

FCC Test Report

Equipment	:	N300 Smart Wi-Fi Extender
Brand Name	:	EDIMAX
Model No.	:	EW-7438RPn Air / EW-7436RPn
FCC ID	:	NDD9574361310
Standard	:	47 CFR FCC Part 15.247
Operating Band	:	2400 MHz – 2483.5 MHz
FCC Classification	:	DTS
Applicant Manufacturer	:	EDIMAX TECHNOLOGY CO., LTD. No.3,Wu-Chuan 3rd Road, Wu-Ku Industrial Park, New Taipei City, Taiwan

The product sample received on Jan. 10, 2014 and completely tested on Jan. 14, 2014. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2009 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Wayne Hsu / Assistant Manager

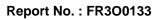
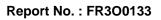


Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Support Equipment	7
1.3	Testing Applied Standards	7
1.4	Testing Location Information	7
1.5	Measurement Uncertainty	8
2	TEST CONFIGURATION OF EUT	9
2.1	The Worst Case Modulation Configuration	9
2.2	The Worst Case Power Setting Parameter	9
2.3	The Worst Case Measurement Configuration	10
2.4	Test Setup Diagram	11
3	TRANSMITTER TEST RESULT	13
3.1	AC Power-line Conducted Emissions	13
3.2	6dB Bandwidth	16
3.3	RF Output Power	18
3.4	Power Spectral Density	23
3.5	Transmitter Bandedge Emissions	25
3.6	Transmitter Unwanted Emissions	28
4	TEST EQUIPMENT AND CALIBRATION DATA	57

APPENDIX A. TEST PHOTOS


APPENDIX B. PHOTOGRAPHS OF EUT

Summary of Test Result

	Conformance Test Specifications						
Report Clause	Ref. Std. Clause	Description	Measured	Limit	Result		
1.1.2	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied		
3.1	15.207	AC Power-line Conducted Emissions	[dBuV]: 0.478649MHz 32.02 (Margin 14.34dB) - AV 44.94 (Margin 11.42dB) - QP	FCC 15.207	Complied		
3.2	15.247(a)	6dB Bandwidth	6dB Bandwidth Unit [MHz] 20M: 9.79 / 40M: 36.44	≥500kHz	Complied		
3.3	15.247(b)	RF Output Power (Maximum Peak Conducted Output Power)	Power [dBm]: 28.82	Power [dBm]:30	Complied		
3.4	15.247(d)	Power Spectral Density	PSD [dBm/100kHz]: -6.23	PSD [dBm/3kHz]:8	Complied		
3.5	15.247(c)	Transmitter Radiated Bandedge Emissions	Non-Restricted Bands: 2399.5MHz: 28.03dB Restricted Bands [dBuV/m at 3m]: 2483.5MHz 67.75 (Margin 6.25dB) - PK 52.70 (Margin 1.30dB) - AV	Non-Restricted Bands: > 20 dBc Restricted Bands: FCC 15.209	Complied		
3.6	15.247(c)	Transmitter Radiated Unwanted Emissions	[dBuV/m at 3m]: 4874MHz 55.37 (Margin 18.63dB) - PK 52.95 (Margin 1.05dB) - AV	Non-Restricted Bands: > 20 dBc Restricted Bands: FCC 15.209	Complied		

Revision History

Report No.	Version	Description	Issued Date
FR3O0133	Rev. 01	Initial issue of report	Mar. 17, 2014

1 General Description

1.1 Information

1.1.1 RF General Information

RF General Information						
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{⊤x})	RF Output Power (dBm)	
2400-2483.5	b	2412-2462	1-11 [11]	1	18.08	
2400-2483.5	g	2412-2462	1-11 [11]	1	26.76	
2400-2483.5	n (HT20)	2412-2462	1-11 [11]	2	28.82	
2400-2483.5	n (HT40)	2422-2452	3-9 [7]	2	22.63	

Note 1: RF output power specifies that Maximum Peak Conducted Output Power.

Note 2: 802.11b uses a combination of DSSS-DBPSK, DQPSK, CCK modulation.

Note 3: 802.11g/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

Note 4: Co-location, Co-location is generally defined as simultaneously transmitting (co-transmitting) antennas within 20 cm of each other. (i.e., EUT has simultaneously co-transmitting that operating

2.4GHz and 5GHz.)

1.1.2 Antenna Information

	Antenna Category				
\boxtimes	Integral antenna (antenna permanently attached)				
	Temporary RF connector provided				
	No temporary RF connector provided Transmit chains bypass antenna and soldered temporary RF connector provided for connecte measurement. In case of conducted measurements the transmitter shall be connected to th measuring equipment via a suitable attenuator and correct for all losses in the RF path.				

	Antenna General Information					
No.	No. Ant. Cat. Ant. Type Gain (dBi)					
1	1 Integral PIFA 2					

Reminder: The EUT only uses Antenna Port 1 for single transmitted.

1.1.3 Type of EUT

	Identify EUT			
EUT	EUT Serial Number N/A			
Pre	sentation of Equipment	Production ; Pre-Production ; Prototype		
		Type of EUT		
\boxtimes	Stand-alone			
	Combined (EUT where the radio part is fully integrated within another device)			
	Combined Equipment - Brand Name / Model No.:			
	Plug-in radio (EUT intended for a variety of host systems)			
	Host System - Brand Name / Model No.:			
	Other:			

1.1.4 Test Signal Duty Cycle

Operated Mode for Worst Duty Cycle				
Operated normally mode for worst duty cycle				
Operated test mode for worst duty cycle	Operated test mode for worst duty cycle			
Test Signal Duty Cycle (x)Power Duty Factor[dB] - (10 log 1/x)				
🔀 100% - IEEE 802.11b	0			
🔀 100% - IEEE 802.11g	0			
🛛 100% - IEEE 802.11n (HT20)	0			
🖾 100% - IEEE 802.11n (HT40)	0			

1.1.5 EUT Operational Condition

Supply Voltage	AC mains	DC	System
Type of DC Source	Internal DC su	pply	apter 🗌 Battery

1.2 Support Equipment

	Support Equipment - RF Conducted				
No.	No. Equipment Brand Name Model Name				
1	Notebook	DELL	E5520		

1.3 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2009
- FCC KDB 558074
- FCC KDB 662911

1.4 Testing Location Information

	Testing Location						
\boxtimes	HWA YA	ADD :	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.				
		TEL :	886-3-327-3456 FAX : 886-3-327-0973				
	Test Condition Test Site No. Test Engineer Test Environment						
	AC Conduction		CO04-HY	Zeus	22.3°C / 53%		
RF Conducted		RF Conducted TH06-HY		Cain	24.3°C / 61%		
I	Radiated Em	nission	03CH02-HY	Daniel	22.3°C / 53%		

1.5 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

N	leasurement Uncertainty	
Test Item		Uncertainty
AC power-line conducted emissions		±2.26 dB
Emission bandwidth, 6dB bandwidth		±1.42 %
RF output power, conducted		±0.63 dB
Power density, conducted		±0.81 dB
Unwanted emissions, conducted	9 – 150 kHz	±0.38 dB
	0.15 – 30 MHz	±0.42 dB
	30 – 1000 MHz	±0.51 dB
	1 – 18 GHz	±0.67 dB
	18 – 40 GHz	±0.83 dB
	40 – 200 GHz	N/A
All emissions, radiated	9 – 150 kHz	±2.49 dB
	0.15 – 30 MHz	±2.28 dB
	30 – 1000 MHz	±2.56 dB
	1 – 18 GHz	±3.59 dB
	18 – 40 GHz	±3.82 dB
	40 – 200 GHz	N/A
Temperature		±0.8 °C
Humidity		±3 %
DC and low frequency voltages		±3 %
Time		±1.42 %
Duty Cycle		±1.42 %

2 Test Configuration of EUT

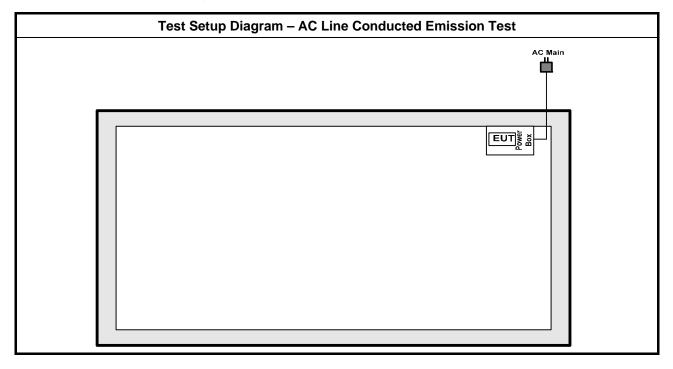
2.1 The Worst Case Modulation Configuration

Worst Modulation Used for Conformance Testing								
Modulation Mode Transmit Chains (N _{TX}) Data Rate / MCS Worst Data Rate / MCS								
11b,1-11Mbps	1	1-11 Mbps	1 Mbps					
11g,6-54Mbps	1	6-54 Mbps	6 Mbps					
HT20,M8-15	2	MCS 0-15	M 8					
HT40,M8-15	2	MCS 0-15	M 8					

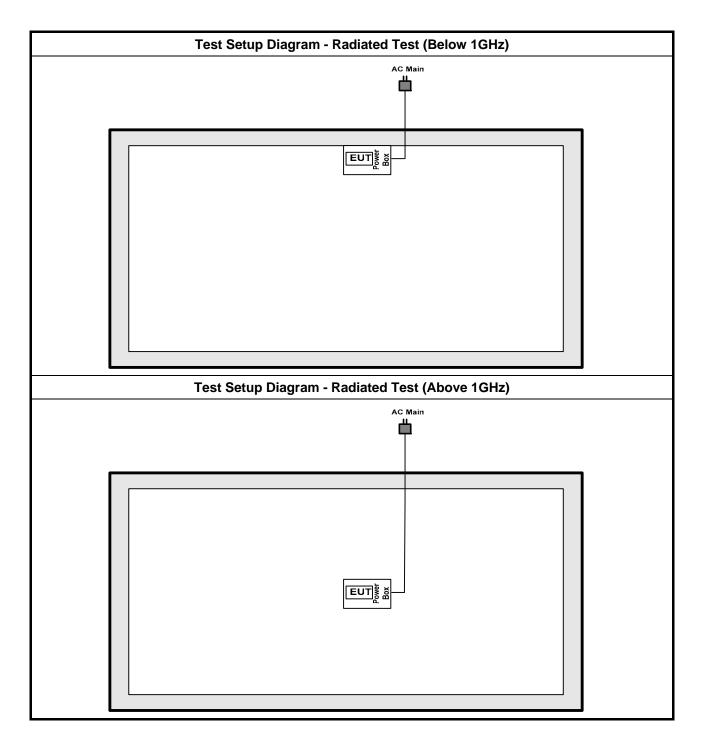
2.2 The Worst Case Power Setting Parameter

The Worst Case Power Setting Parameter (2400-2483.5MHz band)								
Test Software Version	MT76	MT7620 QA V1.0.6.0						
Test Frequency (MHz)								
Modulation Mode	N _{TX}	NCB: 20MHz			NCB: 40MHz			
		2412	2437	2462	2422	2437	2452	
11b	1	04	04	02	-	-	-	
11g	1	04	1E	0F	-	-	-	
HT-20	2	03;03	1E;1E	0E;0E	-	-	-	
HT-40	2	-	-	-	09;0A	15;15	10;10	

2.3 The Worst Case Measurement Configuration


Th	The Worst Case Mode for Following Conformance Tests				
Tests Item AC power-line conducted emissions					
Condition	AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz				
Operating Mode	Operating Mode Description				
1	AC Power & Radio link				

The Worst Case Mode for Following Conformance Tests					
Tests Item	Tests Item RF Output Power, Power Spectral Density, 6 dB Bandwidth				
Test ConditionConducted measurement at transmit chainsModulation Mode11b, 11g, HT20, HT40					


