

FCC Measurement/Technical Report on

WLAN and Bluetooth Module JODY-W5

FCC ID: XPYJODYW562 IC: 8595A-JODYW562

Simultaneous Transmissions Report

Test Report Reference: MDE_UBLOX_2317_FCC_03

Test Laboratory: 7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Sebastian Doose Bernhard Retka

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Commerzbank AG Account No. 303 016 000 Bank Code 300 400 00 IBAN DE81 3004 0000 0303 0160 00 Swift Code COBADEFF

Table of Contents

1.1	Applied Standards	3
1.2	FCC-IC Correlation Table	4
1.3	Measurement Summary	5
2	Revision History / Signatures	6
3	Administrative Data	7
3.1	Testing Laboratory	7
3.2	Project Data	7
3.3	Applicant Data	7
3.4	Manufacturer Data	8
4	Test object Data	9
4.1	General EUT Description	9
4.2	EUT Main components	10
4.3	Ancillary Equipment	10
4.4	Auxiliary Equipment	11
4.5	EUT Setups	11
4.6 4.7	Operating Modes / Test Channels Product labelling	12 12
	-	
5 ⊑ 1	Test Results	13
5.1	Undesirable Emissions; General Field Strength Limits	13
6	Test Equipment	25
6.1	Test Equipment Hardware	25
6.2	Test Equipment Software	27
7	Antenna Factors, Cable Loss and Sample Calculations	28
7.1	LISN R&S ESH3-Z5 (150 kHz – 30 MHz)	28
7.2	Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)	29
7.3	Antenna R&S HL562 (30 MHz – 1 GHz)	30
7.4 7.5	Antenna R&S HF907 (1 GHz – 18 GHz) Antenna EMCO 3160-09 (18 GHz – 26.5 GHz)	31 32
7.6	Antenna EMCO 3160-10 (26.5 GHz – 40 GHz)	33
8 8	Measurement Uncertainties	34
9	Photo Report	35

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Type of Authorization

Certification for an Intentional Radiator (Digital Device / Spread Spectrum).

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-23 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

- Part 15, Subpart C Intentional Radiators
- § 15.201 Equipment authorization requirement
- § 15.207 Conducted limits
- § 15.209 Radiated emission limits; general requirements
- § 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz
- Part 15, Subpart E Unlicensed National Information Infrastructure Devices
- § 15.403 Definitions
- § 15.407 General technical requirements

Note:

The tests were selected and performed with reference to the FCC KDB "Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - Part 15, Subpart E, 789033 D02 General U-NII Test Procedures New Rules v02r01, 2017-12-14". and

"GUIDELINES FOR COMPLIANCE TESTING OF UNLICENSED NATIONAL INFORMATION INFRASTRUCTURE 6 GHz (U-NII) DEVICES PART 15, SUBPART E, 987594 D02 U-NII 6GHz EMC Measurement v01r01, 2021-02-04".

ANSI C63.10-2020 is applied.

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for UNII / LE-LAN (e.g. WLAN 5 GHz) equipment from FCC and IC

UNII equipment

Measurement	FCC reference	IC reference
Transmitter undesirable emissions; General Field Strength Limits, Restricted Bands	§ 15.407 (b) § 15.209 (a)	RSS-Gen Issue 5: 6.13/8.9/8.10; RSS-247 Issue 3: 3.3/6.2 6.2.1.2, 6.2.2.2, 6.2.3.2, 6.2.4.2

1.3 MEASUREMENT SUMMARY

47 CFR CHAPTER I FCC PART 15FCC §15.407 (b), (1),(2),(3),(4); FCCSubpart E §15.407§15.205, §15.209, §15.407 (b) (5),(6)

Undesirable Emissions; General Field Strength Limits The measurement was performed according to ANSI C63.10, chapter **Final Result** 6.4, 6.5, 6.6.5

OP-Mode Radio Technology, Measurement range, Measurement Method	Setup	Date	FCC	IC
BT Classic GFSK 2480 MHz + WLAN a 6 Mbps 5180 MHz, 1GHz - 26GHz, radiated	S02_AE02	2024-09-09	Passed	Passed
BT Classic GFSK 2402 MHz + WLAN b 1 Mbps 2462 MHz, 1GHz - 26GHz, radiated	S02_AE02	2024-09-09	Passed	Passed
BT Classic GFSK 2480 MHz + WLAN a 6 Mbps 5240 MHz, 1GHz - 26GHz, conducted	S01_AD02	2024-09-13	Passed	Passed
BT Classic GFSK 2402 MHz + WLAN b 1 Mbps 2462 MHz, 1GHz - 26GHz, conducted	S01_AD02	2024-09-13	Passed	Passed

