

Shenzhen Toby Technology Co., Ltd.

Report No.: TBR-C-202502-0011-12

Page: 1 of 40

RF Test Report

FCC ID: ZQ6-W665S3

Report No. : TBR-C-202502-0011-12

Applicant : AMPAK Technology Inc.

Equipment Under Test (EUT)

EUT Name : W665S3 **Model No.** : W665S3

Series Model No. : ----

Brand Name : AMPAK

Sample ID : RW-C-202502-0011-1-1#&RW-C-202502-0011-1-2#

Receipt Date : 2025-02-20

Test Date : 2025-02-20 to 2025-04-10

Issue Date : 2025-04-10

Standards : FCC Part 15 Subpart C 15.247

Test Method : ANSI C63.10:2013

KDB 558074 D01 15.247 Meas Guidance v05r02

KDB 662911 D01 Multiple Transmitter Output v02r01

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above.

Tested By : Kide . Charlet

Reviewed By : Wall-W

Approved By : WAN SV

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

COI	NIENIS	2
1.	GENERAL INFORMATION ABOUT EUT	
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	7
	1.4 Description of Support Units	7
	1.5 Description of Test Mode	8
	1.6 Description of Test Software Setting	9
	1.7 Measurement Uncertainty	10
	1.8 Test Facility	
2.	TEST SUMMARY	12
3.	TEST SOFTWARE	12
4.	TEST EQUIPMENT AND TEST SITE	13
5.	CONDUCTED EMISSION TEST	15
	5.1 Test Standard and Limit	15
	5.2 Test Setup	15
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	16
	5.5 EUT Operating Mode	16
	5.6 Test Data	16
6.	RADIATED AND CONDUCTED UNWANTED EMISSIONS	17
	6.1 Test Standard and Limit	17
	6.2 Test Setup	19
	6.3 Test Procedure	20
	6.4 Deviation From Test Standard	21
	6.5 EUT Operating Mode	21
	6.6 Test Data	21
7.	RESTRICTED BANDS AND BAND EDGE REQUIREMENT	22
	7.1 Test Standard and Limit	22
	7.2 Test Setup	22
	7.3 Test Procedure	
	7.4 Deviation From Test Standard	24

Report No.: TBR-C-202502-0011-12 Page: 3 of 40

	7.5 EUT Operating Mode	24
	7.6 Test Data	24
8.	BANDWIDTH TEST	25
	8.1 Test Standard and Limit	25
	8.2 Test Setup	25
	8.3 Test Procedure	25
	8.4 Deviation From Test Standard	26
	8.5 EUT Operating Mode	26
	8.6 Test Data	26
9.	MAXIMUM CONDUCTED OUTPUT POWER	27
	9.1 Test Standard and Limit	27
	9.2 Test Setup	27
	9.3 Test Procedure	27
	9.4 Deviation From Test Standard	27
	9.5 EUT Operating Mode	27
	9.6 Test Data	27
10.	POWER SPECTRAL DENSITY	28
	10.1 Test Standard and Limit	28
	10.2 Test Setup	
	10.3 Test Procedure	28
	10.4 Deviation From Test Standard	28
	10.5 Antenna Connected Construction	28
	10.6 Test Data	28
11.	ANTENNA REQUIREMENT	29
	11.1 Test Standard and Limit	29
	11.2 Deviation From Test Standard	29
	11.3 Antenna Connected Construction	29
	11.4 Test Data	29
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	30
	ACHMENT B UNWANTED EMISSIONS DATA	
ATT	ACHMENT C RESTRICTED BANDS REQUIREMENT TEST DATA.	37

Report No.: TBR-C-202502-0011-12 Page: 4 of 40

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202502-0011-12	Rev.01	Initial issue of report	2025-04-10
	mnB.	The state of the s	
	3	TODAY TODAY	TO US
	COURT OF	The state of the s	
		On The	The state of
	WBA)	Marie Marie	
The same of the sa	(00)		The same of the sa
	1373	4000	
THE PARTY OF THE P	400		
	3	MODE TO THE PARTY OF THE PARTY	
The same	ω_{0BA}		
		On The second	M Com

Page: 5 of 40

1. General Information about EUT

1.1 Client Information

Applicant : AMPAK Technology Inc.		AMPAK Technology Inc.
Address	1	3F, No. 1, Jen Al Road, Hsinchu Industrial Park, Hsinchu, Taiwan
Manufacturer		AMPAK Technology Inc.
Address		3F, No. 1, Jen Al Road, Hsinchu Industrial Park, Hsinchu, Taiwan

