

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

MEASUREMENT REPORT FCC PART 15.407 UNII 802.11a/n/ac

Applicant Name:

LG Electronics MobileComm U.S.A 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States Date of Testing: 3/22-5/17/2018 Test Site/Location: PCTEST Lab. Columbia, MD, USA Test Report Serial No.: 1M1804240083-06-R2.ZNF

FCC ID:

ZNFQ710AL

Certification

APPLICANT:

LG Electronics MobileComm U.S.A

Application Type: Model: Additional Model(s): EUT Type: Frequency Range: FCC Classification: FCC Rule Part(s): Test Procedure(s):

LG-Q710AL LGQ710AL, Q710AL, LG-Q710PL, LGQ710PL, Q710PL Portable Handset 5180 – 5825MHz Unlicensed National Information Infrastructure (UNII) Part 15 Subpart E (15.407) ANSI C63.10-2013, KDB 789033 D02 v02r01

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013 and KDB 789033 D02 v02r01. Test results reported herein relate only to the item(s) tested.

This revised Test Report (S/N: 1M1804240083-06-R2.ZNF) supersedes and replaces the previously issued test report (S/N: 1M1804240083-06-R1.ZNF) on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager		
Test Report S/N: Test Dates:		EUT Type:	Dage 1 of 90		
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset	Page 1 of 89		
© 2018 PCTEST Engineering Laboratory Inc.					

TABLE OF CONTENTS

1.0	INTR	ODUCTION	4
	1.1	Scope	4
	1.2	PCTEST Test Location	4
	1.3	Test Facility / Accreditations	4
2.0	PRO	DUCT INFORMATION	5
	2.1	Equipment Description	5
	2.2	Device Capabilities	5
	2.3	Test Configuration	6
	2.4	EMI Suppression Device(s)/Modifications	6
3.0	DESC	CRIPTION OF TESTS	7
	3.1	Evaluation Procedure	7
	3.2	AC Line Conducted Emissions	7
	3.3	Radiated Emissions	8
	3.4	Environmental Conditions	8
4.0	ANTE	ENNA REQUIREMENTS	9
5.0	MEAS	SUREMENT UNCERTAINTY	10
6.0	TEST	T EQUIPMENT CALIBRATION DATA	11
7.0	TEST	T RESULTS	12
	7.1	Summary	12
	7.2	26dB Bandwidth Measurement – 802.11a/n/ac	13
	7.3	6dB Bandwidth Measurement – 802.11a/n/ac	
	7.4	UNII Output Power Measurement – 802.11a/n/ac	
	7.5	Maximum Power Spectral Density – 802.11a/n/ac	
	7.6	Radiated Spurious Emission Measurements – Above 1GHz	61
		7.7.1 Radiated Spurious Emission Measurements	64
		7.7.2 Radiated Band Edge Measurements (20MHz BW)	73
		7.7.3 Radiated Band Edge Measurements (40MHz BW)	75
		7.7.4 Radiated Band Edge Measurements (80MHz BW)	77
	7.7	Radiated Spurious Emissions Measurements – Below 1GHz	79
	7.8	Line-Conducted Test Data	83
8.0	CON	CLUSION	

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 2 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 2 of 89
© 2018 PCTEST Engineering Labora	V 8.0 04/05/2018			

MEASUREMENT REPORT

	Oleannal		Conducte	Conducted Power		
UNII Band	Channel Bandwidth (MHz)	Tx Frequency (MHz)	Max. Power (mW)	Max. Power (dBm)		
1		5180 - 5240	69.183	18.40		
2A	20	5260 - 5320	72.946	18.63		
2C		5500 - 5720	70.795	18.50		
3		5745 - 5825	69.663	18.43		
1		5190 - 5230	37.670	15.76		
2A	40	5270 - 5310	39.446	15.96		
2C	40	5510 - 5710	38.726	15.88		
3		5755 - 5795	38.107	15.81		
1		5210	9.162	9.62		
2A	80	5290	9.268	9.67		
2C		5530 - 5690	9.419	9.74		
3		5775	9.162	9.62		

EUT Overview

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 2 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 3 of 89
© 2018 PCTEST Engineering Labora	V 8.0 04/05/2018			

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 PCTEST Test Location

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The facility is 0.4 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

- PCTEST is an ISO 17025-2005 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (22831) test laboratory with the site description on file with ISED.

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🔁 LG	Approved by: Quality Manager
Test Report S/N:	est Report S/N: Test Dates: EUT Type:			Dage 4 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 4 of 89
© 2018 PCTEST Engineering Labora	V 8.0 04/05/2018			

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **LG Portable Handset FCC ID: ZNFQ710AL**. The test data contained in this report pertains only to the emissions due to the EUT's UNII transmitter.

Test Device Serial No.: 00566, 01046, 00578, 00577, 01126, 04667

2.2 Device Capabilities

This device contains the following capabilities:

850/1900 CDMA (BC0, BC1, BC10), 850/1900 GSM/GPRS/EDGE, 850/1700/1900 WCDMA, Multi-band LTE, 802.11b/g/n WLAN, 802.11a/n/ac UNII, Bluetooth (1x, EDR, LE)

	Band 1		Band 2A		Band 2C		Band 3
Ch.	Frequency (MHz)						
36	5180	52	5260	100	5500	149	5745
:	:	:	:	:	:	:	:
42	5210	56	5280	120	5600	157	5785
:	:	:	:	:	:	:	:
48	5240	64	5320	144	5720	165	5825

Table 2-1. 802.11a / 802.11n / 802.11ac (20MHz) Frequency / Channel Operations

	Band 1
Ch.	Frequency (MHz)
38	5190
:	:
46	5230

	Band 2A
h.	Frequency (MHz)
4	5270
:	:
2	5310

С

5

6

-	
	Band 2C
Ch.	Frequency (MHz)
102	5510
:	:
118	5590
:	:
142	5710

	Band 3
Ch.	Frequency (MHz)
151	5755
:	:
159	5795

Table 2-2. 802.11n / 802.11ac (40MHz BW) Frequency / Channel Operations

_	Band 1		Band 2A		Band 2C	_	Band 3
Ch.	Frequency (MHz)						
42	5210	58	5290	106	5530	155	5775
				:	:		
				138	5690		

Table 2-3. 802.11ac (80MHz BW) Frequency / Channel Operations

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo E of 80
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 5 of 89
© 2018 PCTEST Engineering Labor	atory, Inc.	•		V 8.0 04/05/2018

Notes:

5GHz NII operation is possible in 20MHz, and 40MHz, and 80MHz channel bandwidths. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section B)2)b) of ANSI C63.10-2013 and KDB 789033 D02 v02r01. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Maximun			
802.11 Mode/Band		Duty Cycle [%]	Radiated DCCF [dB]
		ANT1	ANT1
	а	96.9	0.28
	n (HT20)	96.6	0.30
ECU-	ac (HT20)	96.3	0.33
5GHz	n (HT40)	93.6	0.57
	ac (HT40)	96.2	0.33
	ac (HT80)	85.9	1.32

Table 2-4. Measured Duty Cycles

 Data Rate(s) Tested:
 6, 9, 12, 18, 24, 36, 48, 54Mbps (802.11a)

 6.5/7.2, 13/14.4, 19.5/21.7, 26/28.9, 39/43.3, 52/57.8, 58.5/65, 65/72.2 (n – 20MHz)

 13.5/15, 27/30, 40.5/45, 54/60, 81/90, 108/120, 121.5/135, 135/150 (n – 40MHz BW)

 29.3/32.5, 58.5/65, 87.8/97.5, 117/130, 175.5/195, 234/260, 263.3/292.5, 292.5/325, 351/390, 390/433.3 (ac – 80MHz BW)

2.3 Test Configuration

The EUT was tested per the guidance of KDB 789033 D02 v02r01. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 3.2 for AC line conducted emissions test setups, 3.3 for radiated emissions test setups, and 7.2, 7.3, 7.4, and 7.5 for antenna port conducted emissions test setups.

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 6 of 80	
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 6 of 89	
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.0 04/05/2018	

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 789033 D02 v02r01 were used in the measurement of the EUT.

Deviation from measurement procedure.....None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 10'x16'x9' shielded enclosure. The shielded enclosure is manufactured by ETS Lindgren RF Enclosures. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50\mu$ H Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is an ETS Lindgren Model LPRX-4X30 (100dB Attenuation, 14kHz-18GHz) and the two EMI/RFI filters are ETS Lindgren Model LRW-2030-S1 (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.8. The EMI Receiver mode of the Agilent MXE was used to perform AC line conducted emissions testing.

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 7 of 90	
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 7 of 89	
© 2018 PCTEST Engineering Labor	atory. Inc.	•		V 8.0 04/05/2018	

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm tall test table made of Styrodur is placed on top of the turn table. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 8 of 90	
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 8 of 89	
© 2018 PCTEST Engineering Laboratory. Inc.				V 8.0 04/05/2018	

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the EUT are permanently attached.
- There are no provisions for connection to an external antenna.

Conclusion:

The EUT complies with the requirement of §15.203.

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 0 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 9 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.0 04/05/2018

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Line Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 10 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 10 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.0 04/05/2018

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	WL25-1	Conducted Cable Set (25GHz)	6/14/2017	Annual	6/14/2018	WL25-1
Agilent	N9020A	MXA Signal Analyzer	1/24/2018	Annual	1/24/2019	US46470561
Agilent	N9038A	MXE EMI Receiver	4/26/2017	Annual	4/26/2018	MY51210133
Anritsu	MA2411B	Pulse Power Sensor	10/22/2017	Annual	10/22/2018	846215
Anritsu	ML2495A	Power Meter	10/22/2017	Annual	10/22/2018	941001
COM-Power	AL-130R	Active Loop Antenna	6/5/2017	Annual	6/5/2018	121085
Emco	3115	Horn Antenna (1-18GHz)	3/28/2018	Biennial	3/28/2020	9704-5182
EMCO	3160-09	Small Horn (18 - 26.5GHz)	8/23/2016	Biennial	8/23/2018	135427
EMCO	3160-10	Small Horn (26.5 - 40GHz)	8/23/2016	Biennial	8/23/2018	130993
ETS Lindgren	3117	1-18 GHz DRG Horn (Medium)	12/1/2016	Biennial	12/1/2018	125518
ETS-Lindgren	3164-05	Quad Ridge Horn (Small) 2 - 18GHz	5/31/2016	Biennial	5/31/2018	208255
Huber+Suhner	Sucoflex 102A	40GHz Radiated Cable	5/19/2017	Annual	5/19/2018	251425001
OML	DPL26	Diplexer	N/A		N/A	N/A
Pasternack	NMLC-1	Line Conducted Emissions Cable (NM)	5/31/2017	Annual	5/31/2018	NMLC-1
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	7/31/2017	Annual	7/31/2018	100348
Rohde & Schwarz	FSW67	Signal / Spectrum Analyzer	8/11/2017	Annual	8/11/2018	103200
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	7/3/2017	Annual	7/3/2018	102134
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	7/3/2017	Annual	7/3/2018	102133
Rohde & Schwarz	TS-PR26	18-26.5 GHz Pre-Amplifier	5/11/2017	Annual	5/11/2018	100040
Rohde & Schwarz	TS-PR40	26.5-40 GHz Pre-Amplifier	5/11/2017	Annual	5/11/2018	100037
Solar Electronics	8012-50-R-24-BNC	Line Impedance Stabilization Network	8/14/2017	Biennial	8/14/2019	310233
Sunol	DRH-118	Horn Antenna (1-18GHz)	8/11/2017	Biennial	8/11/2019	A050307
Sunol Sciences	JB6	JB6 Antenna	9/27/2016	Biennial	9/27/2018	A082816

Table 6-1. Annual Test Equipment Calibration Schedule

Note:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 11 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 11 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.0 04/05/2018

7.0 TEST RESULTS

7.1 Summary

Company Name:	LG Electronics MobileComm U.S.A
FCC ID:	ZNFQ710AL
FCC Classification:	Unlicensed National Information Infrastructure (UNII)

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
N/A	RSS-Gen [6.6]	26dB Bandwidth	N/A		PASS	Section 7.2
15.407(e)	RSS-Gen [6.6]	6dB Bandwidth	>500kHz(5725-5850MHz)		PASS	Section 7.3
15.407 (a.1.iv), (a.2), (a.3)	RSS-247 [6.2]	Maximum Conducted Output Power	Maximum conducted powers must meet the limits detailed in 15.407 (a) (RSS-247 [6.2])	CONDUCTED	PASS	Section 7.4
15.407 (a.1.iv), (a.2), (a.3)	RSS-247 [6.2]	Maximum Power Spectral Density	Maximum power spectral density must meet the limits detailed in 15.407 (a) (RSS-247 [6.2])		PASS	Section 7.5
15.407(h)	RSS-247 [6.3]	Dynamic Frequency Selection	See DFS Test Report		PASS	See DFS Test Report
15.407(b.1), (2), (3), (4)	RSS-247 [6.2]	Undesirable Emissions	Undesirable emissions must meet the limits detailed in 15.407(b) (RSS-247 [6.2])		PASS	Section 7.6
15.205, 15.407(b.1), (4), (5), (6)	RSS-Gen [8.9]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209 (RSS-Gen [8.9])	RADIATED	PASS	Section 7.6, 7.7
15.407	RSS-Gen [8.8]	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 (RSS-Gen [8.8]) limits	LINE CONDUCTED	PASS	Section 7.8

Notes:

Table 7-1. Summary of Test Results

- 1) All channels, modes, and modulations/data rates were investigated among all UNII bands. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "UNII Automation," Version 4.6.
- 5) For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "Chamber Automation," Version 0.2.8.

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 12 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 12 of 89
© 2018 PCTEST Engineering Laboratory. Inc.				V 8.0 04/05/2018

7.2 26dB Bandwidth Measurement – 802.11a/n/ac RSS-Gen [6.2]

Test Overview and Limit

The bandwidth at 26dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 26dB bandwidth.

The 26dB bandwidth is used to determine the conducted power limits.

Test Procedure Used

ANSI C63.10-2013 – Section 12.4 KDB 789033 D02 v02r01 – Section C

Test Settings

- The signal analyzers' automatic bandwidth measurement capability was used to perform the 26dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 26. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = approximately 1% of the emission bandwidth
- 3. VBW <u>></u> 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

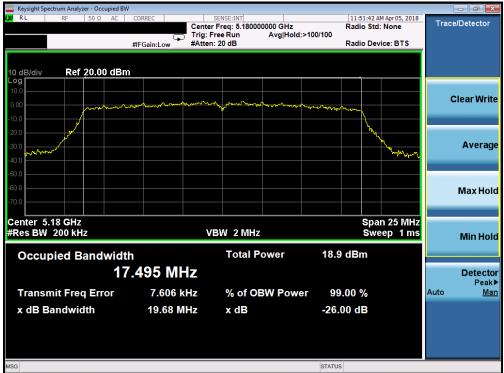
EUT	Coax Cable	Agilent Signal Analyzer
	Coax Cable	0.9/10/1 1/0//20/

Figure 7-1. Test Instrument & Measurement Setup

Test Notes

None.