Th	e Worst Case Mode for Fo	bllowing Conformance Te	sts		
Tests Item	Transmitter Radiated Unwanted Emissions Transmitter Radiated Bandedge Emissions				
Test Condition	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.				
	EUT will be placed in	fixed position.			
User Position	EUT will be placed in mobile position and operating multiple positions. EUT shall be performed three orthogonal planes. The worst planes is Y.				
	EUT will be a hand-held or body-worn battery-powered devices and operating multiple positions. EUT shall be performed two or three orthogonal planes.				
Operating Mode	🛛 1. AC Power & Radi	o link			
Modulation Mode	11b, 11g, HT20, HT40				
	X Plane	Y Plane	Z Plane		
Orthogonal Planes of EUT					

2.4 Test Setup Diagram

Transmitter Test Result 3

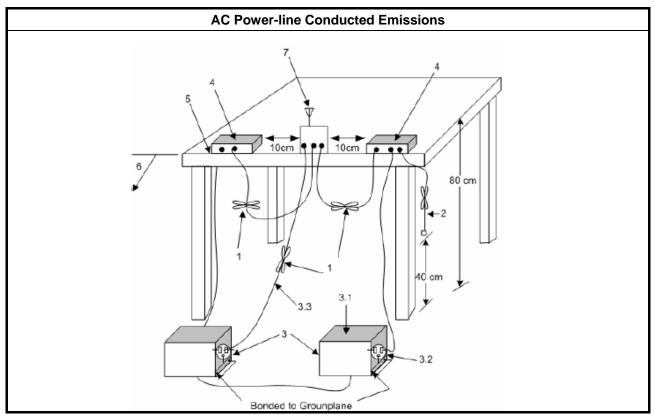
3.1 **AC Power-line Conducted Emissions**

3.1.1 **AC Power-line Conducted Emissions Limit**

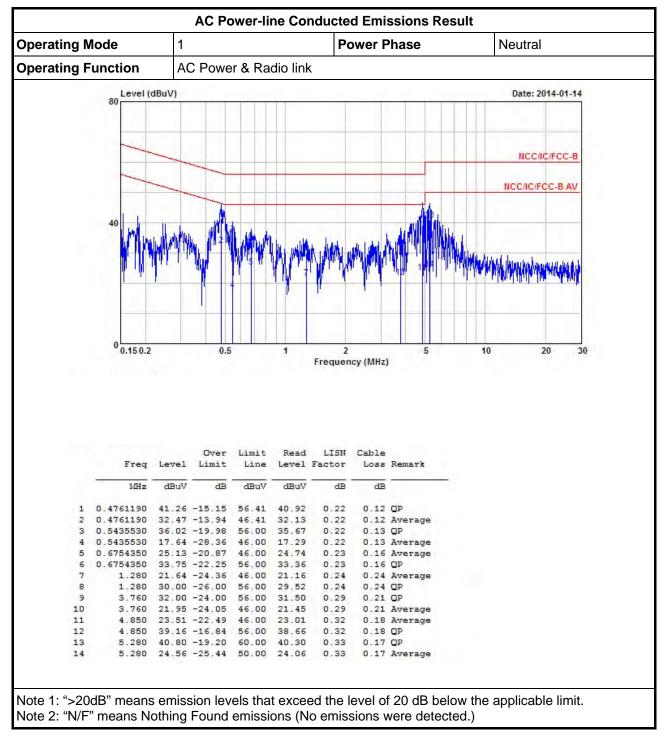
AC Power-line Conducted Emissions Limit					
Frequency Emission (MHz) Quasi-Peak Average					
0.15-0.5	66 - 56 *	56 - 46 *			
0.5-5	56	46			
5-30 60 50					
Note 1: * Decreases with the logarithm of the frequency.					

creases with the logarithm of the frequency

3.1.2 Measuring Instruments

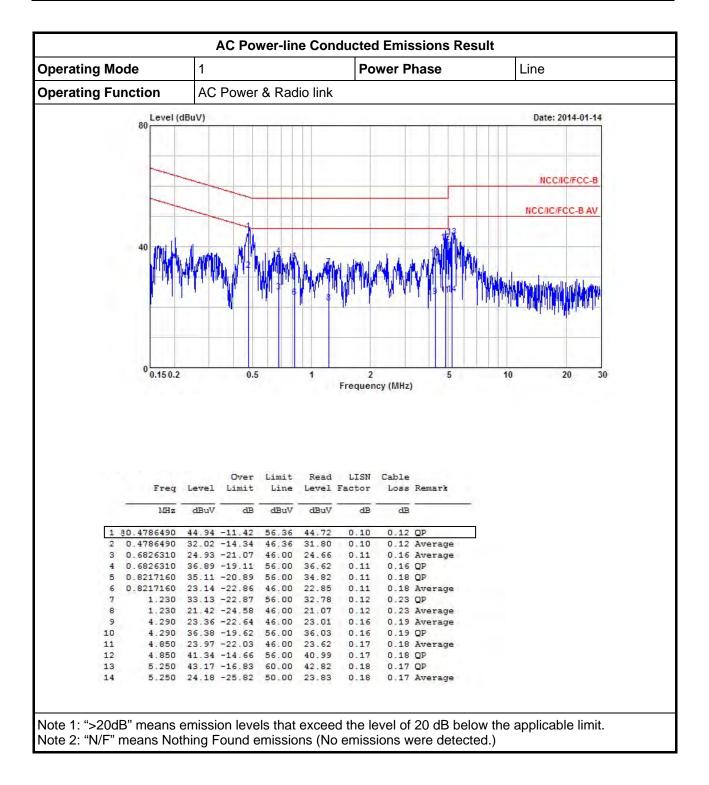

Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures


Test Method

Refer as ANSI C63.10-2009, clause 6.2 for AC power-line conducted emissions.

3.1.4 **Test Setup**



3.1.5 Test Result of AC Power-line Conducted Emissions

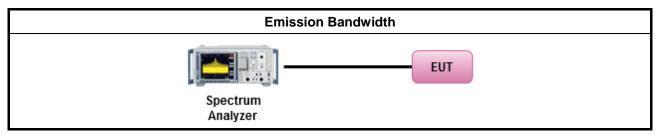
3.2 6dB Bandwidth

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit

Systems using digital modulation techniques:

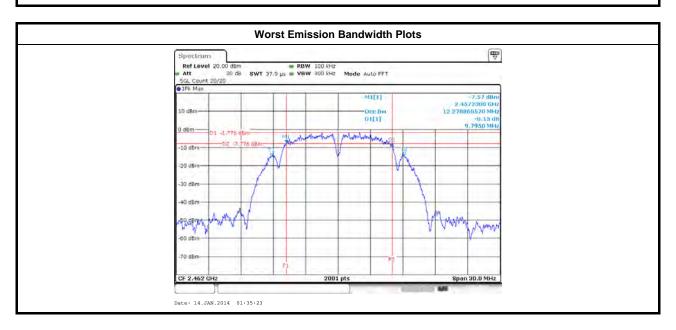
 \boxtimes 6 dB bandwidth ≥ 500 kHz.


3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

	Test Method								
\square	For the emission bandwidth shall be measured using one of the options below:								
	Refer as FCC KDB 558074, clause 8.1 Option 1 for 6 dB bandwidth measurement.								
		Refer as FCC KDB 558074, clause 8.2 Option 2 for 6 dB bandwidth measurement.							
		Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.							
\square	For	conducted measurement.							
	The EUT supports single transmit chain and measurements performance of this transmit chain port 1.								
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.							
	\square	The EUT supports multiple transmit chains using options given below:							
	Option 1: Multiple transmit chains measurements need to be performed on one of the activation transmit chains (antenna outputs). All measurement had be performed on transmit chains								
		Option 2: Multiple transmit chains measurements need to be performed on each transmit chains individually (antenna outputs). All measurement had be performed on all transmit chains.							


3.2.4 Test Setup

3.2.5 Test Result of Emission Bandwidth

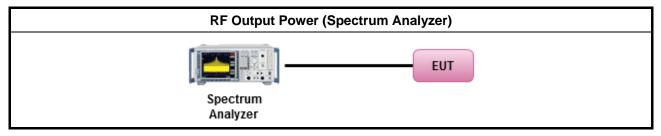
Condit	ion		Emission Bandwidth (MHz)													
		Freq.	99% Bandwidth		6dB Bandwidth											
Modulation Mode	Ντχ	(MHz)	Chain Port 1	Chain Port 2	Chain Port 1	Chain Port 2										
11b	1	2412	12.33	-	9.85	-										
11b	1	2437	12.27	-	9.96	-										
11b	1	2462	12.27	-	9.79	-										
11g	1	2412	16.46	-	16.51	-										
11g	1	2437	16.79	-	16.45	-										
11g	1	1	1	1	1	1	1	1	1	1	1	2462	16.46	-	16.56	-
HT20	2	2412	17.60	17.61	17.65	17.74										
HT20	2	2437	17.70	17.79	17.62	17.65										
HT20	2	2462	17.60	17.60	17.67	17.73										
HT40	2	2422	36.26	36.18	36.44	36.44										
HT40	2	2437	36.22	36.30	36.44	36.48										
HT40	2	2452	36.22	36.22	36.48	36.48										
Limi	t		N/A ≥500 kHz													
Result			Complied													

3.3 RF Output Power

3.3.1 RF Output Power Limit

		RF Output Power Limit
Мах	cimu	m Peak Conducted Output Power or Maximum Conducted Output Power Limit
\boxtimes	240	0-2483.5 MHz Band:
	\boxtimes	If $G_{TX} \le 6 \text{ dBi}$, then $P_{Out} \le 30 \text{ dBm} (1 \text{ W})$
	\boxtimes	Point-to-multipoint systems (P2M): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$ dBm
		Point-to-point systems (P2P): If $G_{TX} > 6 \text{ dBi}$, then $P_{Out} = 30 - (G_{TX} - 6)/3 \text{ dBm}$
		Smart antenna system (SAS):
		Single beam: If $G_{TX} > 6 \text{ dBi}$, then $P_{Out} = 30 - (G_{TX} - 6)/3 \text{ dBm}$
		Overlap beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm
		Aggregate power on all beams: If $G_{TX} > 6 \text{ dBi}$, then $P_{Out} = 30 - (G_{TX} - 6)/3 + 8 \text{dBm}$
e.i.r	.p. P	Power Limit:
\boxtimes	240	0-2483.5 MHz Band
	\boxtimes	Point-to-multipoint systems (P2M): $P_{eirp} \le 36 \text{ dBm} (4 \text{ W})$
		Point-to-point systems (P2P): $P_{eirp} \leq MAX(36, [P_{Out} + G_{TX}]) dBm$
		Smart antenna system (SAS)
		Single beam: $P_{eirp} \le MAX(36, P_{Out} + G_{TX}) dBm$
		□ Overlap beam: $P_{eirp} \le MAX(36, P_{Out} + G_{TX}) dBm$
		Aggregate power on all beams: $P_{eirp} \leq MAX(36, [P_{Out} + G_{TX} + 8]) dBm$
G _{TX}	= the	aximum peak conducted output power or maximum conducted output power in dBm, e maximum transmitting antenna directional gain in dBi. .i.r.p. Power in dBm.

