

Page 1 of 24

JQA File No.: KL80050605 Issued Date: February 1, 2006

TEST REPORT (SAR EVALUATION)

APPLICANT : Sharp Corporation, Communication Systems Group

ADDRESS : 2-13-1, Iida, Hachihonmatsu, Higashi-Hiroshima City, Hiroshima,

739-0192, Japan

PRODUCTS : Tri-band GSM Mobile Phone / Bluetooth Enable

MODEL NO. : GX29

SERIAL NO. : 004401/11/008185/4 **FCC ID** : APYHRO00046

TEST STANDARD : CFR 47 FCC Rules and Regulations Part 2

TESTING LOCATION: Japan Quality Assurance Organization

KITA-KANSAI Testing Center

1-7-7, Ishimaru, Minoh-shi, Osaka 562-0027, Japan

TEST RESULTS : Passed

DATE OF TEST : January 23, 2006 - January 24, 2006

Yuichi Fukumoto

Manager

Japan Quality Assurance Organization

1. Fukumt

KITA-KANSAI Testing Center Testing Dept. EMC Division

1-7-7, Ishimaru, Minoh-shi, Osaka 562-0027, Japan

- The measurement values stated in Test Report was made with traceable to National Institute of Advanced Industrial Science and Technology (AIST) of Japan, National Institute of Information and Communications Technology (NICT) of Japan, and Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zürich, Switzerland.
- The applicable standard, testing condition and testing method which were used for the tests are based on the request of the applicant.
- The test results presented in this report relate only to the offered test sample.
- The contents of this test report cannot be used for the purposes, such as advertisement for consumers.
- This test report shall not be reproduced except in full without the written approval of JQA.

JQA File No. : KL80050605 Model No. : GX29

Regulation : CFR 47 FCC Rules and Regulations Part 2

Page 2 of 24

Issue Date: February 1, 2006

: APYHRO00046

FCC ID

TABLE OF CONTENTS

		Page
Docum	entation	3
1	Test Regulation	3
2	Test Location	3
3	Recognition of Test Laboratory	3
4	Description of the Equipment Under Test	4
5	Measurement System Diagram	5
6	System Components	6
7	Measurement Process	8
8	Measurement Uncertainties	9
9	Equipment Under Test Modification	11
10	Responsible Party	11
11	Deviation from Standard	11
12	Test Results	12
13	Summary	13
14	Test Arrangement	14
15	Equipment Under Test Tune-Up Procedures	18
Append	dix A: Test Data	19
A.1	System Validation	19
A.2	Tissue Verification	20
A.3	SAR Measurement Data	21
Append	dix B: Test Instruments	23
Append	dix C: Attachments	24

<u>DEFINITIONS FOR ABBREVIATION AND SYMBOLS USED IN THIS TEST REPORT</u>

"EUT"	means	Equipme	ent Under	the Test.

\boxtimes	-	indicates	that	the	listed	condition	, standard	or equi	oment is	applicable	for	this	report.
		_	_	_		_				_		_	_

[&]quot;N/A" means that Not Applicable.

[&]quot;N/T" means that Not Tested.

indicates that the listed condition, standard or equipment is not applicable for this report.

Regulation : CFR 47 FCC Rules and Regulations Part 2

Page 3 of 24

Documentation

1 Test Regulation

Applied Standard : CFR 47 FCC Rules and Regulations Part 2

Radio-frequency Radiation Exposure Evaluation (§2.1091 and §2.1093)

Test Procedure : FCC/OET Bulletin 65 Supplement C (June 2001) and IEEE Std.1528–2003

Exposure Limits : ANSI/IEEE Std. C95.1–1992

2 Test Location

KITA-KANSAI Testing Center

7-7, Ishimaru, 1-chome, Minoh-shi, Osaka, 562-0027, Japan

KAMEOKA EMC Branch

9-1, Ozaki, Inukanno, Nishibetsuin-cho, Kameoka-shi, Kyoto, 621-0126, Japan

3 Recognition of Test Laboratory

JQA KITA-KANSAI Testing Center Testing Department EMC Division is recognized under ISO/IEC 17025 by following accreditation bodies and the test facility of Testing Division is registered by the following bodies.

