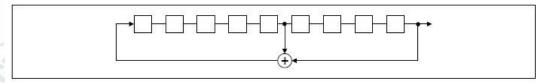


Report No. : EED32I00208213 Page 43 of 71

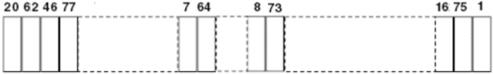
Appendix H): Pseudorandom Frequency Hopping Sequence

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Report No.: EED32I00208213 Page 44 of 71

Appendix I): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1dBi.

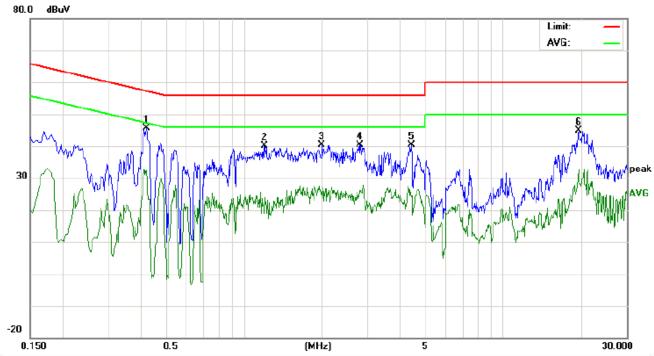
Report No.: EED32I00208213 Page 45 of 71

Appendix J): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz		onducted in a shield	ded room.
	2) The EUT was connected to Stabilization Network) which power cables of all other under which was bonded to the graph for the unit being measured multiple power cables to a sexceeded. 3) The tabletop EUT was placed reference plane. And for flow horizontal ground reference.	AC power source three h provides a 50Ω/50µ nits of the EUT were round reference planed. A multiple socket of single LISN provided the dupon a non-metall or-standing arrangement.	ough a LISN 1 (Line μ H + 5Ω linear improvements to a section in the same way a putlet strip was use the rating of the LIS in table 0.8m above	e Impedance edance. The cond LISN 2, as the LISN 1 ed to connect N was not e the ground
	4) The test was performed with EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT at LISN 2.	th a vertical ground reference vertical ground reference to the horizontal grothe boundary of the control of th	rence plane. The version of the version of the version of the ground into the first of the LISN 1 and the LISN 1 are sent the	ertical ground ne. The LISN bonded to a nd reference and the EUT.
	5) In order to find the maximum of the interface cables must conducted measurement.			
Limit:	(5.5.)	(67)	(3)	
	Francisco (Addis)	Limit (c	IBμV)	
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	_0_
9 (0.5-5	56	46	(41)
/	5-30	60	50	(0)
	* The limit decreases linearly MHz to 0.50 MHz. NOTE: The lower limit is applied	· ·	, ,	e range 0.15
	1.10.12. The letter mint to applic	sasio at the transition		

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.



Live line:

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	N	leasuren (dBuV)	MUSIC CONTRACTOR	Lin (dB	nit uV)		rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.4218	35.72	31.40	22.57	9.90	45.62	41.30	32.47	57.41	47.41	-16.11	-14.94	Р	
2	1.2016	30.13	27.40	11.42	10.00	40.13	37.40	21.42	56.00	46.00	-18.60	-24.58	Р	
3	2.0059	30.39	26.00	14.73	10.00	40.39	36.00	24.73	56.00	46.00	-20.00	-21.27	P	
4	2.8220	30.43	26.10	16.09	10.00	40.43	36.10	26.09	56.00	46.00	-19.90	-19.91	Р	
5	4.4378	30.36	25.30	14.04	10.00	40.36	35.30	24.04	56.00	46.00	-20.70	-21.96	Р	
6	19.5536	34.43	30.00	21.84	10.46	44.89	40.46	32.30	60.00	50.00	-19.54	-17.70	P	

Neutral line:

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	N	leasuren (dBuV)		Lin (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1779	36.43	32.40	28.78	9.80	46.23	42.20	38.58	64.58	54.58	-22.38	-16.00	P	
2	0.4299	34.55	31.50	21.28	9.90	44.45	41.40	31.18	57.25	47.25	-15.85	-16.07	Р	
3	0.5220	29.68	24.60	13.73	9.90	39.58	34.50	23.63	56.00	46.00	-21.50	-22.37	P	
4	2.3780	29.67	25.00	14.91	10.00	39.67	35.00	24.91	56.00	46.00	-21.00	-21.09	P	
5	3.1699	30.94	26.30	15.86	10.00	40.94	36.30	25.86	56.00	46.00	-19.70	-20.14	P	
6	20.6060	32.30	28.00	22.45	10.49	42.79	38.49	32.94	60.00	50.00	-21.51	-17.06	P	