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 12 of 80
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset	Page 13 of 89
© 2018 PCTEST Engineering Laboratory, Inc.			V 8.0 04/05/2018

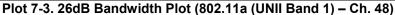


	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured 26dB Bandwidth [MHz]
	5180	36	а	6	19.68
	5200	40	а	6	19.55
	5240	48	а	6	19.58
-	5180	36	n (20MHz)	6.5/7.2 (MCS0)	23.63
Band 1	5200	40	n (20MHz)	6.5/7.2 (MCS0)	29.52
ä	5240	48	n (20MHz)	6.5/7.2 (MCS0)	28.61
	5190	38	n (40MHz)	13.5/15 (MCS0)	40.45
	5230	46	n (40MHz)	13.5/15 (MCS0)	40.60
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	80.84
	5260	52	а	6	19.58
	5280	56	а	6	19.77
	5320	64	а	6	19.81
2A	5260	52	n (20MHz)	6.5/7.2 (MCS0)	29.10
Band 2A	5280	56	n (20MHz)	6.5/7.2 (MCS0)	29.44
Ba	5320	64	n (20MHz)	6.5/7.2 (MCS0)	21.45
	5270	54	n (40MHz)	13.5/15 (MCS0)	40.60
	5310	62	n (40MHz)	13.5/15 (MCS0)	40.52
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	80.63
	5500	100	а	6	19.74
	5600	120	а	6	19.89
	5720	144	а	6	19.71
	5500	100	n (20MHz)	6.5/7.2 (MCS0)	20.98
с	5600	120	n (20MHz)	6.5/7.2 (MCS0)	31.06
Band 2C	5720	144	n (20MHz)	6.5/7.2 (MCS0)	32.29
San	5510	102	n (40MHz)	13.5/15 (MCS0)	40.28
ш	5590	118	n (40MHz)	13.5/15 (MCS0)	40.39
	5710	142	n (40MHz)	13.5/15 (MCS0)	47.26
	5530	106	ac (80MHz)	29.3/32.5 (MCS0)	80.71
	5610	122	ac (80MHz)	29.3/32.5 (MCS0)	80.13
	5690	138	ac (80MHz)	29.3/32.5 (MCS0)	80.55

Table 7-2. Conducted Bandwidth Measurements

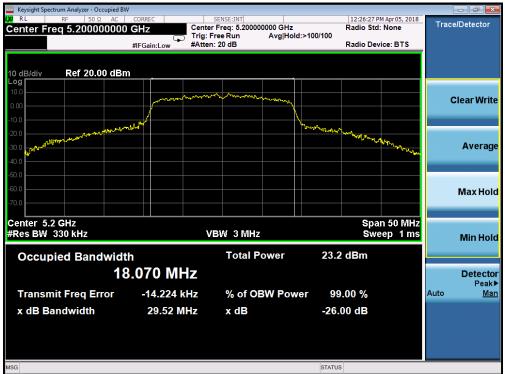
FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 14 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset	Page 14 of 89
© 2018 PCTEST Engineering Laboratory. Inc.			V 8.0 04/05/2018

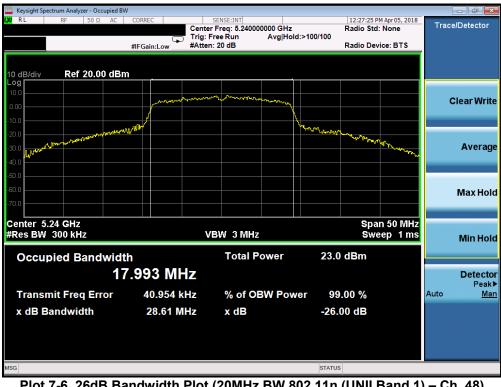
Plot 7-1. 26dB Bandwidth Plot (802.11a (UNII Band 1) - Ch. 36)



Plot 7-2. 26dB Bandwidth Plot (802.11a (UNII Band 1) - Ch. 40)

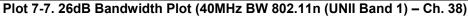
FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 15 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset	Page 15 of 89
© 2018 PCTEST Engineering Laboratory, Inc.			V 8.0 04/05/2018




Plot 7-4. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 1) – Ch. 36)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 16 of 80
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset	Page 16 of 89
© 2018 PCTEST Engineering Laboratory, Inc.			V 8.0 04/05/2018


Plot 7-5. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 40)



Plot 7-6. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 48)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 17 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset	Page 17 of 89
© 2018 PCTEST Engineering Laboratory, Inc.			V 8.0 04/05/2018



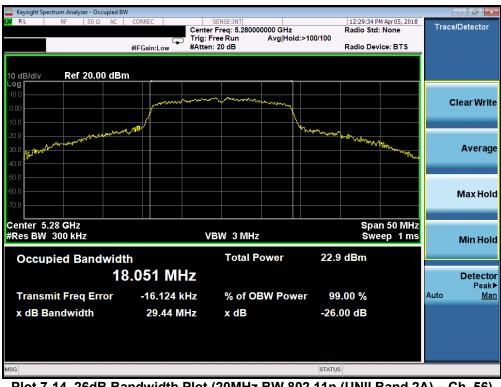
Plot 7-8. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 1) - Ch. 46)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 19 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 18 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.0 04/05/2018

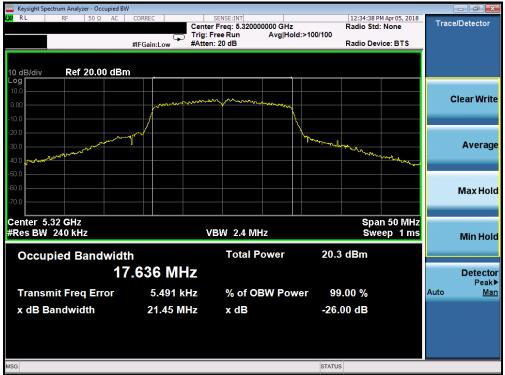
Plot 7-10. 26dB Bandwidth Plot (802.11a (UNII Band 2A) - Ch. 52)

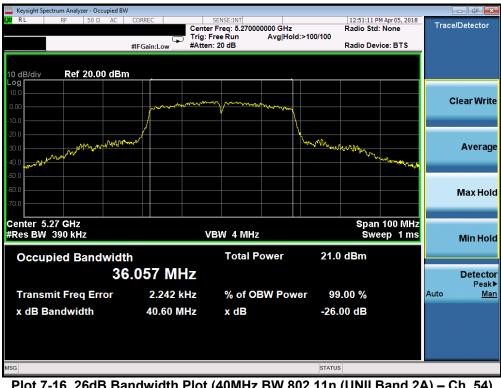
FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 10 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 19 of 89
© 2018 PCTEST Engineering Laboratory. Inc.			V 8.0 04/05/2018	

Plot 7-11. 26dB Bandwidth Plot (802.11a (UNII Band 2A) - Ch. 56)

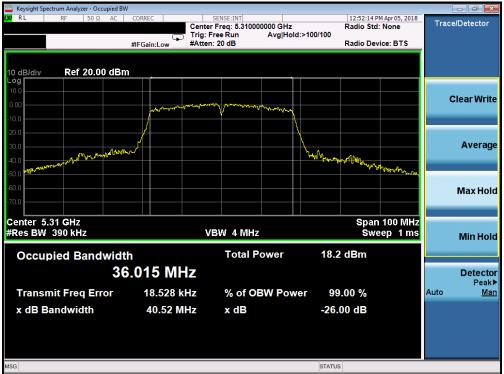

Plot 7-12. 26dB Bandwidth Plot (802.11a (UNII Band 2A) - Ch. 64)

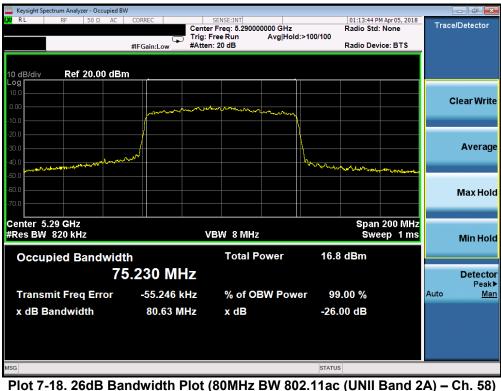
FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 20 of 20
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 20 of 89
© 2018 PCTEST Engineering Laboratory, Inc.			V 8.0 04/05/2018	


Plot 7-13. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 52)


Plot 7-14. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)

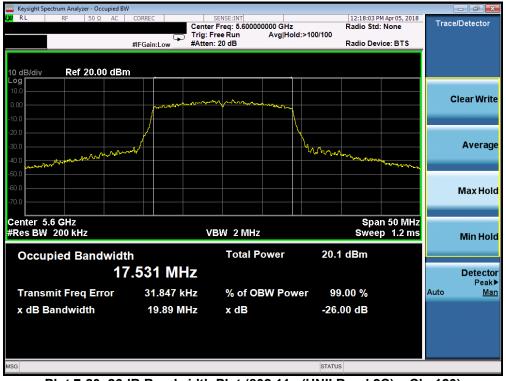
FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 21 of 20
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset	Page 21 of 89
© 2018 PCTEST Engineering Laboratory, Inc.			V 8.0 04/05/2018


Plot 7-15. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 64)


Plot 7-16. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2A) - Ch. 54)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Barra 22 of 80
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset	Page 22 of 89
© 2018 PCTEST Engineering Labora	V 8.0 04/05/2018		

Plot 7-17. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2A) - Ch. 62)

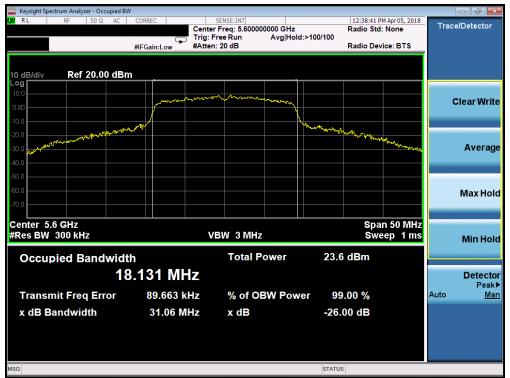

FIOU 7-10. 2000 Dahuwiulii FIOU (OUNITZ DW OUZ. 1 Tac (UNII Dahu ZA) – Ch. 50)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 23 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.0 04/05/2018



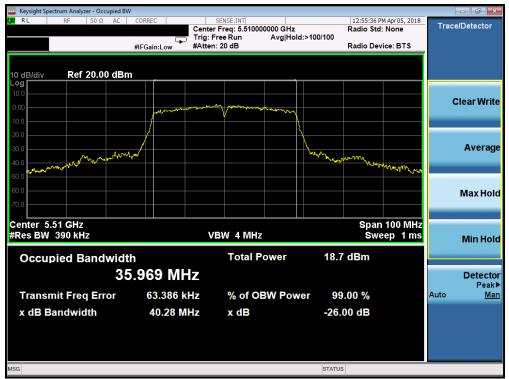
Plot 7-20. 26dB Bandwidth Plot (802.11a (UNII Band 2C) - Ch. 120)

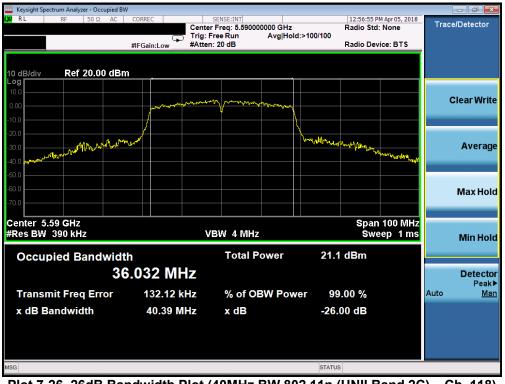
FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 24 of 80
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 24 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.0 04/05/2018



Plot 7-22. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 100)

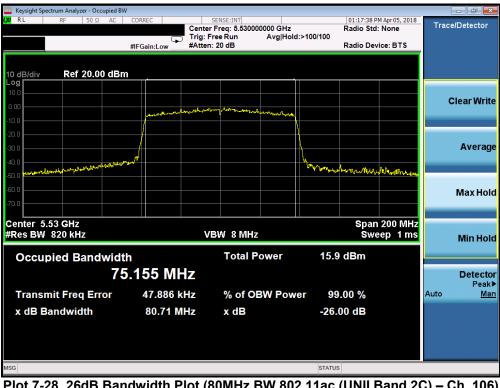
FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕞 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 25 of 80
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 25 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.0 04/05/2018


Plot 7-23. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 120)


Plot 7-24. 26dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 144)

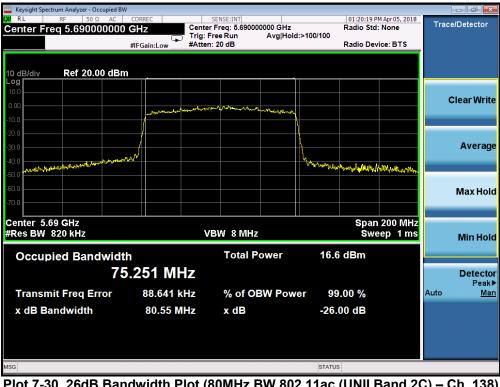
FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 26 of 89
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 26 01 69
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.0 04/05/2018

Plot 7-25. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 102)


Plot 7-26. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 118)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 07 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 27 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.0 04/05/2018

Plot 7-27. 26dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 142)


Plot 7-28. 26dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 2C) - Ch. 106)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 28 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset	Page 28 of 89
© 2018 PCTEST Engineering Labora	V 8.0 04/05/2018		

Keysight Spectrum Analyzer - Occupied B	W				- • • •
LXX RL RF 50Ω AC	CORREC	SENSE:INT r Freq: 5.610000000 GHz	01:18:48 P Radio Std	M Apr 05, 2018	Trace/Detector
	Trig: F	Free Run Avg Hold:	>100/100		
	#IFGain:Low #Atter	n: 20 dB	Radio Dev	/ice: BTS	
10 dB/div Ref 20.00 dB	m				
Log					
0.00					Clear Write
-10.0	montener	and the show a show the show			
-20.0					A.v.a.r.a.r.a
-30.0					Average
-40.0	Marah .		Monard and and the man	Mar and a	
-50.0 Hardward to Aberly Martin Contraction			and a straight of the state of		
-60.0					Max Hold
-70.0					
Center 5.61 GHz			Snan	200 MHz	
#Res BW 620 kHz	v	BW 6 MHz	Swe	eep 1 ms	Min Hold
					Min Hold
Occupied Bandwid	th	Total Power	16.1 dBm		
7	5.085 MHz				Detector
					Peak▶
Transmit Freq Error	143.11 kHz	% of OBW Powe	er 99.00 %		Auto <u>Man</u>
x dB Bandwidth	80.13 MHz	x dB	-26.00 dB		
MSG			STATUS		
			0		

Plot 7-29. 26dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 2C) - Ch. 122)

Plot 7-30. 26dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 2C) - Ch. 138)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 20 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 29 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.0 04/05/2018

7.3 6dB Bandwidth Measurement – 802.11a/n/ac §15.407 (e); RSS-Gen [6.2]

Test Overview and Limit

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 6dB bandwidth.