3.3.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

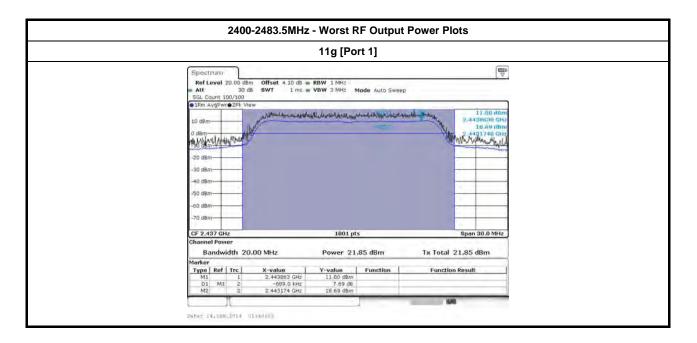
3.3.3 Test Procedures

		Test Method
\square	Max	imum Peak Conducted Output Power
		Refer as FCC KDB 558074, clause 9.1.1 Option 1 (RBW ≥ EBW method).
		Refer as FCC KDB 558074, clause 9.1.2 Option 2 (integrated band power method).
	\square	Refer as FCC KDB 558074, clause 9.1.3 Option 2 (peak power meter for VBW ≥ DTS BW)
\square	Max	imum Conducted Output Power
	[duty	/ cycle ≥ 98% or external video / power trigger]
	\square	Refer as FCC KDB 558074, clause 9.2.2.2 Method AVGSA-1 (spectral trace averaging).
		Refer as FCC KDB 558074, clause 9.2.2.3 Method AVGSA-1 Alt. (slow sweep speed)
	duty	cycle < 98% and average over on/off periods with duty factor
		Refer as FCC KDB 558074, clause 9.2.2.4 Method AVGSA-2 (spectral trace averaging).
		Refer as FCC KDB 558074, clause 9.2.2.5 Method AVGSA-2 Alt. (slow sweep speed)
	RF p	oower meter and average over on/off periods with duty factor or gated trigger
		Refer as FCC KDB 558074, clause 9.2.3 Method AVGPM (using an RF average power meter).
\square	For	conducted measurement.
	\boxtimes	The EUT supports single transmit chain and measurements performance on this transmit chain port 1.
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.
		The EUT supports multiple transmit chains using options given below: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.
		If multiple transmit chains, EIRP calculation could be following as methods: $P_{total} = P_1 + P_2 + + P_n$ (calculated in linear unit [mW] and transfer to log unit [dBm]) $EIRP_{total} = P_{total} + DG$

3.3.4 Test Setup

Directional Gain (DG) Result								
Transmit Chain	s No.	1	2	-	-			
Maximum G _{ANT}	(dBi)	2	2	-	-			
Modulation Mode	N _{TX}	N _{ss} (Min.)	STBC	Array Gain (dB)				
11b,1-11Mbps	2	1	1	-	-			
11g,6-54Mbps	1	1	-	-				
HT20,M8-15	HT20,M8-15 2			-	-			
HT40,M8-15	2	2	-	-				
HT40,M8-15222-Note 1: For all transmitter outputs with equal antenna gains, directional gain is to be computed as follows: Any transmit signals are correlated, Directional Gain = $G_{ANT} + 10 \log(N_{TX})$ All transmit signals are completely uncorrelated, Directional Gain = G_{ANT} Note 2: For all transmitter outputs with unequal antenna gains, directional gain is to be computed as follows: Any transmit signals are correlated, Directional Gain = $10 \log[(10^{G1/20} + + 10^{GN/20})^2 / N_{TX}]$ 								

3.3.5 Directional Gain for Power Measurement


		Μ	aximum Pea	k Conducted	d Output Pov	wer Result			
Condit	ion				RF O	utput Power	(dBm)		
Modulation Mode	Ντχ	Freq. (MHz)	Chain Port 1	Chain Port 2	Sum Chain	Power Limit	DG (dBi)	EIRP Power	EIRP Limit
11b	1	2412	18.08	-	18.08	30.00	2	20.08	36.00
11b	1	2437	17.63	-	17.63	30.00	2	19.63	36.00
11b	1	2462	16.98	-	16.98	30.00	2	18.98	36.00
11g	1	2412	17.44	-	17.44	30.00	2	19.44	36.00
11g	1	2437	26.76	-	26.76	30.00	2	28.76	36.00
11g	1	2462	21.36	-	21.36	30.00	2	23.36	36.00
HT20	2	2412	16.96	17.33	20.16	30.00	2	22.16	36.00
HT20	2	2437	25.84	25.78	28.82	30.00	2	30.82	36.00
HT20	2	2462	20.40	20.66	23.54	30.00	2	25.54	36.00
HT40	2	2422	14.54	15.51	18.06	30.00	2	20.06	36.00
HT40	2	2437	19.51	19.72	22.63	30.00	2	24.63	36.00
HT40	2	2452	17.79	17.90	20.86	30.00	2	22.86	36.00
Resu	ılt				•	Complied	•		•

3.3.6 Test Result of Maximum Peak Conducted Output Power

3.3.7 Test Result of Maximum Conducted Output Power

			Maximu	Im Conducte	ed Output Po	wer			
Condit	ion				RF O	utput Power	(dBm)		
Modulation Mode	Ντχ	Freq. (MHz)	Chain Port 1	Chain Port 2	Sum Chain	Power Limit	DG (dBi)	EIRP Power	EIRP Limit
11b	1	2412	15.18	-	15.18	30.00	2	17.18	36.00
11b	1	2437	14.72	-	14.72	30.00	2	16.72	36.00
11b	1	2462	14.09	-	14.09	30.00	2	16.09	36.00
11g	1	2412	12.58	-	12.58	30.00	2	14.58	36.00
11g	1	2437	21.85	-	21.85	30.00	2	23.85	36.00
11g	1	2462	16.50	-	16.50	30.00	2	18.50	36.00
HT20	2	2412	11.78	12.31	15.06	30.00	2	17.06	36.00
HT20	2	2437	20.90	20.81	23.87	30.00	2	25.87	36.00
HT20	2	2462	15.30	15.61	18.47	30.00	2	20.47	36.00
HT40	2	2422	9.62	10.53	13.11	30.00	2	15.11	36.00
HT40	2	2437	14.56	14.83	17.71	30.00	2	19.71	36.00
HT40	2	2452	12.92	12.99	15.97	30.00	2	17.97	36.00
Resi	ılt				•	Complied	•		•

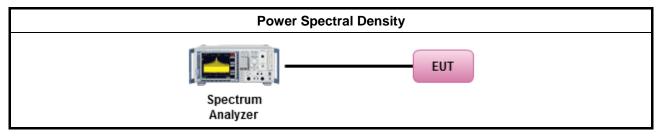
Power Spectral Density 3.4

3.4.1 **Power Spectral Density Limit**

Power Spectral Density Limit

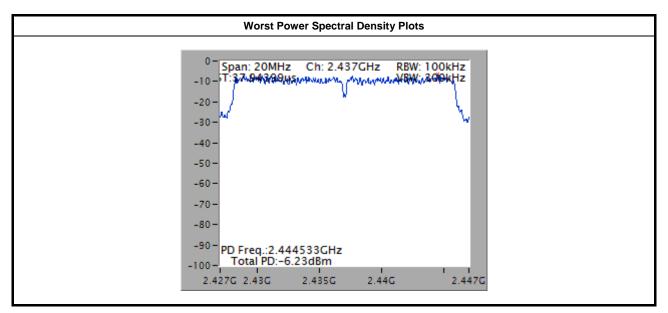
 \boxtimes Power Spectral Density (PSD) ≤ 8 dBm/3kHz

3.4.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

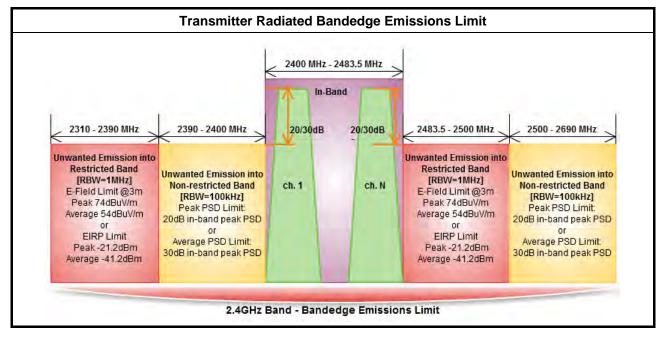
3.4.3 Test Procedures

		Test Method
	outp the o cond of th	k power spectral density procedures that the same method as used to determine the conducted ut power. If maximum peak conducted output power was measured to demonstrate compliance to putput power limit, then the peak PSD procedure below (Method PKPSD) shall be used. If maximum ducted output power was measured to demonstrate compliance to the output power limit, then one e average PSD procedures shall be used, as applicable based on the following criteria (the peak procedure is also an acceptable option).
	\boxtimes	Refer as FCC KDB 558074, clause 10.2 Method PKPSD (RBW=3-100kHz;detector=peak)
	[dut	v cycle ≥ 98% or external video / power trigger]
	\boxtimes	Refer as FCC KDB 558074, clause 10.3 Method AVGPSD-1 (spectral trace averaging).
		Refer as FCC KDB 558074, clause 10.4 Method AVGPSD-1 Alt. (slow sweep speed)
	duty	cycle < 98% and average over on/off periods with duty factor
		Refer as FCC KDB 558074, clause 10.5 Method AVGPSD-2 (spectral trace averaging).
		Refer as FCC KDB 558074, clause 10.6 Method AVGPSD-2 Alt. (slow sweep speed)
\square	For	conducted measurement.
	\boxtimes	The EUT supports single transmit chain and measurements performed on this transmit chain port 1.
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.
	\boxtimes	The EUT supports multiple transmit chains using options given below:
		Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the N_{TX} output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace.
		Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.



3.4.4 Test Setup

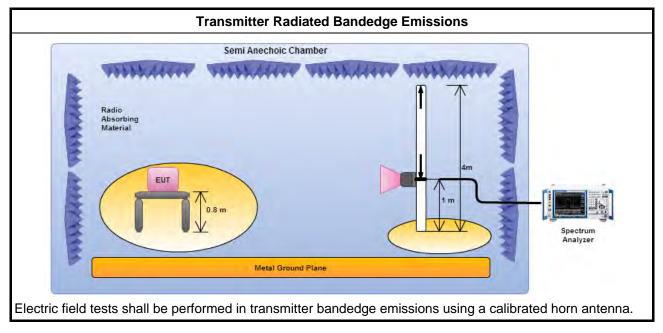
3.4.5 Test Result of Power Spectral Density


			Power Spectral Density Result	
Condit	tion		Power Spec	ctral Density
Modulation Mode	Ντχ	Freq. (MHz)	Sum Chain (dBm/100kHz)	PSD Limit (dBm/3kHz)
11b	1	2412	-11.21	8
11b	1	2437	-12.95	8
11b	1	2462	-12.14	8
11g	1	2412	-16.74	8
11g	1	2437	-7.99	8
11g	1	2462	-13.54	8
HT20	2	2412	-15.61	8
HT20	2	2437	-6.23	8
HT20	2	2462	-12.05	8
HT40	2	2422	-20.19	8
HT40	2	2437	-15.65	8
HT40	2	2452	-17.43	8
Resu	ılt		Com	plied

3.5 Transmitter Bandedge Emissions

3.5.1 Transmitter Radiated Bandedge Emissions Limit

3.5.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

		Test Method
\bowtie	The	average emission levels shall be measured in [duty cycle \geq 98 or duty factor].
\square		er as ANSI C63.10, clause 6.9.2.2 bandedge testing shall be performed at the lowest frequency nonel and highest frequency channel within the allowed operating band.
\square	For	the transmitter unwanted emissions shall be measured using following options below:
	\square	Refer as FCC KDB 558074, clause 11 for unwanted emissions into non-restricted bands.
	\square	Refer as FCC KDB 558074, clause 12 for unwanted emissions into restricted bands.
		□ Refer as FCC KDB 558074, clause 12.2.5.1 Option 1 (trace averaging for duty cycle ≥98%)
		Refer as FCC KDB 558074, clause 12.2.5.2 Option 2 (trace averaging + duty factor).
		□ Refer as FCC KDB 558074, clause 12.2.5.3 Option 3 (Reduced VBW≥1/T).
		Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). VBW \geq 1/T, where T is pulse time.
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.
		Refer as FCC KDB 558074, clause 11.3 and 12.2.4 measurement procedure peak limit.
\boxtimes	For	the transmitter bandedge emissions shall be measured using following options below:
		Refer as FCC KDB 558074, clause 13.3 for narrower resolution bandwidth (100kHz) using the band power and summing the spectral levels (i.e., 1 MHz).
	\boxtimes	Refer as ANSI C63.10, clause 6.9.2 for band-edge testing.
		Refer as ANSI C63.10, clause 6.9.3 for marker-delta method for band-edge measurements.
\boxtimes	For	radiated measurement, refer as FCC KDB 558074, clause 12.2.7.