1.2 General Description of EUT (Equipment Under Test)

EUT Name	1	W665S3				
Models No.	:	W665S3				
Model Different):					
			802.11b/g/n(HT20): 2412MHz~2462MHz			
1000	1	Operation Fraguency	802.11ax(HE20): 2412MHz~2462MHz			
and it		Operation Frequency:	802.11n(HT40): 2422MHz~2452MHz			
60 0	N		802.11ax(HE40): 2422MHz~2452MHz			
Product		Number of Channel:	802.11b/g/n(HT20)/ax(HE20):11 channels			
Description	1		802.11n(HT40)/ax(HE40): 7 channels			
NODE TO		Modulation Type:	802.11b: DSSS (DQPSK, DBPSK, CCK) 802.11g: OFDM (BPSK, QPSK,16QAM, 64QAM) 802.11n: OFDM (BPSK, QPSK,16QAM, 64QAM) 802.11ax: OFDMA (BPSK, QPSK,16QAM, 64QAM, 256QAM, 1024QAM)			
Power Rating	-	DC 3.3V				
Software Version	1	The state of the s				
Hardware Version	:	V1.0 BT Pin48, V2.0 B	T Pin12			
		1100				

- (1) The antenna gain provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) The above antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

Report No.: TBR-C-202502-0011-12 Page: 6 of 40

(4) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	05	2432	09	2452
02	2417	06	2437	10	2457
03	2422	07	2442	11	2462
04	2427	08	2447		

Note: CH 01~CH 11 for 802.11b/g/n(HT20)/ax(HE20)

CH 03~CH 09 for 802.11n(HT40)/ax(HE40)

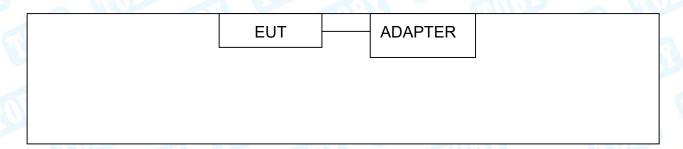
(5) Antenna information:

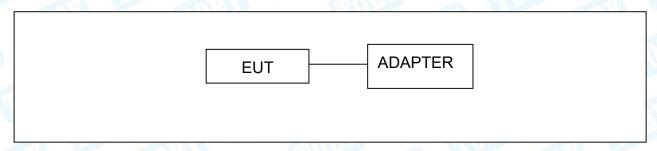
e	TX Antenna (s)		Remark	
1b	1, 1	all	ANT. 1	
lg	1	ANT. 1		
HT20)	2	ANT. 1+ ANT. 2		
HT40)	2	ANT. 1+ ANT. 2		
HE20)	2	ANT. 1+ ANT. 2		
HE40)	2	I	ANT. 1+ ANT. 2	
Brand	Model Name	Type	Antenna Gain(dBi)	
N/A	TZ2412W	Dipole	3.6	
N/A	TZ2412W	Dipole	3.6	
	HT20) HT40) HE20) HE40) Brand N/A	1b 1 1g 1 1T20) 2 1T40) 2 1E20) 2 1E40) 2 1Brand Model Name N/A TZ2412W	1	

Note:

For MIMO mode: Directional Gain=ANT. Gain+10*LOG(NANT)=6.61dBi

2.4G working with 802.11n/ax has MIMO mode.




Page: 7 of 40

1.3 Block Diagram Showing the Configuration of System Tested

Conducted Test

Radiated Test

1.4 Description of Support Units

		Equipment Inform	mation	
Name	Model	FCC ID/SDOC	Manufacturer	Used "√"
Adapter	C6	#(UU)	HANG	1
Assemble the	i7-8700/16G/1T		AMPAK	
computer	SSD		Technology Inc.	V
Test board	WURT -		AMPAK	
lest board		3 -	Technology Inc.	Will be V
	C	able Information		
Number	Shielded Type	Ferrite Core	Length	Note
Cable		110	0.8M	Accessory

Page: 8 of 40

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

F	or Conducted Emission Test			
Final Test Mode	Description			
Mode 1	TX b Mode Channel 01			
For R	adiated and RF Conducted Test			
Final Test Mode Description				
Mode 2	TX Mode b Mode Channel 01/06/11			
Mode 3	TX Mode g Mode Channel 01/06/11			
Mode 4	TX Mode n(HT20) Mode Channel 01/06/11			
Mode 5	TX Mode n(HT40) Mode Channel 03/06/09			
Mode 6	TX Mode ax(HE20) Mode Channel 01/06/11			
Mode 7	TX Mode ax(HE40) Mode Channel 03/06/09			

Note: Only full RU is supported or all RU configurations are tested, and only the worst full RU mode is recorded.

