

SAR Evaluation Report

in accordance with the requirements of FCC Report and Order: ET Docket 93-62, and OET Bulletin 65 Supplement C

for

GSM Tri-band 900/1800/1900MHz Cellular Phone

MODEL: MCX-608

FCC ID: R8QMCX-608

October 31, 2004

REPORT NO: 04U3001-2

Prepared for

Macronix America Inc. 491 Fairview Way Milpitas, CA 95035 USA

Prepared by

COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, MORGAN HILL, CA 95037, USA TEL: (408) 463-0885

Revision History

Rev.	Revisions	Revised By
В	Additional test of secondary hot spot	Sunny Shih

COMPLIANCE CERTIFICATION SERVICES Page: 2 of 37 This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document.

CERTIFICATE OF COMPLIANCE (SAR EVALUATION)

DATES OF TEST: September 28-29 & October 31, 2004

APPLICANT:	Macronix America Inc. 491 Fairview Way Milpitas, CA 95035 USA
MODEL:	MCX-608
FCC ID:	R8QMCX-608
DEVICE CATEGORY:	PORTABLE DEVICES
EXPOSURE CATEGORY:	GENERAL POPULATION/UNCONTROLLED EXPOSURE

Test Sample is a:	Production unit
Modulation type:	GSM
Tx Frequency:	1850.2 to 1909.8 MHz
Max. O/P Power: (Conducted/peak)	29.40 dBm
Max. SAR (1g):	0.704 mW/g at Left head tilt position 0.167 mW/g at Body worn
Application Type:	Certification
FCC Rule Part(s):	24E

Note: This device contains GSM900 and GSM1800 functions not operational in US territories. This report is only applicable for GSM1900 PCS band.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE Std. C95.1-1992 and had been tested in accordance with the measurement procedures specified in FCC OET 65 Supplement C (released on 6/29/2001 see Test Report).

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Hsin-Fr. Shih

Hsin-Fu Shih (Sunny Shih) Senior Engineer

COMPLIANCE CERTIFICATION SERVICES

Page: 3 of 37 This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document.

TABLE OF CONTENTS

1.	EQL	JIPM	ENT UNDER TEST (EUT) DESCRIPTION	5
2.	REC	QUIRI	EMENTS FOR COMPLIANCE TESTING DEFINED BY THE FCC	5
3.	DOS	SIME	TRIC ASSESSMENT SETUP	5
3.	1.	MEA	ASUREMENT SYSTEM DIAGRAM	6
3.	2.	SYS	TEM COMPONENTS	7
	3.2.	1.	DASY4 MEASUREMENT SERVER	7
	3.2.2	2.	DATA ACQUISITION ELECTRONICS (DAE)	7
	3.2.3	3.	EX3DV3 ISOTROPIC E-FIELD PROBE FOR DOSIMETRIC MEASUREMENTS	7
	3.2.	4.	SAM PHANTOM (V4.0)	8
	3.2.	5.	DEVICE HOLDER FOR SAM TWIN PHANTOM	8
	3.2.	6.	SYSTEM VALIDATION KITS	8
4.	EVA	LUA	TION PROCEDURES	9
4.	1.	SAR	SYSTEM MEASUREMENT PROCEDURES	9
4.	2.	DAT	A EVALUATION	10
5.	MEA	ASUF	REMENT UNCERTAINTY	13
6.	EXF	POSU	RE LIMIT	14
7.	DE\	/ICES	S OPERATING NEXT TO A PERSON'S EAR	15
7.	1.	CHE	EK/TOUCH POSITION	16
7.	2.	EAR	7/TILT POSITION	16
8.	TES	T PC	SITIONS FOR BODY-WORN AND OTHER SIMILAR CONFIGURATIONS	18
9.	PRO	DCED	URES USED TO ESTABLISH TEST SIGNAL	19
10.	ME	ASUF	REMENT RESULTS	20
1(0.1.	SIM	ULATING LIQUIDS PARAMETER CHECK	20
1(0.2.	SYS	TEM PERFORMANCE CHECK	26
1(0.3.	SAR	MEASUREMENT RESULTS	28
	10.3	5.1.	LEFT HEAD TOUCH POSITION	28
	10.3	5.2.	LEFT HEAD TILT POSITION	29
	10.3	.3.	RIGHT HEAD TOUCH POSITION	30
	10.3	6.4.	RIGHT HEAD TILT POSITION	31
	10.3	5.5.	BODY POSITION	32
11.	EU	r pho	DTOS	33
12.	EQ	JIPM	ENT LIST & CALIBRATION STATUS	36
13.	ATT	TACH	IMENTS	37

1. EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The following is the	information provided by the applicant.
Type of EUT:	GSM Tri-band 900/1800/1900MHz Cellular Phone
Type/Model No.:	MCX-608
Modulation Type:	GSM
TX Frequency:	1850.2 to 1909.8 MHz
Duty Cycle:	12.5%
Battery:	Only one model with EUT (Macronix CN208, Li-Ion Battery, 4.0Vdc, 700mAh)

2. REQUIREMENTS FOR COMPLIANCE TESTING DEFINED BY THE FCC

The US Federal Communications Commission has released the report and order "Guidelines for Evaluating the Environmental Effects of RF Radiation", ET Docket No. 93-62 in August 1996. The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g for an uncontrolled environment and 8.0 mW/g for an occupational/controlled environment as recommended by the ANSI/IEEE standard C95.1-1992. According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

3. DOSIMETRIC ASSESSMENT SETUP

These measurements were performed with the automated near-field scanning system DASY3 from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot (working range greater than 0.9 m), which positions the probes with a positional repeatability of better than \pm 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit. The SAR measurements were conducted with the dosimetric probe EX3DV3-SN: 3531 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure described in [7] with accuracy of better than ±10%. The spherical isotropy was evaluated with the procedure described in [8] and found to be better than ±0.25 dB. The phantom used was the SAM Twin Phantom as described in FCC supplement C, IEE P1528 and CENELEC EN50361.

