Ant.Pol.	Detector Mode	Reading	Factor	Actual FS	Limit3m	Safe Margin
(MHz)	V/H	(PK/QP)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
399.40	V	Peak	9.80	20.69	30.49	46.00	-15.51
489.00	V	Peak	17.86	22.00	39.86	46.00	-6.14
501.60	V	Peak	18.82	22.57	41.39	46.00	-4.61
666.80	V	Peak	5.03	25.18	30.21	46.00	-15.79
799.80	V	Peak	6.83	26.14	32.97	46.00	-13.03
899.20	V	Peak	0.91	28.14	29.05	46.00	-16.95
399.40	Н	Peak	6.94	20.69	27.63	46.00	-18.37
466.60	Н	Peak	8.02	20.95	28.97	46.00	-17.03
498.80	Н	Peak	15.01	22.45	37.46	46.00	-8.54
664.00	Н	Peak	7.99	25.13	33.12	46.00	-12.88
799.80	Н	Peak	3.97	26.14	30.11	46.00	-15.89
899.20	Н	Peak	1.96	28.14	30.10	46.00	-15.90

- (1) Measuring frequencies from 30 MHz to the 1GHz
- (2) Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
- (3) Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (4) The IF bandwidth of SPA between 30MHz to 1GHz was 100KHz.
- (5) Emission level = Reading value + Factor

Radiated Spurious Emission Measurement Result (Below 1GHz)

Operation Mode:	TX CH Mid Mode	Test Date:	September 4, 2003
Temperature:	30°C	Tested By:	Devin
Humidity:	70 %	Pol:	Ver./Hor.

Freq.	Ant.Pol.	Detector Mode	Reading	Factor	Actual FS	Limit3m	Safe Margin
(MHz)	V/H	(PK/QP)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
200.10	V	Peak	8.46	14.92	23.38	43.50	-20.12
398.00	V	Peak	9.02	20.61	29.63	46.00	-16.37
489.00	V	Peak	18.58	22.00	40.58	46.00	-5.42
501.60	V	Peak	19.29	22.57	41.86	46.00	-4.14
666.80	V	Peak	4.89	25.18	30.07	46.00	-15.93
867.00	V	Peak	0.89	27.58	28.47	46.00	-17.53
300.00	Н	Peak	11.11	16.68	27.79	46.00	-18.21
399.40	Н	Peak	5.98	20.69	26.67	46.00	-19.33
498.80	Н	Peak	14.77	22.45	37.22	46.00	-8.78
666.80	Н	Peak	7.48	25.18	32.66	46.00	-13.34
799.80	Н	Peak	5.36	26.14	31.50	46.00	-14.50
899.20	Н	Peak	2.37	28.14	30.51	46.00	-15.49

- (1) Measuring frequencies from 30 MHz to the 1GHz
- (2) Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
- (3) Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (4) The IF bandwidth of SPA between 30MHz to 1GHz was 100KHz.
- (5) Emission level = Reading value + Factor

Radiated Spurious Emission Measurement Result (Below 1GHz)

Operation Mode:	TX CH High Mode	Test Date:	September 4, 2003
Temperature:	30°C	Tested By:	Devin
Humidity:	70 %	Pol:	Ver./Hor.

Freq.	Ant.Pol.	Detector Mode	Reading	Factor	Actual FS	Limit3m	Safe Margin
(MHz)	V/H	(PK/QP)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
399.40	V	Peak	11.03	20.69	31.72	46.00	-14.28
489.00	V	Peak	18.31	22.00	40.31	46.00	-5.69
501.60	V	Peak	18.71	22.57	41.28	46.00	-4.72
666.80	V	Peak	4.43	25.18	29.61	46.00	-16.39
799.80	V	Peak	5.15	26.14	31.29	46.00	-14.71
899.20	V	Peak	1.01	28.14	29.15	46.00	-16.85
300.00	Н	Peak	11.31	16.68	27.99	46.00	-18.01
498.80	Н	Peak	14.56	22.45	37.01	46.00	-8.99
666.80	Н	Peak	7.53	25.18	32.71	46.00	-13.29
799.80	Н	Peak	4.53	26.14	30.67	46.00	-15.33
865.60	Н	Peak	2.72	27.55	30.27	46.00	-15.73
899.20	Н	Peak	1.94	28.14	30.08	46.00	-15.92

- (1) Measuring frequencies from 30 MHz to the 1 GHz
- (2) Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
- (3) Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (4) The IF bandwidth of SPA between 30MHz to 1GHz was 100KHz.
- (5) Emission level = Reading value + Factor

Operation Mode:	TX Low Mode	Test Date:	September 4, 2003
Temperature:	30°C	Tested By:	Devin
Humidity:	70 %	Pol:	Vertical