In the 5.725 – 5.850GHz band, the 6dB bandwidth must be \geq 500 kHz.

Test Procedure Used

ANSI C63.10-2013 – Section 6.9.2 KDB 789033 D02 v02r01 – Section C

Test Settings

- The signal analyzers' automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100 kHz
- 3. VBW <u>></u> 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

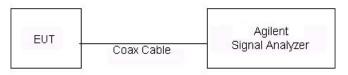


Figure 7-2. Test Instrument & Measurement Setup

Test Notes

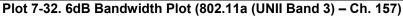
None.

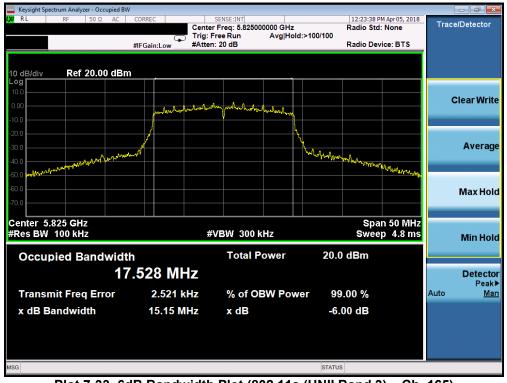
FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 30 of 80
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset	Page 30 of 89
© 2018 PCTEST Engineering Labora	V 8.0 04/05/2018		

Antenna-1 6 dB Bandwidth Measurements

	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured 6dB Bandwidth [MHz]
	5745	149	а	6	15.16
	5785	157	а	6	15.16
	5825	165	а	6	15.15
n	5745	149	n (20MHz)	6.5/7.2 (MCS0)	15.16
Band	5785	157	n (20MHz)	6.5/7.2 (MCS0)	15.16
ä	5825	165	n (20MHz)	6.5/7.2 (MCS0)	15.15
	5755	151	n (40MHz)	13.5/15 (MCS0)	35.17
	5795	159	n (40MHz)	13.5/15 (MCS0)	35.18
	5775	155	ac (80MHz)	29.3/32.5 (MCS0)	75.45

Table 7-3. Conducted Bandwidth Measurements

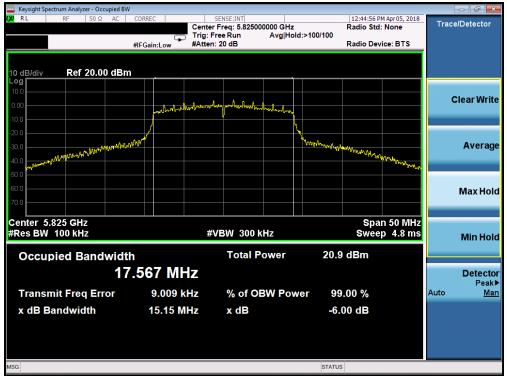


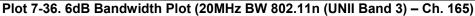

Plot 7-31. 6dB Bandwidth Plot (802.11a (UNII Band 3) - Ch. 149)

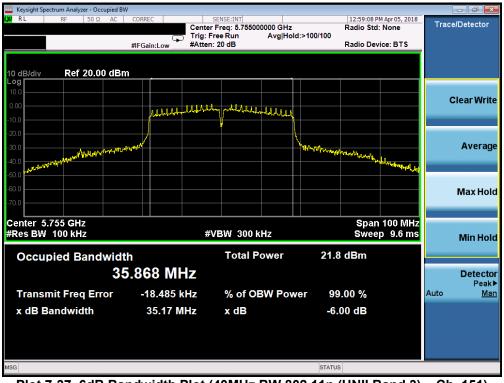
FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dago 31 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset	Page 31 of 89
© 2018 PCTEST Engineering Labora	V 8.0 04/05/2018		

Plot 7-33. 6dB Bandwidth Plot (802.11a (UNII Band 3) - Ch. 165)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 32 of 89
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		
© 2018 PCTEST Engineering Laboratory. Inc.				V 8.0 04/05/2018


Plot 7-34. 6dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 149)




Plot 7-35. 6dB Bandwidth Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 157)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 33 of 89
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.0 04/05/2018


Plot 7-37. 6dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 3) - Ch. 151)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 34 of 89
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.0 04/05/2018

Plot 7-38. 6dB Bandwidth Plot (40MHz BW 802.11n (UNII Band 3) - Ch. 159)

Plot 7-39. 6dB Bandwidth Plot (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 35 of 89
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.0 04/05/2018

7.4 UNII Output Power Measurement – 802.11a/n/ac §15.407(a.1.iv) §15.407(a.2) §15.407(a.3); RSS-247 [6.2]

Test Overview and Limits

A transmitter antenna terminal of the EUT is connected to the input of an RF pulse power sensor. Measurement is made using a broadband average power meter while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies.

In the 5.15 – 5.25GHz band, the maximum permissible conducted output power is 250mW (23.98dBm).

In the 5.25 – 5.35GHz band, the maximum permissible conducted output power is the lesser of 250mW (23.98dBm) and 11 dBm + $10log_{10}(26dB BW) = 11 dBm + <math>10log_{10}(19.58) = 23.92dBm$.

In the 5.47 – 5.725GHz band, the maximum permissible conducted output power is the lesser of 250mW (23.98dBm) and 11 dBm + $10\log_{10}(26dB BW) = 11 dBm + 10\log_{10}(19.71) = 23.95dBm$.

In the 5.725 – 5.850GHz band, the maximum permissible conducted output power is 1W (30dBm).

Test Procedure Used

ANSI C63.10-2013 – Section 12.3.3.2 Method PM-G KDB 789033 D02 v02r01 – Section E)3)b) Method PM-G

Test Settings

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

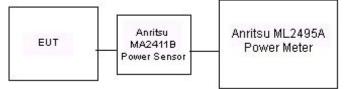


Figure 7-3. Test Instrument & Measurement Setup

Test Notes

None

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 36 of 89
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		
© 2018 PCTEST Engineering Laboratory, Inc.			V 8.0 04/05/2018	

	Freq [MHz]	Channel	Detector	IEEE	Mode	Conducted Power Limit	Conducted Power	
~				802.11a	802.11n	802.11ac	[dBm]	Margin [dB]
È	5180	36	AVG	15.27	15.44	13.58	23.98	-8.54
<u>vi</u>	5200	40	AVG	18.39	18.35	13.59	23.98	-5.59
andwidth)	5220	44	AVG	18.39	18.33	13.67	23.98	-5.59
Š	5240	48	AVG	18.40	18.34	13.61	23.98	-5.58
Ba	5260	52	AVG	18.63	18.48	13.78	23.98	-5.35
	5280	56	AVG	18.61	18.46	13.71	23.98	-5.37
Î	5300	60	AVG	18.56	18.04	13.73	23.98	-5.42
(20MHz	5320	64	AVG	15.84	15.67	13.74	23.98	-8.14
20	5500	100	AVG	15.51	15.45	13.61	23.98	-8.47
) z	5600	120	AVG	18.04	18.03	13.59	23.98	-5.94
Ï	5620	124	AVG	18.35	18.06	13.28	23.98	-5.63
5G	5720	144	AVG	18.42	18.50	13.71	23.98	-5.48
LÇ.	5745	149	AVG	18.10	18.42	13.68	30.00	-11.58
	5785	157	AVG	18.23	18.43	13.63	30.00	-11.57
	5825	165	AVG	15.24	15.56	13.57	30.00	-14.44

Table 7-4. 20MHz BW (UNII) Maximum Conducted Output Power

	Freq [MHz]	Channel Detector		IEEE Transm	nission Mode	Conducted Power Limit	Conducted Power
				802.11n	802.11ac	[dBm]	Margin [dB]
N C	5190	38	AVG	13.26	10.66	23.98	-10.72
oMH dth)	5230	46	AVG	15.76	10.67	23.98	-8.22
	5270	54	AVG	15.96	10.79	23.98	-8.02
	5310	62	AVG	13.44	10.86	23.98	-10.54
ΡČ	5510	102	AVG	13.21	10.69	23.98	-10.77
Ba Ba	5590	118	AVG	15.45	10.60	23.98	-8.53
20 E	5630	126	AVG	15.39	10.51	23.98	-8.59
	5710	142	AVG	15.88	10.80	23.98	-8.10
	5755	151	AVG	15.81	10.78	30.00	-14.19
	5795	159	AVG	13.31	10.74	30.00	-16.69

Table 7-5. 40MHz BW (UNII) Maximum Conducted Output Power

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 27 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 37 of 89
© 2018 PCTEST Engineering Labor	atory, Inc.			V 8.0 04/05/2018

5GHz (80MHz Bandwidth)	Freq [MHz]	Channel	Detector	IEEE Transmission <u>Mode</u> 802.11ac	Conducted Power Limit [dBm]	Conducted Power Margin [dB]
0M idtl	5210	42	AVG	9.62	23.98	-14.36
(8) 1 wi	5290	58	AVG	9.67	23.98	-14.31
Hz	5530	106	AVG	9.71	23.98	-14.27
5G B;	5610	122	AVG	9.57	23.98	-14.41
	5690	138	AVG	9.74	23.98	-14.24
	5775	155	AVG	9.62	30.00	-20.38

Table 7-6. 80MHz BW (UNII) Maximum Conducted Output Power

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 29 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset	Page 38 of 89
© 2018 PCTEST Engineering Labora	atory, Inc.		V 8.0 04/05/2018

7.5 Maximum Power Spectral Density – 802.11a/n/ac §15.407(a.1.iv) §15.407(a.2) §15.407(a.3); RSS-247 [6.2]

Test Overview and Limit

The spectrum analyzer was connected to the antenna terminal while the EUT was operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. Method SA-1, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, was used to measure the power spectral density.

In the 5.15 – 5.25GHz, 5.25 – 5.35GHz, 5.47 – 5.725GHz bands, the maximum permissible power spectral density is 11dBm/MHz.

In the 5.725 – 5.850GHz band, the maximum permissible power spectral density is 30dBm/500kHz.

Test Procedure Used

ANSI C63.10-2013 – Section 12.3.2.2 KDB 789033 D02 v02r01 – Section F

Test Settings

- 1. Analyzer was set to the center frequency of the UNII channel under investigation
- 2. Span was set to encompass the entire emission bandwidth of the signal
- 3. RBW = 1MHz
- 4. VBW = 3MHz
- 5. Number of sweep points $\geq 2 \times (\text{span/RBW})$
- 6. Sweep time = auto
- 7. Detector = power averaging (RMS)
- 8. Trigger was set to free run for all modes
- 9. Trace was averaged over 100 sweeps
- 10. The peak search function of the spectrum analyzer was used to find the peak of the spectrum.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

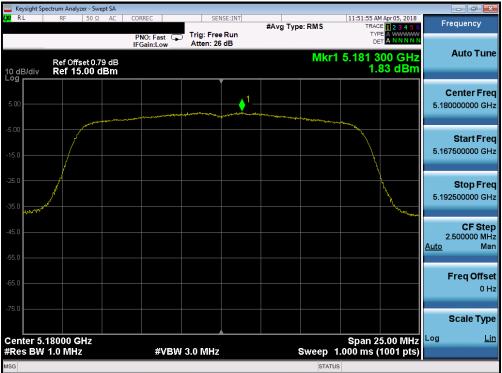
EUT	Coax Cable	Agilent Signal Analyzer
-----	------------	----------------------------

Figure 7-4. Test Instrument & Measurement Setup

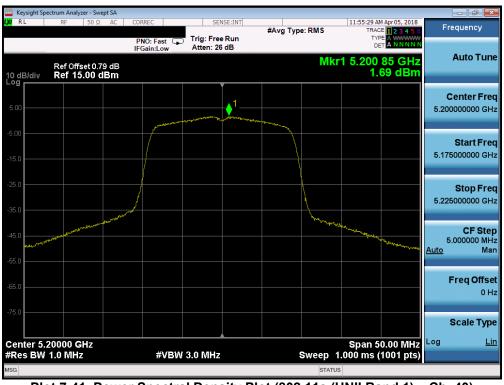
Test Notes

None

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 39 of 89
© 2018 PCTEST Engineering Laboration	atory, Inc.			V 8.0 04/05/2018

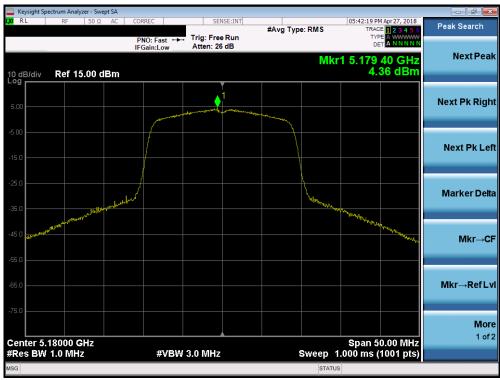


	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Density [dBm]	Max Power Density [dBm/MHz]	Margin [dB]
	5180	36	а	6	1.83	11.0	-9.17
	5200	40	а	6	1.69	11.0	-9.31
	5240	48	а	6	1.86	11.0	-9.14
-	5180	36	n (20MHz)	6.5/7.2 (MCS0)	4.36	11.0	-6.64
Band 1	5200	40	n (20MHz)	6.5/7.2 (MCS0)	6.07	11.0	-4.94
ä	5240	48	n (20MHz)	6.5/7.2 (MCS0)	5.84	11.0	-5.16
	5190	38	n (40MHz)	13.5/15 (MCS0)	-1.80	11.0	-12.80
	5230	46	n (40MHz)	13.5/15 (MCS0)	0.39	11.0	-10.61
	5210	42	ac (80MHz)	29.3/32.5 (MCS0)	-8.25	11.0	-19.25
	5260	52	а	6	2.28	11.0	-8.72
	5280	56	а	6	1.80	11.0	-9.20
	5320	64	а	6	1.71	11.0	-9.29
2A	5260	52	n (20MHz)	6.5/7.2 (MCS0)	5.62	11.0	-5.38
Band 2A	5280	56	n (20MHz)	6.5/7.2 (MCS0)	6.15	11.0	-4.85
Ba	5320	64	n (20MHz)	6.5/7.2 (MCS0)	3.03	11.0	-7.97
	5270	54	n (40MHz)	13.5/15 (MCS0)	0.93	11.0	-10.07
	5310	62	n (40MHz)	13.5/15 (MCS0)	-1.91	11.0	-12.91
	5290	58	ac (80MHz)	29.3/32.5 (MCS0)	-7.97	11.0	-18.97
	5500	100	а	6	1.72	11.0	-9.28
	5600	120	а	6	2.20	11.0	-8.80
	5720	144	а	6	3.10	11.0	-7.90
	5500	100	n (20MHz)	6.5/7.2 (MCS0)	3.07	11.0	-7.93
Ö	5600	120	n (20MHz)	6.5/7.2 (MCS0)	6.49	11.0	-4.51
Band 2C	5720	144	n (20MHz)	6.5/7.2 (MCS0)	6.60	11.0	-4.41
Ban	5510	102	n (40MHz)	13.5/15 (MCS0)	-1.80	11.0	-12.80
ш	5590	118	n (40MHz)	13.5/15 (MCS0)	1.04	11.0	-9.96
	5710	142	n (40MHz)	13.5/15 (MCS0)	1.26	11.0	-9.74
	5530	106	ac (80MHz)	29.3/32.5 (MCS0)	-8.06	11.0	-19.06
	5610	122	ac (80MHz)	29.3/32.5 (MCS0)	-7.79	11.0	-18.79
	5690	138	ac (80MHz)	29.3/32.5 (MCS0)	-10.15	11.0	-21.15