COMPLIANCE CERTIFICATION SERVICES

Page: 5 of 37 This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document.

3.1. MEASUREMENT SYSTEM DIAGRAM

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (St aubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning. •
- A computer operating Windows 2000 or Windows XP.
- DASY4 software. •
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes. .
- Validation dipole kits allowing validating the proper functioning of the system.

COMPLIANCE CERTIFICATION SERVICES

Page: 6 of 37 This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document.

3.2. SYSTEM COMPONENTS

3.2.1. DASY4 Measurement Server

The DASY4 measurement server is based on a PC/104 CPU board with a 166MHz low-power Pentium, 32MB chip disk and 64MB RAM. The necessary circuits for communication with either the DAE3 electronic box as well as the 16-bit AD-converter system for optical detection and digital I/O interface are contained on the DASY4 I/O-board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all real-time data evaluation

for field measurements and surface detection, controls robot movements and handles safety operation. The PC-operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with two expansion slots which are reserved for future applications. Please note that the expansion slots do not have a standardized pinout and therefore only the expansion cards provided by SPEAG can be inserted. Expansion cards from any other supplier could seriously damage the measurement server. Calibration: No calibration reauired.

3.2.2. Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE3) consists of a highly sensitive electrometer grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The mechanical probe mounting device includes two

strong gradient

different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

3.2.3. EX3DV3 Isotropic E-Field Probe for Dosimetric Measurements

Construction:	Symmetrical design with triangular core Built-in shielding against static charges	
	PEEK enclosure material (resistant to organic solvents, e.g., DGBE)	
Calibration:	Basic Broad Band Calibration in air: 10-2500 MHz. Conversion Factors (CF) for HSL 900 and HSL 1800 CF- Calibration for other liquids and frequencies upon request.	N
Frequency:	10 MHz to > 6 GHz; Linearity: ± 0.2 dB (30 MHz to 3 GHz)	
Directivity:	± 0.3 dB in HSL (rotation around probe axis);	the second se
	± 0.5 dB in tissue material (rotation normal to probe axis)	
Dynamic Range:	10 μW/g to > 100 mW/g; Linearity: ± 0.2 dB (noise: typically <	
	1 μW/g)	
Dimensions:	Overall length: 330 mm (Tip: 20 mm)	
	Tip diameter: 2.5 mm (Body: 12 mm)	
	Typical distance from probe tip to dipole centers: 1 mm	
Application:	High precision dosimetric measurements in any exposure scena	rio (e.g., very strong g
	fields). Only probe which enables compliance testing for frequen	cies up to 6 GHz with
	precision of better 30%.	

COMPLIANCE CERTIFICATION SERVICES

Page: 7 of 37 This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document.

3.2.4. SAM Phantom (V4.0)

The shell corresponds to the **Construction:** specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528-200X, CENELEC 50361 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot. Shell Thickness: 2 ±0.2 mm Filling Volume: Approx. 25 liters **Dimensions:** Height: 810mm; Length: 1000mm; Width: 500mm

3.2.5. Device Holder for SAM Twin Phantom

Construction: In combination with the Twin SAM Phantom V4.0 or Twin SAM, the Mounting Device (made from POM) enables the rotation of the mounted transmitter in spherical coordinates, whereby the rotation point is the ear opening. The devices can be easily and accurately positioned according to IEC, IEEE, CENELEC, FCC or other specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

3.2.6. System Validation Kits

Construction:	Symmetrical dipole with I/4 balun Enables measurement of feedpoint impedance with NWA Matched for use near flat phantoms filled with brain simulating solutions Includes distance holder and tripod adaptor.
Frequency:	450, 900, 1800, 2450, 5800 MHz
Return loss:	> 20 dB at specified validation position
Power capability:	> 100 W (f < 1GHz); > 40 W (f > 1GHz)
Dimensions:	450V2: dipole length: 270 mm; overall height: 330 mm D900V2: dipole length: 149 mm; overall height: 330 mm D1800V2: dipole length: 72 mm; overall height: 300 mm D835V2: dipole length: 161; overall height: 330 D1900V2: dipole length: 68; overall height: 300 D2450V2: dipole length: 51.5 mm; overall height: 300 mm D5GHzV2: dipole length: 25.5 mm; overall height: 290 mm

COMPLIANCE CERTIFICATION SERVICES

This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document.

4. EVALUATION PROCEDURES

4.1. SAR System Measurement Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 1. 2 mm for an EX3DV3 probe type).

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4 software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan measures 7x7 x7 points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a onedimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

COMPLIANCE CERTIFICATION SERVICES

Page: 9 of 37 This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document.