N/A: Not applicable N/P: Not performed

2 REVISION HISTORY / SIGNATURES

Report version control				
Version	Release date	Change Description	Version validity	
initial	2024-11-15		valid	

COMMENT: -

(responsible for accreditation scope) Dipl.-Ing. Marco Kullik

(responsible for testing and report) Dipl.-Ing. Daniel Gall

lai ers 7 layers GmbH, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

3 ADMINISTRATIVE DATA

3.1 TESTING LABORATORY

7layers GmbH

Address:

Borsigstr. 11 40880 Ratingen Germany

The test facility is accredited by the following accreditation organisation:	The test facility	is accredited	by the	following	accreditation	organisation:
--	-------------------	---------------	--------	-----------	---------------	---------------

Laboratory accreditation no:	DAkkS D-PL-12140-01-00
FCC Designation Number:	DE0015
FCC Test Firm Registration:	929146
ISED CAB Identifier	DE0007; ISED#: 3699A
Responsible for accreditation scope:	DiplIng. Marco Kullik
Report Template Version:	2023-09-29
3.2 PROJECT DATA	
Responsible for testing and report:	DiplIng. Daniel Gall
Employees who performed the tests:	documented internally at 7Layers
Date of Report:	2024-11-15
Testing Period:	2024-09-09 to 2024-09-13

3.3 APPLICANT DATA

Company Name:	u-blox AG
Address:	Zürcherstrasse 68 8800 Thalwil Switzerland
Contact Person:	Filip Kruzela

3.4 MANUFACTURER DATA

Company Name:

please see Applicant Data

Address:

Contact Person:

4 TEST OBJECT DATA

4.1 GENERAL EUT DESCRIPTION

Kind of Device product description	WLAN and Bluetooth Module	
Product name	JODY-W5	
Туре	JODY-W562-00A	
Declared EUT data by	the supplier	
Voltage Type	DC	
Voltage Level	1.8 V + 3.3 V	
Tested Modulation Type	OFDM	
Specific product description	The EUT is a Bluetooth and WLAN module. It supports SISO Mode only. Supported WLAN modes are a, n, ac and ax with 20 MHz (mode a, n, ac, ax), 40 MHz (mode n, ac, ax) and 80 MHz (mode ac, ax) BW. The U-NII bands 1, 2A, 2C and 3 are supported. For this report the EUT is a slave without radar detection in the relevant DFS bands.	
Ports of the device	Enclosure Data DC Power Antenna The EUT is a module with solder pads for surface mounting, so no cables were connected to the EUT itself.	
Antenna 1	External / 5.1 dBi (No antennas were provided for the tests, radiated measurements were performed with 50 Ohm terminations)	
Tested Datarates	WLAN a: 6 Mbit BT Classic: 1 (BDR) WLAN b: 1 Mbps	
Special software used for testing	Labtool on computer board provided by applicant	
Used output power	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	

4.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description
EUT ae02	DE1015185ae02	Type JODY-W562-00A on M.2 KEY-E board
Sample Parameter		Value
Serial No.	BU520BA36D799900200	
HW Version	3	
SW Version	v2.0.0.31-18.99.2.p66.20	
Comment		

Sample Name	Sample Code	Description
EUT ad02	DE1015185ad02	Type JODY-W562-00A on M.2 KEY-E board
Sample Parameter		Value
Serial No.	BU520BA36D798100200	
HW Version	3	
SW Version	v2.0.0.31-18.99.2.p66.20	
Comment		

NOTE: The short description is used to simplify the identification of the EUT in this test report.

4.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, OUT Code)	Description
-	-	-

4.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Device Details Description (Manufacturer, Type Model, HW, SW, S/N) AUX 01 UBLOX, JODY Carrier Board M.2 M.2 Adapter board Adapter, REV. A, - , -AUX 02 UBLOX, JODY-Carrier Board, Rev. D, - , Jody Carrier Board 1000002459130006001 AUX 04 EDACPOWER ELEC., EA1045CR, -, -, -AC Adapter AUX 06 UBLOX, JODY-Carrier Board, Rev. D, -, Jody Carrier Board 1000003369561002002 AUX 08 NXP, i.MX 8M MINI on 8MMINI-BB, REV Computer Board A2, -, NT19150864

4.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale
S01_AD02	EUT ad02, AUX 08, AUX 04, AUX 06, AUX 01,	Conducted Setup
S02_AE02	EUT ae02, AUX 02, AUX 01,	Radiated Setup

4.6 OPERATING MODES / TEST CHANNELS

This chapter describes the operating modes of the EUTs used for testing.