Freq.	Peak	AV	Ant./CL	Actu	al FS	Peak	AV	Margin	
(MHz)	Reading (dBuV)	Reading (dBuV)	CF(dB)	Peak (dBuV/m)	AV (dBuV/m)	Limit (dBuV/m)	Limit (dBuV/m)	(dB)	Remark
3450.00	47.97		0.19	48.16		74.00	54.00	-5.84	Peak
10360.00						74.00	54.00		
15540.00						74.00	54.00		
20720.00						74.00	54.00		
25900.00						74.00	54.00		
31080.00						74.00	54.00		
36260.00						74.00	54.00		
41440.00						74.00	54.00		
46620.00						74.00	54.00		
51800.00						74.00	54.00		

- (1) Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- (2) Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (3) Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Emission.
- (4) Spectrum Peak Setting 1GHz- 26GHz, RBW= 1MHz, VBW= 1MHz, Sweep time= 200 ms. Spectrum AV Setting 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.
- (5) Emission(dBuV/m)=Reading(dBuV)+Cable loss(dB)+Ant.Fact.(dB/m)-Pre-amp.(dB)

Radiated Spurious E	Emission Measurement	Result (Above 1GHz)
---------------------	----------------------	---------------------

Operation Mode:	TX Low Mode	Test Date:	September 4, 2003
Temperature:	30°C	Tested By:	Devin
Humidity:	70 %	Pol:	Horizontal

Peak	AV	Ant /CI	Actu	al FS	Peak	AV	Margin	
Reading (dBuV)	Reading (dBuV)	CF(dB)	Peak (dBuV/m)	AV (dBuV/m)	Limit (dBuV/m)	Limit (dBuV/m)	(dB)	Remark
48.66		-8.55	40.11		74.00	54.00	-13.89	Peak
46.00		-6.82	39.18		74.00	54.00	-14.82	Peak
					74.00	54.00		
					74.00	54.00		
					74.00	54.00		
					74.00	54.00		
					74.00	54.00		
					74.00	54.00		
					74.00	54.00		
					74.00	54.00		
					74.00	54.00		
	Reading (dBuV) 48.66 46.00 	Reading (dBuV) Reading (dBuV) 48.66 46.00 <tr tr=""> </tr>	Reading (dBuV) Reading (dBuV) Ant./CL CF(dB) 48.66 CF(dB) 48.60 -8.55 46.00 -6.82	Reading (dBuV) Reading (dBuV) Ant./CL (CF(dB) Peak (dBuV/m) 48.66 -8.55 40.11 46.00 -6.82 39.18 </td <td>Reading (dBuV) Reading (dBuV) Ant./CL CF(dB) Peak (dBuV/m) AV 48.66 -8.55 40.11 46.00 -6.82 39.18 </td> <td>Reading (dBuV) Reading (dBuV) Ant./CL (CF(dB) Peak (dBuV/m) AV Limit (dBuV/m) 48.66 -8.55 40.11 74.00 46.00 -6.82 39.18 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 </td> <td>Reading (dBuV) Reading (dBuV) Ant./CL (CF(dB) Peak (dBuV/m) AV Limit (dBuV/m) Limit (dBuV/m) 48.66 -8.55 40.11 74.00 54.00 46.00 -6.82 39.18 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00</td> <td>Reading (dBuV) Reading (dBuV) Ant./CL (CF(dB) Peak (dBuV/m) AV Limit (dBuV/m) Limit (dBuV/m) Margin (dB 48.66 -8.55 40.11 74.00 54.00 -13.89 46.00 -6.82 39.18 74.00 54.00 -14.82 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 </td>	Reading (dBuV) Reading (dBuV) Ant./CL CF(dB) Peak (dBuV/m) AV 48.66 -8.55 40.11 46.00 -6.82 39.18	Reading (dBuV) Reading (dBuV) Ant./CL (CF(dB) Peak (dBuV/m) AV Limit (dBuV/m) 48.66 -8.55 40.11 74.00 46.00 -6.82 39.18 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00	Reading (dBuV) Reading (dBuV) Ant./CL (CF(dB) Peak (dBuV/m) AV Limit (dBuV/m) Limit (dBuV/m) 48.66 -8.55 40.11 74.00 54.00 46.00 -6.82 39.18 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	Reading (dBuV) Reading (dBuV) Ant./CL (CF(dB) Peak (dBuV/m) AV Limit (dBuV/m) Limit (dBuV/m) Margin (dB 48.66 -8.55 40.11 74.00 54.00 -13.89 46.00 -6.82 39.18 74.00 54.00 -14.82 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00