VLAC Code : VLAC-001-2 (Effective through : April 3, 2006) NVLAP Lab Code : 200191-0 (Effective through : June 30, 2006) BSMI Recognition No. : SL2-IS-E-6006, SL2-IN-E-6006, SL2-AI-E-6006

(Effective through: September 14, 2007)

VCCI Registration No. : R-006, R-008, R-1117, C-006, C-007, C-1674, C-2143

(Effective through : April 3, 2006)

FCC Registration No. : 683630 (Effective through: June 30, 2006)

IC Registration No. : IC 4125-1, IC 6217-1, IC 6217-2 (Effective through: November 16, 2008)

Accredited as conformity assessment body for Japan electrical appliances and material law by METI. (Effective through: February 24, 2007)

Accredited as conformity assessment body for Article 2, Paragraph 8, Item 5 on law for implementation of the Mutual Recognition between Japan and the European Community by METI.

(Effective through: August 7, 2007)

Regulation : CFR 47 FCC Rules and Regulations Part 2

Page 4 of 24

4 Description of the Equipment Under Test

1. Manufacturer : Sharp Corporation, Communication Systems Group

2-13-1, Iida, Hachihonmatsu, Higashi-Hiroshima City, Hiroshima,

739-0192, Japan

2. Products : Tri-band GSM Mobile Phone / Bluetooth Enable

3. Model No. : GX29

4. Serial No. : 004401/11/008185/4

5. Product Type : Pre-production

6. Date of Manufacture : --

7. Transmitting Frequency : 1850.20 MHz – 1909.80 MHz

8. Receiving Frequency : 1930.20 MHz – 1989.80 MHz

9. Max. RF Output Power

(Conducted / Peak)

29.04 dBm (GSM), 29.14 dBm (GPRS)

10. Antenna : L type antenna

Length 38.48 mm / Width 12.38 mm

11. Battery Option : Lithium-ion Battery Pack XN-1BT30 (780mAh)

12. Power Rating : 3.9VDC13. EUT Grounding : None

14. Device Category : Portable Device (§2.1093)

15. Exposure Category : General Population/Uncontrolled Exposure

16. FCC Rule Part(s) : 24(E)

17. EUT Authorization : Certification

18. Received Date of EUT : January 23, 2006

NOTE 1: This device contains GSM 900 MHz and DCS 1800 MHz functions not operational in U.S.

territories. This report is only appliance for PCS 1900 MHz band.

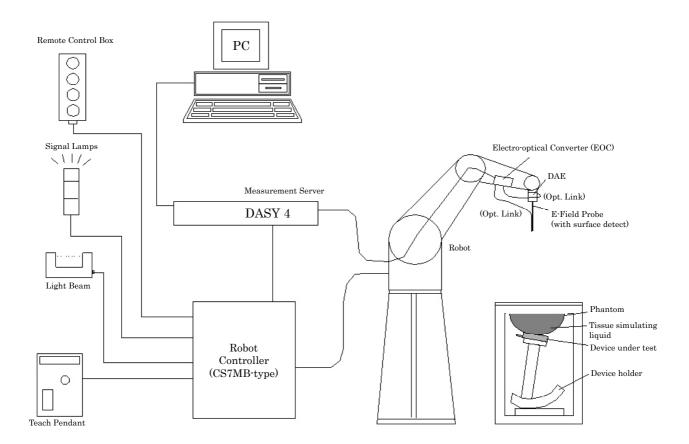
NOTE 2: Information for Bluetooth Function

Transmitting Frequency : 2402 MHz - 2480 MHzReceiving Frequency : 2402 MHz - 2480 MHz

Antenna Type : L type (inside)

Antenna Dimensions : Length 16.8 mm / Width 4.4 mm

JQA File No. : KL80050605 Issue Date : February 1, 2006 Model No. : GX29 FCC ID : APYHRO00046


Regulation : CFR 47 FCC Rules and Regulations Part 2

Page 5 of 24

5 Measurement System Diagram

These measurements are performed using the DASY4 automated dosimetric assessment system (manufactured by Schmid & Partner Engineering AG (SPEAG) in Zürich, Switzerland). It consists of high precision robotics system, cell controller system, DASY4 measurement server, personal computer with DASY4 software, data acquisition electronic (DAE) circuit, the Electro-optical converter (EOC), near-field probe, and the twin SAM phantom containing the equivalent tissue. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF).

The Robot is connected to the cell controller to allow software manipulation of the robot. The DAE is connected to the EOC. The DAE performs the signal amplification, signal multiplexing, A/D conversion, offset measurements, mechanical surface detection, collision detection, etc. The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server.