BT Classic GFSK 2480 MHz + WLAN a 6 Mbps 5180 MHz BT Classic GFSK 2480 MHz + WLAN a 6 Mbps 5240 MHz BT Classic GFSK 2402 MHz + WLAN b 1 Mbps 2462 MHz

4.7 PRODUCT LABELLING

4.7.1 FCC ID LABEL

Please refer to the documentation of the applicant.

4.7.2 LOCATION OF THE LABEL ON THE EUT

Please refer to the documentation of the applicant.

5 TEST RESULTS

5.1 UNDESIRABLE EMISSIONS; GENERAL FIELD STRENGTH LIMITS

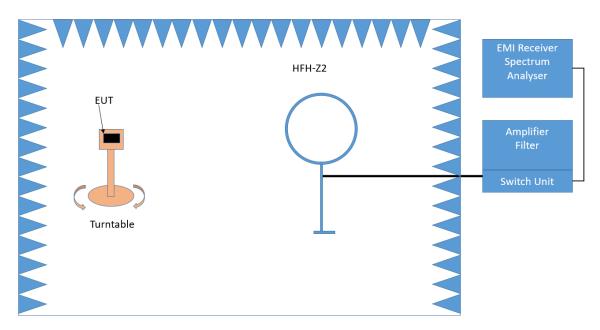
Standard FCC Part 15 Subpart E

The test was performed according to:

ANSI C63.10, chapter 6.4, 6.5, 6.6.5

5.1.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The measurements were performed according the following sub-chapters of ANSI C63.10:


- < 30 MHz: Chapter 6.4
- 30 MHz 1 GHz: Chapter 6.5
- > 1 GHZ: Chapter 6.6 (procedure according 6.6.5 used)

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered.

Below 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

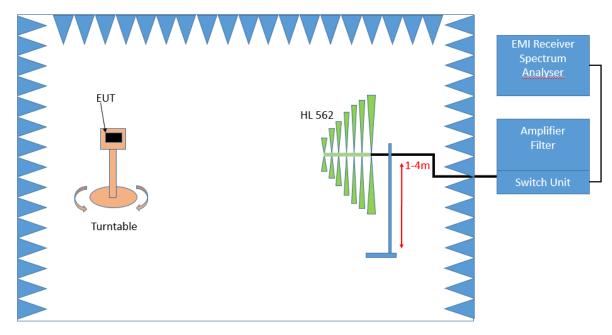
1. Measurement up to 30 MHz

Test Setup; Spurious Emission Radiated (SAC), 9 kHz - 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber
- Antenna distance: 3 m
- Detector: Peak-Maxhold
- Frequency range: 0.009 0.15 MHz and 0.15 30 MHz
- Frequency steps: 0.05 kHz and 2.25 kHz
- IF-Bandwidth: 0.2 kHz and 9 kHz
- Measuring time / Frequency step: 100 ms (FFT-based)


Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side
- Antenna distance: according to the Standard
- Detector: Quasi-Peak
- Frequency range: 0.009 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF-Bandwidth: 0.2 10 kHz
- Measuring time / Frequency step: 1 s

2. Measurement above 30 MHz and up to 1 GHz

Test Setup; Spurious Emission Radiated (SAC), 30 MHz- 1GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1:

- Antenna distance: 3 m
- Detector: Peak-Maxhold / Quasipeak (FFT-based)
- Frequency range: 30 1000 MHz
- Frequency steps: 30 kHz
- IF-Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 ms

- Turntable angle range: -180° to 90°
- Turntable step size: 90°
- -- Height variation range: 1 4 m
- Height variation step size: 1.5 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by 360°. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by 1 - 4 meter. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range: 360 °
- Height variation range:1 4 m
- Antenna Polarisation: max. value determined in step 1

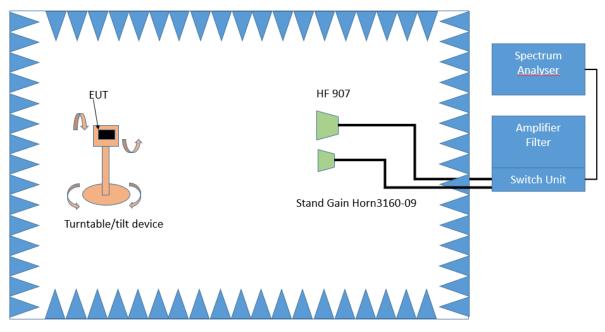
Step 3: Final measurement with QP detector

With the settings determined in step 2, the final measurement will be performed:

EMI receiver settings for step 3:

- Detector: Quasi-Peak (< 1 GHz)
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.



Above 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

3. Measurement 1 GHz up to 26.5 GHz

Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only. The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °.

Step 2:

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed.