4.2. DATA EVALUATION

The DASY4 post processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Norm _i , a _{i0} , a _{i1} , a _{i2}
	- Conversion factor	ConvF _i
	- Diode compression point	dcp _i
Device parameters:	- Frequency	f
	- Crest factor	cf
Media parameters:	- Conductivity	σ
	- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

> Z) z)

$$V_{i} = U_{i} + U_{i}^{2} \cdot \frac{cf}{dcp_{i}}$$
with V_{i} = Compensated signal of channel i (i = x, y, U_{i}) = Input signal of channel i (i = x, y, Y)

cf	= Crest factor of exciting field	(DASY parameter)
dcp_i	= Diode compression point	(DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes:

$$E_i = \sqrt{\frac{V_i}{Norm_i \bullet ConvF}}$$

H-field probes:

$$H_i = \sqrt{Vi} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

with

- = Compensated signal of channel i (i = x, y, z) V_i
 - $Norm_i$ = Sensor sensitivity of channel i (i = x, y, z)

 μ V/(V/m)² for E0field Probes

ConvF = Sensitivity enhancement in solution

- = Sensor sensitivity factors for H-field probes aij
- f = Carrier frequency (GHz)
- Ei = Electric field strength of channel i in V/m
- = Magnetic field strength of channel i in A/m Hi

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

The power flow density is calculated assuming the excitation field as a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = Equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

SPATIAL PEAK SAR EVALUATION

The procedure for spatial peak SAR evaluation has been implemented according to the IEEE1529 standard. It can be conducted for 1 g and 10 g.

The DASY4 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maximum searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation.

Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Cube Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 5x5x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1 g and 10 g cubes.

Boundary effect

For measurements in the immediate vicinity of a phantom surface, the field coupling effects between the probe and the boundary influence the probe characteristics. Boundary effect errors of different dosimetric probe types have been analyzed by measurements and using a numerical probe model. As expected, both methods showed an enhanced sensitivity in the immediate vicinity of the boundary.

The effect strongly depends on the probe dimensions and disappears with increasing distance from the boundary. The sensitivity can be approximately given as:

$$S \approx S_o + S_b exp(-\frac{z}{a})cos(\pi \frac{z}{\lambda})$$

Since the decay of the boundary effect dominates for small probes ($a << \lambda$), the cos-term can be omitted. Factors Sb (parameter Alpha in the DASY4 software) and a (parameter Delta in the DASY4 software) are assessed during probe calibration and used for numerical compensation of the boundary effect. Several simulations and measurements have confirmed that the compensation is valid for different field and boundary configurations.

This simple compensation procedure can largely reduce the probe uncertainty near boundaries. It works well as long as:

- · the boundary curvature is small
- the probe axis is angled less than 30 to the boundary normal
- the distance between probe and boundary is larger than 25% of the probe diameter
- the probe is symmetric (all sensors have the same offset from the probe tip)

Since all of these requirements are fulfilled in a DASY4 system, the correction of the probe boundary effect in the vicinity of the phantom surface is performed in a fully automated manner via the measurement data extraction during postprocessing.

5. MEASUREMENT UNCERTAINTY

UNCERTAINTY BUDGE ACCORDING TO IEEE P1528								
Error Description	Uncertainty Value [%]	Prob. Dist.	Div.	(<i>c_i</i>) 1g	(<i>c_i</i>) 10g	Std. Unc.(1g)	Std. Unc. (10g)	(vi) v _{eff}
Measurement System								
Probe Calibration	±4.8	Ν	1	1	1	±4.8%	±4.8%	8
Axial Isotropy	±4.7	R	$\sqrt{3}$	0.7	0.7	±1.9%	±1.9%	8
Hemispherical Isotropy	±9.6	R	$\sqrt{3}$	0.7	0.7	±3.9%	±3.9%	8
Boundary Effects	±1.0	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	8
Linearity	±4.7	R	$\sqrt{3}$	1	1	±2.7%	±2.7%	8
System Detection Limits	±1.0	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	8
Readout Electronics	±1.0	Ν	$\sqrt{3}$	1	1	±1.0%	±1.0%	8
Response Time	±0.8	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	8
Integration Time	±2.6	R	$\sqrt{3}$	1	1	±1.5%	±1.5%	8
RF Ambient Condition	±1.59	R	$\sqrt{3}$	1	1	±0.9%	±0.9%	8
Probe Positioner	±1.6	R	$\sqrt{3}$	1	1	±0.2%	±0.2%	8
Probe Positioning	±2.9	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	8
Max. SAR Eval.	±1.0	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	8
Test sample Related								
Device Positioning	±1.1	Ν	1	1	1	±1.1%	±1.1%	145
Device Holder	±3.6	Ν	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0	R	$\sqrt{3}$	1	1	±2.9%	±2.9%	8
Phantom and Setup								
Phantom Uncertainty	±4.0	R	$\sqrt{3}$	1	1	±2.3%	±2.3%	8
Liquid Conductivity (target)	±5.0	R	$\sqrt{3}$	0.64	0.43	±1.8%	±1.2%	8
Liquid Conductivity (meas.)	±2.5	Ν	1	0.64	0.43	±1.6%	±1.1%	8
Liquid Peermittivity (target)	±5.0	R	$\sqrt{3}$	0.6	0.49	±1.7%	±1.4%	8
Liquid Permittivity (meas.)	±2.5	Ν	1	0.6	0.49	±1.5%	±1.2%	8
Combined Std. Uncertaint	у					±9.8%	±9.6%	330
Expanded STD Uncertai	nty					±19.6%	±19.2%	

Table: Worst-case uncertainty for DASY4 assessed according to IEEE P1528.

The budge is valid for the frequency range 300MHz – 3GHz and represents a worst-case analysis.

COMPLIANCE CERTIFICATION SERVICES

Page: 13 of 37 This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document.

6. EXPOSURE LIMIT

(A) Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	y Hands, Wrists, Feet and Ankles		
0.4	8.0	20.0		

(B) Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles		
0.08	1.6	4.0		

NOTE 1: See Section 1 for discussion of exposure categories.