3.5.4 Test Setup

3.5.5 Transmitter Radiated Bandedge Emissions

Modulation	N _{TX}	Test Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Pol.
11b	1	2412	104.96	2397.14	63.36	41.6	20	Н
11b	1	2462	100.99	2517.00	62.49	38.5	20	Н
11g	1	2412	99.49	2399.94	67.71	31.78	20	Н
11g	1	2462	100.14	2506.30	64.67	35.47	20	Н
HT20,M8-15	2	2412	98.64	2398.59	64.88	33.76	20	Н
HT20,M8-15	2	2462	100.09	2513.40	64.02	36.07	20	Н
HT40,M8-15	2	2422	93.74	2399.50	65.71	28.03	20	Н
HT40,M8-15	2	2452	95.19	2551.88	63.96	31.23	20	Н

Modulation Mode	Ντχ	Freq. (MHz)	Measure Distance (m)	Freq. (MHz) PK	Level (dBuV/m) PK	Limit (dBuV/m) PK	Freq. (MHz) AV	Level (dBuV/m) AV	Limit (dBuV/m) AV	Pol.
11b	1	2412	3	2370.37	60.01	74	2337.66	47.86	54	Н
11b	1	2462	3	2494.20	61.51	74	2499.90	48.70	54	Н
11g	1	2412	3	2389.97	69.58	74	2390.00	52.34	54	Н
11g	1	2462	3	2483.50	69.11	74	2483.50	52.53	54	Н
HT20,M8-15	2	2412	3	2389.07	68.36	74	2390.00	52.25	54	Н
HT20,M8-15	2	2462	3	2483.50	67.75	74	2483.50	52.70	54	Н
HT40,M8-15	2	2422	3	2388.41	67.03	74	2390.00	52.22	54	Н
HT40,M8-15	2	2452	3	2486.60	65.50	74	2483.72	52.32	54	Н

3.6 Transmitter Unwanted Emissions

3.6.1 Transmitter Radiated Unwanted Emissions Limit

	Restricted Band	Emissions Limit	
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

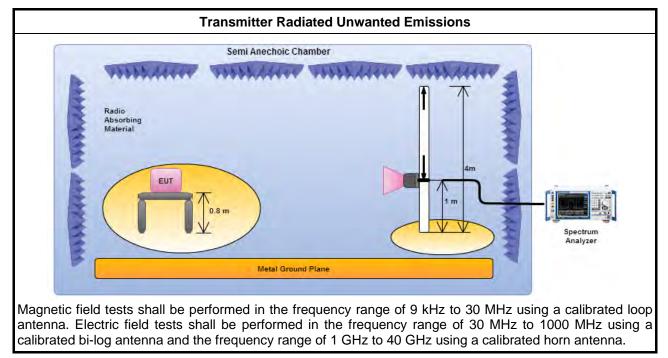
Un-restricted Bar	nd Emissions Limit
RF output power procedure	Limit (dB)
Peak output power procedure	20
Average output power procedure	30
	o measure the fundamental emission power to en the peak conducted output power measured within

any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.

Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.

3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.


3.6.3 Test Procedures

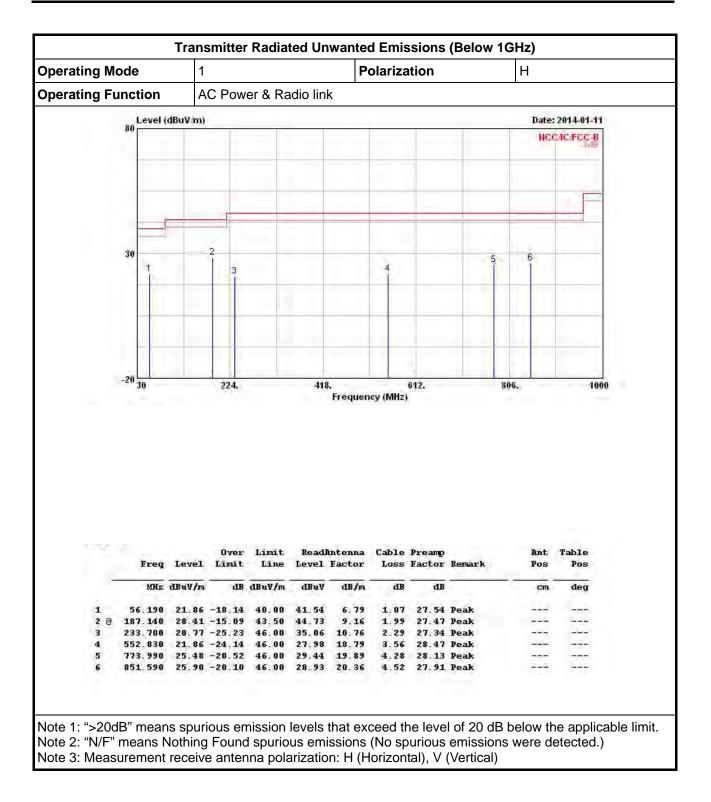
		Test Method
\boxtimes	perfe equi extra dista	surements may be performed at a distance other than the limit distance provided they are not ormed in the near field and the emissions to be measured can be detected by the measurement pment. When performing measurements at a distance other than that specified, the results shall be apolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear ance for field-strength measurements, inverse of linear distance-squared for power-density surements).
	\boxtimes	Measurements in the frequency range 10 GHz - 18GHz are typically made at a closer distance 1m, because the instrumentation noise floor is typically close to the radiated emission limit.
	\boxtimes	Measurements in the frequency range above 18 GHz - 25GHz are typically made at a closer distance 0.5m, because the instrumentation noise floor is typically close to the radiated emission limit.
\boxtimes	The	average emission levels shall be measured in [duty cycle \geq 98 or duty factor].
\boxtimes	For	the transmitter unwanted emissions shall be measured using following options below:
	\boxtimes	Refer as FCC KDB 558074, clause 11 for unwanted emissions into non-restricted bands.
	\square	Refer as FCC KDB 558074, clause 12 for unwanted emissions into restricted bands.
		□ Refer as FCC KDB 558074, clause 12.2.5.1 Option 1 (trace averaging for duty cycle ≥98%)
		Refer as FCC KDB 558074, clause 12.2.5.2 Option 2 (trace averaging + duty factor).
		☐ Refer as FCC KDB 558074, clause 12.2.5.3 Option 3 (Reduced VBW≥1/T).
		Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). VBW \geq 1/T, where T is pulse time.
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.
		Refer as FCC KDB 558074, clause 11.3 and 12.2.4 measurement procedure peak limit.
		Refer as FCC KDB 558074, clause 12.2.3 measurement procedure Quasi-Peak limit.
\boxtimes	For	radiated measurement, refer as FCC KDB 558074, clause 12.2.7.
	\boxtimes	Refer as ANSI C63.10, clause 6.4 for radiated emissions below 30 MHz and test distance is 3m.
	\boxtimes	Refer as ANSI C63.10, clause 6.5 for radiated emissions 30 MHz to 1 GHz and test distance is 3m.
	\boxtimes	Refer as ANSI C63.10, clause 6.6 for radiated emissions above 1 GHz and test distance is 3m.

	Test Method
For	conducted and cabinet radiation measurement, refer as FCC KDB 558074, clause 12.2.2.
	For conducted unwanted emissions into non-restricted bands (relative emission limits). Devices with multiple transmit chains: Refer as FCC KDB 662911, when testing out-of-band and spurious emissions against relative emission limits, tests may be performed on each output individually without summing or adding 10 log(N) if the measurements are made relative to the in-band emissions on the individual outputs.
	For conducted unwanted emissions into restricted bands (absolute emission limits). Devices with multiple transmit chains using options given below: (1) Measure and sum the spectra across the outputs or (2) Measure and add 10 log(N) dB
	For FCC KDB 662911 The methodology described here may overestimate array gain, thereby resulting in apparent failures to satisfy the out-of-band limits even if the device is actually compliant. In such cases, compliance may be demonstrated by performing radiated tests around the frequencies at which the apparent failures occurred.

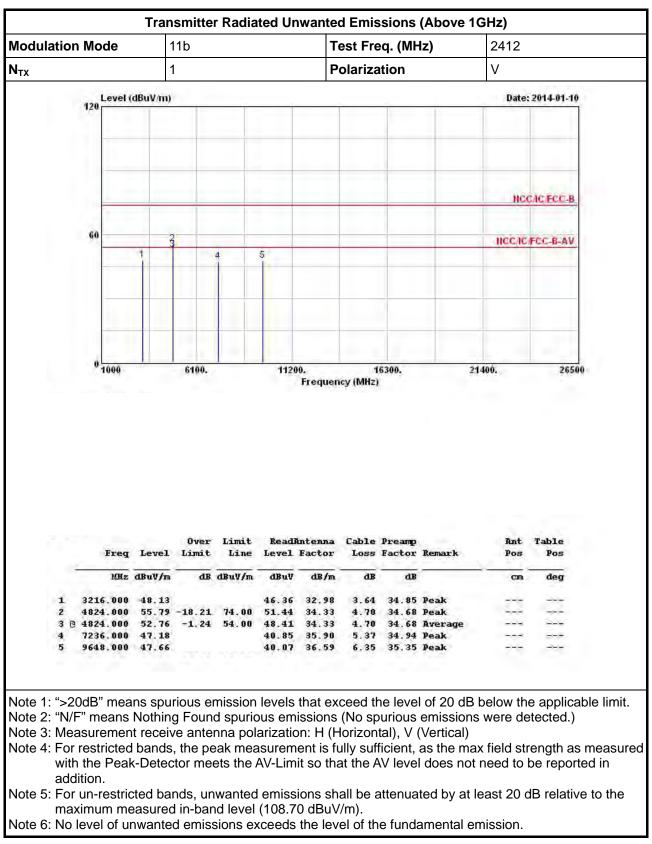
3.6.4 Test Setup

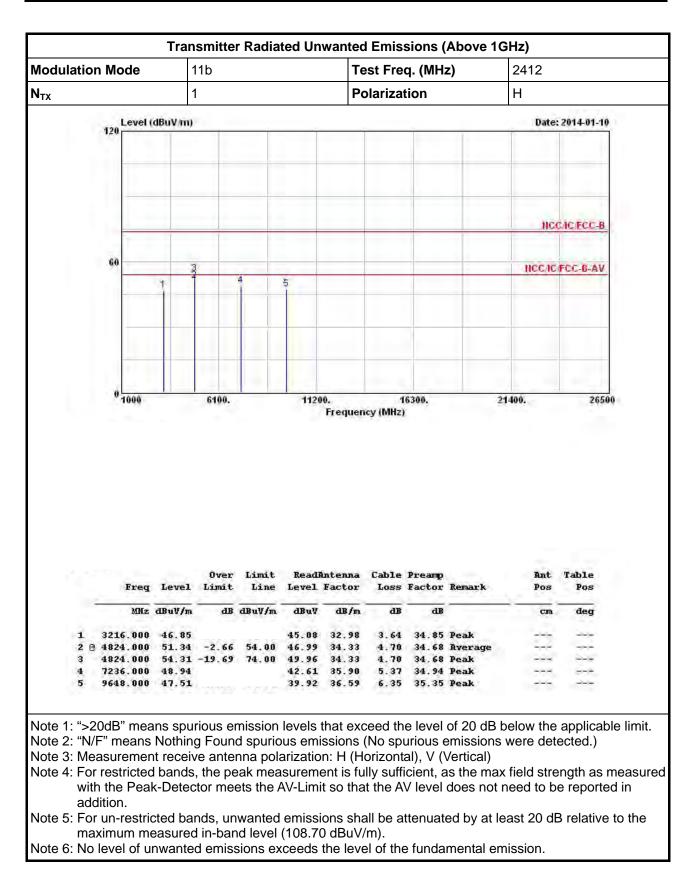
3.6.5 Transmitter Radiated Unwanted Emissions (Below 30MHz)