The turn table azimuth will slowly vary by \pm 22.5°.

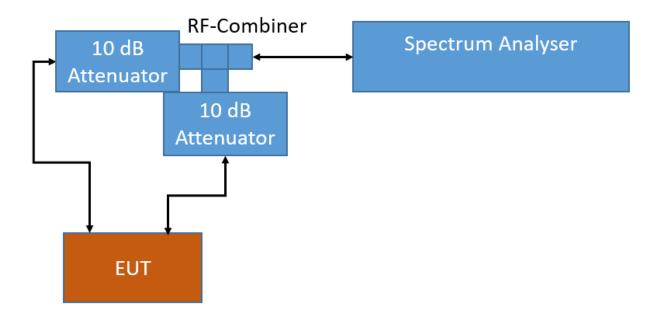
The elevation angle will slowly vary by $\pm 45^{\circ}$

EMI receiver settings (for all steps):

- Detector: Peak, Average
- IF Bandwidth = 1 MHz

Step 3:

Spectrum analyser settings for step 3:


- Detector: Peak / Average
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 1 MHz
- Measuring time: 1 s

Conducted Measurements at antenna ports

The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:

- Frequency range: 0.009 30 MHz
- Resolution Bandwidth (RBW): 10 kHz
- Video Bandwidth (VBW): 30 kHz
- Trace: Maxhold
- Sweeps: till stable
- Sweep Time: coupled
- Detector: Peak
- Frequency range: 30 1000 MHz
- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Trace: Maxhold
- Sweeps: till stable
- Sweep Time: coupled
- Detector: Peak
- Frequency range: 1000 26000 MHz
- Resolution Bandwidth (RBW): 1000 kHz
- Video Bandwidth (VBW): 3000 kHz
- Trace: Maxhold, Average Power
- Sweeps: 500
- Sweep Time: coupled
- Detector: Peak, RMS

For the conducted emissions in restricted bands the Value is measured in dBm and then converted to $dB\mu V/m$ as given in KDB 789033:

1. Measure the conducted output power in dBm.

2. Add the maximum antenna gain in dBi. (Included in measurement result by offset)

3. Add the appropriate ground reflection factor (included in measurement result by transducer factor)

6 dB for frequencies \leq 30 MHz;

4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and

0 dB for frequencies > 1000 MHz).

4. Convert the resultant EIRP level to an equivalent electric field strength level using the following relationship:

 $E = EIRP - 20 \log D + 104.8$

Where E is the electric field strength in $dB\mu V/m$,

EIRP is the equivalent isotropically radiated power in dBm

D is the specified measurement distance in m

Value [dB μ V/m] = Measured value [dBm] (including gain and ground reflection factor) – 20 log D + 104.8

5.1.2 TEST REQUIREMENTS / LIMITS A) FCC

FCC Part 15 Subpart E, §15.407 (b)(1) For transmitters operating in the 5150–5250 MHz band: Limit: -27 dBm/MHz EIRP outside of the band 5150–5350 MHz.

FCC Part 15 Subpart E, §15.407 (b)(2) For transmitters operating in the 5250–5350 MHz band: Limit: -27 dBm/MHz EIRP outside of the band 5150–5350 MHz.

FCC Part 15 Subpart E, §15.407 (b)(3) For transmitters operating in the 5470–5725 MHz band: Limit: -27 dBm/MHz EIRP outside of the band 5470–5725 MHz.

FCC Part 15 Subpart E, §15.407 (b)(4) For transmitters operating in the 5725–5850 MHz band:

Limit: -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge increasing linearly to 15.6 dBm/MHz at 5 MHz above or below the band edge increasing linearly to 27 dBm/MHz at the band edge.

FCC Part 15 Subpart E, §15.407 (b) (5) For transmitters operating within the 5.925-7.125 GHz band: Limit: -27 dBm/MHz EIRP outside of the band 5.925-7.125 GHz.

FCC Part 15 Subpart E, §15.407 (b) (6)

For transmitters operating within the 5.925-7.125 GHz bands:

Power spectral density must be suppressed by 20 dB at 1 MHz outside of channel edge, by 28 dB at one channel bandwidth from the channel center, and by 40 dB at one- and one-half times the channel bandwidth away from channel center. At frequencies between one megahertz outside an unlicensed device's channel edge and one channel bandwidth from the center of the channel, the limits must be linearly interpolated between 20 dB and 28 dB

suppression, and at frequencies between one and one- and one-half times an unlicensed device's channel bandwidth, the limits must be linearly interpolated between 28 dB and 40 dB suppression. Emissions removed from the channel center by more than one- and one-half times the channel bandwidth must be suppressed by at least 40 dB.