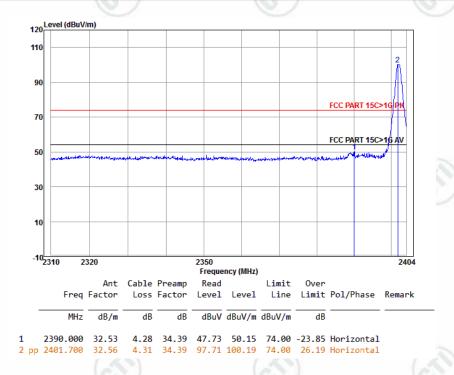
Notes:

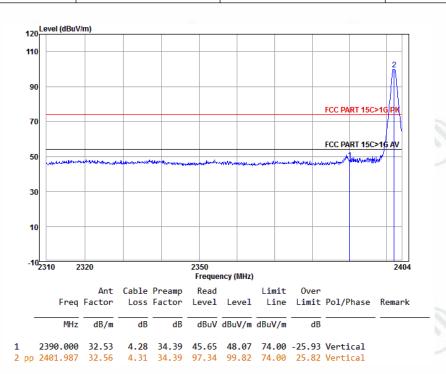
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: EED32I00208213 Page 48 of 71

Appendix K): Restricted bands around fundamental frequency (Radiated)

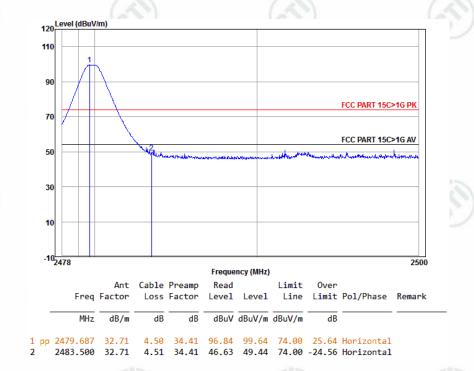
Receiver Setup:		Frequency	Detector	RBW	VBW	Remark
recorrer cotap.		30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
		301VII 12-1 GI 12	Peak	1MHz	3MHz	Peak
	-	Above 1GHz	in the second se			
(4	6	1 (Peak	1MHz	10Hz	Average
Test Procedure:	Ве	elow 1GHz test proced	dure as below:			
	a. b. c. d. e. f.	at a 3 meter semi-and determine the position. The EUT was set 3 m was mounted on the The antenna height is determine the maxim polarizations of the antenna height.	echoic camber. The nof the highest ranceters away from a top of a variable-his varied from one um value of the firmtenna are set to be emission, the EUT ed to heights from a 0 degrees to 360 tem was set to Permum Hold Mode. The end of the restrict ompliance. Also metrum analyzer plots of the tem was plots of the petrum analyzer plots of the tem was plots of the petrum analyzer plots of the tem was plots of the petrum analyzer plots of the tem was plots of the petrum analyzer plots of the tem was plots of the petrum analyzer plots of	ne table was adiation. the interfer neight ante meter to found the interfer make the radiation of the interfer to degrees the ak Detect casure any	rence-receinna tower. Our meters h. Both hor measurement ged to its to find the Function a	wing antenna, which above the ground rizontal and vertical and the rotatable maximum reading and Specified the transmit in the restricted
	At g. h. i. i.	Different between about of fully Anechoic Chameter (Above 18GHz b. Test the EUT in the The radiation measur Transmitting mode, a Repeat above proces	ove is the test site mber and change the distance is 1 e lowest channel, rements are perfor nd found the X ax	form table meter and the Highe rmed in X, tis position	e 0.8 meter table is 1.5 st channel Y, Z axis p ing which i	to 1.5 meter). cositioning for t is worse case.
Limit:		Frequency	Limit (dBµV/			mark
		30MHz-88MHz	40.0	\ <u> </u>		eak Value
		88MHz-216MHz	43.5	/		eak Value
		216MHz-960MHz	46.0		· ·	eak Value
		960MHz-1GHz	54.0		· ·	eak Value
	10	Above 1GHz	54.0			je Value
	1 45 3			1 40		1.00

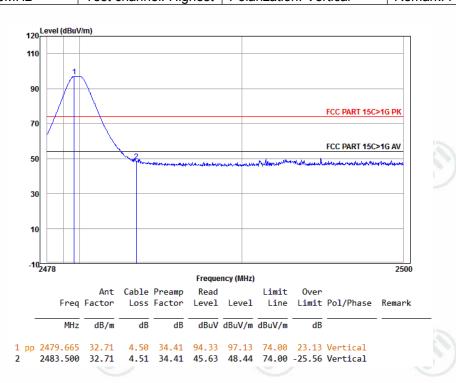



Report No.: EED32I00208213 Page 49 of 71

Test plot as follows:

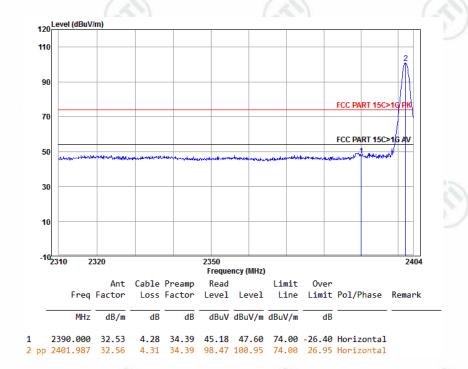
Worse case mode:	GFSK(1-DH5)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

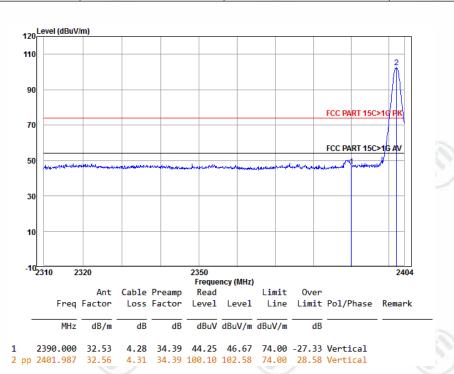

Worse case mode:	GFSK(1-DH5)			
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak	



Page 50 of 71

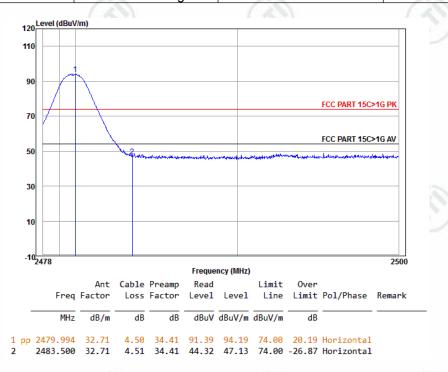
Worse case mode:	GFSK(1-DH5)		
Frequency: 2483 5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

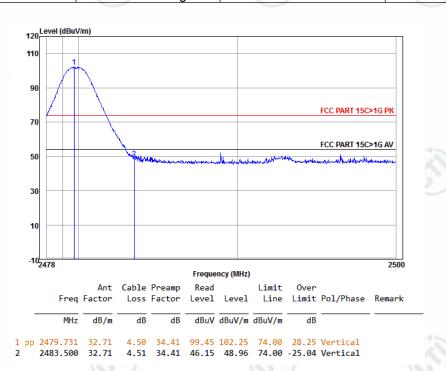

	7 2 2 2 2			
Worse case mode:	GFSK(1-DH5)			
Frequency: 2483 5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak	



Page 51 of 71

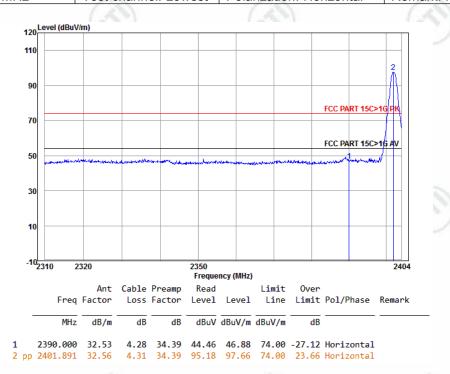
Worse case mode:	π/4DQPSK(2-DH5)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

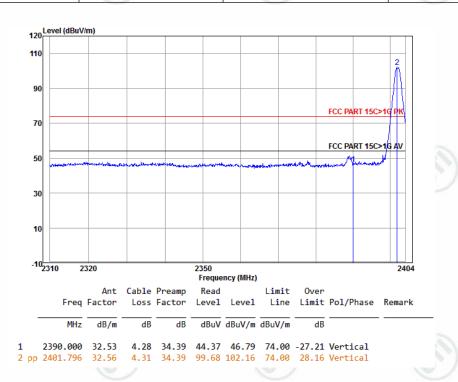

Worse case mode:	π/4DQPSK(2-DH5)	(20)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak	



Page 52 of 71

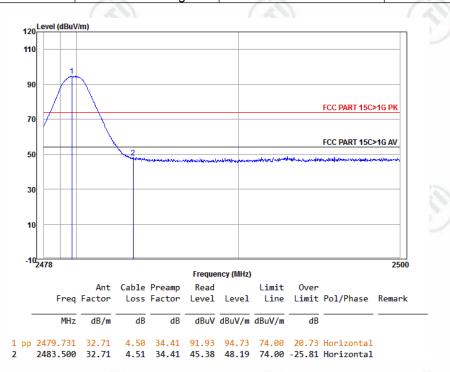
Worse case mode:	π/4DQPSK(2-DH5)			
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak	