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

802.11b Mode: CCK

802.11g Mode: OFDM

802.11n (HT20) Mode: MCS 0 802.11n (HT40) Mode: MCS 0 802.11ax (HE20) Mode: MCS 0 802.11ax(HE40) Mode: MCS 0

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a Mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 9 of 40

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

	Test So	oftware: ADB		
	Test M	lode: Continu	ously transmitt	ting
Mada	Deta Bata	Channal	Parameters	
Mode	Data Rate	Channel	Ant.1	Ant.2
	CCK/ 1Mbps	01	0x09	
802.11b	CCK/ 1Mbps	06	0x09	
U. B.	CCK/ 1Mbps	11	0x09	1
THE PARTY OF THE P	OFDM/ 6Mbps	01	0x0f	1
802.11g	OFDM/ 6Mbps	06	0x0f	A
	OFDM/ 6Mbps	11	0x0f	1
Altura	MCS 0	01	0x0e	0x0e
802.11n(HT20)	MCS 0	06	0x0e	0x0e
	MCS 0	11	0x0e	0x0e
	MCS 0	03	0x0e	0x0e
802.11n(HT40)	MCS 0	06	0x0e	0x0e
MIN TO	MCS 0	09	0x09	0x09
COURS.	MCS 0	01	0x0a	0x0a
802.11ax(HE20)	MCS 0	06	0x0a	0x0a
	MCS 0	11	0x0d	0x0d
4087	MCS 0	03	0x0a	0x0a
802.11ax(HE40)	MCS 0	06	0x0a	0x0a
TO U	MCS 0	09	0x0a	0x0a

Page: 10 of 40

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB
RF Power-Conducted	Level Accuracy: Above 1000MHz	±0.95 dB
Power Spectral Density- Conducted	Level Accuracy: Above 1000MHz	±3dB
Occupied Bandwidth	Level Accuracy: 30MHz to 1000 MHz Above 1000MHz	±3.8%
Unwanted Emission- Conducted	Level Accuracy: 30MHz to 1000 MHz Above 1000MHz	±2.72 dB
Temperature	The state of the s	±0.6°C
Humidity	1	±4%
Supply voltages		±2%
Time	1 11111	±4%

Page: 11 of 40

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F., Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

Report No.: TBR-C-202502-0011-12 Page: 12 of 40

2. Test Summary

Standard Section	Test Item	Toot Comple/e)	1 1	
FCC	rest item	Test Sample(s)	Judgment	Remar
FCC 15.207(a)	Conducted Emission	RW-C-202502-0011-1-1#	PASS	N/A
FCC 15.209 & 15.247(d)	Radiated Unwanted Emissions	RW-C-202502-0011-1-1#	PASS	N/A
FCC 15.203	Antenna Requirement	RW-C-202502-0011-1-2#	PASS	N/A
FCC 15.247(a)(2)	6dB Bandwidth	RW-C-202502-0011-1-2#	PASS	N/A
	99% Occupied bandwidth	RW-C-202502-0011-1-2#	PASS	N/A
FCC 15.247(b)(3)	Maximum conducted output power and E.I.R.P	RW-C-202502-0011-1-2#	PASS	N/A
FCC 15.247(e)	Power Spectral Density	RW-C-202502-0011-1-2#	PASS	N/A
FCC 15.247(d)	Band Edge Measurements	RW-C-202502-0011-1-2#	PASS	N/A
FCC 15.207	Conducted Unwanted Emissions	RW-C-202502-0011-1-2#	PASS	N/A
FCC 15.247(d)	Emissions in Restricted Bands	RW-C-202502-0011-1-2#	PASS	N/A
1:033	On Time and Duty Cycle	RW-C-202502-0011-1-2#	1	N/A

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
Radiation Emission	EZ-EMC	EZ	FA-03A2RE+
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0
RF Test System	JS1120	Tonscend	V3.2.22

Report No.: TBR-C-202502-0011-12 Page: 13 of 40

4. Test Equipment and Test Site

Test Site				
No.	Test Site	Manufacturer	Specification	Used
TB-EMCSR001	Shielding Chamber #1	YIHENG	7.5*4.0*3.0 (m)	V
TB-EMCSR002	Shielding Chamber #2	YIHENG	8.0*4.0*3.0 (m)	V
TB-EMCCA001	3m Anechoic Chamber #A	ETS	9.0*6.0*6.0 (m)	X
TB-EMCCB002	3m Anechoic Chamber #B	YIHENG	9.0*6.0*6.0 (m)	V