- NOTE 2: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.
- NOTE 3: At frequencies above 6.0 GHz, SAR limits are not applicable and MPE limits for power density should be applied at 5 cm or more from the transmitting device.
- NOTE 4: The time averaging criteria for field strength and power density do not apply to general population SAR limit of 47 CFR §2.1093

NOTE GENERAL POPULATION/UNCONTROLLED EXPOSURE PARTIAL BODY LIMIT 1.6 mW/g

COMPLIANCE CERTIFICATION SERVICES

Page: 14 of 37 This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document.

7. DEVICES OPERATING NEXT TO A PERSON'S EAR

This category includes most wireless handsets with fixed, retractable or internal antennas located toward the top half of the device, with or without a foldout, sliding or similar keypad cover. The handset should have its earpiece located within the upper 1/4 of the device, either along the centerline or off-centered, as perceived by its users. This type of handset should be positioned in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point". The "test device reference point" should be located at the same level as the center of the earpiece region. The "vertical centerline" should bisect the front surface of the handset at its top and bottom edges. A "ear reference point" is located on the outer surface of the head phantom on each ear spacer. It is located 1.5 cm above the center of the ear canal entrance in the "phantom reference plane" defined by the three lines joining the center of each "ear reference point" (left and right) and the tip of the mouth.

A handset should be initially positioned with the earpiece region pressed against the ear spacer of a head phantom. For the SCC-34/SC-2 head phantom, the device should be positioned parallel to the "N-F" line defined along the base of the ear spacer that contains the "ear reference point". For interim head phantoms, the device should be positioned parallel to the cheek for maximum RF energy coupling. The "test device reference point" is aligned to the "ear reference point" on the head phantom and the "vertical centerline" is aligned to the "phantom reference plane". This is called the "initial ear position". While maintaining these three alignments, the body of the handset is gradually adjusted to each of the following positions for evaluating SAR:

COMPLIANCE CERTIFICATION SERVICES

Page: 15 of 37 This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document.

7.1. CHEEK/TOUCH POSITION

The device is brought toward the mouth of the head phantom by pivoting against the "ear reference point" or along the "N-F" line for the SCC-34/SC-2 head phantom.

This test position is established:

- i. When any point on the display, keypad or mouthpiece portions of the handset is in contact with the phantom.
- ii. (or) When any portion of a foldout, sliding or similar keypad cover opened to its intended self-adjusting normal use position is in contact with the cheek or mouth of the phantom.

For existing head phantoms – when the handset loses contact with the phantom at the pivoting point, rotation should continue until the device touches the cheek of the phantom or breaks its last contact from the ear spacer.

Cheek / Touch Position

7.2. EAR/TILT POSITION

With the handset aligned in the "Cheek/Touch Position":

- i. If the earpiece of the handset is not in full contact with the phantom's ear spacer (in the "Cheek/Touch position") and the peak SAR location for the "Cheek/Touch" position is located at the ear spacer region or corresponds to the earpiece region of the handset, the device should be returned to the "initial ear position" by rotating it away from the mouth until the earpiece is in full contact with the ear spacer.
- ii. (otherwise) The handset should be moved (translated) away from the cheek perpendicular to the line passes through both "ear reference points" (note: one of these ear reference points may not physically exist on a split head model) for approximate 2-3 cm. While it is in this position, the device handset is tilted away from the mouth with respect to the "test device reference point" until the inside angle between the vertical centerline on the front surface of the phone and the horizontal line passing through the ear reference point isby 15°. After the tilt, it is then moved (translated) back toward the head perpendicular to the line passes through both "ear reference points" until the device touches the phantom or the ear spacer. If the antenna touches the head first, the positioning process should be repeated with a tilt angle less than 15° so that the device and its antenna would touch the phantom simultaneously. This test position may require a device holder or positioner to achieve the translation and tilting with acceptable positioning repeatability.

If a device is also designed to transmit with its keypad cover closed for operating in the head position, such positions should also be considered in the SAR evaluation. The device should be

tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested with the antenna in its fully extended and fully retracted positions. These test configurations should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tile/Ear, extended and retracted) is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s). If the transmission band of the test device is less than 10 MHz, testing at the high and low frequency channels is optional.

COMPLIANCE CERTIFICATION SERVICES Page: 17 of 37 This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document.

8. TEST POSITIONS FOR BODY-WORN AND OTHER SIMILAR CONFIGURATIONS

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. For purpose of determining test requirements, accessories may be divided into two categories: those that do not contain metallic components and those that do.

When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only the accessory that dictates the closest spacing to the body must be tested.

Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distances may be used, but they should not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components.

Transmitters that are designed to operate in front of a person's face, in push-to-talk configurations. should be tested for SAR compliance with the front of the device positioned at 2.5 cm from a flat phantom. Frontal face-phantoms are typically not recommended because of the potential of higher E-field probe boundary-effects errors in the non-smooth regions of these face phantoms, such as the nose, lips and eyes etc. For devices that are carried next to the body, such as shoulder, waist or chest-worn transmitters, SAR compliance should be tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in normal use configurations.

COMPLIANCE CERTIFICATION SERVICES

Page: 18 of 37 This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document.

9. PROCEDURES USED TO ESTABLISH TEST SIGNAL

The following settings were used to configure the Radio Communication Tester, R&S model CMU 200.

GSM mode

Network Support: GSM only Main Service: Circuit Switched Power Setting: PCL: 0 (30dBm)

Maximum conducted power was measured by replacing the antenna with an adapter for conductive measurements, before and after the SAR measurements were done.