B) IC

Different frequency bands and limits apply, as compared to the FCC requirements.

RSS-247, 6.2.1.2, Emissions outside the band 5150-5250 MHz, indoor operation only: Limit: -27 dBm/MHz EIRP outside of the band 5150-5250 MHz.

RSS-247, 6.2.2.2, Emissions outside the band 5250-5350 MHz: Limit: -27 dBm/MHz EIRP outside of the band 5250-5350 MHz.

RSS-247, 6.2.3.2, Emissions outside the bands 5470-5600 MHz and 5650-5725 MHz: Limit: -27 dBm/MHz EIRP outside of the band 5470-5725 MHz. However, devices with bandwidth overlapping the band edge of 5725 MHz can meet the emission limit of -27 dBm/MHz e.i.r.p.at 5850 MHz instead of 5725 MHz. Note: No operation is permitted for the frequency range 5600-5650 MHz.

RSS-247, 6.2.4.2, Emissions outside the band 5725-5850 MHz:

- a. 27 dBm/MHz at frequencies from the band edges decreasing linearly to 15.6 Bm/MHz at 5 MHz above or below the band edges;
- b. 15.6 dBm/MHz at 5 MHz above or below the band edges decreasing linearly to 10 dBm/MHz at 25 MHz above or below the band edges;
- c. 10 dBm/MHz at 25 MHz above or below the band edges decreasing linearly to -27 dBm/MHz at 75 MHz above or below the band edges; and
- d. -27 dBm/MHz at frequencies more than 75 MHz above or below the band edges.

C) FCC & IC

FCC Part 15 Subpart E, §15.405 The provisions of §§ 15.203 and 15.205 are included.

§15.407 (b)(6)

Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209.

§15.407 (b)(7) The provisions of §15.205 apply to intentional radiators operating under this section

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 – 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 – 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

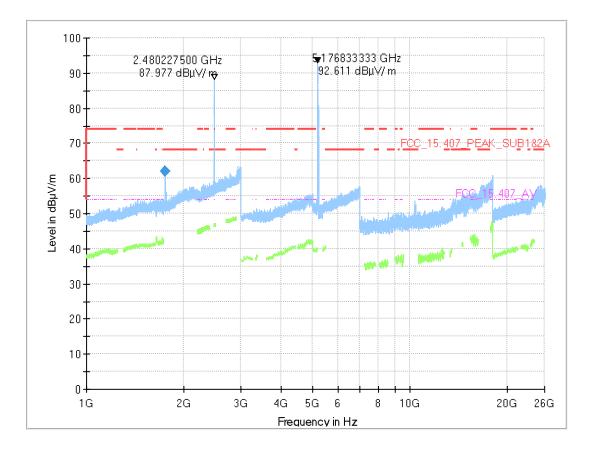
§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor:

- Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$
- Limit (dBµV/m) = EIRP [dBm] 20 log (d [m]) + 104.8

Limit types (in result tables):

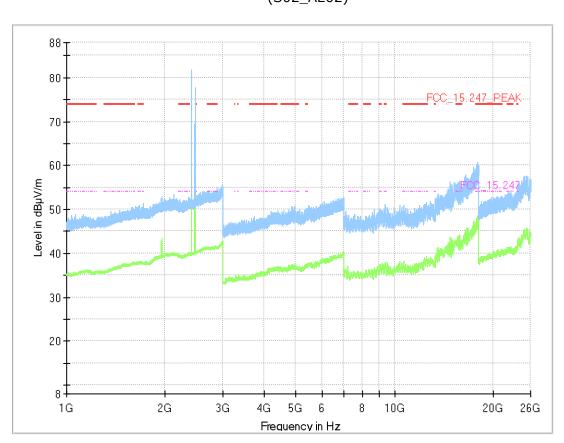
RB – Emissions falls into a "Restricted Band" according FCC §§15.205 and 15.209 *)
UE – "Undesirable Emission Limit" according FCC §15.407
BE-RB – Band Edge Limit basing on "Restricted Band Limits"
BE-UE – Band Edge Limit basing on "Undesirable Emission Limit"
*) Below 1 GHz the limits of §15.209 are applied for all frequencies.