Regulation : CFR 47 FCC Rules and Regulations Part 2

Page 6 of 24

6 System Components

6.1 Probe Specification

Construction : Symmetrical design with triangular core

Built-in optical fiber for surface detection system

Built-in shielding against static changes

Calibration : In air form 10 MHz to 2.5 GHz

In head tissue simulating liquid (HSL) and

muscle tissue simulating liquid 900 MHz (accuracy \pm 11.0%; k=2) 1450 MHz (accuracy \pm 11.0%; k=2) 1810 MHz (accuracy \pm 11.0%; k=2) 1950 MHz (accuracy \pm 11.0%; k=2) 2450 MHz (accuracy \pm 11.8%; k=2)

Frequency : 10 MHz to 3 GHz (dosimetry);

Linearity: ±0.2 dB (30 MHz to 3 GHz)

Directivity $\pm 0.2 \text{ dB}$ in HSL (rotation around probe axis)

± 0.4 dB in HSL (rotation normal probe axis)

Dynamic Range : $5 \mu \text{W/g}$ to >100 mW/g; Linearity: $\pm 0.2 \text{ dB}$

Surface Detection $\div \pm 0.2$ mm repeatability in air and clear liquids over diffuse reflecting surfaces

Dimensions : Overall length 330 mm

 $\begin{array}{ll} \text{Tip length} & 16 \text{ mm} \\ \text{Body diameter} & 12 \text{ mm} \\ \text{Tip diameter} & 6.8 \text{ mm} \end{array}$

Distance from probe tip to dipole centers 2.7 mm

Regulation : CFR 47 FCC Rules and Regulations Part 2

Page 7 of 24

6.2 Twin SAM Phantom

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528-2003, CENELEC 50361 and IEC 62209-1. It enables the dosimetric evaluation of left and right head phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.

Shell Thickness : $2 \pm 0.2 \text{ mm}$

Filling Volume : Volume Approx. 25 liters

Dimensions : $810 \times 1000 \times 500 \text{ mm} (H \times L \times W)$

6.3 Mounting Device for Transmitters

The Mounting Device enables the rotation of the mounted transmitter in spherical coordinates, whereby the rotation point is the ear opening. The devices can be easily and accurately positioned according to IEC, IEEE, CENELEC, FCC or other specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

6.4 Typical Composition of Ingredients for Liquid Tissue

Inquedients	Frequency (MHz)							
Ingredients (% by weight)	88	35	19	00	2450			
(% by weight)	Head	Body	Head	Body	Head	Body		
Water	41.45	52.40	54.90	40.40	62.70	73.20		
Salt (NaCl)	1.45	1.40	0.18	0.50	0.50	0.04		
Sugar	56.00	45.00	0.00	58.00	0.00	0.00		
HEC	1.00	1.00	0.00	1.00	0.00	0.00		
Bactericide	0.10	0.10	0.00	0.10	0.00	0.00		
Triton X-100	0.00	0.00	0.00	0.00	36.80	0.00		
DGBE	0.00	0.00	44.92	0.00	0.00	26.70		

Salt : 99+% Pure Sodium Chloride Sugar : 98+% Pure Sucrose Water : De-ionized, 16 $M\Omega^+$ resistivity HEC : Hydroxyethyl Cellulose DGBE : 99+% Di (ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure) : Polyethylene glycol mono [4-(1,1,3,3-tetramethylbuthyl)phenyl]ether

The composition of ingredients is according to FCC/OET Bulletin 65 Supplement C.

JQA File No. : KL80050605 Issue Date : February 1, 2006 Model No. : GX29 FCC ID : APYHRO00046

Regulation : CFR 47 FCC Rules and Regulations Part 2

Page 8 of 24

7 Measurement Process

Area Scan for Maximum Search:

The SAR distribution at the exposed side of the head was measured at a distance of 3.9 mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was $10 \text{ mm} \times 10 \text{ mm}$. The evaluation on the measured area scan gives the interpolated maximum (hot spot) of the measured area.

Cube Scan for Spatial Peak SAR Evaluation:

The 1g and 10g peak evaluations were available for the predefined cube 5×5×7 scans. The grid spacing was 8 mm × 8 mm × 5 mm. The first procedure is an extrapolation to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume in a 1mm grid (35000 points). In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is moved around until the highest averaged SAR is found. This last procedure is repeated for a 10g cube. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

Extrapolation:

The extrapolation is based on a least square algorithm. Through the points in the first 3 cm in all z-axis, polynomials of order four are calculated. This polynomial is then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1 mm from one another.