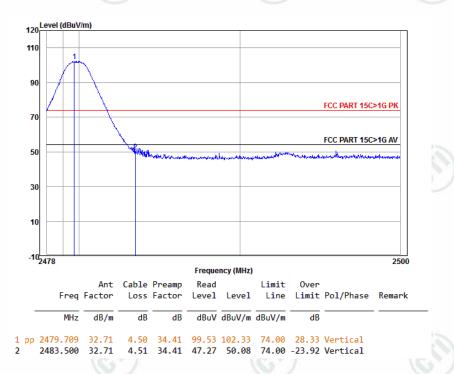

	Worse case mode:	π/4DQPSK(2-DH5)			
Ī	Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak	



Page 53 of 71

Worse case mode:	8DPSK(3-DH5)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak


Worse case mode:	8DPSK(3-DH5)			
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak	



Report No.: EED32I00208213 Page 54 of 71

Worse case mode:	8DPSK(3-DH5)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:	8DPSK(3-DH5)			
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak	

Note:

1) Through Pre-scan transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of $\pi/4DQPSK$ modulation type, the 3-DH5 of data type is the worse case of 8DPSKmodulation type in transmitter mode.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Report No.: EED32I00208213

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No.: EED32I00208213 Page 56 of 71

Appendix L): Radiated Spurious Emissions

Receiver Setup:

		A 100 A		
Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 4011	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

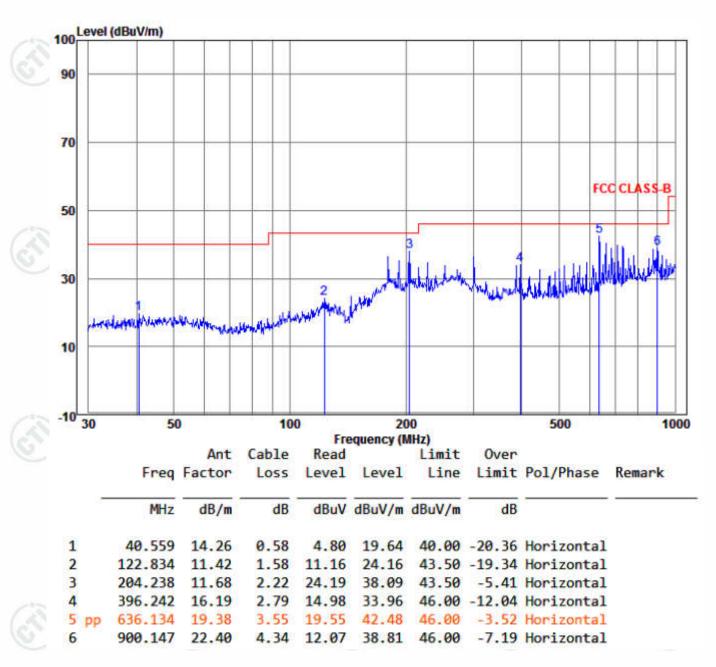
Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Limit:

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	- /	<u> </u>	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

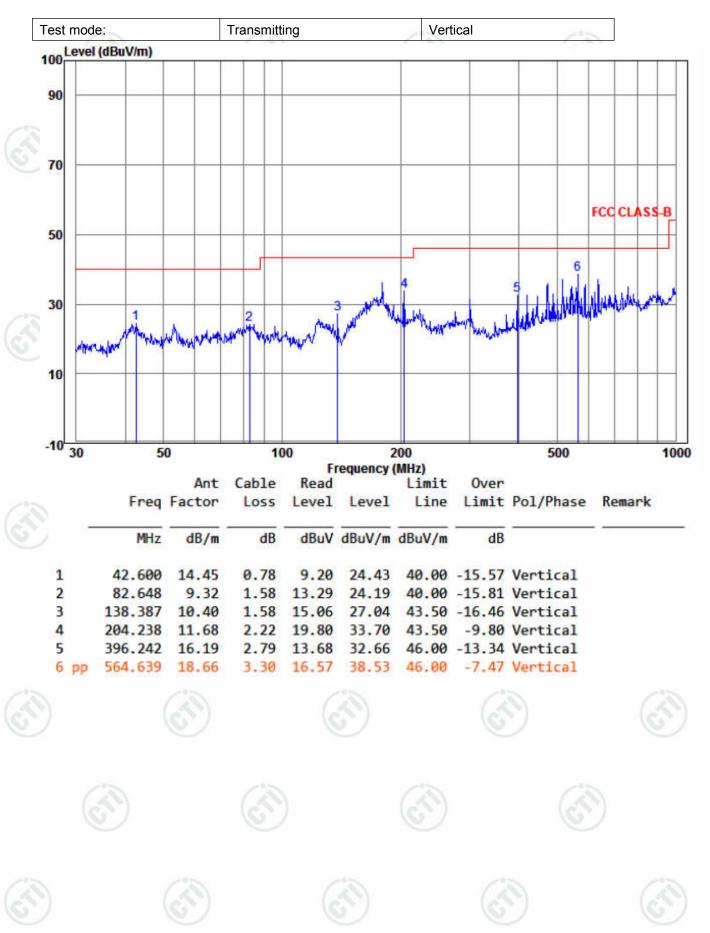


Page 57 of 71

Radiated Spurious Emissions test Data:

Radiated Emission below 1GHz

30MHz~1GHz (QP)	(2)	
Test mode:	Transmitting	Horizontal



Report No. : EED32I00208213 Page 59 of 71

Transmitter Emission above 1GHz

Worse case	mode:	GFSK(1-DI	H5)	Test char	nnel:	Lowest	Remark: P	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1235.257	30.31	2.56	34.93	44.96	42.90	74	-31.10	Pass) H
1800.416	31.40	3.08	34.44	44.18	44.22	74	-29.78	Pass	Н
3445.704	33.21	5.53	34.55	41.97	46.16	74	-27.84	Pass	Н
4804.000	34.69	5.11	34.35	41.42	46.87	74	-27.13	Pass	Н
7206.000	36.42	6.66	34.90	40.70	48.88	74	-25.12	Pass	Н
9608.000	37.88	7.73	35.08	37.35	47.88	74	-26.12	Pass	Н
1156.150	30.12	2.46	35.01	45.03	42.60	74	-31.40	Pass	V
1938.352	31.61	3.19	34.34	44.24	44.70	74	-29.30	Pass	V
2957.654	33.53	5.54	34.49	43.09	47.67	74	-26.33	Pass	V
4804.000	34.69	5.11	34.35	42.21	47.66	74	-26.34	Pass	V
7206.000	36.42	6.66	34.90	40.88	49.06	74	-24.94	Pass	V
9608.000	37.88	7.73	35.08	36.89	47.42	74	-26.58	Pass	V

Worse case mode:		GFSK(1-DI	H5)	Test channel: Middle Remark: Peak				eak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1153.210	30.11	2.46	35.01	44.45	42.01	74	-31.99	Pass	H	
1800.416	31.40	3.08	34.44	45.11	45.15	74	-28.85	Pass	(H)	
2942.635	33.51	5.51	34.49	43.90	48.43	74	-25.57	Pass	~H	
4882.000	34.85	5.08	34.33	42.00	47.60	74	-26.40	Pass	Н	
7323.000	36.43	6.77	34.90	39.87	48.17	74	-25.83	Pass	Н	
9764.000	38.05	7.60	35.05	37.95	48.55	74	-25.45	Pass	Н	
1303.086	30.46	2.63	34.86	44.70	42.93	74	-31.07	Pass	V	
2092.175	31.91	3.50	34.32	43.30	44.39	74	-29.61	Pass	V	
3128.013	33.48	5.59	34.51	44.40	48.96	74	-25.04	Pass	V	
4882.000	34.85	5.08	34.33	41.46	47.06	74	-26.94	Pass	V	
7323.000	36.43	6.77	34.90	41.15	49.45	74	-24.55	Pass	V	
9764.000	38.05	7.60	35.05	38.55	49.15	74	-24.85	Pass	V	

Report No. : EED32I00208213 Page 60 of 71

Worse case	mode:	GFSK(1-DI	H5)	Test chann	nel:	Highest	Remark: Po	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1257.465	30.36	2.58	34.90	48.02	46.06	74	-27.94	Pass	Н	
1741.812	31.30	3.04	34.48	45.32	45.18	74	-28.82	Pass	Н	
3728.625	33.00	5.48	34.58	45.02	48.92	74	-25.08	Pass	Н	
4960.000	35.02	5.05	34.31	41.83	47.59	74	-26.41	Pass	(H	
7440.000	36.45	6.88	34.90	40.34	48.77	74	-25.23	Pass	Н	
9920.000	38.22	7.47	35.02	38.26	48.93	74	-25.07	Pass	Н	
1232.117	30.30	2.55	34.93	43.80	41.72	74	-32.28	Pass	V	
1655.354	31.15	2.97	34.55	44.15	43.72	74	-30.28	Pass	V	
3072.770	33.53	5.61	34.51	44.19	48.82	74	-25.18	Pass	V	
4960.000	35.02	5.05	34.31	40.98	46.74	74	-27.26	Pass	V	
7440.000	36.45	6.88	34.90	39.89	48.32	74	-25.68	Pass	V	
9920.000	38.22	7.47	35.02	37.53	48.20	74	-25.80	Pass	V	