5.1.3 TEST PROTOCOL

Ambient temperature:	21-23 °C
Air Pressure:	1007-1009 hPa
Humidity:	40-45 %

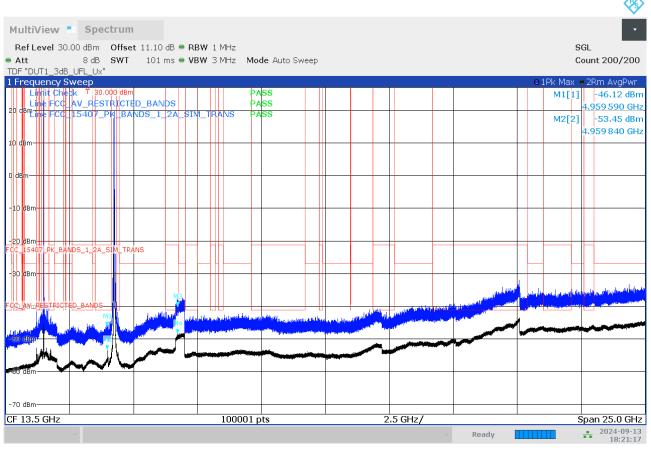
Remark: Please see next sub-clause for the measurement plot.

5.1.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)


Radio Technology = BT Classic GFSK 2480 MHz + WLAN a 6 Mbps 5180 MHz, Measurement range = 1GHz - 26GHz, Measurement Method = radiated (S02_AE02)

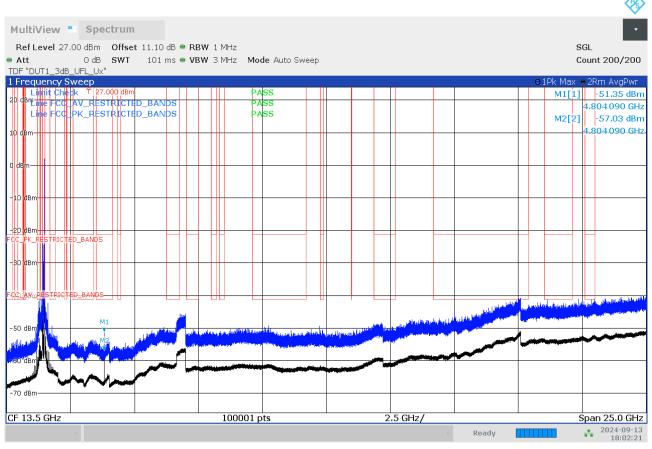
Final Result

Frequency	MaxPeak	CAverag	Limit	Margi	Meas.	Bandwidt	Heigh	Pol	Azimut	Elevatio	Corr.
(MHz)	(dBµV/m)	е	(dBµ	n	Time	h	t		h	n	(dB/
		(dBµV/m)	V/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(deg)	m)
1755.049	61.9		68.20	6.31	1000.0	1000.000	150.0	Н	-90.0	92.0	29.9



Radio Technology = BT Classic GFSK 2402 MHz + WLAN b 1 Mbps 2462 MHz, Measurement range = 1GHz - 26GHz, Measurement Method = radiated (S02_AE02)

-												
	Frequency (MHz)	MaxPeak (dBµV/m)	CAverag e	Limit (dBµ	Margi n	Meas. Time	Bandwidt h	Heigh t	Pol	Azimut h	Elevatio n	Corr. (dB/
			(dBµV/m)	V/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(deg)	m)


Radio Technology = BT Classic GFSK 2480 MHz + WLAN a 6 Mbps 5240 MHz, Measurement range = 30MHz - 26GHz, Measurement Method = conducted (S01_AD02)

06:21:17 PM 09/13/2024

Radio Technology = BT Classic GFSK 2402 MHz + WLAN b 1 Mbps 2462 MHz, Measurement range = 30MHz - 26GHz, Measurement Method = conducted (S01_AD02)

06:02:21 PM 09/13/2024

Test Equipment used

- Radiated Emissions FAR 5 GHz FCC
- R&S TS8997

6 TEST EQUIPMENT

6.1 TEST EQUIPMENT HARDWARE

1 R&S TS8997 2.4 and 5 GHz Bands Conducted Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number		Calibration
1.1	Opus10 TPR (8253.00)	, 55	Lufft Mess- und Regeltechnik GmbH	13936	Calibration 2023-12	Due 2025-12
1.2		Signal Generator	Rohde & Schwarz GmbH & Co. KG	104275	2023-08	2026-08
1.3	SMB100A	Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	107695	2024-07	2027-07
1.4	FSV30	Signal Analyzer 10 Hz - 30 GHz	Rohde & Schwarz	103005	2023-08	2025-08
1.5	Temperature Chamber VT 4002	Temperature Chamber Vötsch 03	Vötsch	58566002150010	2024-07	2026-07
1.6	FSW43	Signal Analyser	Rohde & Schwarz GmbH & Co. KG	102013	2023-07	2025-07
1.7	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	13993	2023-12	2025-12
1.8	HMP2020	Programmable	Rohde & Schwarz GmbH & Co. KG	101992	N/A	N/A
1.9	SMBV100A		Rohde & Schwarz	259291	2023-01	2026-01
1.10	OSP120	Contains Power Meter and Switching Unit OSP- B157W8 PLUS	Rohde & Schwarz	101158	2024-09	2027-09
1.11	CS-RUB6	Rubidium Frequency Standard	Rohde & Schwarz GmbH & Co. KG	100321	2023-10	2024-10