- (1) Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- (2) Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (3) Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Emission.
- (4) Spectrum Peak Setting 1GHz- 26GHz, RBW= 1MHz, VBW= 1MHz, Sweep time= 200 ms. Spectrum AV Setting 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.
- (5) Emission(dBuV/m)=Reading(dBuV)+Cable loss(dB)+Ant.Fact.(dB/m)-Pre-amp.(dB)

Radiated Spurious Emission Measurement Result (Above 1GHz)

Operation Mode:	TX Mid Mode	Test Date:	September 4, 2003
Temperature:	30°C	Tested By:	Devin
Humidity:	70 %	Pol:	Vertical

Freq.	Peak	AV	Ant./CL	Actu	al FS	Peak	AV	Margin	
(MHz)	Reading (dBuV)	Reading (dBuV)	CF(dB)	Peak (dBuV/m)	AV (dBuV/m)	Limit (dBuV/m)	Limit (dBuV/m)	(dB)	Remark
1332.00	46.72		-8.53	38.19		74.00	54.00	-15.81	Peak
1396.00	44.28		-8.28	36.00		74.00	54.00	-18.00	Peak
1596.00	44.12		-6.82	37.30		74.00	54.00	-16.70	Peak
3500.00	49.82		0.38	50.20		74.00	54.00	-3.80	Peak
10520.00						74.00	54.00		
15780.00						74.00	54.00		
21040.00						74.00	54.00		
26300.00						74.00	54.00		
31560.00						74.00	54.00		
36820.00						74.00	54.00		
42080.00						74.00	54.00		
47340.00						74.00	54.00		
52600.00						74.00	54.00		

- (1) Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- (2) Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (3) Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Emission.
- (4) Spectrum Peak Setting 1GHz- 26GHz, RBW= 1MHz, VBW= 1MHz, Sweep time= 200 ms. Spectrum AV Setting 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.
- (5) Emission(dBuV/m)=Reading(dBuV)+Cable loss(dB)+Ant.Fact.(dB/m)-Pre-amp.(dB)

Radiated Spuriou	s Emission Measurement	Result (Above 1GHz)
-------------------------	------------------------	---------------------

Operation Mode:	TX Mid Mode	Test Date:	September 4, 2003
Temperature:	30°C	Tested By:	Devin
Humidity:	70 %	Pol:	Horizontal

Freq.	Peak	AV	Ant./CL	Actu	al FS	Peak	AV	Margin	
(MHz)	Reading (dBuV)	Reading (dBuV)	CF(dB)	Peak (dBuV/m)	AV (dBuV/m)	Limit (dBuV/m)	Limit (dBuV/m)	(dB)	Remark
1332.00	45.02		-8.53	36.49		74.00	54.00	-17.51	Peak
3500.00	43.24		0.38	43.62		74.00	54.00	-10.38	Peak
10520.00						74.00	54.00		
15780.00						74.00	54.00		
21040.00						74.00	54.00		
26300.00						74.00	54.00		
31560.00						74.00	54.00		
36820.00						74.00	54.00		
42080.00						74.00	54.00		
47340.00						74.00	54.00		
52600.00						74.00	54.00		

- (1) Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- (2) Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (3) Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Emission.
- (4) Spectrum Peak Setting 1GHz- 26GHz, RBW= 1MHz, VBW= 1MHz, Sweep time= 200 ms. Spectrum AV Setting 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.
- (5) Emission(dBuV/m)=Reading(dBuV)+Cable loss(dB)+Ant.Fact.(dB/m)-Pre-amp.(dB)

Radiated Spurious Emission Measurement Result (Above 1GHz)

Operation Mode:	TX High Mode	Test Date:	September 4, 2003
Temperature:	30°C	Tested By:	Devin
Humidity:	70 %	Pol:	Vertical

Freq.	Peak	AV	Ant./CL	Actu	al FS	Peak	AV	Margin	
(MHz)	Reading (dBuV)	Reading (dBuV)	CF(dB)	Peak (dBuV/m)	AV (dBuV/m)	Limit (dBuV/m)	Limit (dBuV/m)	(dB)	Remark
1328.00	46.38		-8.55	37.83		74.00	54.00	-16.17	Peak
1396.00	46.11		-8.28	37.83		74.00	54.00	-16.17	Peak
1596.00	47.14		-6.82	40.32		74.00	54.00	-13.68	Peak
3540.00	49.36		0.56	49.92		74.00	54.00	-4.08	Peak
10640.00						74.00	54.00		
15960.00						74.00	54.00		
21280.00						74.00	54.00		
26600.00						74.00	54.00		
31920.00						74.00	54.00		
37240.00						74.00	54.00		
42560.00						74.00	54.00		
47880.00						74.00	54.00		
53200.00						74.00	54.00		