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

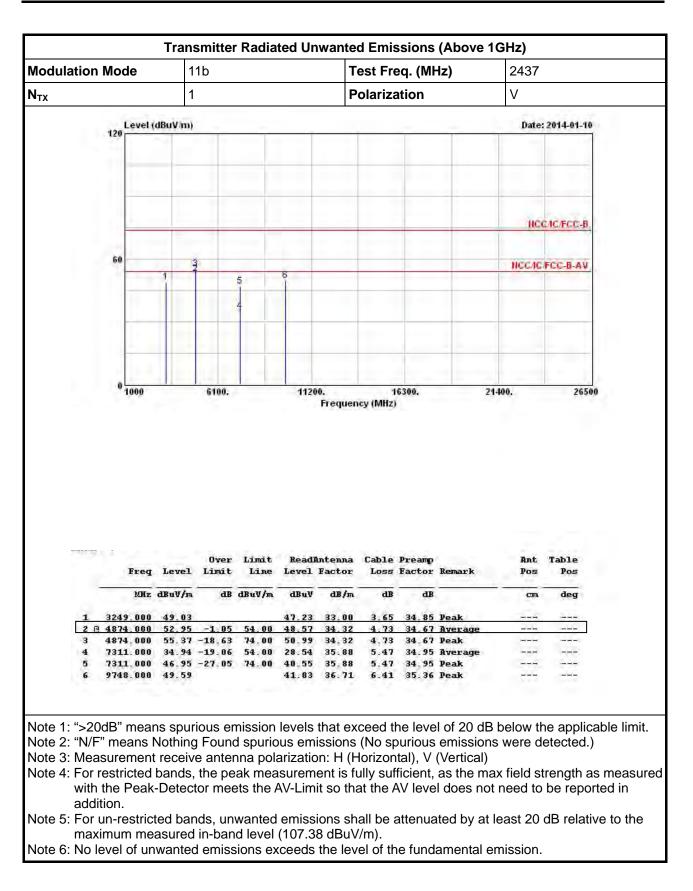


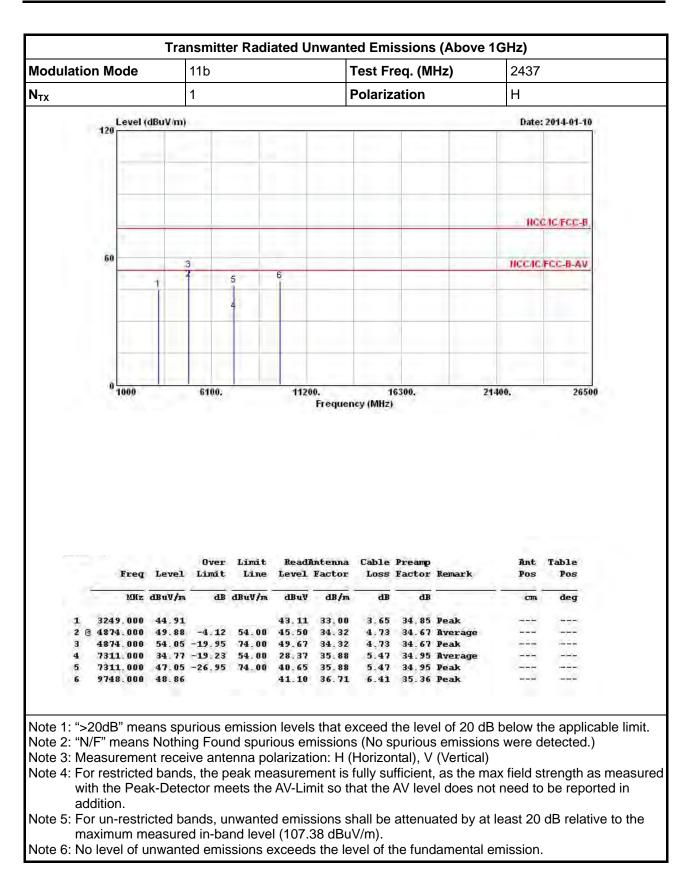
	Mode	1				P	olariza	tion		V	
Operating Mode Operating Function	A	C Pow	/er & Ra	adio lin	k						
Operating Function										Date	: 2014-01-11
Operating Mode Operating Function							-	_	1	NC	CAC/FCC-B
							_		_		Sano
			_		_			_	_	_	-
							_	_			
	30		2 3			4		5		6	
						1		Ĭ			
	1					_					
											and the second s
	-20										
	-20 30		224.		411	3. Frequen		612.		806.	1000
	30	Level	224. Over Limit	Limit Line	Readi		cy(MHz) Cable	and the second sec	Remark	806. Ant Pos	1000 Table Pos
	30 Freq	Level dBuV/m	Over Limit		Readi	Frequen	cy(MHz) Cable	Preamp Factor	Remark	Ant	Table
10	30 Freq	dBuV/m	Over Limit dB	Line	Readi Level dBuV	Frequen Antenna Factor	Cable Loss	Preamp Factor dB	-	Ant Pos	Table Pos
2 @	30 Freq MRz 56.190 187.140	dBuV/m 36.57 28.80	Over Limit dB -3.43 -14.70	Line dBuV/m 40.00 43.50	Readi Level dBuV 56.25 45.12	Antenna Factor dB/m 9.16	Cable Loss dB 1.07 1.99	Preamp Factor dB 27.54 27.47	Peak Peak	Ant Pos 	Table Pos deg
2 @	30 Freq M(z 56.190 187.140 222.060	dBuV/m 36.57 28.80 28.93	Over Limit dB -3.43 -14.70 -17.07	Line dBuV/m 40.00 43.50 46.00	Readi Level dBuV 56.25 45.12 44.58	Antenna Factor dB/m 6.79 9.16 9.51	Cable Loss dB 1.07 1.99 2.21	Preamp Factor dB 27.54 27.47 27.37	Peak Peak Peak	Ant Pos 	Table Pos deg
2 @	30 Freq Mitz 56.190 187.140 222.060 482.990	dBuV/m 36.57 28.80 28.93 24.95	0ver Limit dB -3.43 -14.70 -17.07 -21.05	Line dBuV/m 40.00 43.50 46.00	Read) Level dBuV 56.25 45.12 44.58 32.38	Antenna Factor dB/m 9.16 9.51 17.59	Cable Loss dB 1.07 1.99 2.21 3.33	Preamp Factor dB 27.54 27.47 27.37	Peak Peak Peak Peak Peak	Rnt Pos 	Table Pos deg

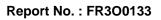

3.6.6 Transmitter Radiated Unwanted Emissions (Below 1GHz)

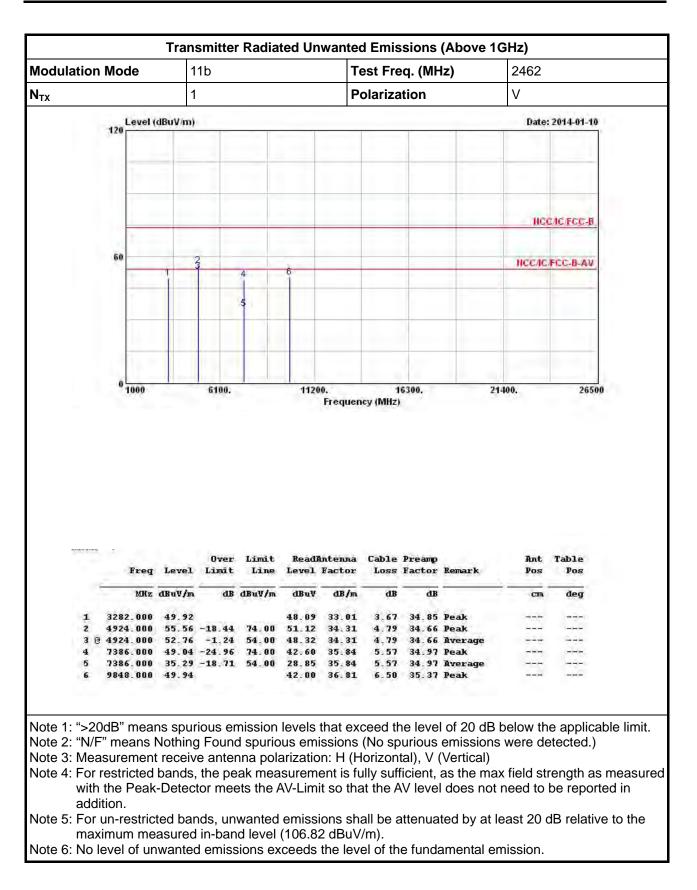


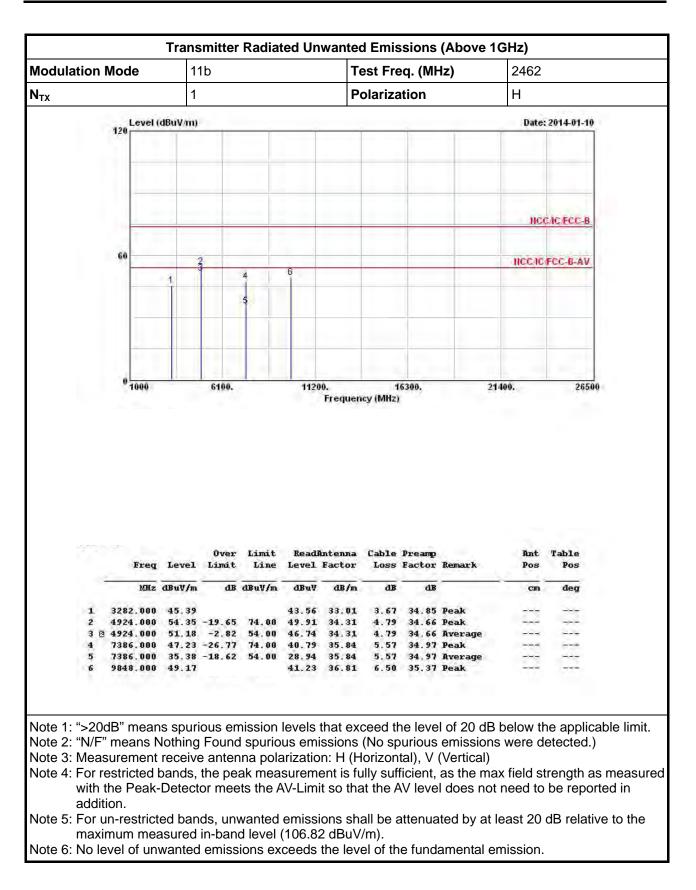
3.6.7 Transmitter Radiated Unwanted Emissions (Above 1GHz)