10. MEASUREMENT RESULTS

10.1. SIMULATING LIQUIDS PARAMETER CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. The relative permittivity and conductivity of the tissue material should be within \pm 5% of the values given in the table below.

TISSUE DIELECTRIC PARAMETERS FOR HEAD AND BODY PHANTOMS

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in P1528.

Target Frequency (MHz)	Н	ead	Bo	ody
raiget requercy (wirz)	ε _r	σ (S/m)	εr	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
<mark>1800 – 2000</mark>	<mark>40.0</mark>	<mark>1.40</mark>	<mark>53.3</mark>	<mark>1.52</mark>
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

TYPICAL COMPOSITION OF INGREDIENTS FOR LIQUID TISSUE PHANTOMS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients		Frequency (MHz)								
(% by weight)	45	50	83	35	915		1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCI)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: $99^+\%$ Pure Sodium ChlorideSugar: $98^+\%$ Pure SucroseWater: De-ionized, 16 M Ω^+ resistivityHEC: Hydroxyethyl CelluloseDGBE: $99^+\%$ Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1,3,3-tetramethylbutyl)phenyl]ether

This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document.

Simulating Liquid Dielectric Parameters Check Result @ Head 1900 MHz

Room Ambient Temperature = 24.0°C; Relative humidity = 38% Measured by: Sunny Shih

S f (MHz)	imulating Liqu Temp. (°C)	uid Depth (cm)		Parameters	Target	Measured	Deviation (%)	Limit (%)	
1000		45	с"	Relative Permittivity (ε_r):	40.0	39.3105	-1.72	± 5	
1900	23.5	15	13.2672	Conductivity (σ):	1.40	1.4023	0.17	± 5	
Simulating	g Liquid Di	electric Pa	rameters	Check @ 1900 MHz					
Room am	bient temp	erature: 2	4.0 deg.	C; Liquid temperature	: 23.5 deg	g. C			
September 28, 2004 09:45 AM									
Frequency		'م		۵"					
17100000	, 00	40.0	388	12 7947					
17200000	00.	40.0	279	12.1041					
17300000	00.	40.0	112	12.8364					
17400000	00.	39.9	657	12.8787					
17500000	00.	39.9	330	12.9196					
17600000	00.	39.8	789	12.9425					
17700000	00.	39.8	236	12.9662					
17800000	00.	39.7	872	12.9788					
17900000	00.	39.7	582	13.0114					
18000000	00.	39.7	108	13.0368					
18100000	00.	39.6	454	13.0552					
18200000	00.	39.5	814	13.0490					
18300000	00.	39.5	388	13.0661					
18400000	00.	39.4	955	13.0898					
18500000	00.	39.4	606	13.1443					
18600000	00.	39.4	130	13.1858					
18700000	00.	39.3	812	13.2025					
18800000	00.	39.3	502	13.2189					
18900000	00.	39.3	339	13.2379					
<mark>19000000</mark>	00.	39.3	105	13.2672					
19100000	191000000. 39.2705 13.2274								
The conductivity (σ) can be given as:									
$\sigma = \omega \varepsilon_{\theta}$ e	$\sigma = \omega \varepsilon_{\theta} e'' = 2 \pi f \varepsilon_{\theta} e''$								
where f	= target f *	10^{6}							
£0 =	= 8.854 * 1	0^{12}							

COMPLIANCE CERTIFICATION SERVICES

Page: 21 of 37 This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document.

Simulating Liquid Dielectric Parameters Check Result @ Muscle 1900 MHz

Room Ambient Temperature = 24.0°C; Relative humidity = 38% Measured by: Sunny Shih

f (MHz)	imulating Liqu	iid Depth (cm)		Parameters	Target	Measured	Deviation (%)	Limit (%)		
1000			ε" Relative Permittivity (ε _r):		53.3	53.3457	0.09	± 5		
1900	23.5	15	14.4061 Conductivity (1.52	1.5227	0.18	± 5		
Simulating	a Liquid Di	electric Pa	rameters	Check @ 1900 MHz						
Room am	bient temp	erature: 2	4.0 deg.	C; Liquid temperature	: 23.5 deg	g. C				
September 28, 2004 03:31 PM										
Frequency	Ý	e'		е"						
17100000	00.	53.9	148	13.9312						
1/200000	00.	53.9	053	13.9463						
1/300000	00.	53.8	865	13.9875						
17400000	00.	53.8	690 201	14.0277						
17500000	00.	53.8	381	14.0755						
17000000	00.	53.7 52.7	922 500	14.0771						
1790000	00.	53.7 52.7	ວວວ ວວວ	14.0940						
17000000	00.	53.7	202 215	14.1019						
1800000	00.	53.6	Z15 545	14.1294						
18100000	00.	53.0	949 835	14.1033						
18200000	00.	53 5	264	14.1047						
18300000	00.	53.4	889	14.2122						
18400000	00	53.4	512	14 2433						
18500000	00.	53.4	205	14.3082						
18600000	00.	53.3	974	14.3261						
18700000	00.	53.3	946	14.3403						
18800000	00.	53.3	810	14.3645						
18900000	00.	53.3	784	14.3749						
<mark>19000000</mark>	00.	53.3	457	14.4061						
19100000	191000000. 53.2916 14.3732									
The condu	The conductivity (σ) can be given as:									
$\sigma = \omega \varepsilon_{ heta}$ e	$\sigma = \omega \varepsilon_{\theta} \mathbf{e}'' = 2 \pi f \varepsilon_{\theta} \mathbf{e}''$									
where f	= target f *	10^{6}								
€ 0 ⁼	= 8.854 * 1	0^{-12}								

COMPLIANCE CERTIFICATION SERVICES

Page: 22 of 37 This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document.