Table 7-7. Bands 1, 2A, 2C Conducted Power Spectral Density Measurements

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 40 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 40 of 89
© 2018 PCTEST Engineering Laboration	atory, Inc.			V 8.0 04/05/2018

Plot 7-40. Power Spectral Density Plot (802.11a (UNII Band 1) - Ch. 36)


Plot 7-41. Power Spectral Density Plot (802.11a (UNII Band 1) - Ch. 40)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 41 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 41 of 89
© 2018 PCTEST Engineering Labor	atory. Inc.	•		V 8.0 04/05/2018

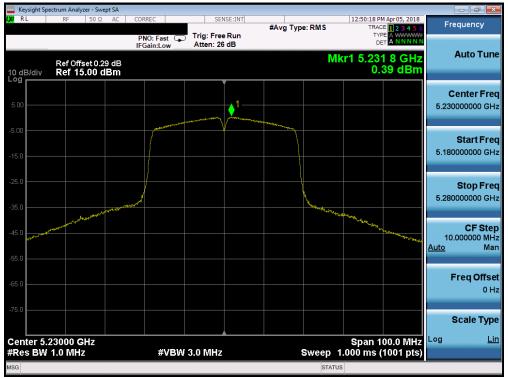
	ectrum Analyze												
<mark>u</mark> RL	RF	50 Ω		CORREC	ast 🖵	Trig: Fre		#Avg Typ	e: RMS	TRA	M Apr 05, 2018 CE 1 2 3 4 5 6 PE A WWWWW ET A N N N N N	F	requency
0 dB/div	Ref Offse Ref 15.		dB	IFGain:L	.ow	Atten: 2	6 dB		Mki	1 5 239	00 GHz 86 dBm		Auto Tur
5.00							Y 1	Hard - Hope and Barry and					Center Fre
5.0									}			5.21	Start Fr 5000000 G
25.0 35.0 			where									5.26	Stop Fre 5000000 Gi
45.0 ••••••	A.F. M. MARINA	en andre and								and manufac	Hannan and the of	Auto (CF Ste 5.000000 MI Mi
i5.0													Freq Offs 0
75.0													Scale Typ
	24000 GH 1.0 MHz	lz		#	≠vbw	3.0 MHz			Sweep 1	Span : 1.000 ms	0.00 MHz (1001 pts)	Log	Ĺ
SG									STATU	S			

Plot 7-42. Power Spectral Density Plot (802.11a (UNII Band 1) - Ch. 48)

Plot 7-43. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 36)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🔁 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 42 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 42 of 89
© 2018 PCTEST Engineering Labor	atory Inc			V 8 0 04/05/2018

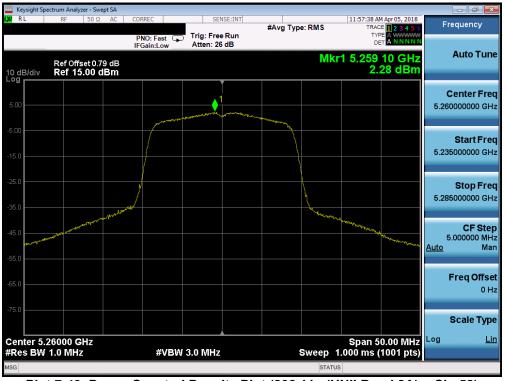
	ectrum Analyze										
LXI RL	RF	50 Ω AC	CORREC	SE	NSE:INT	#Avg Typ	e: RMS		M Apr 05, 2018	Freque	ncy
			PNO: Fas IFGain:Lo	t 🖵 Trig: Fre w Atten: 2		• ,,		TYF			
10 dB/div Log		et0.15 dB 00 dBm					Mki	r1 5.200 6.	75 GHz 07 dBm	Aut	o Tune
5.00				and all for the second s	∮ ¹	-				Cent 5.200000	er Freq 000 GHz
-5.00										Sta 5.1750000	n rt Frec 000 GHz
-25.0	Windfronderson	protection					hongthanhad	and the second second	Malydan Hannard	Sto 5.2250000	o p Freq 000 GHz
-45.0											F Step 000 MH: Mar
-65.0										Freq	I Offse 0 H:
-75.0										Scal	іе Туре
Center 5. #Res BW		lz	#\	/BW 3.0 MHz			Sweep 1	Span 5 1.000 ms (0.00 MHz 1001 pts)	Log	<u>Lin</u>
MSG							STATU	S			


Plot 7-45. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 1) - Ch. 48)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 42 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 43 of 89
© 2018 PCTEST Engineering Labor	atory. Inc.	•		V 8.0 04/05/2018

R L	ectrum Analyze RF	er - Swept SA 50 Ω AC	CORREC	-		NSE:INT			10:49:59.5	M Apr 05, 2018	
NL	r/r	JU 32 AC					#Avg Typ	e: RMS	TRA	CE 1 2 3 4 5 6 PE A WWWW	Frequency
			PNO: IFGair	Fast 🖵 n:Low	Atten: 2				D		
) dB/div		et 0.29 dB . 00 dBm						M	kr1 5.18 -1.	8 2 GHz 80 dBm	Auto Tu
^{'9}						Í					Center Fr
.00						 					5.190000000 G
				Ner-man Parly many res	and and and a second	mount	market when				
											Start Fr 5.140000000 G
5.0			1								0.1400000000
5.0											Stop Fr
5.0											5.240000000 G
		هيدر	كمسمس					X			07.01
5.0	a name and a stranger							Mr. Malan	manna		CF St 10.000000 M
5.0										Month and a start	<u>Auto</u> M
											Freq Offs
5.0											. 0
5.0											
											Scale Ty
	19000 GI 1.0 MHz			#\/R\A	/ 3.0 MHz			Sween	Span 1	00.0 MHz (1001 pts)	Log <u>l</u>
G								STATU		(noor pro)	

Plot 7-46. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 1) - Ch. 38)


Plot 7-47. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 1) - Ch. 46)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 44 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 44 of 89
© 2018 PCTEST Engineering Labor	atory Inc.			V 8 0 04/05/2018

	ectrum Analyz											di X
RL	RF	50 Ω AC	CORREC		SEI	NSE:INT	#Avg Typ	e: RMS		M Apr 05, 2018	Freque	ncy
			PNO: IFGain	Fast 😱 :Low	Trig: Fre Atten: 20				TYI Di		Aut	o Tur
0 dB/div		et 0.66 dE . 00 dBm							-8.	8 4 GHz 25 dBm		
						Ĭ						er Fre
5.00											5.210000)00 GH
					•	1					010	
15.0			ſ	ad an and a second	and the second	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					5.110000	n <mark>rt Fr</mark> e
13.0												
25.0								1				op Fre
35.0											5.310000)00 Gł
											C	F Ste
15.0	and a start of the start of the	and the second s	And					Thomas	hummound	and the second sec	20.0000 Auto	
5.0												
i5.0											Freq	Offs
												0 H
75.0											Sca	le Typ
enter 5	2100 GH	7							Snan 2	00.0 MHz	Log	L
Res BW				#VBW	3.0 MHz			Sweep 1	.000 ms (1001 pts)		
SG								STATUS	-			

Plot 7-48. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 1) - Ch. 42)

Plot 7-49. Power Spectral Density Plot (802.11a (UNII Band 2A) - Ch. 52)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 45 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 45 of 89
© 2018 PCTEST Engineering Labor	atory Inc.			V 8 0 04/05/2018

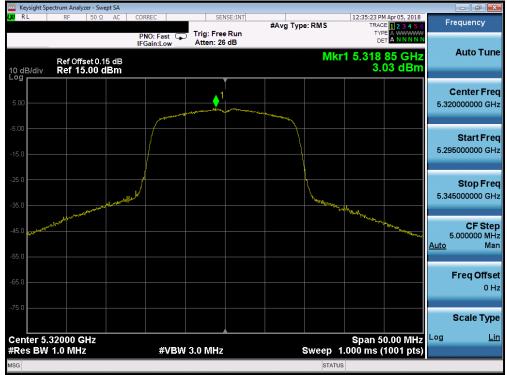
Og Image: Center Free Stop Image: Center Free	Keysight Specific Register	ectrum Analyzer - S	wept SA								×
Ref Offset0.79 dB Mkr1 5.278 20 GHz Auto Tune 99 1.80 dBm 1.80 dBm 5.28000000 GH 500 1 1 1 1 500 1 1 1 1 5.28000000 GH 500 5.28000000 GH 5.255000000 GH 5.255000000 GH 5.255000000 GH 500 1 1 1 1 1 1 500 1 1 1 1 1 5.255000000 GH 500 1 1 1 1 1 1 1 5.255000000 GH 500 1 1 1 1 1 1 1 1 1 1 1 5.255000000 GH 5.30500000 GH 5.30500000 GH 6.000 MHz 5.000000 MH 1	X/RL	RF 50	Ω AC	PNO: Fast	Trig: Free F	#Avg Typ	be: RMS	TRACE	123456	Frequency	
500 1 Center Free 500 500 525000000 GH 500 500 5255000000 GH 500 500 5255000000 GH 500 500 500 500<	10 dB/div	Ref Offset 0 Ref 15.00	.79 dB dBm	FGameLow	Atten: 20 C	5	Mkr	1 5.278 1.8	20 GHz 30 dBm	Auto Tu	Ine
50 50 50 50 50 50 50 50 50 50	5.00				1	annun an					
5.0 Stop Fred 5.0500000 GH 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	-5.00										
Store Store	-25.0		- and a show								
enter 5.28000 GHz Res BW 1.0 MHz #VBW 3.0 MHz Sweep 1.000 ms (1001 pts)	-45.0	And the second						and a second and a s	and the second second	5.000000 N	ині
enter 5.28000 GHz Span 50.00 MHz Res BW 1.0 MHz #VBW 3.0 MHz Sweep 1.000 ms (1001 pts)	-65.0										
Res BW 1.0 MHz #VBW 3.0 MHz Sweep 1.000 ms (1001 pts)								Span 50			ype Lin
	#Res BW	1.0 MHz		#VBW	3.0 MHz		Sweep 1	1.000 ms (1	1001 pts)		

Plot 7-50. Power Spectral Density Plot (802.11a (UNII Band 2A) – Ch. 56)

Plot 7-51. Power Spectral Density Plot (802.11a (UNII Band 2A) - Ch. 64)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 46 of 80
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 46 of 89
© 2018 PCTEST Engineering Labor	atory. Inc.	•		V 8.0 04/05/2018

Keysight Spectrum											- 6 ×
L <mark>XI</mark> RL R	F 50 Ω	AC C	DRREC	SEI	NSE:INT	#Avg Typ	e: RMS		M Apr 05, 2018	Free	quency
		I	PNO:Fast ⊂ FGain:Low	Trig: Free Atten: 26				TYF De			
	f Offset 0.16 ef 15.00 d						Mk	r1 5.259 5.	05 GHz 62 dBm	μ	luto Tune
209				•						Ce	enter Freq
5.00			1 mm		and a second	and and a second				5.2600	00000 GHz
-5.00			1								Start Freq
-15.0			/			\\				5.2350	00000 GHz
-25.0	and and the state	and and all all all all all all all all all al					ممهموريهوي	N Walker		:	Stop Freq
-35.0	- And and a start of the							. And and	Worker Harris	5.2850	00000 GHz
and and									alon Marken		CF Step
-45.0										5.0 <u>Auto</u>	00000 MHz Man
										Fi	req Offset
-65.0											0 Hz
-75.0										S	cale Type
Center 5.2600 #Res BW 1.0			#\(P)	↓ ₩ 3.0 MHz			Curoon	Span 5 1.000 ms (0.00 MHz	Log	Lin
#Res BW 1.0	IVINZ		#VB	W 3.0 WIHZ			Sweep		roor pis)		


Plot 7-52. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 52)

Plot 7-53. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 56)

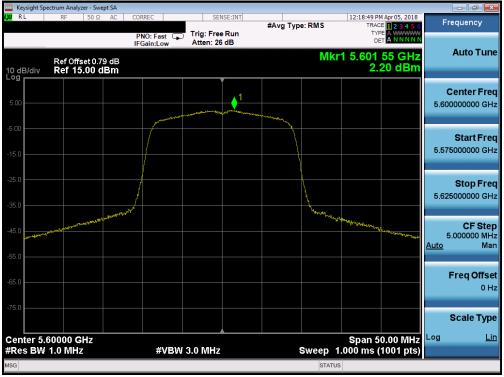
FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 47 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 47 of 89
© 2018 PCTEST Engineering Labor	atorv. Inc.			V 8.0 04/05/2018

Plot 7-54. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2A) - Ch. 64)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 48 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 48 of 89
© 2018 PCTEST Engineering Labor	atory. Inc.	·		V 8.0 04/05/2018