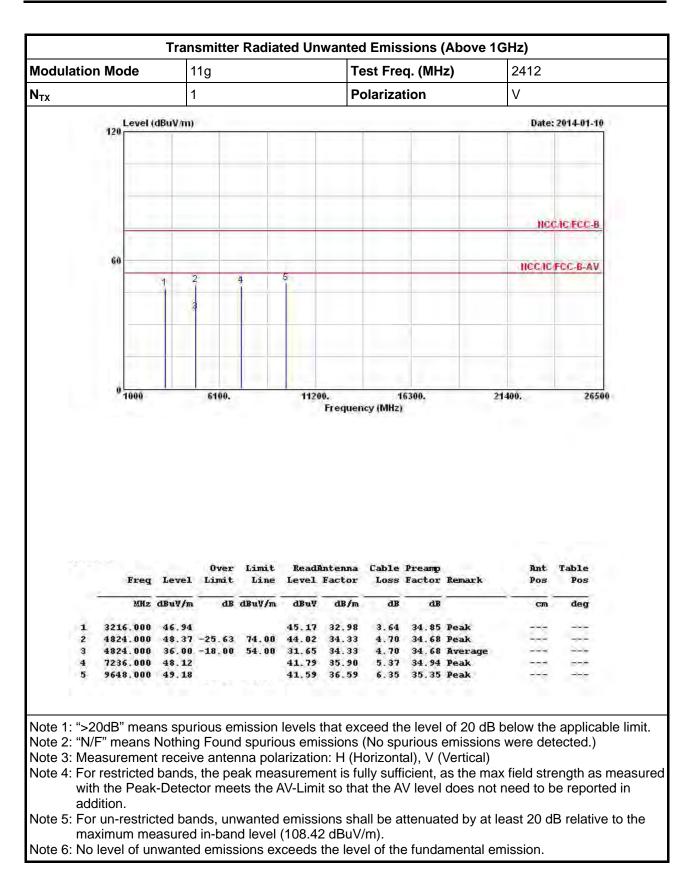


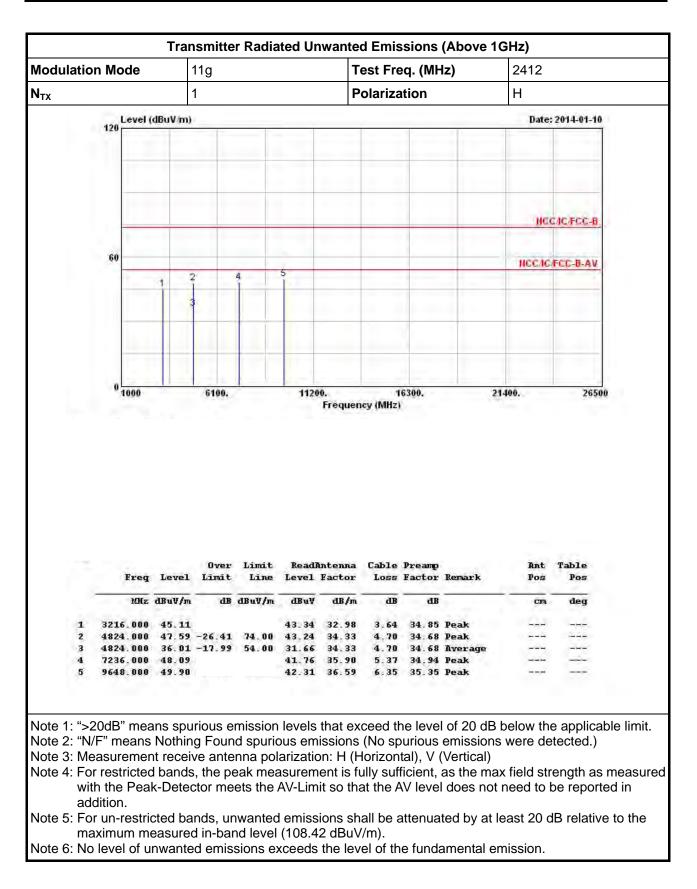


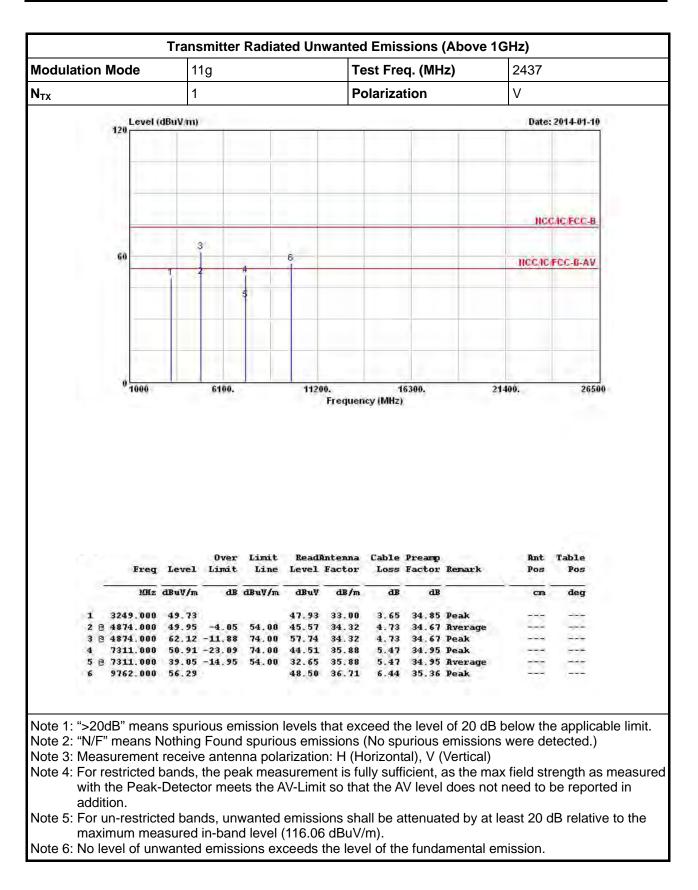


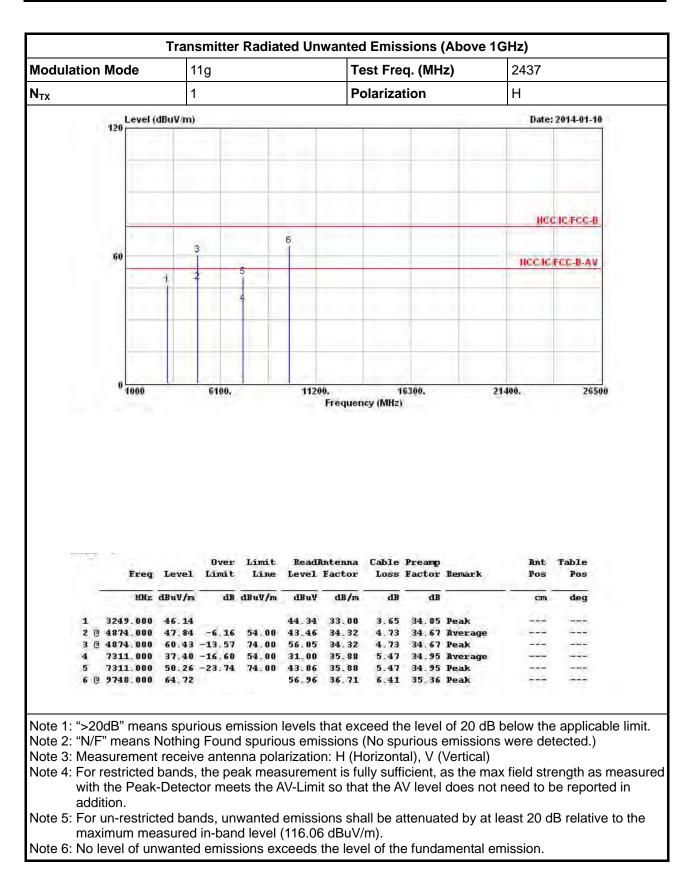


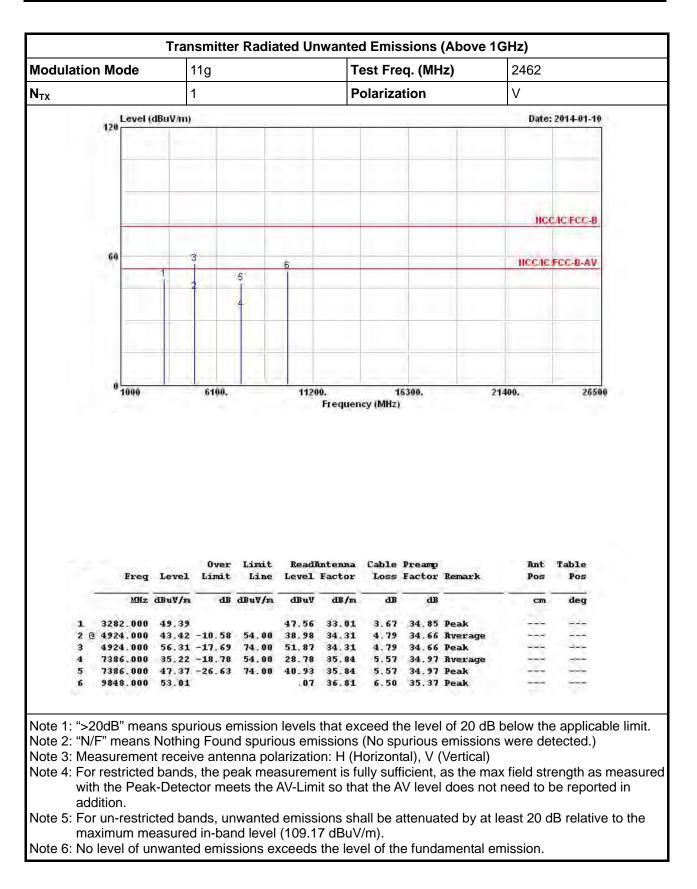


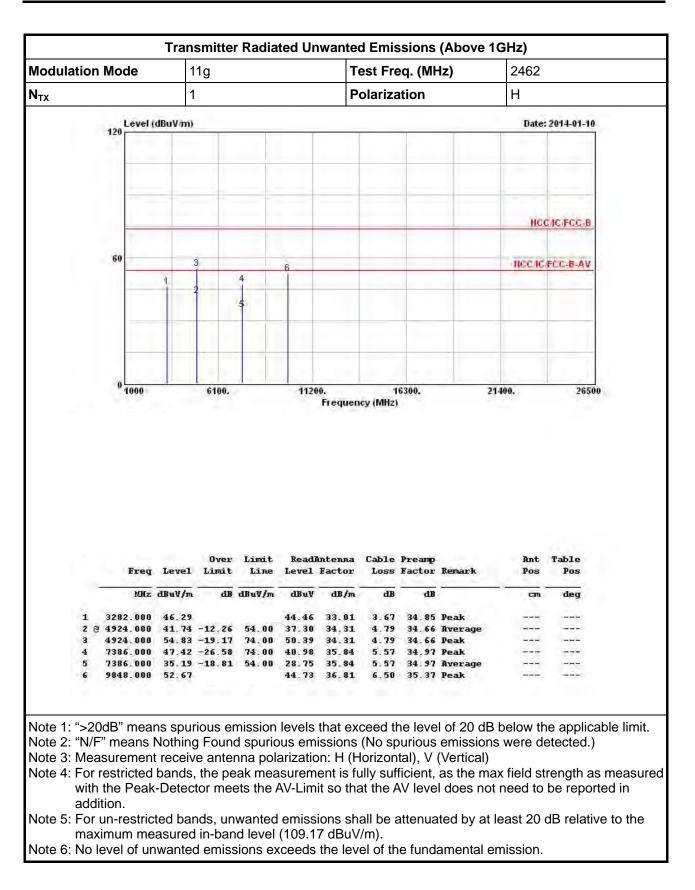


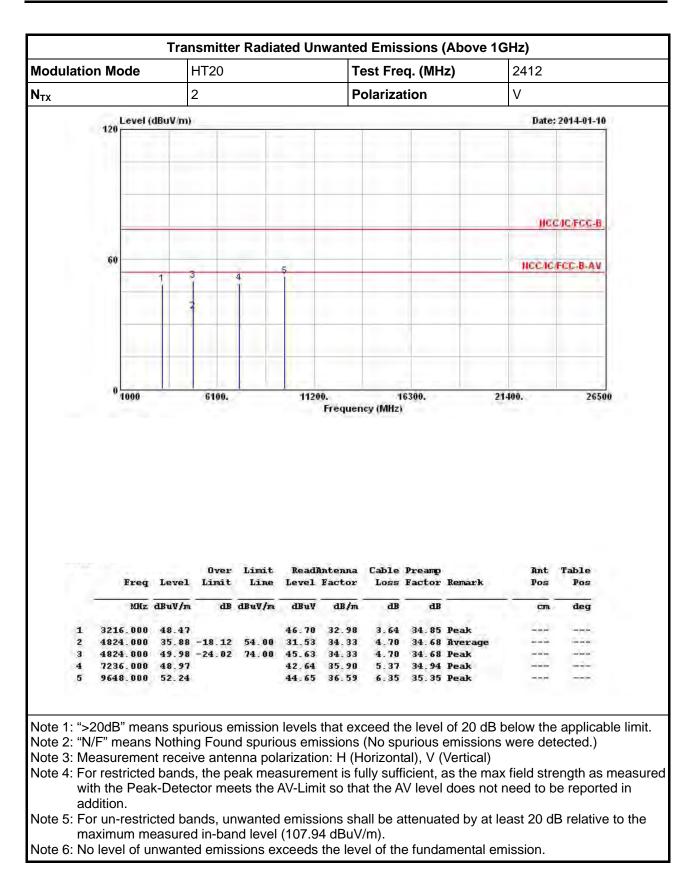


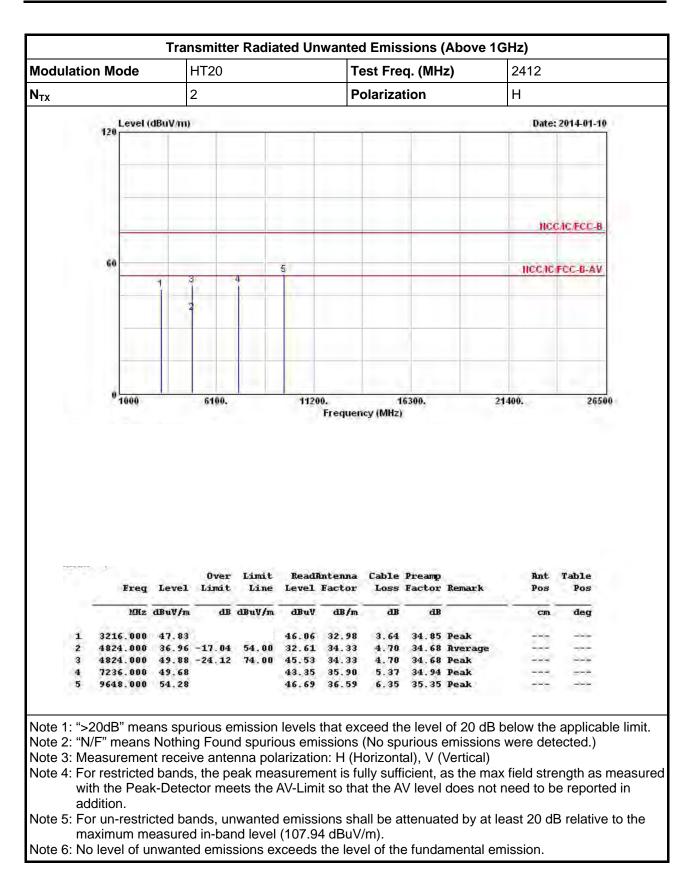


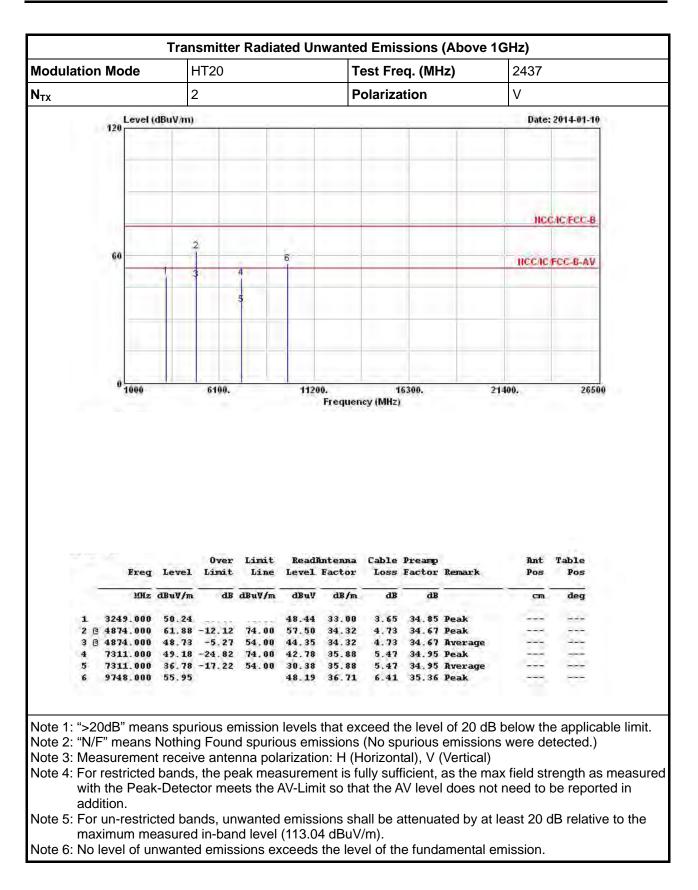


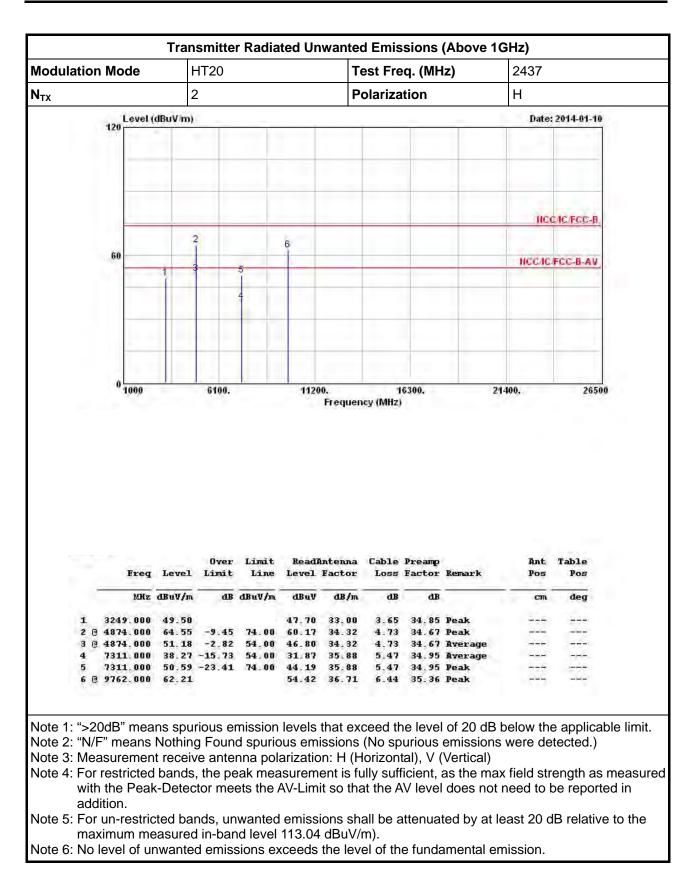


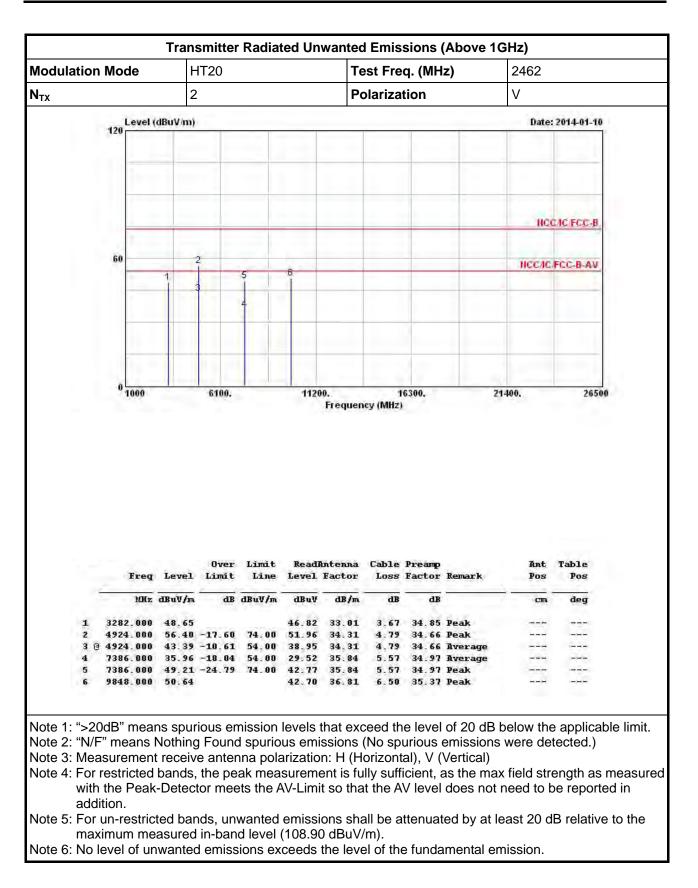


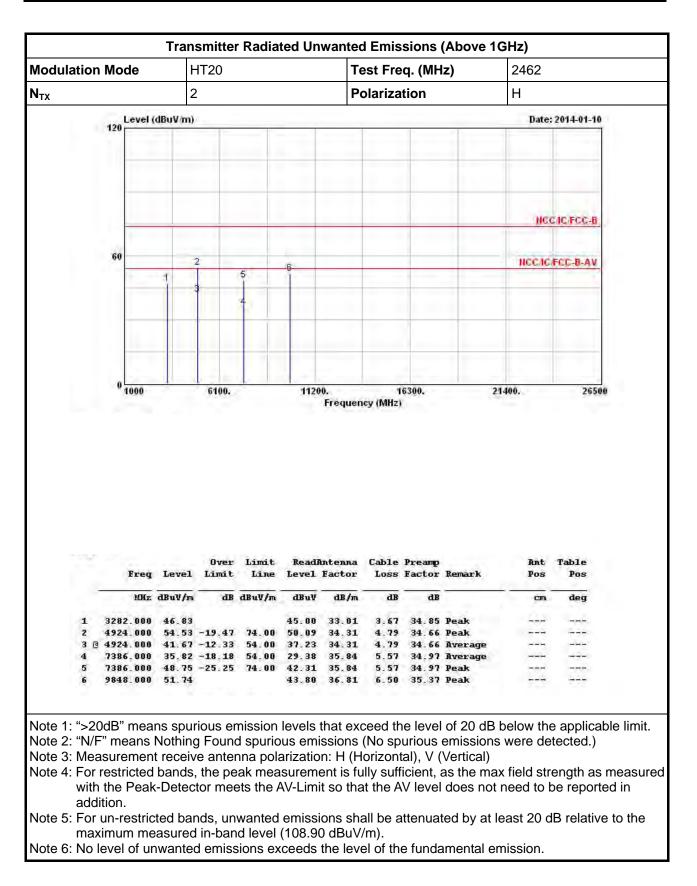


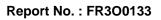


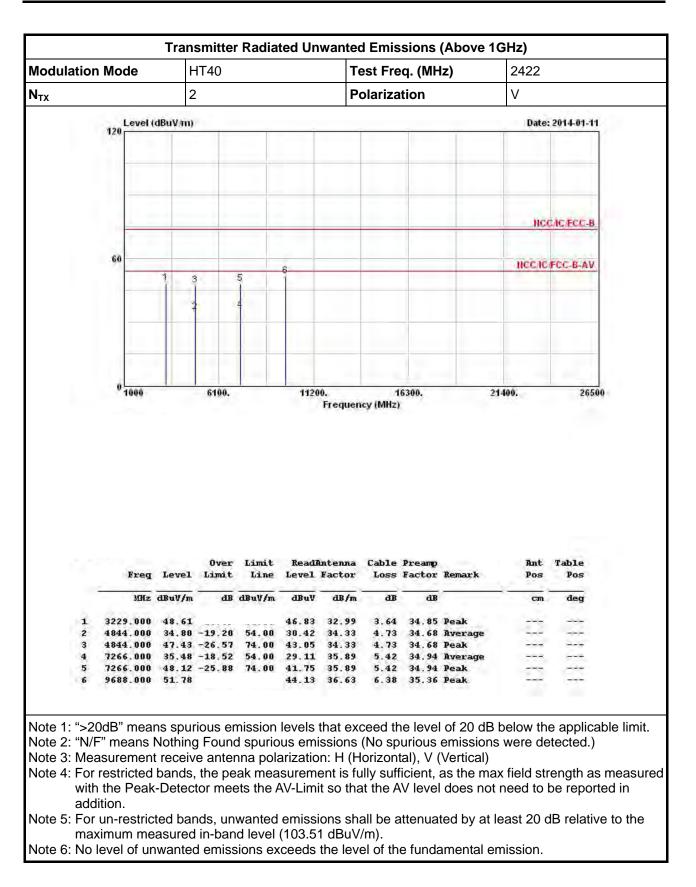


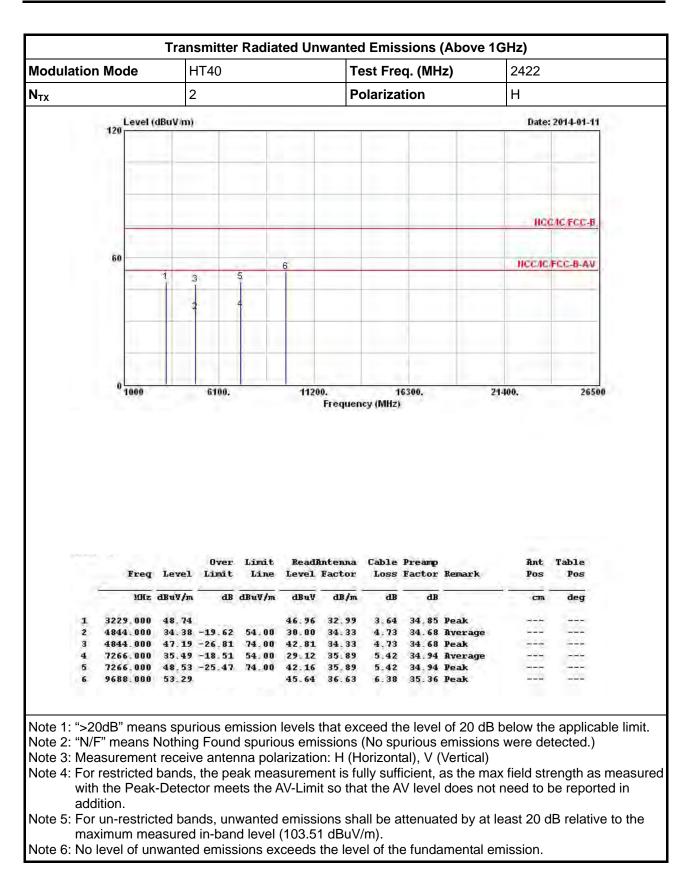


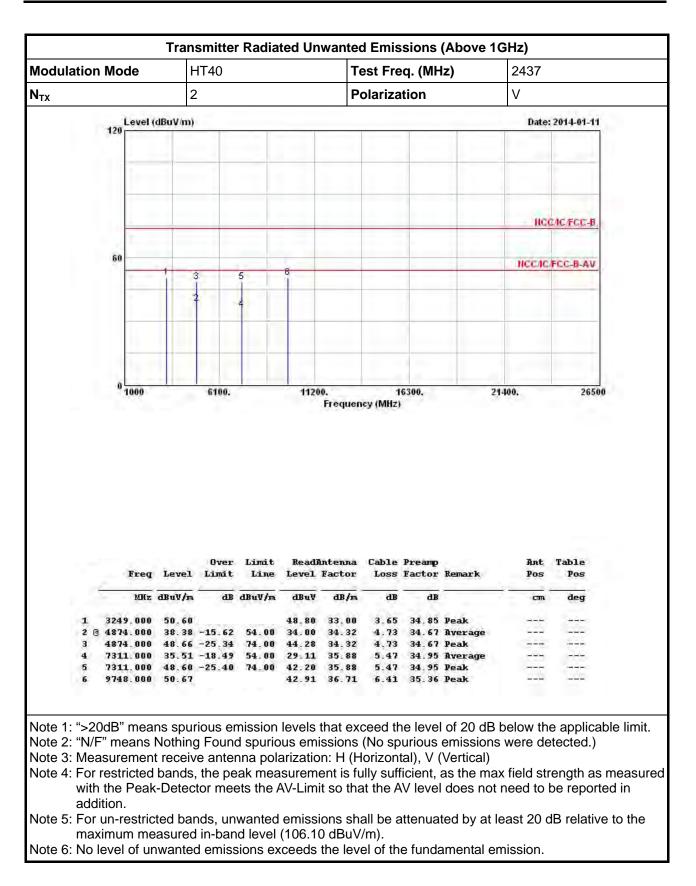


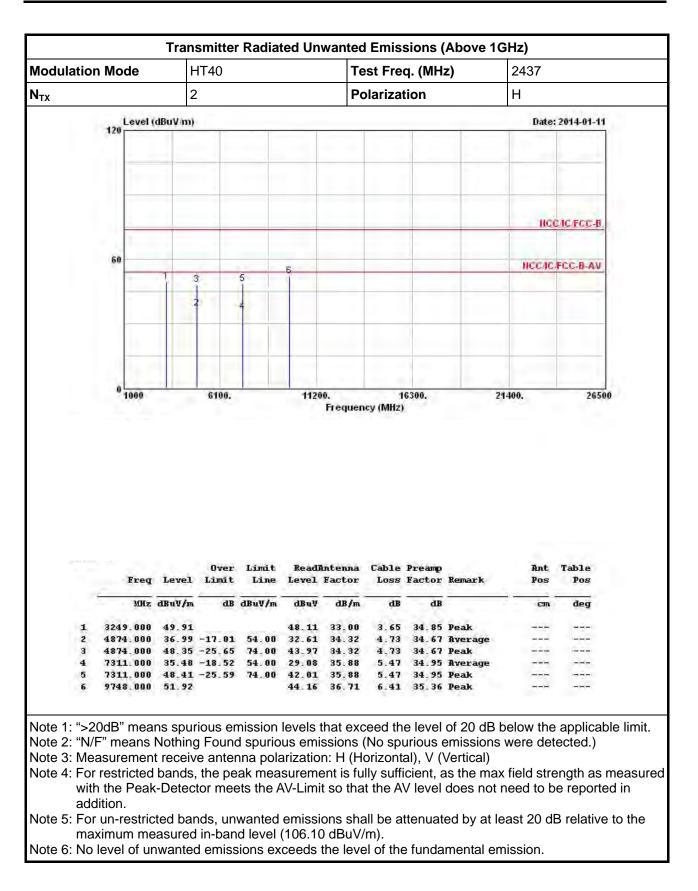


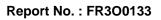


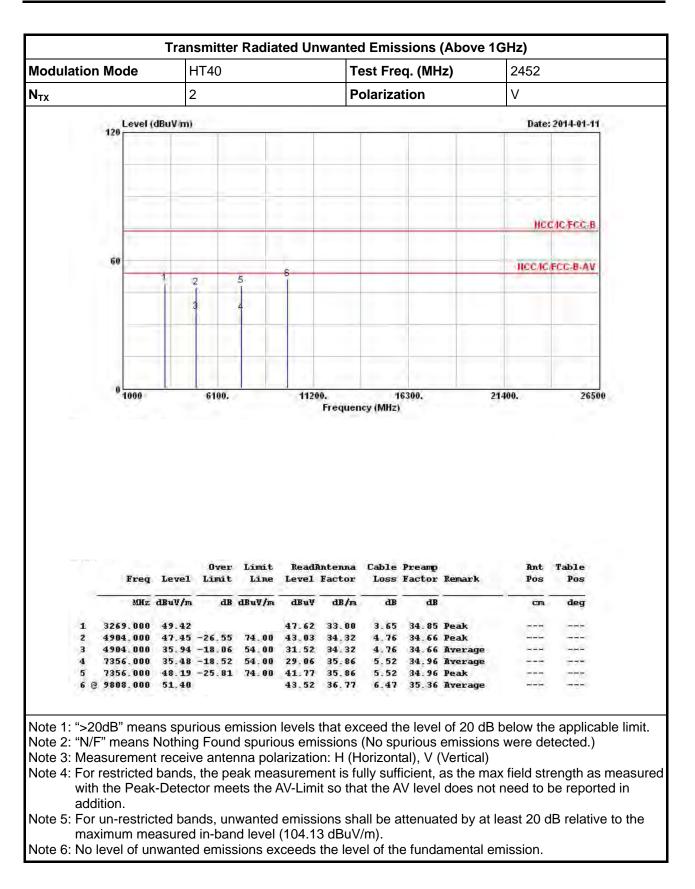


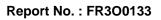


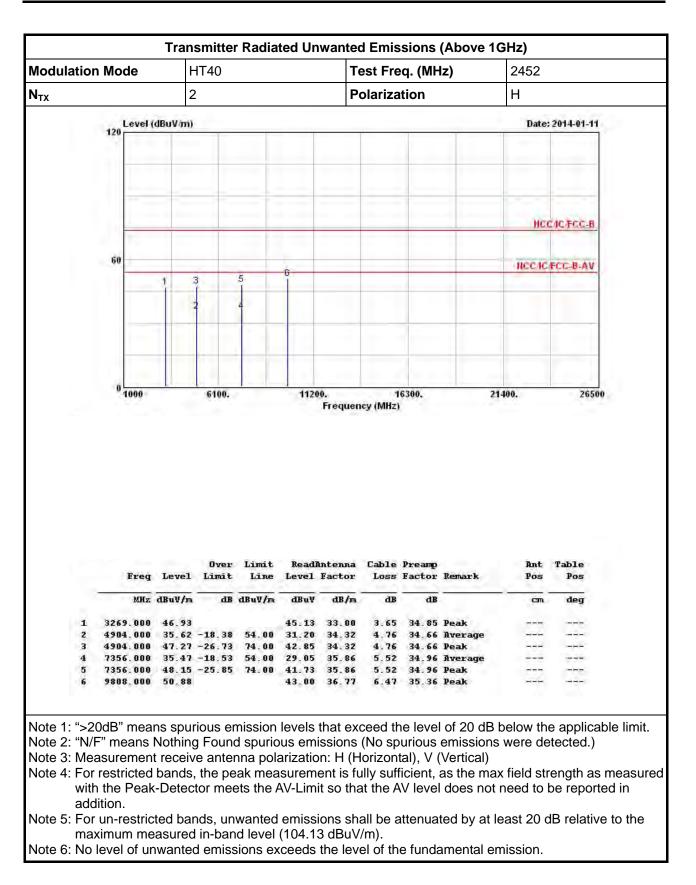