Simulating Liquid Dielectric Parameters Check Result @ Head 1900 MHz

Room Ambient Temperature = 24.0 °C; Relative humidity = 40% Measured by: Sunny Shih

f (MHZ)	Simulating Liquid			Parameters	Target	Measured	Deviation (%)	Limit (%)		
	Temp. (C)	Deptil (cm)	c"	Relative Permittivity (c.):	40.0	30 8772	-0.31	+ 5		
1900	23.5	15	13 5204	Conductivity (σ) :	1 40	1 /201	2.08	+5		
Circulation	L invited Di	ala atria Da	13.3204		1.40	1.4291	2.00	ΞJ		
Simulating	j Liquid Di biont tomr		rameters	Check @ 1900 MHZ	- 22 E dor					
Sentembe	or 20 200/	$1 10.10 \Delta M$	4.0 deg. v 1		. 23.5 uet	J. C				
September 29, 2004 10:10 AM										
Frequency	/	e'		e"						
17100000	, 00.	40.6	657	13.0145						
17200000	00.	40.6	368	13.0220						
17300000	00.	40.6	168	13.0429						
17400000	00.	40.5	594	13.0768						
17500000	00.	40.5	095	13.1310						
17600000	00.	40.4	499	13.1664						
17700000	00.	40.4	050	13.2084						
17800000	00.	40.3	750	13.2169						
17900000	00.	40.3	564	13.2520						
18000000	00.	40.3	061	13.2883						
18100000	00.	40.2	565	13.2937						
18200000	00.	40.1	851	13.2916						
18300000	00.	40.1	432	13.2716						
18400000	00.	40.0	965	13.3003						
18500000	00.	40.0	553	13.3741						
18600000	00.	39.9	748	13.4214						
18700000	00.	39.9	288	13.4350						
18800000	00.	39.8	935	13.4541						
18900000	00.	39.8	876	13.4754						
<mark>19000000</mark>	00.	39.8	772	13.5204						
19100000	191000000. 39.8402 13.4720									
The condu	The conductivity (σ) can be given as:									
$\sigma = \omega \varepsilon_{ heta}$ e	$\sigma = \omega \varepsilon_{\theta} \mathbf{e}'' = 2 \pi f \varepsilon_{\theta} \mathbf{e}''$									
where f	= target f *	106								
E _0 =	= 8.854 * 1	0^{-12}								

COMPLIANCE CERTIFICATION SERVICES

Page: 23 of 37 This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document.

Simulating Liquid Dielectric Parameters Check Result @ Head 1900 MHz

Room Ambient Temperature = 23.0°C; Relative humidity = 38% Measured by: Sunny Shih

f (MHz)	imulating Liq	uid Depth (cm)		Parameters	Target	Measured	Deviation (%)	Limit (%)		
1 (IVII 12)		Deptil (cili)	e"	Relative Permittivity (c.)	40.0	40 7319	1 83	+ 5		
1900	22.5	15	13 7601	Conductivity (a):	1 40	1 4544	3 89	+ 5		
Simulating	n Liquid Di	electric Pa	rameters	Check @ 2450 MHz			0.00			
Room Am	bient Tem	perature:	23 dea. C	C. Liquid temperature:	22.5 dea	C				
October 31, 2004 04:07 PM										
Frequency	y	e'		e"						
17100000	00.	41.5	022	13.2721						
17200000	00.	41.4	556	13.3043						
17300000	00.	41.4	123	13.3189						
17400000	00.	41.3	633	13.3528						
17500000	00.	41.3	146	13.3897						
17600000	00.	41.2	597	13.4243						
17700000	00.	41.2	082	13.4569						
17800000	00.	41.1	515	13.4837						
1/900000	00.	41.1	232	13.4990						
18000000	00.	41.0	//2 500	13.5286						
18100000	00.	41.0	502	13.5371						
18200000	00.	41.0	234	13.5393						
18300000	00.	40.9	007 476	13.5700						
18400000	00.	40.9	470	13.5951						
1000000	00.	40.0	924 670	13.0191						
10000000	00.	40.0 40.9	079 106	13.0000						
10700000	00.	40.0	190	13.0707						
18900000	00.	40.7	591	13.7000						
1900000	00.	40.7	319	13.7601						
19100000	00.	40.6	973	13.7897						
The condu	The conductivity (σ) can be given as:									
$\sigma = \omega \varepsilon_{\theta} \mathbf{e}' = 2 \pi f \varepsilon_{\theta} \mathbf{e}''$										
where f	= target f *	106								
E Ø =	= 8.854 * 1	0^{-12}								

COMPLIANCE CERTIFICATION SERVICES

Page: 24 of 37 This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document.