- (1) Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- (2) Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (3) Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Emission.
- (4) Spectrum Peak Setting 1GHz- 26GHz, RBW= 1MHz, VBW= 1MHz, Sweep time= 200 ms. Spectrum AV Setting 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.
- (5) Emission(dBuV/m)=Reading(dBuV)+Cable loss(dB)+Ant.Fact.(dB/m)-Pre-amp.(dB)

Operation Mode:	TX High Mode	Test Date:	September 4, 2003
Temperature:	30°C	Tested By:	Devin
Humidity:	70 %	Pol:	Horizontal

	Freq. (MHz)	Peak Reading (dBuV)	AV Reading (dBuV)	Ant./CL CF(dB)	Actu Peak (dBuV/m)	al FS AV (dBuV/m)	Peak Limit (dBuV/m)	AV Limit (dBuV/m)	Margin (dB)	Remark
1	1328.00	45.20		-8.55	36.65		74.00	54.00	-17.35	Peak
	10640.00						74.00	54.00		
	15960.00						74.00	54.00		
	21280.00						74.00	54.00		
	26600.00						74.00	54.00		
	31920.00						74.00	54.00		
	37240.00						74.00	54.00		
	42560.00						74.00	54.00		
	47880.00						74.00	54.00		
	53200.00						74.00	54.00		

- (1) Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- (2) Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (3) Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Emission.
- (4) Spectrum Peak Setting 1GHz- 26GHz, RBW= 1MHz, VBW= 1MHz, Sweep time= 200 ms. Spectrum AV Setting 1GHz- 26GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.
- (5) Emission(dBuV/m)=Reading(dBuV)+Cable loss(dB)+Ant.Fact.(dB/m)-Pre-amp.(dB)

7.9 TRANSMISSION IN ABSENCE OF DATA (15.407)

LIMIT

The device shall automatically discontinue transmission in case of either absence of information to transmit or operation failure. These provisions are not intended to preclude the transmission of control or signaling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization a description of how this requirement is met.

TEST RESULTS

No non-compliance noted

Note: For the details, refer to the theory of the operation.

7.10 FREQUENCY STABILITY (15.407)

<u>LIMIT</u>

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

Referring to the theory of operation, the crystal used to set the frequency has a temperature coefficient of \pm 20 ppm over the specified rated temperature range. For a transmitter fundamental frequency of 5.35 GHz, this corresponds to \pm 107 kHz.

TEST RESULTS

No non-compliance noted

Note: An examination of the band-edge plots shows that the emission will stay within the authorized band over the entire temperature range.

7.11 ANTENNA REQUIREMENT (15.407)

LIMIT

According to FCC Part 15.407(d), any U-NII device that operates in the 5.15-5.35 GHz band shall use a transmitting antenna that is an integral part of the device.

TEST RESULTS

No non-compliance noted

The antenna connector is designed with a unique connector and replacement of it by the user is not considered. For details, refer to the EUT photos.

7.12 RADIO FREQUENCY EXPOSURE (15.407)

<u>LIMIT</u>

U-NII devices are subject to the radio frequency radiation exposure requirements specified in §1.1307(b), §2.1091 and §2.1093 of this chapter, as appropriate. All equipment shall be considered to operate in a "general population/uncontrolled" environment. Applications for equipment authorization of devices operating under this section must contain a statement confirming compliance with these requirements for both fundamental emissions and unwanted emissions. Technical information showing the basis for this statement must be submitted to the Commission upon request.

EUT SPECIFICATION

EUT	Wireless LAN module built in Notebook PC
Frequency band (Operating)	WLAN: 5.18GHz ~ 5.32GHz / 5.50GHz ~ 5.70GHz Others
Device category	 Portable (<20cm separation) Mobile (>20cm separation) Others
Exposure classification	General Population/Uncontrolled exposure $(S=1mW/cm^2)$
Antenna diversity	 ☐ Single antenna ☑ Multiple antennas ☐ Tx diversity ☐ Rx diversity ☑ Tx/Rx diversity
Max. output power	14.13dBm (25.882 mW)
Antenna gain (Max)	2.44dBi (Numeric gain: 1.754)
Evaluation applied	 ☐ MPE Evaluation ☑ SAR Evaluation*

Note:

1. *The maximum output power is 14.13dBm(25.882mW) at 5260MHz, which is greater than general population low threshold <u>60/F (60/5.260=11.41mW)</u>, SAR is required.

2. For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.

TEST RESULTS

Note: Please refer to the separate SAR report.

APPENDIX 1 PHOTOGRPHS OF TEST SETUP