Conducted Emissi	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Equipment			E-12.2.2.2.2	6 T	
EMI Test Receiver	Rohde & Schwarz Compliance	ESCI	100321	Jun. 17, 2024	Jun. 16, 2025
RF Switching Unit	Direction Systems	RSU-A4	34403	Jun. 17, 2024	Jun. 16, 2025
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jun. 17, 2024	Jun. 16, 2025
LISN	Rohde & Schwarz	ENV216	101131	Jun. 17, 2024	Jun. 16, 2025
Radiation Emissio	n Test (B Site)				130
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	N9020A	MY49100060	Aug. 29, 2024	Aug. 28, 2025
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 17, 2024	Jun. 16, 2025
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472/008	Feb. 20, 2025	Feb. 19, 2026
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Nov. 13, 2023	Nov. 12, 2025
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	Jun. 14, 2024	Jun. 13, 2026
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Feb. 27, 2024	Feb. 26, 2026
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jun. 14, 2024	Jun. 13, 2026
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Aug. 29, 2024	Aug. 28, 2025
HF Amplifier	Tonscend	TAP051845	AP21C806141	Aug. 29, 2024	Aug. 28, 2025
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Aug. 29, 2024	Aug. 28, 2025
Highpass Filter	CD	HPM-6.4/18G		N/A	N/A
Highpass Filter	CD	HPM-2.8/18G		N/A	N/A
Attenuator	YINSAIGE	DC-18G 10dB	DC18G	N/A	N/A
Antenna Conducte	ed Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 17, 2024	Jun. 16, 2025
MXA Signal Analyzer	KEYSIGHT	N9020B	MY60110172	Aug. 29, 2024	Aug. 28, 2025
MXA Signal Analyzer	Agilent	N9020A	MY47380425	Aug. 29, 2024	Aug. 28, 2025
Vector Signal Generator	Agilent	N5182A	MY50141294	Aug. 29, 2024	Aug. 28, 2025
Analog Signal Generator	Agilent	N5181A	MY48180463	Aug. 29, 2024	Aug. 28, 2025
Vector Signal Generator	KEYSIGHT	N5182B	MY59101429	Aug. 29, 2024	Aug. 28, 2025
Analog Signal Generator	KEYSIGHT	N5173B	MY61252685	Aug. 29, 2024	Aug. 28, 2025

Report No.: TBR-C-202502-0011-12 Page: 14 of 40

11:30	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Aug. 29, 2024	Aug. 28, 2025
DE Dewer Career	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Aug. 29, 2024	Aug. 28, 2025
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Aug. 29, 2024	Aug. 28, 2025
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Aug. 29, 2024	Aug. 28, 2025
RF Control Unit	Tonsced	JS0806-1	21C8060380	N/A	N/A
RF Control Unit	Tonsced	JS0806-2	21F8060439	Aug. 29, 2024	Aug. 28, 2025
Power Control Box	Tonsced	JS0806-4ADC	21C8060387	N/A	N/A

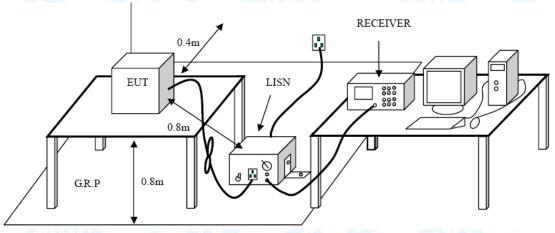
Page: 15 of 40

5. Conducted Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard

FCC Part 15.207


5.1.2 Test Limit

Fraguanay	Maximum RF Line	Voltage (dBμV)
Frequency	Quasi-peak Level	Average Level
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
500kHz~5MHz	56	46
5MHz~30MHz	60	50

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

5.3 Test Procedure

- The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.
- ●Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- ●I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- ●LISN at least 80 cm from nearest part of EUT chassis.

Page: 16 of 40

● The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A inside test report.

Page: 17 of 40

6. Radiated and Conducted Unwanted Emissions

6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.209 & FCC Part 15.247(d)

6.1.2 Test Limit

General f	General field strength limits at frequencies Below 30MHz				
Frequency	Field Strength	Measurement Distance			
(MHz)	(microvolt/meter)**	(meters)			
0.009~0.490	2400/F(KHz)	300			
0.490~1.705	24000/F(KHz)	30			
1.705~30.0	30	30			

Note: 1, The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

General field strength limits at frequencies above 30 MHz			
Frequency	Frequency Field strength Measurement Distan		
(MHz)	(µV/m at 3 m)	(meters)	
30~88	100	3	
88~216	150	3	
216~960	200	3	
Above 960	500	3	

General field strength limits at frequencies Above 1000MHz				
Frequency	Distance of 3m (dBuV/m)		quency Distance of 3m (dBuV/m	Bm (dBuV/m)
(MHz)	Peak	Average		
Above 1000	74	54		

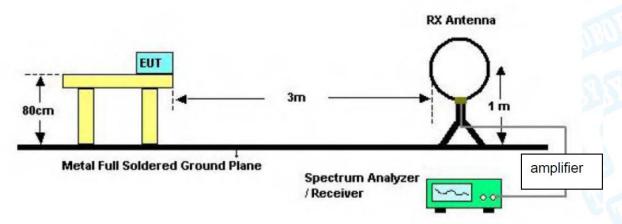
Note:

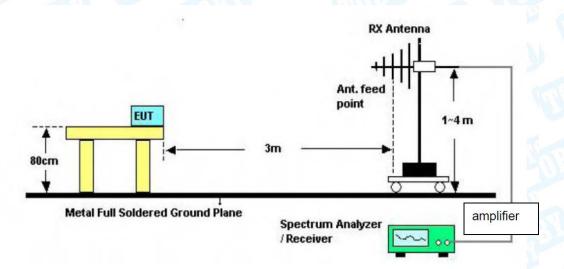
- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power

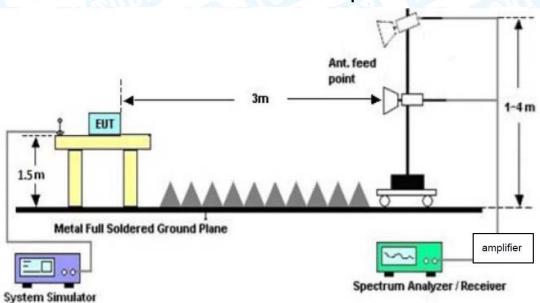
Page: 18 of 40

limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.



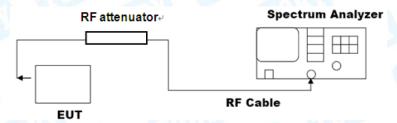

Page: 19 of 40

6.2 Test Setup


Radiated measurement

Below 30MHz Test Setup

Below 1000MHz Test Setup



Page: 20 of 40

Above 1GHz Test Setup Conducted measurement

6.3 Test Procedure

---Radiated measurement

- The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

Page: 21 of 40

--- Conducted measurement

Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to≥1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW≥[3*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Mode

Please refer to the description of test mode.

6.6 Test Data

Radiated measurement please refer to the Attachment B inside test report.

Conducted measurement please refer to the external appendix report of 2.4G Wi-Fi.

Page: 22 of 40

7. Restricted Bands and Band Edge Requirement

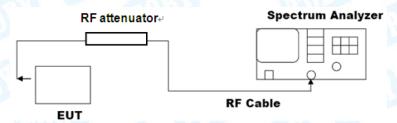
7.1 Test Standard and Limit

7.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.247(d)


7.1.2 Test Limit

Restricted Frequency	Distance Meters(at 3m)		
Band (MHz)	Peak (dBuV/m)	Average (dBuV/m)	
2310 ~2390	74	54	
2483.5 ~2500	74	54	
	Peak (dBm)see 7.3 e)	Average (dBm) see 7.3 e)	
2310 ~2390	-21.20	-41.20	
2483.5 ~2500	-21.20	-41.20	


Note: According the ANSI C63.10 11.12.2 antenna-port conducted measurements may also be used as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test forcabinet/case emissions is required.

7.2 Test Setup

Radiated measurement

Conducted measurement

Page: 23 of 40

7.3 Test Procedure

---Radiated measurement

- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- The Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

--- Conducted measurement

- a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to
- determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain).
- c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies
- \leq 30 MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for

frequencies > 1000 MHz).

- d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear terms (i.e., watts and mW).
- e) Convert the resultant EIRP to an equivalent electric field strength using the following relationship:

Page: 24 of 40

$E = EIRP-20 \log d + 104.8$

where

E is the electric field strength in dBuV/m

EIRP is the equivalent isotropically radiated power in dBm

d is the specified measurement distance in m

- f) Compare the resultant electric field strength level with the applicable regulatory limit.
- g) Perform the radiated spurious emission test.

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Mode

Please refer to the description of test mode.

7.6 Test Data

Remark: The test uses antenna-port conducted measurements as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements.

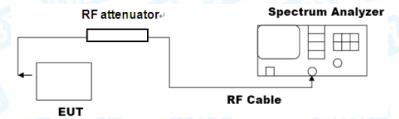
Please refer to the external appendix report of 2.4G Wi-Fi.

Please refer to the Attachment C inside test report.

Page: 25 of 40

8. Bandwidth Test

8.1 Test Standard and Limit


8.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.247(d)

8.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
-6dB bandwidth	>=500 KHz	2400~2483.5
(DTS bandwidth)	7-300 KHZ	2400 2400.0
99% occupied bandwidth		2400~2483.5

8.2 Test Setup

8.3 Test Procedure

---DTS bandwidth

- The steps for the first option are as follows:
- a) Set RBW = 100 kHz.
- b) Set the VBW≥[3*RBW].
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

---occupied bandwidth

- ●The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:
- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times

Page: 26 of 40

the OBW.

b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.

- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

8.4 Deviation From Test Standard

No deviation

8.5 EUT Operating Mode

Please refer to the description of test mode.

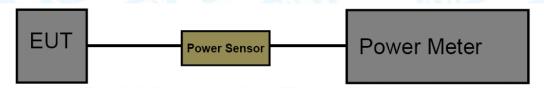
8.6 Test Data

Please refer to the external appendix report of 2.4G Wi-Fi.