Interpolation:

The maximum interpolated value is serched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) are computed by the 3D spline algorithm. The 3D spline is composed of three one-dimensional splines with the "Not a knot" –condition (x, y and z –directions). The volume is integrated with the trapezoidal algorithm.

Regulation : CFR 47 FCC Rules and Regulations Part 2

Page 9 of 24

8 Measurement Uncertainties

8.1 Uncertainties for System Validation

Uncertainty Component	Uncertainty value	Probability	Divisor	c_i	c_i		dard inty (%)	$\mathbf{v_i}$
, i	(%)	distribution		(1g)	(10g)	1g	10g	
Measurement System								
Probe calibration	4.8	Normal	1	1	1	4.8	4.8	8
Axial isotropy	4.7	Rectangular	$\sqrt{3}$	1	1	2.7	2.7	8
Hemispherical isotropy	0.0	Rectangular	$\sqrt{3}$	1	1	0.0	0.0	∞
Boundary effect	1.0	Rectangular	$\sqrt{3}$	1	1	0.6	0.6	8
Linearity	4.7	Rectangular	$\sqrt{3}$	1	1	2.7	2.7	8
Detection limits	1.0	Rectangular	$\sqrt{3}$	1	1	0.6	0.6	8
Readout electronics	1.0	Normal	1	1	1	1.0	1.0	8
Response time	0.0	Rectangular	$\sqrt{3}$	1	1	0.0	0.0	8
Integration time	0.0	Rectangular	$\sqrt{3}$	1	1	0.0	0.0	∞
RF ambient conditions	3.0	Rectangular	$\sqrt{3}$	1	1	1.7	1.7	∞
Mechanical tolerance	0.4	Rectangular	$\sqrt{3}$	1	1	0.2	0.2	8
Probe positioning	2.9	Rectangular	$\sqrt{3}$	1	1	1.7	1.7	8
Extrapolation, interpolation and	1.0	Rectangular	$\sqrt{3}$	1	1	0.6	0.6	∞
integration algorithms								
Dipole								
Dipole axis to liquid distance	2.0	Rectangular	$\sqrt{3}$	1	1	1.2	1.2	∞
Input power and SAR drift	4.7	Rectangular	$\sqrt{3}$	1	1	2.7	2.7	∞
measurement								
Physical parameters								
Phantom uncertainty	4.0	Rectangular	$\sqrt{3}$	1	1	2.3	2.3	8
Liquid conductivity -	5.0	Rectangular	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
deviation from target values								
Liquid Conductivity -	2.5	Normal	1	0.64	0.43	1.6	1.1	∞
measurement uncertainty								
Liquid Permittivity -	5.0	Rectangular	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
deviation from target values								
Liquid Permittivity -	2.5	Normal	1	0.6	0.49	1.5	1.2	∞
measurement uncertainty								
Combined Standard						8.4	8.1	
Uncertainty								
Expanded Uncertainty (k=2)						16.8	16.2	
(confidence interval of 95%)								

NOTE: The above measurement uncertainties are according to IEEE Std.1528-2003.