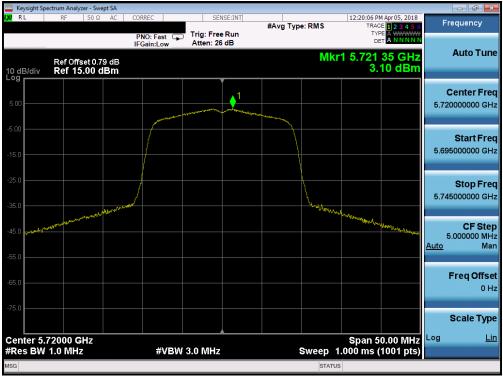
	ectrum Analyz												d X
LXI RL	RF	50 Ω A	AC CO	ORREC		SE	NSE:INT	#Avg Typ	e: RMS		PM Apr 05, 2018 ACE 1 2 3 4 5 6	Frequer	icy
			F	PNO: Fa Gain:Lo	st 🖵 pw	Trig: Fre Atten: 2		0.71		т		B	T
10 dB/div Log	Ref Offs Ref 15.								N	lkr1 5.3 -1	08 2 GHz .91 dBm	Auto	Tune
							Ĭ					Cente	r Frec
5.00							1					5.3100000	00 GHz
-5.00				1			¥	and				Star	tFred
-15.0												5.2600000	00 GHz
-25.0				<u> </u>								Stor	o Frec
-35.0				/					\ \			5.3600000	
-33.0		- Andrewson	memored	4					L.				- Step
-45.0	ware for the second of									warden warst for and	human and the	10.00000 Auto	
												Freq	Offse
-65.0													0 H:
-75.0												Scale	
Contor F	24000 0									Onon	100.0 8414-		Lir
Center 5. #Res BW				#	VBW	3.0 MHz			Sweep	span 1.000 ms	100.0 MHz (1001 pts)	9	
MSG									STAT	US			

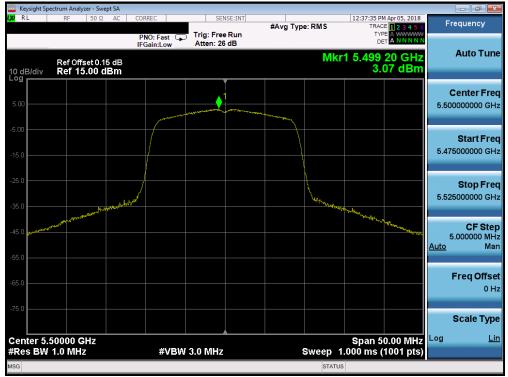
Plot 7-56. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2A) - Ch. 62)


Plot 7-57. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2A) - Ch. 58)

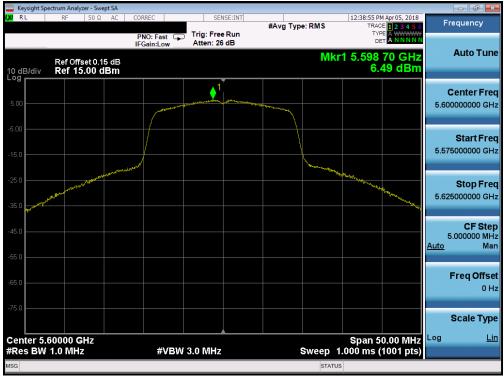
FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 40 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset	Page 49 of 89	
© 2018 PCTEST Engineering Labor	atory. Inc.			V 8.0 04/05/2018

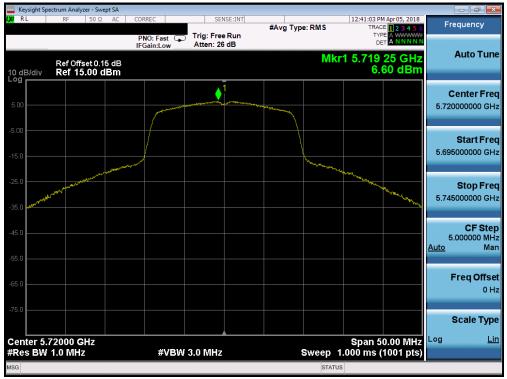
	ectrum Analyzer - S						
XI RL	RF 50	Ω AC	CORREC PNO: Fast	Trig: Free Run Atten: 26 dB	#Avg Type: RMS	12:16:38 PM Apr 05, 2018 TRACE 1 2 3 4 5 6 TYPE A WWWW DET A N N N N N	Frequency
10 dB/div	Ref Offset 0 Ref 15.00	.79 dB dBm	IFGain:Low	Atten: 20 ub	Mk	r1 5.500 80 GHz 1.72 dBm	Auto Tune
5.00			and the second second	1	and provide the second s		Center Fred 5.500000000 GH:
-5.00							Start Free 5.475000000 GH:
-25.0							Stop Fred 5.525000000 GH;
-45.0	Manderster	set-long-April				Mummule management	CF Step 5.000000 MH <u>Auto</u> Mar
-65.0							Freq Offse 0 H
-75.0							Scale Type
Center 5. #Res BW	50000 GHz 1.0 MHz		#VBW	(3.0 MHz	Sweep	Span 50.00 MHz 1.000 ms (1001 pts)	Log <u>Lir</u>
ISG					STATU	JS	


Plot 7-58. Power Spectral Density Plot (802.11a (UNII Band 2C) – Ch. 100)


Plot 7-59. Power Spectral Density Plot (802.11a (UNII Band 2C) - Ch. 120)

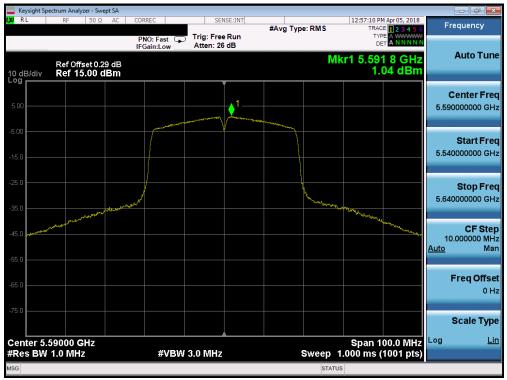
FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 50 of 80
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 50 of 89
© 2018 PCTEST Engineering Labor	atory. Inc.	•		V 8.0 04/05/2018


Plot 7-60. Power Spectral Density Plot (802.11a (UNII Band 2C) – Ch. 144)


Plot 7-61. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 100)

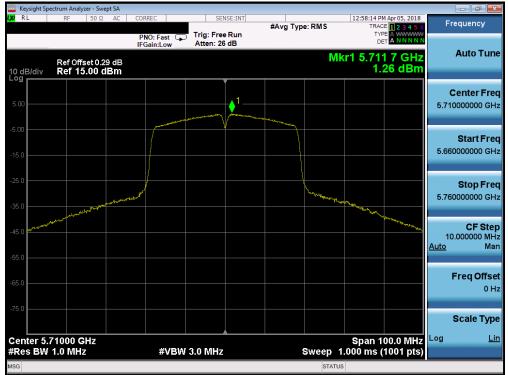
FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 51 of 90	
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 51 of 89	
© 2018 PCTEST Engineering Labor	atory. Inc.	•		V 8.0 04/05/2018	

Plot 7-62. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2C) – Ch. 120)


Plot 7-63. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 2C) - Ch. 144)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 52 of 80
1M1804240083-06-R2.ZNF 3/22-5/17/2018		Portable Handset	Page 52 of 89	
© 2018 PCTEST Engineering Labor	atory. Inc.	·		V 8.0 04/05/2018

Keysight Spect										
0 RL	RF	50 Ω AC	PNO: Fast IFGain:Low		SENSE:INT	#Avg Typ	e: RMS	TRAC	M Apr 05, 2018 E 1 2 3 4 5 6 PE A WWWWW T A N N N N N	Frequency
	Ref Offse Ref 15.0		I Guilleon				Μ	kr1 5.50 -1.	8 4 GHz 80 dBm	Auto Tun
5.00										Center Fre 5.510000000 GH
15.0										Start Fre 5.460000000 GH
35.0										Stop Fre 5.56000000 GH
45.0 	and the second	and the second sec						Mary Mary mary	nannensym	CF Ste 10.000000 MH <u>Auto</u> Ma
55.0										Freq Offs 0 H
^{75.0}	1000 CH	2						Snap 4	00.0 MHz	Scale Typ
Res BW 1		Z	#V	BW 3.0 M	/Hz		Sweep	Span 1 1.000 ms (1001 pts)	
SG							STATU	JS		


Plot 7-64. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2C) – Ch. 102)

Plot 7-65. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 118)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 52 of 90
1M1804240083-06-R2.ZNF 3/22-5/17/2018		Portable Handset	Page 53 of 89	
© 2018 PCTEST Engineering Labor	atory. Inc.	•		V 8.0 04/05/2018

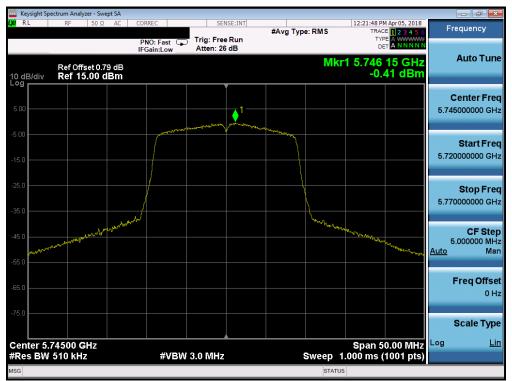
Plot 7-66. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 2C) - Ch. 142)

Plot 7-67. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2C) - Ch. 106)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 54 of 90
1M1804240083-06-R2.ZNF 3/22-5/17/2018		Portable Handset	Page 54 of 89	
© 2018 PCTEST Engineering Labor	atory. Inc.	•		V 8.0 04/05/2018

	ectrum Analyz												- • ×
LXU RL	RF	50 Ω	AC		ast 🖵	Trig: Fr		#Avg Ty	e: RMS	TF	PM Apr 05, 2018 ACE 1 2 3 4 5 6 TYPE A WWWWW DET A NNNNN	Fre	quency
10 dB/div	Ref Offs Ref 15			IFGain:I	_ow	Atten:	26 aB		N	lkr1 5.6	12 2 GHz 7.79 dBm		Auto Tune
5.00							. 1						e nter Frec 000000 GH:
-5.00					an and the second s	at a star of the start of the s							Start Free 000000 GH
-25.0													Stop Free
-45.0	ransonant	and and a start and a start a s	so and the	<i>.</i> Д					how	~~~~	and and an angle of the second se	20.0 <u>Auto</u>	CF Ste 000000 MH Ma
65.0												F	r eq Offse 0 H
-75.0 Center 5.1	6100 <u>GH</u>	z								Span	200.0 MHz		cale Type
#Res BW					#VBW	3.0 MH	Z			1.000 ms	s (1001 pts)		
ISG									STAT	US			

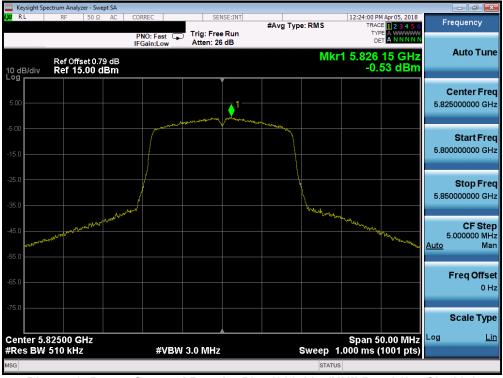
Plot 7-68. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2C) – Ch. 122)


Plot 7-69. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 2C) - Ch. 138)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage FE of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 55 of 89
© 2018 PCTEST Engineering Labor	atory. Inc.	•		V 8.0 04/05/2018

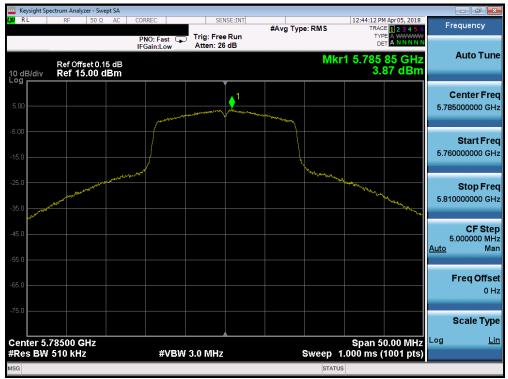
	Frequency [MHz]	Channel No.	802.11 Mode	Data Rate [Mbps]	Measured Power Density [dBm]	Max Permissible Power Density [dBm/500kHz]	Margin [dB]
	5745	149	а	6	-0.41	30.0	-30.41
	5785	157	а	6	-0.49	30.0	-30.49
	5825	165	а	6	-0.53	30.0	-30.53
3	5745	149	n (20MHz)	6.5/7.2 (MCS0)	3.75	30.0	-26.25
Band	5785	157	n (20MHz)	6.5/7.2 (MCS0)	3.87	30.0	-26.14
ä	5825	165	n (20MHz)	6.5/7.2 (MCS0)	1.00	30.0	-29.00
	5755	151	n (40MHz)	13.5/15 (MCS0)	-1.66	30.0	-31.66
	5795	159	n (40MHz)	13.5/15 (MCS0)	-4.11	30.0	-34.11
	5775	155	ac (80MHz)	29.3/32.5 (MCS0)	-6.76	30.0	-36.76

Table 7-8. Band 3 Conducted Power Spectral Density Measurements

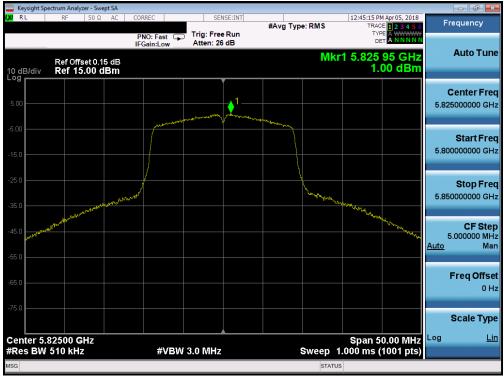

Plot 7-70. Power Spectral Density Plot (802.11a (UNII Band 3) - Ch. 149)

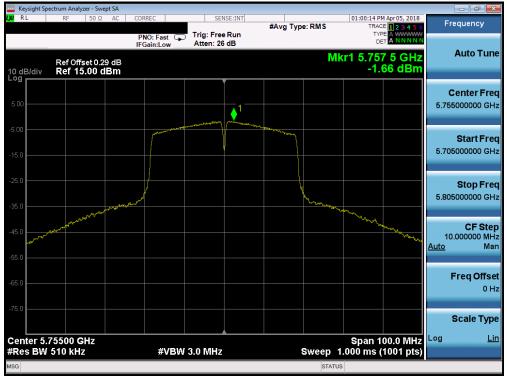
FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage EC of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset	Page 56 of 89	
© 2018 PCTEST Engineering Labora	V 8.0 04/05/2018			

	ectrum Analyze	er - Swept S	SA										J X
LXI RL	RF	50 Ω /		ORREC	ast 😱		NSE:INT	#Avg Typ	e: RMS	TRAC	M Apr 05, 2018 DE 1 2 3 4 5 6 PE A WWWWW	Frequen	су
10 dB/div Log	Ref Offs Ref 15.	et 0.79 d .00 dB	dB	PNO: Fa IFGain:L		Atten: 2			Mkr	1 5.786	20 GHz 49 dBm	Auto	Tune
5.00							1-					Center 5.78500000	
-5.00							Ψ 					Star 5.76000000	
-25.0												Stop 5.81000000	Fre 00 GH:
-45.0 الارتيانيين -55.0	and the second	and the second	and and the second						Mundanda	tan weather and the	W. Company and Marcon	CF 5.00000 <u>Auto</u>	Stej 0 MH Mai
-65.0												Freq (Offse 0 H
-75.0												Scale	
Center 5. #Res BW				#	#VBW	3.0 MHz	2		Sweep 1	Span 5 .000 ms (0.00 MHz (1001 pts)	Log	Lir
MSG									STATUS	5			