Page: 27 of 40

9. Maximum conducted output power

9.1 Test Standard and Limit


9.1.1 Test Standard

FCC Part 15.247(b)(3)

9.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Maximum conducted	not exceed 1 W or 30dBm	2400~2483.5
output power	Hot cacca I W of Soubili	2400 2400.0

9.2 Test Setup

9.3 Test Procedure

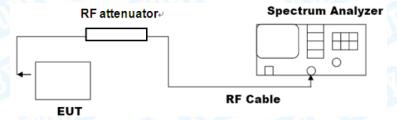
- The EUT was connected to RF power meter via a broadband power sensor as show the block above. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.
- 9.4 Deviation From Test Standard
 No deviation
- 9.5 EUT Operating Mode
 Please refer to the description of test mode.
- 9.6 Test Data

Please refer to the external appendix report of 2.4G Wi-Fi.

Page: 28 of 40

10. Power Spectral Density

10.1 Test Standard and Limit


10.1.1 Test Standard

FCC Part 15.247(e)

10.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5

10.2 Test Setup

10.3 Test Procedure

- The following procedure shall be used if maximum peak conducted output power was used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance:
- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to 3 kHz≤RBW≤100 kHz.
- d) Set the VBW ≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.

10.4 Deviation From Test Standard

No deviation

10.5 Antenna Connected Construction

Please refer to the description of test mode.

10.6 Test Data

Please refer to the external appendix report of 2.4G Wi-Fi.

Page: 29 of 40

11. Antenna Requirement

11.1 Test Standard and Limit

11.1.1 Test Standard

FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Deviation From Test Standard

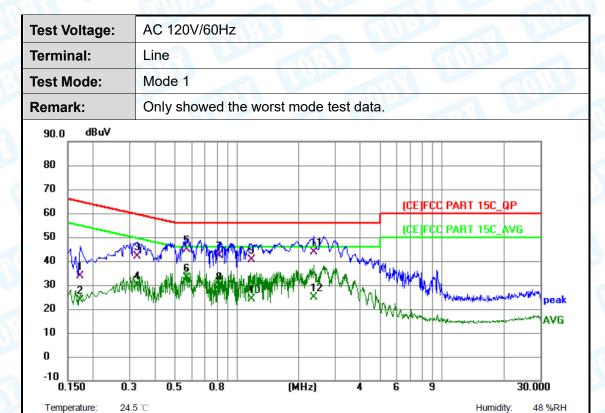
No deviation

11.3 Antenna Connected Construction

The gains of the antenna used for transmitting is Please refer to page 6, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

11.4 Test Data

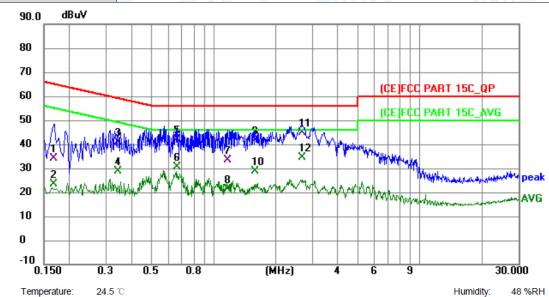
The EUT antenna is a Dipole Antenna. It complies with the standard requirement.


	Antenna Type	
a Guer	Permanent attached antenna	
	⊠Unique connector antenna	O(N)
4000	☐Professional installation antenna	

Page: 30 of 40

Attachment A-- Conducted Emission Test Data

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.172	24.32	9.55	33.87	64.86	-30.99	QP
2	0.172	14.21	9.55	23.76	54.86	-31.10	AVG
3	0.326	32.47	9.48	41.95	59.55	-17.60	QP
4	0.326	20.39	9.48	29.87	49.55	-19.68	AVG
5 *	0.569	35.21	9.47	44.68	56.00	-11.32	QP
6	0.569	23.52	9.47	32.99	46.00	-13.01	AVG
7	0.825	32.95	9.49	42.44	56.00	-13.56	QP
8	0.825	19.83	9.49	29.32	46.00	-16.68	AVG
9	1.181	30.81	9.65	40.46	56.00	-15.54	QP
10	1.181	14.56	9.65	24.21	46.00	-21.79	AVG
11	2.364	34.08	9.59	43.67	56.00	-12.33	QP
12	2.364	15.24	9.59	24.83	46.00	-21.17	AVG


- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Page: 31 of 40

	Test Voltage:	AC 120V/60Hz
N	Terminal:	Neutral
9	Test Mode:	Mode 1
	Remark:	Only showed the worst mode test data.