2 Radiated Emissions FAR 5 GHz FCC Radiated Emissions Tests for 5 GHz bands in a fully anechoic room

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.1	Opus10 TPR (8253.00)	T/P Logger 13	Lufft Mess- und Regeltechnik GmbH	13936	2023-12	2025-12
2.2 Innco Systems (CO3000 t		Controller for bore sight mast FAC	innco systems CO3000/1460/54 GmbH 740522/P		N/A	N/A
2.3	AMF- 7D00101800- 30-10P-R	Broadband Amplifier 100 MHz - 18 GHz	Miteq		N/A	N/A
2.4	Anechoic Chamber 03	FAR, 8.80m x 4.60m x 4.05m (l x w x h)	Albatross Projects	P26971-647-001- PRB	N/A	N/A
2.5	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2023-08	2025-08
2.6	JS4-18002600- 32-5P	Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785	N/A	N/A
2.7	FSW43	Spectrum Analyzer	Rohde & Schwarz GmbH & Co. KG	103779	2023-04	2025-04
2.8	EP 1200/B, NA/B1	AC Source, Amplifier with integrated variable Oscillator	Spitzenberger & Spies GmbH & Co. KG	B6278	N/A	N/A
2.9	3160-09		EMCO Elektronic GmbH	00083069	N/A	N/A
2.10	WHKX 7.0/18G- 8SS	High Pass Filter	Wainwright Instruments GmbH	09	N/A	N/A
2.11		Bore Sight Antenna Mast	innco systems GmbH	9210522	N/A	N/A
2.12	TT 1.5 WI	Turn Table	Maturo GmbH	-	N/A	N/A
2.13	3160-10		EMCO Elektronic GmbH	00086675	N/A	N/A
2.14	Opus 20 THI (8120.00)		Lufft Mess- und Regeltechnik GmbH	115.0318.0802.0 33	2023-08	2025-08
2.15	TD1.5-10kg	EUT Tilt Device (Rohacell)		TD1.5- 10kg/024/37907 09	N/A	N/A
2.16	AFS42- 00101800-25-S- 42		Miteq	2035324	N/A	N/A
2.17	HF 907		Rohde & Schwarz	102444	2021-09	2024-09

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

6.2 TEST EQUIPMENT SOFTWARE

Version
10.60.10
1.02.62
34.10
36.11
1.24
12.19
30.10
Version
10.60.10
1.30
11.10
12.10
12.11
1.03.02
34.10
36.11
11.60.00 (till 2024-03-19), 11.70.00 + Hotfix 01
Version
10.60.20

7 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

	•		
			cable
			loss
		LISN	(incl. 10
		insertion	dB
		loss	atten-
Frequency	Corr.	ESH3-Z5	uator)
MHz	dB	dB	dB
0.15	10.1	0.1	10.0
5	10.3	0.1	10.2
7	10.5	0.2	10.3
10	10.5	0.2	10.3
12	10.7	0.3	10.4
14	10.7	0.3	10.4
16	10.8	0.4	10.4
18	10.9	0.4	10.5
20	10.9	0.4	10.5
22	11.1	0.5	10.6
24	11.1	0.5	10.6
26	11.2	0.5	10.7
28	 11.2	0.5	10.7
30	11.3	0.5	10.8