Plot 7-72. Power Spectral Density Plot (802.11a (UNII Band 3) - Ch. 165)

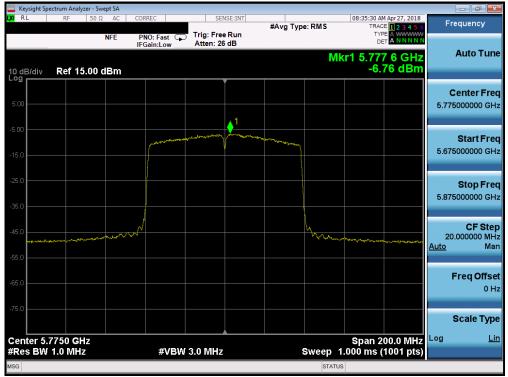
FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 57 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 57 of 89
© 2018 PCTEST Engineering Labor	V 8 0 04/05/2018			


Plot 7-73. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 149)


Plot 7-74. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 157)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 59 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 58 of 89
© 2018 PCTEST Engineering Labor	V 8.0 04/05/2018			

Plot 7-75. Power Spectral Density Plot (20MHz BW 802.11n (UNII Band 3) - Ch. 165)


Plot 7-76. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 3) - Ch. 151)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 50 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 59 of 89
© 2018 PCTEST Engineering Labor	V 8 0 04/05/2018			

Keysight Spectrum Analyz							
RL RF	50 Ω AC C	ORREC	SENSE:INT	#Avg Type: R	MS TRA	CE 1 2 3 4 5 6	Frequency
	I	PNO: Fast 😱 FGain:Low	Trig: Free Run Atten: 26 dB		[Auto Tur
	et 0.29 dB .00 dBm				Mkr1 5.79 -4	6 0 GHz .11 dBm	
			Ĭ				Center Fre
.00			▲ 1				5.795000000 G
.00			www.www.	man man			Otest Fr
5.0		[Start Fr 5.745000000 G
5.0							
5.0		1					Stop Fr
5.0		1					5.845000000 G
5.0	- mark	/		\sim	Under and a state		CF St
and and many	warthorn myther 1				when when the se	Marty marine	10.000000 M <u>Auto</u> M
5.0							
5.0							Freq Offs 0
5.0							Ű
							Scale Ty
enter 5.79500 G			.		Span	00.0 10112	Log <u>l</u>
Res BW 510 kHz		#VBW	3.0 MHz	Sw	eep 1.000 ms	(1001 pts)	
G					STATUS		

Plot 7-77. Power Spectral Density Plot (40MHz BW 802.11n (UNII Band 3) - Ch. 159)

Plot 7-78. Power Spectral Density Plot (80MHz BW 802.11ac (UNII Band 3) - Ch. 155)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 60 of 80
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 60 of 89
© 2018 PCTEST Engineering Labor	V 8.0 04/05/2018			

7.6 Radiated Spurious Emission Measurements – Above 1GHz §15.407(b) §15.205 §15.209; RSS-Gen [8.9]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013 and KDB 789033 D02 v02r01, and at the appropriate frequencies. All channels, modes (e.g. 802.11a, 802.11n (20MHz BW), 802.11n (40MHz BW), and 802.11ac (80MHz)), and modulations/data rates were investigated among all UNII bands. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

For transmitters operating in the 5.15-5.25 GHz and 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of −27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of −27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 5 MHz above or below the band edge.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 6 of RSS-Gen (8.10) must not exceed the limits shown in Table 7-9 per Section 15.209 and RSS-Gen (8.9).

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
Above 960.0 MHz	500	3

Table 7-9. Radiated Limits

Test Procedures Used

ANSI C63.10-2013 – Sections 12.7.7.2, 12.7.6, 12.7.5 KDB 789033 D02 v02r01 – Section G

Test Settings

Average Measurements above 1GHz (Method AD)

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points = 1001 (Number of points must be $\geq 2 \times \text{span/RBW}$)
- 6. Averaging type = power (RMS)
- 7. Sweep time = auto couple
- 8. Trace was averaged over 100 sweeps

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 61 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 61 of 89
© 2018 PCTEST Engineering Labora	V 8 0 04/05/2018			

Peak Measurements above 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

Peak Measurements below 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = 120kHz
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

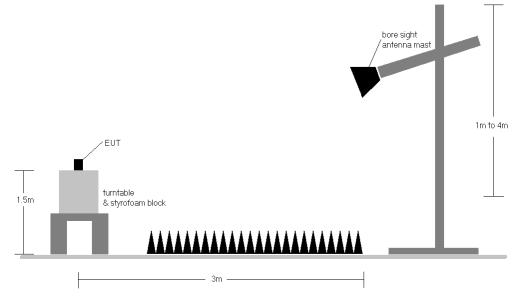


Figure 7-5. Test Instrument & Measurement Setup

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 62 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 62 of 89
© 2018 PCTEST Engineering Labora	V 8.0 04/05/2018			

Test Notes

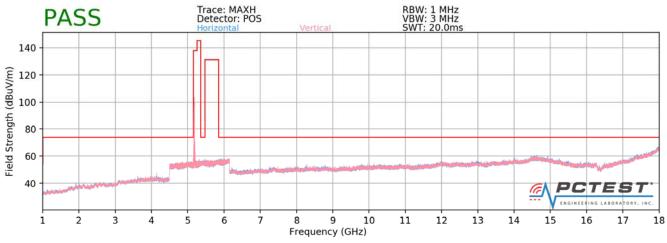
- 1. All emissions that lie in the restricted bands (denoted by a * next to the frequency) specified in §15.205 and Section 8.10 of RSS-Gen are below the limit shown in Table 7-9.
- 2. All spurious emissions lying in restricted bands specified in §15.205 and Section 8.10 of RSS-Gen are below the limit shown in Table 7-9. All spurious emissions that do not lie in a restricted band are subject to a peak limit of -27dBm/MHz. At a distance of 3 meters, the field strength limit in dBµV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of -27dBm/MHz to obtain the limit for out of band spurious emissions of 68.2dBµV/m.
- 3. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 4. This unit was tested with its standard battery.
- 5. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 6. Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 7. The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. Any emissions found to be within 20dB of the limit are fully investigated and the results are shown in this section.
- 8. The "-" shown in the following RSE tables are used to denote a noise floor measurement.

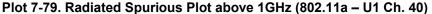
Sample Calculations

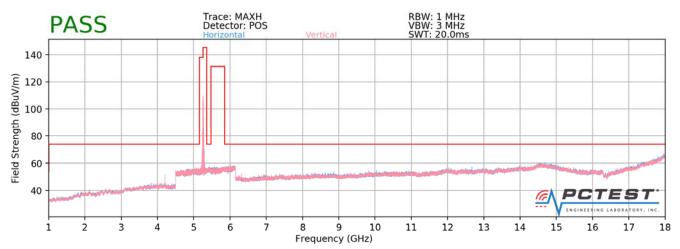
Determining Spurious Emissions Levels

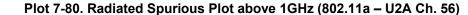
- ο Field Strength Level [dBµV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- ο Margin [dB] = Field Strength Level [dBμV/m] Limit [dBμV/m]

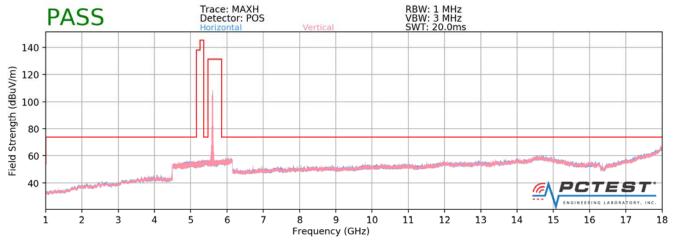
Radiated Band Edge Measurement Offset

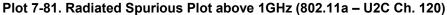

• The amplitude offset shown in the radiated restricted band edge plots in Section 7.6 was calculated using the formula:

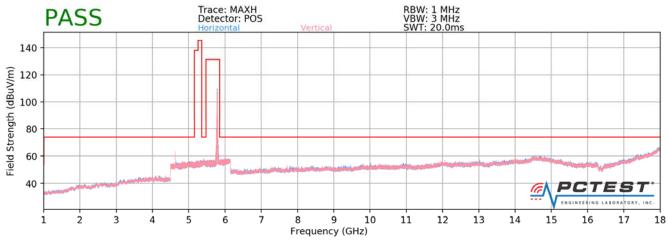

Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) – Preamplifier Gain


FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 62 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 63 of 89
© 2018 PCTEST Engineering Labora	V 8.0 04/05/2018			

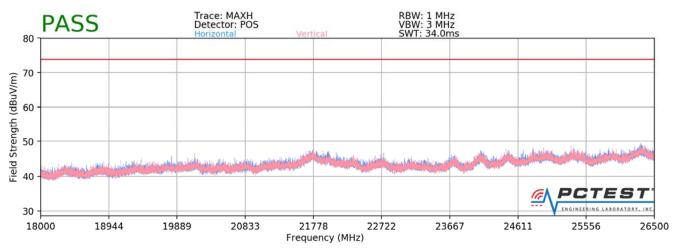


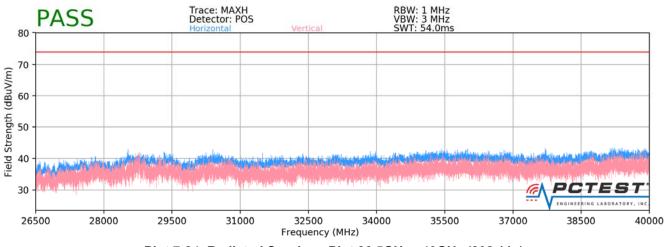

7.7.1 Radiated Spurious Emission Measurements





FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 64 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 64 of 89
© 2018 PCTEST Engineering Labor	V 8 0 04/05/2018			




FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 65 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 65 of 89
© 2018 PCTEST Engineering Labor	V 8.0 04/05/2018			

Radiated Spurious Emissions Measurements (Above 18GHz)

Plot 7-83. Radiated Spurious Plot 18GHz - 26.5GHz (802.11a)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 66 of 90	
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 66 of 89	
© 2018 PCTEST Engineering Labora	V 8.0 04/05/2018				

Radiated Spurious Emission Measurements §15.407(b) §15.205 & §15.209; RSS-Gen [8.9]

Worst Case Mode:	802.11a			
Worst Case Transfer Rate:	6Mbps			
Distance of Measurements:	1 & 3 Meters			
Operating Frequency:	5180MHz			
Channel:	36			

	requency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10360.00	Peak	Н	-	-	-61.62	10.88	0.00	56.26	68.20	-11.94
*	15540.00	Average	н	-	-	-73.43	14.57	0.00	48.14	53.98	-5.84
*	15540.00	Peak	н	-	-	-62.15	14.57	0.00	59.42	73.98	-14.56
*	20720.00	Average	н	-	-	-76.85	7.94	-9.54	28.55	53.98	-25.43
*	20720.00	Peak	н	-	-	-66.07	7.94	-9.54	39.33	73.98	-34.65
:	25900.00	Peak	Н	-	-	-62.86	8.46	-9.54	43.06	68.20	-25.14

Table 7-10. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a
6Mbps
1 & 3 Meters
5200MHz
40

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10400.00	Peak	н	-	-	-62.21	11.12	0.00	55.91	68.20	-12.29
*	15600.00	Average	Н	-	-	-73.30	14.47	0.00	48.17	53.98	-5.81
*	15600.00	Peak	Н	-	-	-62.42	14.47	0.00	59.05	73.98	-14.93
*	20800.00	Average	н	-	-	-77.05	7.95	-9.54	28.36	53.98	-25.62
*	20800.00	Peak	н	-	-	-66.19	7.95	-9.54	39.22	73.98	-34.76
	26000.00	Peak	Н	-	-	-64.04	8.60	-9.54	42.02	68.20	-26.18

Table 7-11. Radiated Measurements

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 67 of 90	
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 67 of 89	
© 2018 PCTEST Engineering Labor	V 8.0 04/05/2018				

Worst Case Mode:	802.11a			
Worst Case Transfer Rate:	6Mbps			
Distance of Measurements:	1 & 3 Meters			
Operating Frequency:	5240MHz			
Channel:	48			

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10480.00	Peak	Н	-	-	-61.20	11.12	0.00	56.92	68.20	-11.28
*	15720.00	Average	Н	-	-	-73.32	14.52	0.00	48.20	53.98	-5.78
*	15720.00	Peak	Н	-	-	-62.08	14.52	0.00	59.44	73.98	-14.54
*	20960.00	Average	Н	-	-	-77.08	7.91	-9.54	28.29	53.98	-25.69
*	20960.00	Peak	Н	-	-	-65.61	7.91	-9.54	39.76	73.98	-34.22
	26200.00	Peak	Н	-	-	-64.01	8.62	-9.54	42.07	68.20	-26.13

Table 7-12. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6Mbps 1 & 3 Meters 5260MHz 52

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10520.00	Peak	н	-	-	-62.52	11.11	0.00	55.59	68.20	-12.61
*	15780.00	Average	Н	-	-	-73.38	14.87	0.00	48.49	53.98	-5.49
*	15780.00	Peak	Н	-	-	-62.01	14.87	0.00	59.86	73.98	-14.12
*	21040.00	Average	Н	-	-	-77.50	7.92	-9.54	27.88	53.98	-26.10
*	21040.00	Peak	Н	-	-	-66.10	7.92	-9.54	39.28	73.98	-34.70
	26300.00	Peak	Н	-	-	-64.01	8.73	-9.54	42.18	68.20	-26.02

Table 7-13. Radiated Measurements

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 69 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset	Page 68 of 89
© 2018 DCTEST Engineering Labor	V 8 0 04/05/2018		

Worst Case Mode:	802.11a				
Worst Case Transfer Rate:	6Mbps				
Distance of Measurements:	1 & 3 Meters				
Operating Frequency:	5280MHz				
Channel:	56				