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.168	24.65	9.53	34.18	65.06	-30.88	QP
2	0.168	13.88	9.53	23.41	55.06	-31.65	AVG
3	0.344	31.37	9.47	40.84	59.11	-18.27	QP
4	0.344	19.39	9.47	28.86	49.11	-20.25	AVG
5	0.663	32.32	9.48	41.80	56.00	-14.20	QP
6	0.663	21.17	9.48	30.65	46.00	-15.35	AVG
7	1.176	24.08	9.48	33.56	56.00	-22.44	QP
8	1.176	11.83	9.48	21.31	46.00	-24.69	AVG
9	1.590	32.27	9.48	41.75	56.00	-14.25	QP
10	1.590	19.10	9.48	28.58	46.00	-17.42	AVG
11 *	2.679	35.15	9.57	44.72	56.00	-11.28	QP
12	2.679	25.07	9.57	34.64	46.00	-11.36	AVG

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Page: 32 of 40

Attachment B-- Unwanted Emissions Data

--- Radiated Unwanted Emissions

9 KHz~30 MHz

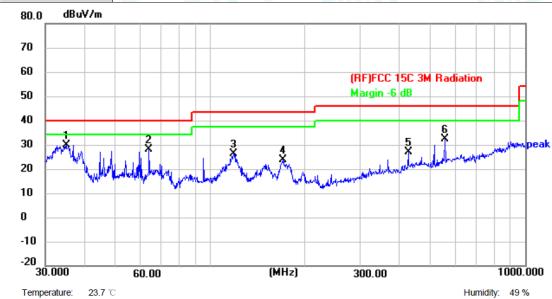
From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB Below the permissible value has no need to be reported.

30MHz~1GHz

			The same of the sa						
est Voltage:	AC 120V/60Hz			Million					
nt. Pol.	Horizontal	Horizontal							
est Mode:	Mode 2 TX Mode b Mode Channel 01								
emark:	Only showed th	ne worst mode te	est data.						
80.0 dBuV/m									
70 60 50			(RF)FCC 19 Margin -6	5C 3M Radiation	n E				
40 30 20	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mile have a second	Alando harmon	5 * **********************************	6 pea				
0 -10					1000.000				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	32.4060	47.67	-23.79	23.88	40.00	-16.12	peak	Р
2	121.9753	45.51	-23.28	22.23	43.50	-21.27	peak	Р
3	175.6516	44.66	-23.56	21.10	43.50	-22.40	peak	Р
4	234.1682	46.25	-24.14	22.11	46.00	-23.89	peak	Р
5	467.2350	42.91	-17.16	25.75	46.00	-20.25	peak	Р
6 *	900.1471	37.71	-7.46	30.25	46.00	-15.75	peak	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 33 of 40

AC 120V/60Hz
Vertical
Mode 2 TX Mode b Mode Channel 01
Only showed the worst mode test data.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	35.0048	53.81	-23.91	29.90	40.00	-10.10	peak	Р
2	63.9827	52.23	-24.19	28.04	40.00	-11.96	peak	Р
3	118.6012	49.92	-23.56	26.36	43.50	-17.14	peak	Р
4	170.1947	45.78	-22.16	23.62	43.50	-19.88	peak	Р
5	426.5210	44.88	-17.96	26.92	46.00	-19.08	peak	Р
6	556.7743	46.87	-14.40	32.47	46.00	-13.53	peak	Р

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 34 of 40

Above 1GHz

Only showed the worst mode test data.

Temperature:	23.5°C	Relative Humidity:	44%
Test Voltage:	DC 3.3V		
Ant. Pol.	Horizontal	Was a series	
Test Mode:	TX B Mode 2412MHz	OHU.	

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)		Detector	P/F
1	4927.000	55.20	-5.09	50.11	74.00	-23.89	peak	Р
2 *	9619.000	45.97	5.85	51.82	74.00	-22.18	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	23.5°C	Relative Humidity:	44%
Test Voltage:	DC 3.3V		
Ant. Pol.	Vertical		
Test Mode:	TX B Mode 2412MHz		O. P. C.

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	9440.500	44.61	6.16	50.77	74.00	-23.23	peak	Р
2	14821.000	39.83	10.01	49.84	74.00	-24.16	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value<average limit, So only show the peak value.

Page: 35 of 40

Temperature:	23.5°C	Relative Humidity:	44%
Test Voltage:	DC 3.3V		
Ant. Pol.	Horizontal		
Test Mode:	TX B Mode 2437MHz		(1)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	9542.500	45.72	6.19	51.91	74.00	-22.09	peak	Р
2	14795.500	40.59	9.94	50.53	74.00	-23.47	peak	Р

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	23.5℃	Relative Humidity:	44%
Test Voltage:	DC 3.3V		
Ant. Pol.	Vertical	THU THE	
Test Mode:	TX B Mode 2437MHz		

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)			Detector	P/F
1	6304.000	53.47	-3.72	49.75	74.00	-24.25	peak	Р
2 *	9415.000	44.53	5.76	50.29	74.00	-23.71	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Page: 36 of 40

Temperature:	23.5°C	Relative Humidity:	44%		
Test Voltage:	DC 3.3V	OC 3.3V			
Ant. Pol.	Horizontal				
Test Mode:	TX B Mode 2462MHz		COURS !		