Simulating Liquid Dielectric Parameters Check Result @ Muscle 1900 MHz

Room Ambient Temperature = 23.0°C; Relative humidity = 38% Measured by: Sunny Shih

f (MHz)	imulating Liqu	uid Depth (cm)		Parameters	Target	Measured	Deviation (%)	Limit (%)		
1000	1011p. (0)		ε" Relative Permittivity (53.3	54.3794	2.03	± 5		
1900	22.5	15	14.8302	Conductivity (σ):	1.52	1.56754	3.13	± 5		
Simulating	a Liquid Di	electric Pa	rameters	S Check @ 2450 MHz						
Room Ambient Temperature: 23 deg. C, Liquid temperature: 22.5 deg. C										
October 31, 2004 04:31 PM										
_				- 11						
Frequency	y nn	e' 54 0	202	e" 14 2292						
17200000	00.	54.9 54.0	383 199	14.3383						
17300000	00.	54.9	753	14.3493						
17400000	00.	54.8	314	14.0040						
17500000	00.	54 7	880	14 4456						
17600000	00.	54.7	375	14,4749						
17700000	00.	54.7	104	14.5029						
17800000	00.	54.6	723	14.5371						
17900000	00.	54.6	526	14.5515						
18000000	00.	54.6	033	14.5850						
18100000	00.	54.5	881	14.5958						
18200000	00.	54.5	639	14.6110						
18300000	00.	54.5	274	14.6228						
18400000	00.	54.4	914	14.6495						
18500000	00.	54.4	684	14.6718						
18600000	00.	54.4	616	14.7094						
18700000	00.	54.4	193	14.7427						
18800000	00.	54.4	078	14.7588						
18900000	00.	54.3	870	14.8025						
<mark>19000000</mark>	00.	54.3	794	14.8302						
19100000	191000000. 54.3344 14.8676									
The condu	The conductivity (σ) can be given as:									
$\sigma = \omega \varepsilon_{ heta}$ e	$\sigma = \omega \varepsilon_0 \mathbf{e}'' = 2 \pi f \varepsilon_0 \mathbf{e}''$									
where f	= target f *	106								
E Ø =	= 8.854 * 1	0^{-12}								

COMPLIANCE CERTIFICATION SERVICES

Page: 25 of 37 This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document.

10.2. SYSTEM PERFORMANCE CHECK

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications. The system performance check results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

SYSTEM PERFORMANCE CHECK MEASUREMENT CONDITIONS

- The measurements were performed in the flat section of the SAM twin phantom filled with Head simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe ES3DV2-SN: 3023 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and f15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
- Special 5 x 5 x 7 fine cube was chosen for cube integration(dx=dy=7.5mm; dz=5mm).
- Distance between probe sensors and phantom surface was set to 2.5 mm. •
- The dipole input power (forward power) was 250 mW±3%. •
- The results are normalized to 1 W input power. •

REFERENCE SAR VALUES

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications of $\pm 10\%$. The system performance check results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

Frequency (MHz)	1 g SAR	10 g SAR	Local SAR at surface (Above feed point)	Local SAR at surface (y=2cm offset from feed point)
300	3.0	2.0	4.4	2.1
450	4.9	3.3	7.2	3.2
<mark>835</mark>	<mark>9.5</mark>	6.2	14.1	4.9
900	10.8	6.9	16.4	5.4
1450	29.0	16.0	50.2	6.5
1800	38.1	19.8	69.5	6.8
<mark>1900</mark>	<mark>39.7</mark>	20.5	72.1	6.6
2450	52.4	24.0	104.2	7.7
3000	63.8	25.7	140.2	9.5

IEEE P1528 Recommended Reference Value

SYSTEM PERFORMANCE CHECK RESULTS

@ SYSTEM VALIDATION DIPOLE: D1900V2 SN:5d043

Date: September 28, 2004

Ambient Temperature = 24°C; Relative humidity = 38%

Measured by: Sunny Shih

Head Simulating Liquid				Mrasured	Target	Doviation[%]	Limit [%]
f(MHz)	Temp.[°C]	Depth [cm]	1 g	Normalized to 1 W	Target_1g	Devlation[%]	L III II [/0]
1900	23.5	15	9.77	39.08	39.7	-1.56	± 10

COMPLIANCE CERTIFICATION SERVICES

Page: 26 of 37 This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document.

SYSTEM PERFORMANCE CHECK RESULTS

@ SYSTEM VALIDATION DIPOLE: D1900V2 SN:5d043

Date: September, 29, 2004 Measured by: Sunny Shih

Ambient Temperature = 24°C; Relative humidity = 40%

Head Simulating Liquid				Mrasured	Target .	Deviation[%]	Limit [%]
f(MHz)	Temp.[°C]	Depth [cm]	1 g	Normalized to 1 W	Target_1g	Deviation[70]	Emm [/0]
1900	23.5	15	9.9	39.6	39.7	-0.25	± 10

@ System Validation Dipole: D1900V2 SN:5d043

Ambient Temperature = 23°C; Relative humidity = 38%

Date: October 31, 2004

Measured by: Sunny Shih

Head Simulating Liquid			Mrasured	Target	Deviation[%]	Limit [%]	
f(MHz)	Temp.[°C]	Depth [cm]	1 g	Normalized to 1 W	Target_1g	Devlation[%]	Liii it [%]
1900	22.5	15	9.89	39.56	39.7	-0.35	± 10

10.3. **SAR MEASUREMENT RESULTS**

10.3.1. Left Head Touch Position

GSM - Duty cycle	: 12.5%; Crest facto	or: 8		Depth of liquid: 15 cm				
FUT Position	Antonno	Ch #	f []\/IL-H-1	*Conducted Power [dBm]		SAR_1g[mW/g]		
LOTFOSILIOT	Акана	GI#		Before	After	Measured	Limit	
Left Touch	Fixed	512	1850.20	29.35	29.30	**	1.6	
Left Touch	Fixed	661	1880.00	29.20	29.20	0.536	1.6	
Left Touch	Fixed 812 1909.80		1909.80	29.40	29.35	0.646	1.6	

Notes:

1. *: Peak power.

**: The SAR measured at the middle channel for this configuration is at least 3 dB lower than SAR limit, testing at low 2. channel is optional.