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10560.00	Peak	Н	-	-	-62.16	11.01	0.00	55.85	68.20	-12.35
*	15840.00	Average	Н	-	-	-73.33	15.09	0.00	48.76	53.98	-5.22
*	15840.00	Peak	Н	-	-	-62.01	15.09	0.00	60.08	73.98	-13.90
*	21120.00	Average	Н	-	-	-76.59	7.96	-9.54	28.83	53.98	-25.15
*	21120.00	Peak	н	-	-	-65.78	7.96	-9.54	39.64	73.98	-34.34
	26400.00	Peak	Н	-	-	-64.74	8.94	-9.54	41.66	68.20	-26.54

Table 7-14. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: **Operating Frequency:** Channel:

802.11a 6Mbps 1 & 3 Meters 5320MHz 64

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	10640.00	Average	Н	-	-	-73.58	11.40	0.00	44.82	53.98	-9.16
*	10640.00	Peak	н	-	-	-62.46	11.40	0.00	55.94	73.98	-18.04
*	15960.00	Average	н	-	-	-73.20	15.69	0.00	49.49	53.98	-4.49
*	15960.00	Peak	н	-	-	-62.16	15.69	0.00	60.53	73.98	-13.45
*	21280.00	Average	н	-	-	-76.92	8.04	-9.54	28.58	53.98	-25.40
*	21280.00	Peak	н	-	-	-65.67	8.04	-9.54	39.83	73.98	-34.15
	26600.00	Peak	Н	-	-	-48.04	-8.30	-9.54	41.11	68.20	-27.09

Table 7-15. Radiated Measurements

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 60 of 90	
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 69 of 89	
© 2010 DOTECT Engineering Labor	V 0 0 04/0E/2010				

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5500MHz
Channel:	100

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11000.00	Average	н	-	-	-73.36	11.59	0.00	45.23	53.98	-8.75
*	11000.00	Peak	н	-	-	-62.10	11.59	0.00	56.49	73.98	-17.49
	16500.00	Peak	н	-	-	-62.08	15.16	0.00	60.08	68.20	-8.12
	22000.00	Peak	н	-	-	-65.46	8.43	-9.54	40.42	68.20	-27.78
	27500.00	Peak	Н	-	-	-47.97	-8.80	-9.54	40.69	68.20	-27.51

 Table 7-16. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a
6Mbps
1 & 3 Meters
5600MHz
120

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11200.00	Average	н	-	-	-73.37	10.95	0.00	44.58	53.98	-9.40
*	11200.00	Peak	Н	-	-	-62.23	10.95	0.00	55.72	73.98	-18.26
	16800.00	Peak	н	-	-	-62.16	16.70	0.00	61.54	68.20	-6.66
*	22400.00	Average	н	-	-	-77.05	8.11	-9.54	28.52	53.98	-25.46
*	22400.00	Peak	н	-	-	-65.89	8.11	-9.54	39.68	73.98	-34.30
	28000.00	Peak	Н	-	-	-47.76	-9.26	-9.54	40.44	68.20	-27.76

Table 7-17. Radiated Measurements

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 70 of 90	
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 70 of 89	
© 2018 PCTEST Engineering Laboration	V 8 0 04/05/2018				

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5720MHz
Channel:	144

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11440.00	Average	н	-	-	-73.27	11.48	0.00	45.21	53.98	-8.77
*	11440.00	Peak	Н	-	-	-62.08	11.48	0.00	56.40	73.98	-17.58
	17160.00	Peak	Н	-	-	-62.23	15.97	0.00	60.74	68.20	-7.46
*	22880.00	Average	Н	-	-	-77.27	8.28	-9.54	28.47	53.98	-25.51
*	22880.00	Peak	н	-	-	-66.64	8.28	-9.54	39.10	73.98	-34.88
	28600.00	Peak	Н	-	-	-46.02	-9.08	-9.54	42.36	68.20	-25.84

Table 7-18. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: **Operating Frequency:** Channel:

<u>802.11a</u> 6Mbps 1 & 3 Meters 5745MHz 149

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11490.00	Average	Н	-	-	-73.25	11.51	0.00	45.26	53.98	-8.72
*	11490.00	Peak	Н	-	-	-61.67	11.51	0.00	56.84	73.98	-17.14
	17235.00	Peak	н	-	-	-62.43	16.60	0.00	61.17	68.20	-7.03
*	22980.00	Average	Н	-	-	-76.82	8.16	-9.54	28.80	53.98	-25.18
*	22980.00	Peak	н	-	-	-66.24	8.16	-9.54	39.38	73.98	-34.60
	28725.00	Peak	н	-	-	-46.44	-9.24	-9.54	41.78	68.20	-26.42
				Та	hlo 7-19 6	Padiatod M	lagguram	onto			

Table 7-19. Radiated Measurements

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	Ŕ	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 71 of 89	
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset			
© 2018 PCTEST Engineering Labora	V 8.0 04/05/2018				

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5785MHz
Channel:	157

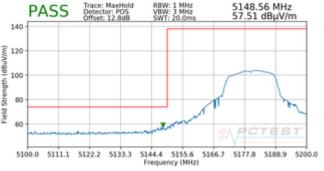
	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11570.00	Average	н	-	-	-73.24	11.65	0.00	45.41	53.98	-8.57
*	11570.00	Peak	Н	-	-	-61.46	11.65	0.00	57.19	73.98	-16.79
	17355.00	Peak	Н	-	-	-61.84	17.13	0.00	62.29	68.20	-5.91
	23140.00	Peak	Н	-	-	-65.54	8.37	-9.54	40.29	68.20	-27.91
	28925.00	Peak	Н	-	-	-46.65	-9.65	-9.54	41.16	68.20	-27.04

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel: 802.11a 6Mbps 1 & 3 Meters 5825MHz 165

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11650.00	Average	н	-	-	-73.34	11.76	0.00	45.42	53.98	-8.56
*	11650.00	Peak	Н	-	-	-61.89	11.76	0.00	56.87	73.98	-17.11
	17475.00	Peak	н	-	-	-62.09	16.41	0.00	61.32	68.20	-6.88
	23300.00	Peak	Н	-	-	-65.88	8.50	-9.54	40.07	68.20	-28.13
	29125.00	Peak	Н	-	-	-46.52	-9.87	-9.54	41.07	68.20	-27.13

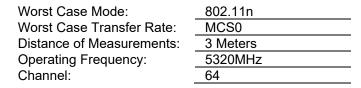
Table 7-21. Radiated Measurements

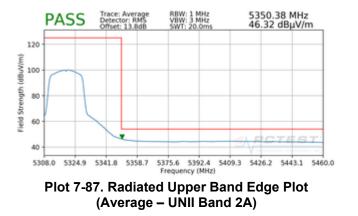
FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N: Test Dates:		EUT Type:		Dogo 72 of 90	
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 72 of 89	
© 2018 PCTEST Engineering Labor	V 8 0 04/05/2018				

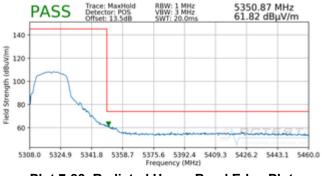


7.7.2 Radiated Band Edge Measurements (20MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]; RSS-Gen [8.9]

Worst Case Mode:	802.11n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5180MHz
Channel:	36

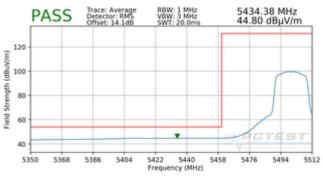

Plot 7-85. Radiated Lower Band Edge Plot (Average – UNII Band 1)



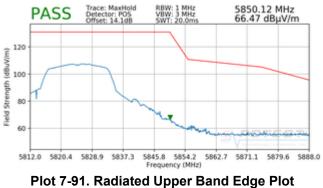

Trace: MaxHold Detector: POS

PASS

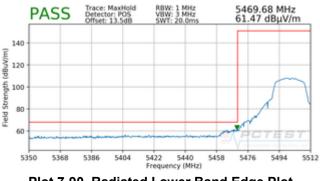
Plot 7-86. Radiated Lower Band Edge Plot (Peak – UNII Band 1)



FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 72 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 73 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.0 04/05/2018

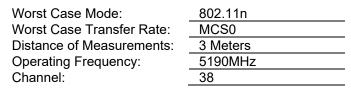


Worst Case Mode:	802.11n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5500MHz
Channel:	100



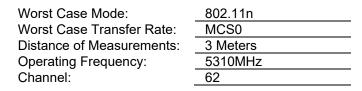
Worst Case Mode:	802.11n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5825MHz
Channel:	165

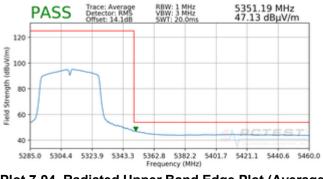
(Peak – UNII Band 3)



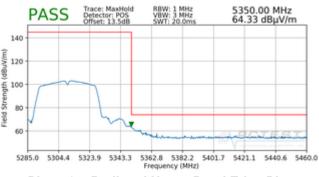
Plot 7-90. Radiated Lower Band Edge Plot (Peak – UNII Band 2C)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 74 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 74 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.0 04/05/2018



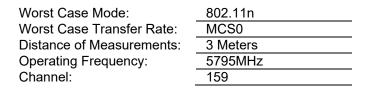

7.7.3 Radiated Band Edge Measurements (40MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]

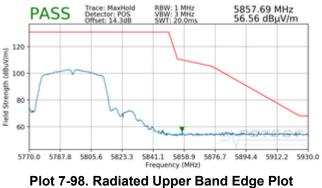
Plot 7-92. Radiated Lower Band Edge Plot (Average – UNII Band 1)



Plot 7-93. Radiated Lower Band Edge Plot (Peak – UNII Band 1)

Plot 7-95. Radiated Upper Band Edge Plot (Peak – UNII Band 2A)

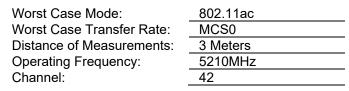

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 75 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 75 of 89
© 2018 PCTEST Engineering Laboratory. Inc.				V 8.0 04/05/2018



Worst Case Mode:	802.11n
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5510MHz
Channel:	102

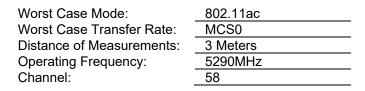
Plot 7-96. Radiated Lower Band Edge Plot (Average – UNII Band 2C)

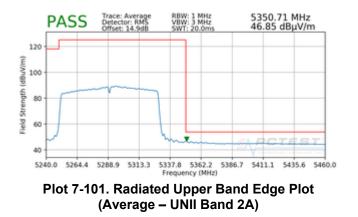
(Peak – UNII Band 3)

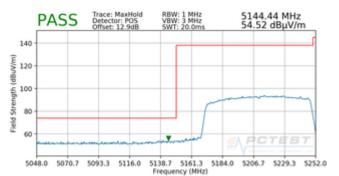


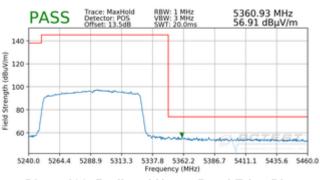
Plot 7-97. Radiated Lower Band Edge Plot (Peak – UNII Band 2C)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 76 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 76 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.0 04/05/2018

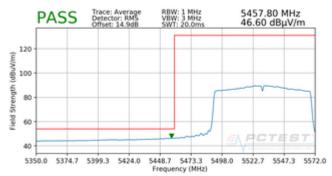



7.7.4 Radiated Band Edge Measurements (80MHz BW) §15.407(b.1)(b.2) §15.205 §15.209; RSS-Gen [8.9]

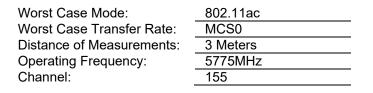


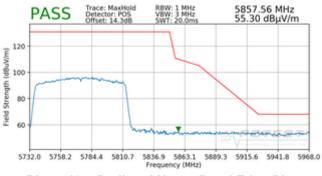

Plot 7-99. Radiated Lower Band Edge Plot (Average – UNII Band 1)

Plot 7-100. Radiated Lower Band Edge Plot (Peak – UNII Band 1)



Plot 7-102. Radiated Upper Band Edge Plot (Peak – UNII Band 2A)


FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	G	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 77 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 77 of 89
© 2018 PCTEST Engineering Laboratory. Inc.				V 8.0 04/05/2018



Worst Case Mode:	802.11ac
Worst Case Transfer Rate:	MCS0
Distance of Measurements:	3 Meters
Operating Frequency:	5530MHz
Channel:	106

Plot 7-105. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 79 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 78 of 89
© 2018 PCTEST Engineering Laboratory, Inc.				V 8.0 04/05/2018

7.7 Radiated Spurious Emissions Measurements – Below 1GHz §15.209; RSS-Gen [8.9]

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 6 of RSS-Gen (8.10) must not exceed the limits shown in Table 7-22 per Section 15.209 and RSS-Gen (8.9).

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 7-22. Radiated Limits

Test Procedures Used

ANSI C63.10-2013

Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 120kHz (for emissions from 30MHz 1GHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 70 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 79 of 89
© 2018 PCTEST Engineering Labor	atory, Inc.			V 8.0 04/05/2018

The EUT and measurement equipment were set up as shown in the diagrams below.

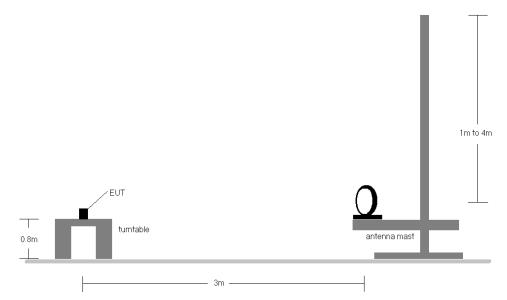
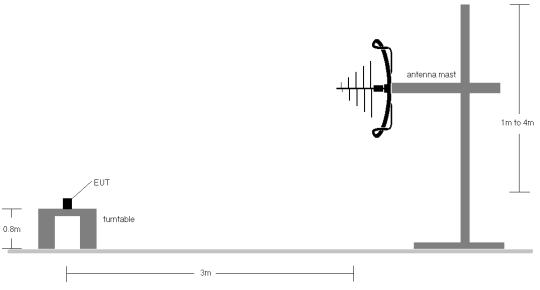
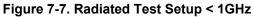




Figure 7-6. Radiated Test Setup < 30MHz

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 90 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 80 of 89
© 2018 PCTEST Engineering Labora	atory, Inc.	•		V 8.0 04/05/2018

- 1. All emissions lying in restricted bands specified in §15.205 and RSS-Gen (8.10) are below the limit shown in Table 7-22.
- 2. The broadband receive antenna is manipulated through vertical and horizontal polarizations during the tests. The EUT is manipulated through three orthogonal planes.
- 3. This unit was tested with its standard battery.
- 4. The spectrum is investigated using a peak detector and final measurements are recorded using CISPR quasi peak detector. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 5. Emissions were measured at a 3 meter test distance.
- 6. Emissions are investigated while operating on the center channel of the mode, band, and modulation that produced the worst case results during the transmitter spurious emissions testing.
- 7. No spurious emissions were detected within 20dB of the limit below 30MHz.
- 8. The results recorded using the broadband antenna is known to correlate with the results obtained by using a tuned dipole with an acceptable degree of accuracy. The VSWR for the measurement antenna was found to be less than 2:1.
- The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. There were no emissions detected in the 30MHz – 1GHz frequency range, as shown in the subsequent plots.