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	9262.000	47.84	3.74	51.58	74.00	-22.42	peak	Р
2	14744.500	41.10	9.53	50.63	74.00	-23.37	peak	Р

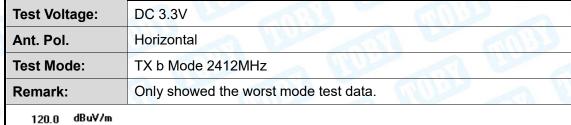
Remark:

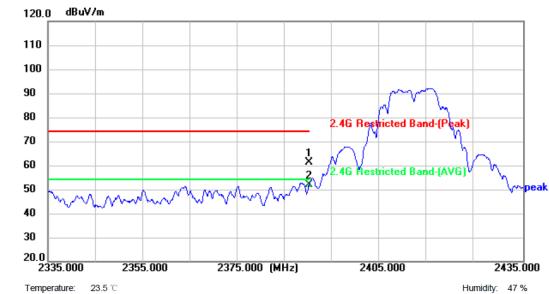
- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.

Temperature:	23.5°C	Relative Humidity:	44%
Test Voltage:	DC 3.3V		
Ant. Pol.	Vertical	THU	
Test Mode:	TX B Mode 2462MHz		

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1 *	9619.000	44.88	5.85	50.73	74.00	-23.27	peak	Р
2	14923.000	40.44	10.02	50.46	74.00	-23.54	peak	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. Test with highpass filter (Pass Frequency: 2.8-18G and 8-25G), and 18GHz-26.5GHz is the noise, No other signals were detected.
- 5. No report for the emission which below the prescribed limit.
- 6. The peak value < average limit, So only show the peak value.



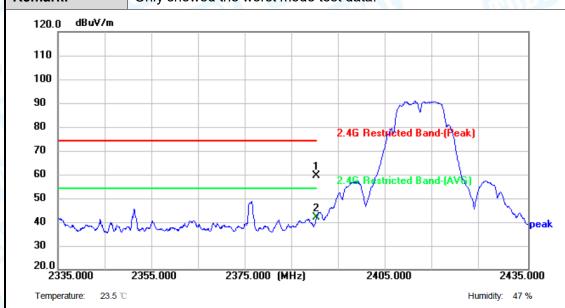


Page: 37 of 40

Attachment C-- Restricted Bands Requirement Test Data

Radiation Test

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F
1	2390.000	51.25	9.98	61.23	74.00	-12.77	peak	Р
2 *	2390.000	41.94	9.98	51.92	54.00	-2.08	AVG	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 38 of 40

ACCOUNT TO THE PERSON OF THE P	
Test Voltage:	DC 3.3V
Ant. Pol.	Vertical
Test Mode:	TX b Mode 2412MHz
Remark:	Only showed the worst mode test data

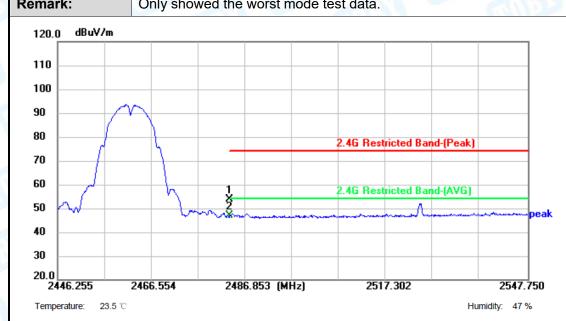
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)		Detector	P/F
1	2390.000	49.65	9.98	59.63	74.00	-14.37	peak	Р
2 *	2390.000	31.85	9.98	41.83	54.00	-12.17	AVG	Р


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 39 of 40

Í	Test Voltage:	DC 3.3V	
\ 	Ant. Pol.	Horizontal	A LONG
	Test Mode:	TX b Mode 2462MHz	
ķ	Remark:	Only showed the worst mode test data.	64:17

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2483.500	46.06	10.20	56.26	74.00	-17.74	peak	Р
2	2483.500	40.62	10.20	50.82	54.00	-3.18	AVG	Р
3	2487.056	52.22	10.22	62.44	74.00	-11.56	peak	Р
4 *	2487.056	43.47	10.22	53.69	54.00	-0.31	AVG	Р


- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 40 of 40

Test Voltage:	DC 3.3V
Ant. Pol.	Vertical
Test Mode:	TX b Mode 2462MHz
Remark:	Only showed the worst mode test data

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2483.500	43.48	10.20	53.68	74.00	-20.32	peak	Р
2 *	2483.500	36.64	10.20	46.84	54.00	-7.16	AVG	Р

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

END OF THE REPORT----