4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100174	9kHz ~ 2.75GHz	Mar. 25, 2013	Conduction (CO04-HY)
LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	8127-477	9kHz ~ 30MHz	Jan. 22, 2013	Conduction (CO04-HY)
RF Cable-CON	HUBER+SUHNER	RG213/U	7.61183201e+012	9kHz ~ 30MHz	Oct. 30, 2013	Conduction (CO04-HY)
EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	N/A	Conduction (CO04-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSV 40	101013	9KHz~40GHz	Jan. 29, 2013	Conducted (TH06-HY)
AC Power Source	G.W	APS-9102	EL920581	AC 0V ~ 300V	Jul. 16, 2013	Conducted (TH06-HY)
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	Jun. 27, 2013	Conducted (TH06-HY)
RF Cable-2m	HUBER+SUHNER	SUCOFLEX_104	SN 345673/4	30MHz ~ 26.5GHz	Dec. 02, 2013	Conducted (TH06-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSP40	100593	9kHz ~ 40GHz	Oct. 03, 2013	Radiation (03CH02-HY)
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH02-HY	30MHz ~ 1GHz 3m	May 11, 2013	Radiation (03CH02-HY)
Amplifier	Agilent	8447D	2944A11149	100kHz ~ 1.3GHz	Jul. 18, 2013	Radiation (03CH02-HY)
Amplifier	Agilent	8449B	3008A02373	1GHz ~ 26.5GHz	Aug. 28, 2013	Radiation (03CH02-HY)
Horn Antenna	ETS-LINDGREN	3117	00091920	1GHz ~ 18GHz	Nov. 25, 2013	Radiation (03CH02-HY)
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	15GHz ~ 40GHz	Jan. 10, 2014	Radiation (03CH02-HY)
RF Cable-R03m	Jye Bao	RG142	CB021	9kHz ~ 1GHz	Nov. 09, 2013	Radiation (03CH02-HY)
RF Cable-high	SUHNER	SUCOFLEX106	03CH02-HY	1GHz ~ 40GHz	Mar. 05, 2013	Radiation (03CH02-HY)
Bilog Antenna	SCHAFFNER	CBL61128	2723	30MHz ~ 2GHz	Oct. 10, 2013	Radiation (03CH02-HY)
Turn Table	Chaintek Instruments	3000	MF7802058	0~ 360 degree	N/A	Radiation (03CH02-HY)
Antenna Mast	MF	MF7802	MF780208205	1 ~ 4 m	N/A	Radiation (03CH02-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Loop Antenna	TESEQ	HLA 6120	31244	9 kHz - 30 MHz	Dec. 02, 2012	Radiation (03CH02-HY)

Note: Calibration Interval of instruments listed above is two year.