Worse case	Worse case mode: $\pi/40$		((2-DH5)	Test channel: Lowest Remark: Peak				eak	k	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1165.013	30.14	2.47	35.00	44.75	42.36	74	-31.64	Pass	Н	
1795.839	31.39	3.08	34.44	43.94	43.97	74	-30.03	Pass	Н	
3160.026	33.46	5.59	34.52	44.02	48.55	74	-25.45	Pass	"Н	
4804.000	34.69	5.11	34.35	42.33	47.78	74	-26.22	Pass	Н	
7206.000	36.42	6.66	34.90	40.87	49.05	74	-24.95	Pass	₩.H	
9608.000	37.88	7.73	35.08	38.01	48.54	74	-25.46	Pass	Н	
1132.844	30.06	2.43	35.04	45.72	43.17	74	-30.83	Pass	V	
1832.785	31.45	3.11	34.41	44.68	44.83	74	-29.17	Pass	V	
3216.838	33.41	5.58	34.52	44.98	49.45	74	-24.55	Pass	V	
4804.000	34.69	5.11	34.35	42.96	48.41	74	-25.59	Pass	V	
7206.000	36.42	6.66	34.90	41.15	49.33	74	-24.67	Pass	V	
9608.000	37.88	7.73	35.08	37.93	48.46	74	-25.54	Pass	V	

Report No. : EED32I00208213 Page 61 of 71

Worse case	mode:	π/4DQPSk	((2-DH5)	Test char	nnel:	Middle	Remark: Po	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1204.210	30.24	2.52	34.96	45.96	43.76	74	-30.24	Pass	Н	
1659.574	31.16	2.97	34.54	43.50	43.09	74	-30.91	Pass	Н	
3472.118	33.19	5.53	34.55	43.59	47.76	74	-26.24	Pass	H	
4882.000	34.85	5.08	34.33	42.28	47.88	74	-26.12	Pass	H	
7323.000	36.43	6.77	34.90	40.63	48.93	74	-25.07	Pass	Н	
9764.000	38.05	7.60	35.05	37.42	48.02	74	-25.98	Pass	Н	
1296.469	30.45	2.62	34.86	44.02	42.23	74	-31.77	Pass	V	
1923.606	31.59	3.18	34.35	44.04	44.46	74	-29.54	Pass	V	
3376.244	33.27	5.55	34.54	43.17	47.45	74	-26.55	Pass	V	
4882.000	34.85	5.08	34.33	41.87	47.47	74	-26.53	Pass	V	
7323.000	36.43	6.77	34.90	40.90	49.20	74	-24.80	Pass	V	
9764.000	38.05	7.60	35.05	37.45	48.05	74	-25.95	Pass	V	

Worse case mode:		π/4DQPSK(2-DH5)		Test channel:		Highest	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1176.935	30.17	2.49	34.99	44.18	41.85	74	-32.15	Pass	Н
1818.842	31.43	3.10	34.42	44.52	44.63	74	-29.37	Pass	Н
3579.815	33.11	5.51	34.56	43.32	47.38	74	-26.62	Pass	"Н
4960.000	35.02	5.05	34.31	41.29	47.05	74	-26.95	Pass	Н
7440.000	36.45	6.88	34.90	41.17	49.60	74	-24.40	Pass	₩.
9920.000	38.22	7.47	35.02	38.20	48.87	74	-25.13	Pass	Н
1216.534	30.27	2.53	34.95	44.46	42.31	74	-31.69	Pass	V
1759.638	31.33	3.05	34.47	43.52	43.43	74	-30.57	Pass	V
3428.206	33.23	5.54	34.55	41.99	46.21	74	-27.79	Pass	V
4960.000	35.02	5.05	34.31	42.88	48.64	74	-25.36	Pass	V
7440.000	36.45	6.88	34.90	40.02	48.45	74	-25.55	Pass	V
9920.000	38.22	7.47	35.02	37.98	48.65	74	-25.35	Pass	V

Report No. : EED32I00208213 Page 62 of 71

Worse case mode:		8DPSK(3-DH5)		Test channel:		Lowest Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1388.708	30.65	2.72	34.77	44.40	43.00	74	-31.00	Pass	Н
1837.456	31.46	3.11	34.41	44.56	44.72	74	-29.28	Pass	Н
3266.346	33.36	5.57	34.53	44.24	48.64	74	-25.36	Pass	Н
4804.000	34.69	5.11	34.35	42.31	47.76	74	-26.24	Pass	H
7206.000	36.42	6.66	34.90	39.93	48.11	74	-25.89	Pass	Н
9608.000	37.88	7.73	35.08	37.27	47.80	74	-26.20	Pass	Н
1260.670	30.37	2.58	34.90	48.90	46.95	74	-27.05	Pass	V
1617.862	31.09	2.93	34.58	46.37	45.81	74	-28.19	Pass	V
3283.018	33.35	5.56	34.53	43.85	48.23	74	-25.77	Pass	V
4804.000	34.69	5.11	34.35	42.61	48.06	74	-25.94	Pass	V
7206.000	36.42	6.66	34.90	40.93	49.11	74	-24.89	Pass	V
9608.000	37.88	7.73	35.08	37.74	48.27	74	-25.73	Pass	V