Regulation : CFR 47 FCC Rules and Regulations Part 2

Page 10 of 24

8.2 Uncertainties for SAR Measurement

Uncertainty Component	Uncertainty value	Probability distribution	Divisor	c_i	c _i (10g)	Standard Uncertainty (%)		V _i
	(%)	distribution		(1g)	(10g)	1g	10g	
Measurement System								
Probe calibration	4.8	Normal	1	1	1	4.8	4.8	8
Axial isotropy	4.7	Rectangular	$\sqrt{3}$	0.7	0.7	1.9	1.9	8
Hemispherical isotropy	9.6	Rectangular	$\sqrt{3}$	0.7	0.7	3.9	3.9	8
Boundary effect	1.0	Rectangular	$\sqrt{3}$	1	1	0.6	0.6	8
Linearity	4.7	Rectangular	$\sqrt{3}$	1	1	2.7	2.7	8
Detection limits	1.0	Rectangular	$\sqrt{3}$	1	1	0.6	0.6	8
Readout electronics	1.0	Normal	1	1	1	1.0	1.0	8
Response time	0.8	Rectangular	$\sqrt{3}$	1	1	0.5	0.5	8
Integration time	2.6	Rectangular	$\sqrt{3}$	1	1	1.5	1.5	8
RF ambient conditions	3.0	Rectangular	$\sqrt{3}$	1	1	1.7	1.7	8
Mechanical tolerance	0.4	Rectangular	$\sqrt{3}$	1	1	0.2	0.2	∞
Probe positioning	2.9	Rectangular	$\sqrt{3}$	1	1	1.7	1.7	8
Extrapolation, interpolation and	1.0	Rectangular	$\sqrt{3}$	1	1	0.6	0.6	8
integration algorithms								
Test Sample Related								
Device positioning	3.4	Normal	1	1	1	3.4	3.4	23
Device holder uncertainty	4.6	Normal	1	1	1	4.6	4.6	5
Output power drift	5.0	Rectangular	$\sqrt{3}$	1	1	2.9	2.9	8
Physical parameters								
Phantom uncertainty	4.0	Rectangular	$\sqrt{3}$	1	1	2.3	2.3	∞
Liquid conductivity -	5.0	Rectangular	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
deviation from target values								
Liquid Conductivity -	2.5	Normal	1	0.64	0.43	1.6	1.1	8
measurement uncertainty								
Liquid Permittivity -	5.0	Rectangular	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
deviation from target values								
Liquid Permittivity -	2.5	Normal	1	0.6	0.49	1.5	1.2	∞
measurement uncertainty								
Combined Standard						10.8	10.6	
Uncertainty								
Expanded Uncertainty (k=2)						21.6	21.2	
(confidence interval of 95%)								

NOTE: The above measurement uncertainties are according to IEEE Std. 1528–2003.

JQA File No. : KL80050605 Issue Date \div February 1, 2006 Model No. : GX29 FCC ID : APYHRO00046

Regulation : CFR 47 FCC Rules and Regulations Part 2

Page 11 of 24

9	Equipment Ur	nder Test Modification										
	 □ - No modifications were conducted by JQA to achieve compliance to the limitations. □ - To achieve compliance to the limitations, the following changes were made by JQA during the compliance test. 											
	The modifications will be implemented in all production models of this equipment.											
	Applicant Date Typed Name Position	: Not Applicable: Not Applicable: Not Applicable: Not Applicable										
10	Responsible Pa	Responsible Party of Test Item (Product)										
	Responsible	e Party :										
	Contact Per	rson :Signatory										
11		n Standard Itions from the standard described in clause 1. Wing deviations were employed from the standard described in clause 1.	_									

Regulation : CFR 47 FCC Rules and Regulations Part 2

Page 12 of 24

12 Test Results

12.1 SAR Measuremen	nt for Head Configuration										
The requirements are	\square - Applicable $[\square$ - Tested. \square - Not Applicable	☐ - Not tested by app	plicant request.]								
	⊠ - Passed □ - Failed □] - Not judged									
Maximum SAR (1g)		<u>0.697</u> mW/g at	1909.80 MHz								
Phantom Position		🛚 - Left Head	- Right Head								
Device Position		🛮 - Cheek/Touch	☐ - Ear/Tilt								
Antenna Position		🗌 - In 🔲 - Out									
Modulation Type			GSM								
Remarks:											
	⊠ - Passed □ - Failed □] - Not judged									
Maximum SAR (1g)	-	0.612 mW/g at	1909.80 MHz								
Modulation Type			GSM+GPRS								
Remarks:											

Regulation : CFR 47 FCC Rules and Regulations Part 2

Page 13 of 24

13 Summary

General Remarks:

The EUT was tested according to the requirements of CFR 47 FCC Rules and Regulations Part 2 under the test configuration, as shown in clause 14 to 15.

The conclusion for the test items of which are required by the applied regulation is indicated under the final judgment.

Final Judgment:

The "as received" sample;

 \boxtimes - fulfill the test requirements of the regulation mentioned on clause 1.

doesn't fulfill the test requirements of the regulation mentioned on clause 1.

Reviewed by:

Shigeru Kinoshita Deputy Manager

Testing Dept. EMC Div.

JQA KITA-KANSAI Testing Center

Tested by:

Yasuhisa Sakai

Engineer

Testing Dept. EMC Div.