Please see attachment for the detailed measurement data and plots showing the maximum SAR location of the EUT. 3.

COMPLIANCE CERTIFICATION SERVICES

Page: 28 of 37 This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document.

10.3.2. Left Head Tilt Position

	EUT Position	Antenna	Ch.#	f[MHz]	"Conducted Power [dBm]		SAR_IG[MV/g]	
					Before	After	Measured	Limit
Γ	Left Tilt	Fixed	512	1850.20	29.35	29.30	0.639	1.6
	Left Tilt	Fixed	661	1880.00	29.20	39.20	0.566	1.6
	Left Tilt	Fixed	812	1909.80	29.40	29.35	0.704	1.6
Notes:								

: Peak power. 1.

2. Please see attachment for the detailed measurement data and plots showing the maximum SAR location of the EUT.

Page: 29 of 37 This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document.

10.3.3. Right Head Touch Position

GSM-Duty cycle: 12.5% Crest factor: 8

Depth of liquid: 15 cm

	Antenna	Ch.#	f[MHz]	*Conducted Power [dBm]		SAR_1g[mW/g]	
				Before	After	Measured	Limit
Right Touch	Fixed	512	1850.20			**	1.6
Right Touch	Fixed	661	1880.00	29.20	29.20	0.554	1.6
Right Touch	Fixed	812	1909.80	29.40	29.35	0.654	1.6

Notes:

1. *: Peak power.

**: The SAR measured at the middle channel for this configuration is at least 3 dB lower than SAR limit, testing at low 2. channel is optional.

Please see attachment for the detailed measurement data and plots showing the maximum SAR location of the EUT. 3.

COMPLIANCE CERTIFICATION SERVICES

Page: 30 of 37 This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document.

10.3.4. Right Head Tilt Position

Notes: 1. *: Peak power.

> Please see attachment for the detailed measurement data and plots showing the maximum SAR location of the EUT. 2.

10.3.5. Body Position

						(
			15mm	1 1			
GSM - Duty cycle:	12.5%; Crest facto	n: 8		Depth of liquid:	15 cm		
Sep. dist. [mm]	Antenna	Ch.#	f [MHz]	*Conducted	Power [dBm]	SAR_1g	[mWg]
15	Fixed	E10	1050.20	Before	Atter	IVEASURED	
15	Fixed	51Z	1000.20	29.30	29.30	0.108	1.0
15	Fixed	812	1909.80	29.20	29.35	0.142	1.0
Notes:	1 1/1004	012	1000.00	20.10	20.00	0.101	

1. *: Peak power.

Please see attachment for the detailed measurement data and plots showing the maximum SAR location of the EUT. 2

COMPLIANCE CERTIFICATION SERVICES

Page: 32 of 37 This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document.

11. EUT PHOTOS

COMPLIANCE CERTIFICATION SERVICES Page: 33 of 37 This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document. EUT PHOTOS (2/3)

COMPLIANCE CERTIFICATION SERVICES Page: 34 of 37 This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document.

EUT PHOTOS (3/3)

COMPLIANCE CERTIFICATION SERVICES Page: 35 of 37 This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document.

12. EQUIPMENT LIST & CALIBRATION STATUS

Name of Equipment	Manufacturer	Type/Model	Serial Number	Cal. Due date
Robot - Six Axes	Stäubli	RX90BL	N/A	N/A
Robot Remote Control	Stäubli	CS7MB	3403-91535	N/A
DASY4 Measurement Server	SPEAG	SEUMS001BA	1041	N/A
Probe Alignment Unit	SPEAG	LB (V2)	261	N/A
S-Parameter Network Analyzer	Agilent	8753ES-6	US39173569	8/19/05
Electronic Probe kit	Hewlett Packard	85070C	N/A	N/A
E-Field Probe	SPEAG	EX3DV3	3531	7/18/05
Thermometer	ERTCO	639-1	8402	10/13/2005
Thermometer	ERTCO	639-1	8404	10/21/2005
Thermometer	ERTCO	637-1	8661	10/21/2005
SAM Phantom (SAM1)	SPEAG	TP-1185	QD000P40CA	N/A
SAM Phantom (SAM2)	SPEAG	TP-1015	N/A	N/A
Data Acquisition Electronics	SPEAG	DAE3 V1	500	12/23/04
System Validation Dipole	SPEAG	D1900V2	5d043	2/16/04
Signal General	R&H	SMP 04	DE34210	5/5/05
Power Meter	Giga-tronics	8651A	8651404	9/16/05
Power Sensor	Giga-tronics	80701A	1834588	9/16/05
Amplifier	Mini-Circuits	ZVE-8G	0360	N/A
Amplifier	Mini-Circuits	ZHL-42W	D072701-5	N/A
Radio Communication Tester	Rohde & Schwarz	CMU 200	838114/032	12/1/04
Simulating Liquid	CCS	H1900	N/A	Within 24 hrs of first test
Simulating Liquid	CCS	M1900	N/A	Within 24 hrs of first test

COMPLIANCE CERTIFICATION SERVICES Page: 36 of 37 This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document.

13. ATTACHMENTS

No.	Contents	No. of page (s)
1	System Performance Check Plots	6
2	SAR Test Plots (AMPS Mode)	16
3	Certificate of Probe EX3DV3 SN 3521	8
5	System Validation Dipole D1900V2 SN 5d043	6

END OF REPORT

COMPLIANCE CERTIFICATION SERVICES Page: 37 of 37 This report shall not be reproduced except in full, without the written approval of CCS. This document may be altered or revised by Compliance Certification Services personnel only, and shall be noted in the revision section of the document.