Worse case mode:		8DPSK(3-DH5)		Test channel:		Middle Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1207.279	30.24	2.52	34.96	44.90	42.70	74	-31.30	Pass	Н
1768.619	31.35	3.06	34.46	44.64	44.59	74	-29.41	Pass	Н
3160.026	33.46	5.59	34.52	44.20	48.73	74	-25.27	Pass	- Н
4882.000	34.85	5.08	34.33	42.52	48.12	74	-25.88	Pass	H
7323.000	36.43	6.77	34.90	39.98	48.28	74	-25.72	Pass	¥
9764.000	38.05	7.60	35.05	38.14	48.74	74	-25.26	Pass	Н
1219.635	30.27	2.54	34.94	45.17	43.04	74	-30.96	Pass	V
1933.424	31.60	3.18	34.34	44.55	44.99	74	-29.01	Pass	V
3653.463	33.05	5.50	34.57	43.21	47.19	74	-26.81	Pass	V
4882.000	34.85	5.08	34.33	43.11	48.71	74	-25.29	Pass	V
7323.000	36.43	6.77	34.90	41.30	49.60	74	-24.40	Pass	V
9764.000	38.05	7.60	35.05	37.53	48.13	74	-25.87	Pass	V

Pag	ie	63	of	71
	\sim	\sim	\sim	

Worse case mode:		8DPSK(3-DH5)		Test channel:		Highest	hest Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1107.186	29.99	2.40	35.07	44.78	42.10	74	-31.90	Pass	Н
1973.201	31.66	3.21	34.32	43.30	43.85	74	-30.15	Pass	Н
3973.622	32.82	5.44	34.60	41.73	45.39	74	-28.61	Pass	H
4960.000	35.02	5.05	34.31	40.03	45.79	74	-28.21	Pass	H
7440.000	36.45	6.88	34.90	39.10	47.53	74	-26.47	Pass	Н
9920.000	38.22	7.47	35.02	36.65	47.32	74	-26.68	Pass	Н
1198.095	30.22	2.51	34.97	48.42	46.18	74	-27.82	Pass	V
1630.264	31.11	2.94	34.57	43.34	42.82	74	-31.18	Pass	V
3653.463	33.05	5.50	34.57	42.25	46.23	74	-27.77	Pass	V
4960.000	35.02	5.05	34.31	40.64	46.40	74	-27.60	Pass	V
7440.000	36.45	6.88	34.90	39.06	47.49	74	-26.51	Pass	V
9920.000	38.22	7.47	35.02	36.68	47.35	74	-26.65	Pass	V

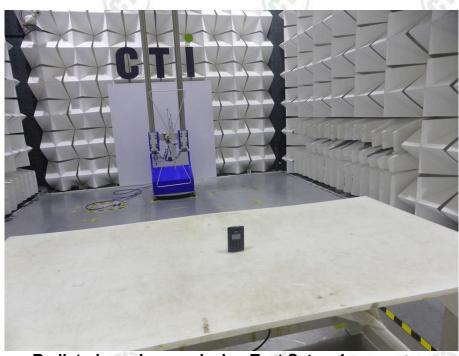
Note:

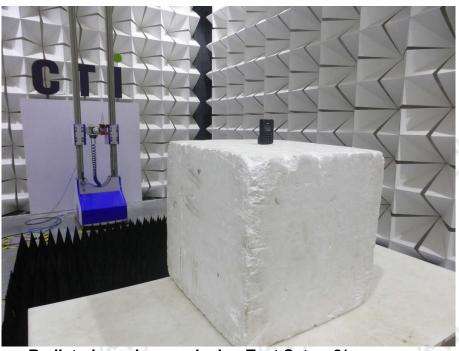
- 1) Pre-scan transmitting mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of $\pi/4DQPSK$ modulation type, the 3-DH5 of data type is the worse case of 8DPSKmodulation type in transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.