JQA KITA-KANSAI Testing Center

JQA File No. : KL80050605 Issue Date : February 1, 2006 Model No. : GX29 FCC ID : APYHRO00046

Regulation : CFR 47 FCC Rules and Regulations Part 2

Page 14 of 24

Horizontal

Mobile phone box

Vertical

14 Test Arrangement

14.1 Cheek-Touch Position

- 1. Position the device with the vertical center line of the body of the device and the horizontal line crossing the center of the ear piece in a plane parallel to the sagittal plane of the phantom.
- 2. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference points (M, RE and LE) and align the center of the ear piece with the line RE-LE.
- 3. Translate the mobile phone box towards the phantom with the ear piece aligned with the line RE-LE until the phone touches the ear.
- 4. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the box until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost.

14.2 Ear-Tilt Position

- 1. Position the device in the "Cheek/Touch Position".
- 2. While maintaining the device in the reference plane and pivoting against the ear, move it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost.

Regulation : CFR 47 FCC Rules and Regulations Part 2

Page 15 of 24

Configuration 1 (Left Head – Cheek/Touch Position)

CONFIDENTIAL

(Refer to TestSetup_Photo_SAR.pdf)

Configuration 1 (Left Head – Ear/Tilt Position)

CONFIDENTIAL

 $(Refer\ to\ TestSetup_Photo_SAR.pdf)$

Regulation : CFR 47 FCC Rules and Regulations Part 2

Page 16 of 24

Configuration 2 (Right Head – Cheek/Touch Position)

CONFIDENTIAL

(Refer to TestSetup_Photo_SAR.pdf)

Configuration 2 (Right Head – Ear/Tilt Position)

CONFIDENTIAL

 $(Refer\ to\ TestSetup_Photo_SAR.pdf)$

Regulation : CFR 47 FCC Rules and Regulations Part 2

Page 17 of 24

14.3 Body-worn Configuration

For body-worn operating configurations, the device is tested against a flat phantom representing the user body. A headset is connected to the device. Belt-clips or holsters are not supplied with the device as an accessory, then the device is 1.5 cm on distance from the flat phantom. It is recommended for testing body-worn SAR compliance.

Configuration 3 (Flat – Body-worn Position)

CONFIDENTIAL

(Refer to TestSetup_Photo_SAR.pdf)

Regulation : CFR 47 FCC Rules and Regulations Part 2

Page 18 of 24

15 Equipment Under Test Tune-Up Procedures

The following procedures had been used to prepare the EUT for the SAR test.

To setup the desire channel frequency and the maximum output power, a Radio Communication Tester "Rohde & Schwarz, CMU-200" was used to program the EUT.

SM Mobile Station : GSM 1900

Network Support : GSM Mode - Circuit Switched

GPRS Mode – Packet Data (GPRS Level 10 / 2 slot)

Power Control Level (PCL): 0 (30.0 dBm)

Channel	Frequency
0512	1850.20
0661	1880.00
0810	1909.80

For the Bluetooth transmitter, RF test mode prepared by the manufacturer was used to program the EUT.

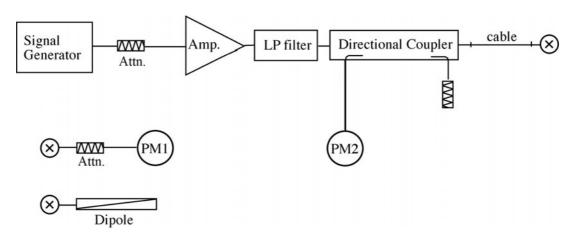
Communication system : Bluetooth

Modulation type : Frequency Hopping Spread Spectrum (FHSS)

Channel	Frequency
00	2402.0
39	2441.0
78	2480.0

Maximum conducted power was measured by replacing the antenna with an adapter for conductive measurements, before and after the SAR measurements was done.

Regulation : CFR 47 FCC Rules and Regulations Part 2


Page 19 of 24

Appendix A: Test Data

A.1 System Validation

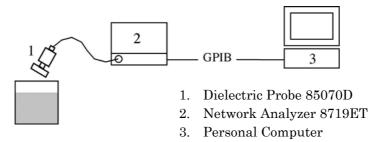
The power meter PM1 (including Attenuator) measures the forward power at the location of the validation dipole connector. The signal generator is adjusted for 250 mW at the dipole connector and the power meter PM2 is read at that level. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2.