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 91 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 81 of 89
© 2018 PCTEST Engineering Labor	atory. Inc.	•		V 8.0 04/05/2018

Radiated Spurious Emissions Measurements (Below 1GHz) §15.209; RSS-Gen [8.9]

Plot 7-106. Radiated Spurious Plot below 1GHz (802.11a - U3 Ch. 157)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 92 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 82 of 89
© 2018 PCTEST Engineering Labora	atory, Inc.	•		V 8.0 04/05/2018

7.8 Line-Conducted Test Data §15.407; RSS-Gen [8.8]

Test Overview and Limit

All AC line conducted spurious emissions are measured with a receiver connected to a grounded LISN while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for conducted spurious emissions. Only the conducted emissions of the configuration that produced the worst case emissions are reported in this section.

All conducted emissions must not exceed the limits shown in the table below, per Section 15.207 and RSS-Gen (8.8).

Frequency of emission	Conducted	Limit (dBµV)
(MHz)	Quasi-peak	Average
0.15 – 0.5	66 to 56*	56 to 46*
0.5 – 5	56	46
5 – 30	60	50

Table 7-23. Conducted Limits

*Decreases with the logarithm of the frequency.

Test Procedures Used

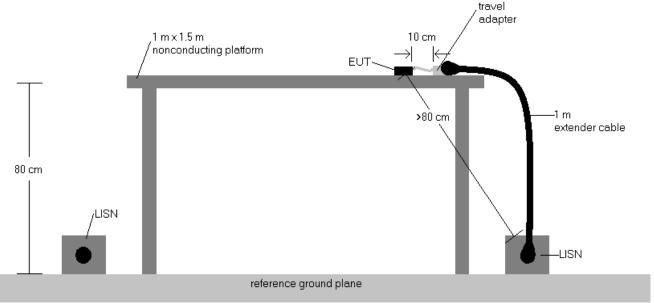
ANSI C63.10-2013, Section 6.2

Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

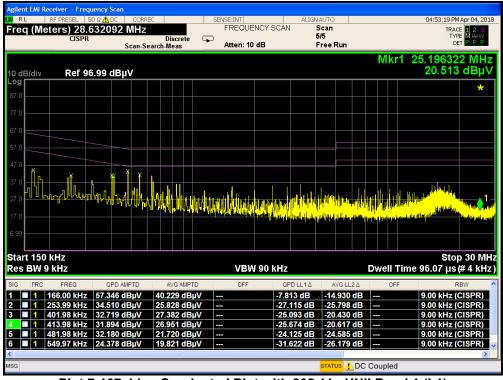
Average Field Strength Measurements

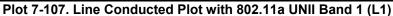

- 1. Analyzer center frequency was set to the frequency of the spurious emission of interest
- 2. RBW = 9kHz (for emissions from 150kHz 30MHz)
- 3. Detector = RMS
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

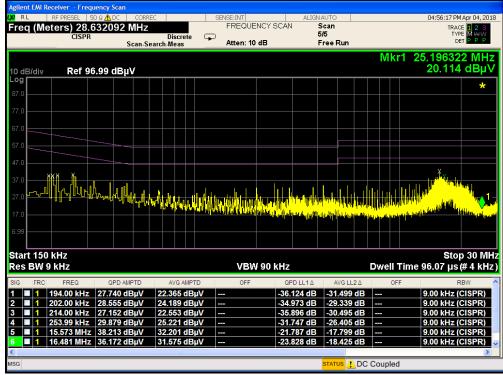
FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 92 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset	Page 83 of 89
© 2018 PCTEST Engineering Labora	atory Inc		V 8 0 04/05/2018

Test Setup

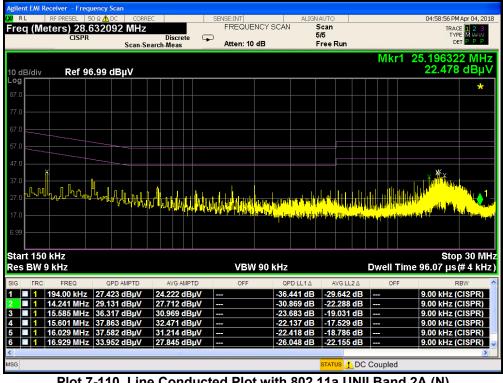
The EUT and measurement equipment were set up as shown in the diagram below.




Test Notes


- 1. All modes of operation were investigated and the worst-case emissions are reported using mid channel. The emissions found were not affected by the choice of channel used during testing.
- 2. The limit for an intentional radiator from 150kHz to 30MHz are specified in 15.207 and RSS-Gen (8.8).
- 3. Corr. (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4. QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Corr. (dB)
- 5. Margin (dB) = QP/AV Limit (dB μ V) QP/AV Level (dB μ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 94 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 84 of 89
© 2018 PCTEST Engineering Labora	atory, Inc.			V 8.0 04/05/2018

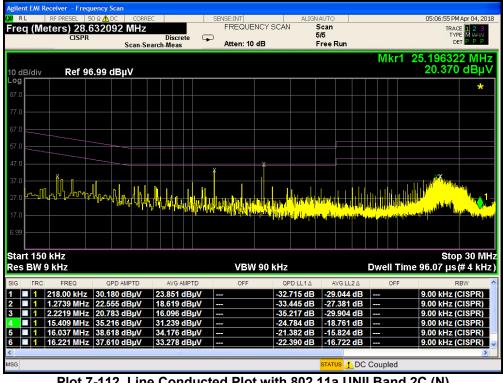

Plot 7-108. Line Conducted Plot with 802.11a UNII Band 1 (N)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 95 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 85 of 89
© 2018 PCTEST Engineering Labor	atory Inc.	•		V 8 0 04/05/2018

	ceiver - Fred			CODDE	c					-			LICAL							01		D14 4 0	4.00
	RF PRESEL	50 Ω <u>≜</u> ເ 6320						58	ENSE:INT		ICY SC		LIGN A	can						05		PM Apr 0	
oq (mo	CISPR			an-Se		iscre leas	te	₽	Atter	n: 10 c	IB		5/ Fi	/5 ree F	Run						٦	TYPE M	₩₩ P P
																	IV	lkr	1	25.1	963	22 N	ΛН
dB/div	Ref 9	6.99 (lBμ∖	1																2	0.27	'0 dE	3μ)
^{pg}																							*
7.0																							
7.0																		\vdash					
7.0																							
	~~~~~																						
'.0 <b> </b>												_											
														,							~ X		
᠂ᡁᡙ᠕	արի խուս	ጤ	л.	h	. ، ار		- 1					1	.11		пL				սե. հ	u. Û	All the second		
	- U U	in find pl	ի իլերով	ՙՙո՛հվի	MJ,	W.	L.	Mud.	h Li An	i papi a	ud lat		<mark>n hull</mark> i	10.04	<mark>(M</mark> a)	<mark>A W</mark> I			Ninh J	110	يقليان	Constant of the local division of the local	
							Ϋ́	ורידרו	ur t bi	d all u	<b>H</b> iy	ad the	ıtı <mark>h</mark> ter	u <mark>ilu</mark>	ll _{idente}	, the p	un in	an ai	ndi ini	al de la	Phil.	M Caragana	and they
99																							
art 150	kHz																				St	op 30	M
es BW 9	kHz								v	BW	90 kH	z					Dwe	1	۲ime	e 96.		s (# 4	
G TRC	FREQ	QF	PD AMP	TD	A	VG AI	MPTD	1	C	FF		QPD LL	1Δ	A	VG LL2	2 Δ		OFF				RBW	
	186.00 kHz		95 dB		39.1							6.718			.101 (							(CISF	
	1.2337 MHz				19.9							4.291			.063								
	13.805 MHz 14.685 MHz				22.3		iBµ\ iBu\					1.514 8.051			.662							CISF	
	4.697 MHz				23.5	64 c	lBμ\	/ -				7.601		-26	.436	dB				9.0	0 kHz	(CISF	R)
<b>1</b> 1	16.013 MHz	31.8	85 dB	μV	24.1	98 c	iBµ\	- 1			-2	8.115	dB	-25	.802	dB				9.0	0 kHz	(CISF	_
				_			_	_	_	_	_	_	_	_		2.0	-		_	_	_		>
3														STATI	JS 🚺	DC	Coup	bled					

Plot 7-109. Line Conducted Plot with 802.11a UNII Band 2A (L1)




Plot 7-110. Line Conducted Plot with 802.11a UNII Band 2A (N)

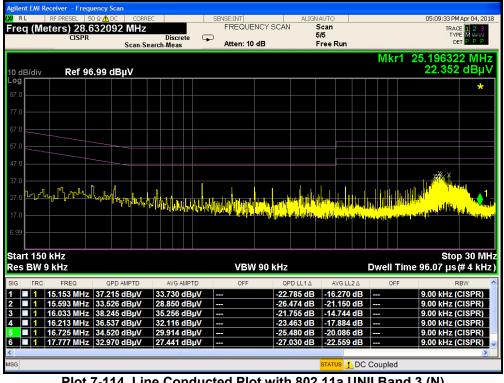
FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 96 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 86 of 89
© 2018 PCTEST Engineering Labor	atory. Inc.	•		V 8.0 04/05/2018



	RF PRESEL			DRREC				SENSE:IN	тl		ALIC	NAUTO						05.0	M-22 D	4 Apr 04, 20
	ters) 28. CISPR	63209	2 MF			rete is	Ģ	FRE		Y SCAN		Scan 5/5 Free						03.0	TRA TY	CE 1 2 3 PE M WAW ET P P P
) dB/div	Ref 9	6.99 d	Βμ٧												M	lkr	12			2 MH dBµ`
<b>og</b> 7.0																				*
7.0																				
7.0			-																	
7.0		× ×								×								11 4		
7.0 <b>「「」、」</b>	ᡟ᠘᠘ᡁᠬᢦᡡᡰ	᠂ᡀ᠕	h li di		ŴV								^u n'n <mark>n</mark> h			hhh		and ^{an}	n an	
99											alar <b>t</b> alih	i nev ha				10 ( <b>1</b> - 11				
art 150 es BW 9								v	BW 9	0 kHz					Dwe		'ime	96.0		」 p 30 M (# 4 kH
G TRC	FREQ	QPI	D AMPTE	)	AVG	AMPT	ſD	0	)FF	QI	PD LL1 A	A	WG LL2			OFF				RBW
	206.00 kHz				4.92						335 dB		.438							CISPR)
	301.99 kHz 321.99 kHz		9 dBµ\ 6 dBµ\		3.449 9.114						.969 dB .190 dB		.739 .541							CISPR) CISPR)
	381.98 kHz				8.419						.297 dB		.817							CISPR)
	461.98 kHz	27.15	4 dBµ\	/ 2	3.81						.503 dB		.843					9.00	kHz (	CISPR)
	2.4458 MHz	33.54	5 dBµ\	/ 2	2.299	dB	μV			-22	.455 dB	-23	.701	dB				9.00	kHz (	CISPR)

Plot 7-111. Line Conducted Plot with 802.11a UNII Band 2C (L1)




Plot 7-112. Line Conducted Plot with 802.11a UNII Band 2C (N)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 97 of 90
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 87 of 89
© 2018 PCTEST Engineering Labor	atory. Inc.	•		V 8.0 04/05/2018



RL	RF PRESEL	50 Ω 🚹	DC	CORR	EC				SENSE				ALIG	IN AUTO						05	5:12:09 F	M Apr 04, 20
eq (Me	ters) 28. CISPR			/IHz can-Se		Discı Mea:		Ŧ	)	REQUE		SCAN		Scan 5/5 Free							T	ACE 123 /PE MWWW DET P P P
dB/div	Ref 9	96.99	dBµ\	ſ													Ν	Λk	r1			22 MH 2 dBµ
<b>9</b> .0																						*
.0																						
.0																						
.0							+											╪				
.0						+	+								$\square$			╞				
.0 .0 <mark>21</mark>	Խմուրիմ	Նև _{ստվ} ո	«		1					Windou	Helyd				hellol p	l'mr			l b _a ura		Lander	
.0									lindia.	<b>WAUN</b>	المتقار	line,	i ^{la} ngingi Mangang Mangang Mangang Mangang Mangang Mangang Mangang Mangang Mangang Mangang Mangang Mangang Mangang Mangang Mangang Mangang Mangang Mangang Mangang Mangang Mangang Mangang Mangang Mangang Mangang Mangang Mangang Mangang Mangang Mangang Mangang Mangang Mangang Mangang Mangang Mangan Mangang Mangang Man	n di parte de la constante de la La constante de la constante de	1. I. P.		disor(p)	al ai		<mark>in 1997 in 1997 in 19</mark> 97 in 1997 in 19		Address Million of Links
art 150 es BW 9										VBV	V 90	kHz					Dw	ell	Tim	e 96		op 30 M s(#4 kH
TRC	FREQ		PD AMF			AVG				OFF			D LL1∆		AVG LL			OF	F			RBW
	2.4498 MHz 1.6737 MHz	z 31.4		μV	20	166 823	dB	μV				-24.	667 dE 588 dE	-2	3.834 5.177	dB				9.0	)0 kHz	(CISPR) (CISPR)
	6.8935 MHz 12.449 MHz					050 697							847 dE 778 dE		0.950 0.303							(CISPR) (CISPR)
	14.689 MHz 16.889 MHz					355 414							321 dE 347 dE		5.645 6.586							(CISPR) (CISPR)
					_				_													>

Plot 7-113. Line Conducted Plot with 802.11a UNII Band 3 (L1)



Plot 7-114. Line Conducted Plot with 802.11a UNII Band 3 (N)

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager	
Test Report S/N: Test Dates:		EUT Type:		Dage 80 of 80	
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset		Page 88 of 89	
© 2018 PCTEST Engineering Labor	atory. Inc.	·		V 8.0 04/05/2018	



### 8.0 CONCLUSION

The data collected relate only the item(s) tested and show that the **LG Portable Handset FCC ID: ZNFQ710AL** is in compliance with Part 15 Subpart E (15.407) of the FCC Rules.

FCC ID: ZNFQ710AL		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 90 of 90		
1M1804240083-06-R2.ZNF	3/22-5/17/2018	Portable Handset	Page 89 of 89			
© 2018 PCTEST Engineering Labora	V 8.0 04/05/2018					