Report No.: EED32I00208213 Page 64 of 71

PHOTOGRAPHS OF TEST SETUP

Test mode No.: WisePad 2

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

Report No.: EED32I00208213

Conducted Emissions Test Setup

Report No. : EED32I00208213 Page 66 of 71

PHOTOGRAPHS OF EUT Constructional Details

Test model No.: WisePad 2

View of Product-1

View of Product-2

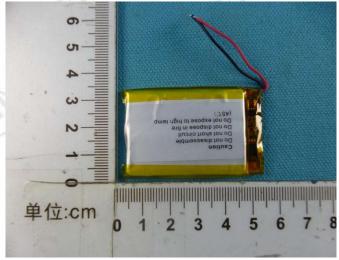
View of Product-3

View of Product-4

View of Product-5

View of Product-6

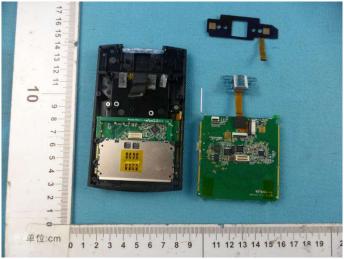
View of Product-7

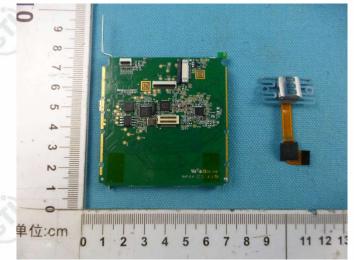

View of Product-8

View of Product-9

View of Product-10

View of Product-11


View of Product-12



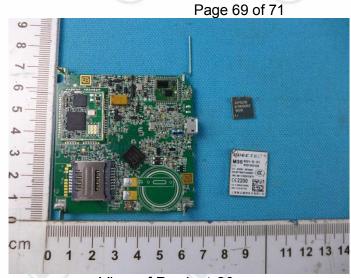
View of Product-13

View of Product-14

View of Product-15

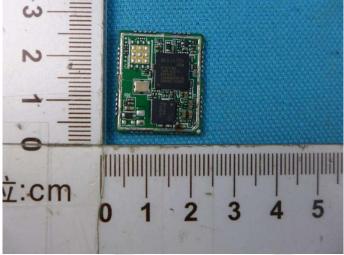
View of Product-16

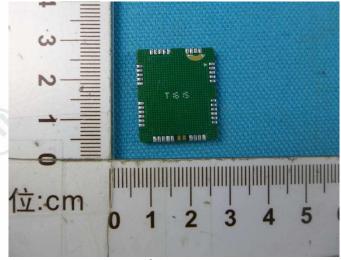
View of Product-17

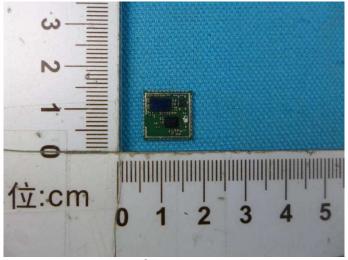


View of Product-18




View of Product-19

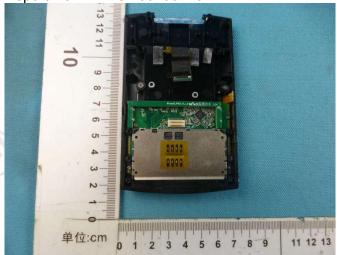

View of Product-20

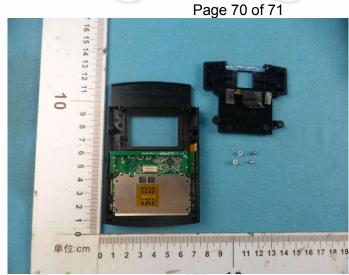

View of Product-21

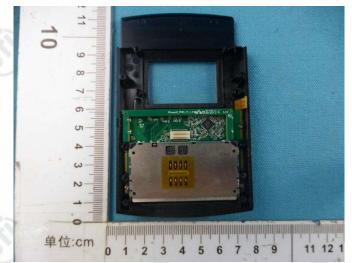
View of Product-22

View of Product-23

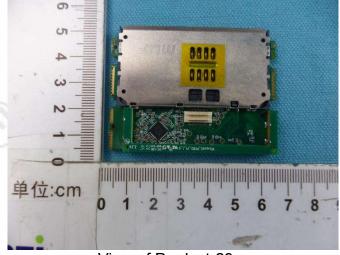
View of Product-24

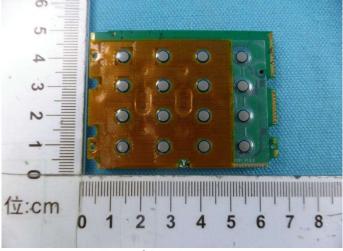






View of Product-25

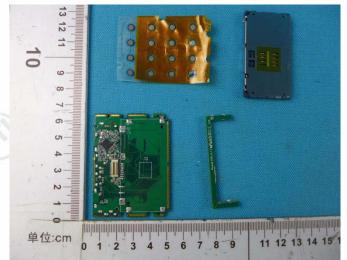

View of Product-26

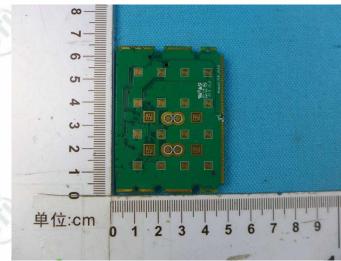

View of Product-27

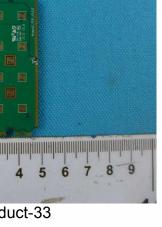
View of Product-28

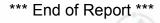
View of Product-29

View of Product-30






单位:cm


View of Product-31

View of Product-32

View of Product-33

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