The dipole antenna is matched to be used near flat phantom filled with tissue simulating solution. A specific distance holder is used in the positioning of the antenna to ensure correct spacing between the phantom and the dipole.

System Validation Results:

System Validation Dipole : D1800V2, S/N: 2d038									
Ambient Conditions: 2	21°C 29%	Depth of Liquid: 1	5.0 cm	D	ate: January	24, 2006			
Liquid		D.	m .	3.6	D : .: [0/]	T: : [0/]			
Medium	Temp. [°C]	Parameters	Target	Measured	Deviation [%]	Limit [%]			
Head 1800 MHz	21.0	Permitivity	40.0	39.91	-0.23	± 5			
		Conductivity	1.40	1.362	-2.71	± 5			
		1g SAR (mW/g)	9.47	10.0	+5.60	± 10			
Ambient Conditions: 2	21°C 30%	Depth of Liquid: 1	5.0 cm	D	ate : January	23, 2006			
		Permitivity	53.3	52.61	-1.29	± 5			
Muscle 1800 MHz	21.0	Conductivity	1.52	1.536	+1.05	± 5			
		1g SAR (mW/g)	9.68	10.4	+7.44	± 10			

NOTE: Please refer to attachment for the result presentation in plot format.



Regulation : CFR 47 FCC Rules and Regulations Part 2

Page 20 of 24

A.2 Tissue Verification

The tissue dielectric parameters of the tissue medium at the middle of a device transmission band should be within $\pm 5\%$ of the parameters specified at that target frequency. It is verified by using the dielectric probe and the network analyzer.

Tissue Verification Results:

Ambient Conditions: 21°C 29% Date: January 24, 2006							
Liquid		Danamatana	To	Manageral	D : 4: [0/]	Limit [%]	
Medium	Temp. [°C]	Parameters	Target	Measured	Deviation [%]	Limit [%]	
II 14000 15II	21.0	Permitivity	40.0	39.44	-1.40	± 5	
Head 1900 MHz		Conductivity	1.40	1.419	+1.36	± 5	
Ambient Conditions:	21°C 30%			Ι	Date : January	23, 2006	
M 1 1000 MII	01.0	Permitivity	53.3	53.03	-0.51	± 5	
Muscle 1900 MHz	21.0	Conductivity	1.52	1.587	+4.41	± 5	

Regulation : CFR 47 FCC Rules and Regulations Part 2

Page 21 of 24

A.3 SAR Measurement Data

A.3.1 Head Configuration

Modulation Type: GSM (Duty Cycle: 12.0 %, Crest Factor: 8.3)								
Configuration 1 – Left Head Depth of Liquid: 15.0 cm Date: January 24, 2006							24, 2006	
EUT Set-up Configuration		Frequency		Power [dBm] (Peak)		Limit	SAR (1g)	Tissue Temp.
EUT Position	Antenna	Channel	MHz	Start	End	[mW/g]	[mW/g]	[°C]
		0512	1850.20	28.89	28.87	1.6	0.530	21.0
Cheek/Touch	Fixed	0661	1880.00	29.04	29.03		0.570	21.0
		0810	1909.80	28.98	28.98		0.697	21.0
		0512	1850.20				**	
Ear/Tilt	Fixed	0661	1880.00	29.04	29.03	1.6	0.208	21.0
		0810	1909.80				**	
Bluetooth 00ch	Bluetooth 00ch (2402MHz) ON							
Cheek/Touch	Fixed	0810	1909.80	28.98	28.98	1.6	0.674	21.0
Bluetooth 39ch	(2441MHz)	ON						
Cheek/Touch	Fixed	0810	1909.80	28.98	28.98	1.6	0.675	21.0
Bluetooth 78ch	(2480MHz)	ON						
Cheek/Touch	Fixed	0810	1909.80	28.98	28.98	1.6	0.641	21.0
Configuration	Configuration 2 – Right Head Depth of Liquid: 15.0 cm Date: January 24, 2006							24, 2006
	Fixed	0512	1850.20			1.6	**	
Cheek/Touch		0661	1880.00	29.04	29.03		0.515	21.0
		0810	1909.80				**	
	Fixed	0512	1850.20			1.6	**	
Ear/Tilt		0661	1880.00	29.04	29.03		0.147	21.0
		0810	1909.80				**	

 ${\bf NOTES: 1. Transmitter\ power\ was\ measured\ at\ the\ antenna-conducted\ terminal.}$

^{2.} The SAR result marked at ** is optional, because the SAR measured at the middle channel for that configuration is at least 3.0 dB lower than the SAR limit.

^{3.} Please refer to attachment for the result presentation in plot format.

Regulation : CFR 47 FCC Rules and Regulations Part 2

Page 22 of 24

A.3.2 Body-worn Configuration

Modulation Type: GSM (Duty Cycle: 12.0 %, Crest Factor: 8.3)								
Configuration 3 – Flat		Depth of Liquid : 15.0 cm				Date: January 23, 2006		
EUT Set-up Configuration		Frequency		Power [dBm] (Peak)		Limit	SAR (1g)	Tissue Temp.
Separation	Antenna	Channel	MHz	Start	End	[mW/g]	[mW/g]	[°C]
		0512	1850.20	28.89	28.87	1.6	0.199	21.0
1.5 cm	Fixed	0661	1880.00	29.04	29.03		0.186	21.0
		0810	1909.80	28.98	28.98		0.180	21.0
Bluetooth 00ch	Bluetooth 00ch (2402MHz) ON							
1.5 cm	Fixed	0512	1850.20	28.89	28.87	1.6	0.184	21.0
Bluetooth 39ch	n (2441MHz)	ON						
1.5 cm	Fixed	0512	1850.20	28.89	28.87	1.6	0.194	21.0
Bluetooth 78ch	Bluetooth 78ch (2480MHz) ON							
1.5 cm	Fixed	0512	1850.20	28.89	28.87	1.6	0.192	21.0
Modulation Type: GSM+GPRS (Duty Cycle: 24.0 %, Crest Factor: 4.2)								
Configuration 3 – Flat Depth of Liquid: 15.0 cm Date: January 23					23, 2006			
	Fixed	0512	1850.20	28.98	28.93		0.547	21.0
1.5 cm		0661	1880.00	29.14	29.09	1.6	0.570	21.0
		0810	1909.80	29.08	29.05		0.612	21.0

NOTES: 1. Transmitter power was measured at the antenna-conducted terminal.

^{2.} The SAR result marked at ** is optional, because the SAR measured at the middle channel for that configuration is at least 3.0 dB lower than the SAR limit.

^{3.} Please refer to attachment for the result presentation in plot format.

Regulation : CFR 47 FCC Rules and Regulations Part 2

Page 23 of 24

Appendix B: Test Instruments

B.1 SAR Measurement

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
E-Field Probe	ET3DV6	SPEAG	S-2	2005/12	1 Year
DAE	DAE3 V1	SPEAG	S-3	2005/12	1 Year
Robot	RX60L	Stäubli	S-7	N/A	N/A
Probe Alignment Unit	LB1RX60L	SPEAG	S-13	N/A	N/A
Universal Radio	CMILIOOO	D 1 1 0 C 1	D 01	0005/4	1 37
Communication Tester	CMU200	Rohde & Schwarz	B-21	2005/4	1 Year

B.2 System Validation and Tissue Verification

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Network Analyzer	8719ET	Agilent	B-53	2005/9	1 Year
Dielectric Probe	85070D	Agilent	B-54	N/A	N/A
1800 MHz Dipole	D1800V2	SPEAG	S-5	2004/12	2 Years
Signal Generator	MG3681A	Anritsu	B-3	2005/2	1 Year
Power Amplifier	A0840-3833-R	R&K	A-34	N/A	N/A
Power Meter	E4417A	Agilent	B-51	2005/8	1 Year
Power Sensor	E9300B	Agilent	B-32	2005/5	1 Year

B.3 Antenna-Conducted Power Measurement

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Power Meter	E4417A	Agilent	B-51	2005/8	1 Year
Power Sensor	E9321A	Agilent	B-52	2005/5	1 Year
Attenuator	4T-10	Weinschel	D-73	2005/5	1 Year
Attenuator	4T-10	Weinschel	D-74	2005/5	1 Year

Regulation : CFR 47 FCC Rules and Regulations Part 2

Page 24 of 24

Appendix C: Attachments

Exhibit	Contents	No. of page(s)
1	System Validation Plots	2
2	SAR Test Plots	20
3	Dosimetric E-Field Probe – ET3DV6, S/N: 1679	9
4	System Validation Dipole – D1800V2, S/N: 2d038	9
5	Transmitted Duty Cycle Plots	1
6	EUT Photographs	1