7.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

			-	1	,	1			1
				cable loss	cable	cable	distance	dLimit	dused
	AF		cable loss	2	loss 3	loss 4	corr.	(meas.	(meas.
_	HFH-		1 (inside	(outside	(switch	(to	(-40 dB/	distance	distance
Frequency	Z2)	Corr.	chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
MHz	dB (1/m)	dB	dB	dB	dB	dB	dB	m	m
0.009	20.50	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.01	20.45	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.015	20.37	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.02	20.36	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.025	20.38	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.03	20.32	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.05	20.35	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.08	20.30	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.1	20.20	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.2	20.17	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.3	20.14	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.49	20.12	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.490001	20.12	-39.6	0.1	0.1	0.1	0.1	-40	30	3
0.5	20.11	-39.6	0.1	0.1	0.1	0.1	-40	30	3
0.8	20.10	-39.6	0.1	0.1	0.1	0.1	-40	30	3
1	20.09	-39.6	0.1	0.1	0.1	0.1	-40	30	3
2	20.08	-39.6	0.1	0.1	0.1	0.1	-40	30	3
3	20.06	-39.6	0.1	0.1	0.1	0.1	-40	30	3
4	20.05	-39.5	0.2	0.1	0.1	0.1	-40	30	3
5	20.05	-39.5	0.2	0.1	0.1	0.1	-40	30	3
6	20.02	-39.5	0.2	0.1	0.1	0.1	-40	30	3
8	19.95	-39.5	0.2	0.1	0.1	0.1	-40	30	3
10	19.83	-39.4	0.2	0.1	0.2	0.1	-40	30	3
12	19.71	-39.4	0.2	0.1	0.2	0.1	-40	30	3
14	19.54	-39.4	0.2	0.1	0.2	0.1	-40	30	3
16	19.53	-39.3	0.3	0.1	0.2	0.1	-40	30	3
18	19.50	-39.3	0.3	0.1	0.2	0.1	-40	30	3
20	19.57	-39.3	0.3	0.1	0.2	0.1	-40	30	3
22	19.61	-39.3	0.3	0.1	0.2	0.1	-40	30	3
24	19.61	-39.3	0.3	0.1	0.2	0.1	-40	30	3
26	19.54	-39.3	0.3	0.1	0.2	0.1	-40	30	3
28	19.46	-39.2	0.3	0.1	0.3	0.1	-40	30	3
30	19.73	-39.1	0.4	0.1	0.3	0.1	-40	30	3

7.2 ANTENNA R&S HFH2-Z2 (9 KHZ – 30 MHZ)

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-40 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

7.3 ANTENNA R&S HL562 (30 MHZ – 1 GHZ)

 $(\underline{d_{\text{Limit}}} = 3 \text{ m})$

Frequency	AF R&S HL562	Corr.
MHz	dB (1/m)	dB
30	18.6	0.6
50	6.0	0.9
100	9.7	1.2
150	7.9	1.6
200	7.6	1.9
250	9.5	2.1
300	11.0	2.3
350	12.4	2.6
400	13.6	2.9
450	14.7	3.1
500	15.6	3.2
550	16.3	3.5
600	17.2	3.5
650	18.1	3.6
700	18.5	3.6
750	19.1	4.1
800	19.6	4.1
850	20.1	4.4
900	20.8	4.7
950	21.1	4.8
1000	21.6	4.9

cable loss 1 (inside	cable loss 2 (outside	cable loss 3 (switch	cable loss 4 (to	distance corr. (-20 dB/	d _{Limit} (meas. distance	d _{used} (meas. distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

(<u>d_{Limit} = 10 m)</u>

	·/								
30	18.6	-9.9	0.29	0.04	0.23	0.02	-10.5	10	3
50	6.0	-9.6	0.39	0.09	0.32	0.08	-10.5	10	3
100	9.7	-9.2	0.56	0.14	0.47	0.08	-10.5	10	3
150	7.9	-8.8	0.73	0.20	0.59	0.12	-10.5	10	3
200	7.6	-8.6	0.84	0.21	0.70	0.11	-10.5	10	3
250	9.5	-8.3	0.98	0.24	0.80	0.13	-10.5	10	3
300	11.0	-8.1	1.04	0.26	0.89	0.15	-10.5	10	3
350	12.4	-7.9	1.18	0.31	0.96	0.13	-10.5	10	3
400	13.6	-7.6	1.28	0.35	1.03	0.19	-10.5	10	3
450	14.7	-7.4	1.39	0.38	1.11	0.22	-10.5	10	3
500	15.6	-7.2	1.44	0.39	1.20	0.19	-10.5	10	3
550	16.3	-7.0	1.55	0.46	1.24	0.23	-10.5	10	3
600	17.2	-6.9	1.59	0.43	1.29	0.23	-10.5	10	3
650	18.1	-6.9	1.67	0.34	1.35	0.22	-10.5	10	3
700	18.5	-6.8	1.67	0.42	1.41	0.15	-10.5	10	3
750	19.1	-6.3	1.87	0.54	1.46	0.25	-10.5	10	3
800	19.6	-6.3	1.90	0.46	1.51	0.25	-10.5	10	3
850	20.1	-6.0	1.99	0.60	1.56	0.27	-10.5	10	3
900	20.8	-5.8	2.14	0.60	1.63	0.29	-10.5	10	3
950	21.1	-5.6	2.22	0.60	1.66	0.33	-10.5	10	3
1000	21.6	-5.6	2.23	0.61	1.71	0.30	-10.5	10	3

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-20 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

used

15.247

cable loss 6

(to

receiver) dB

1.46

1.53

1.60

1.67

1.70

1.73 1.83

1.77

1.83

1.85

2.00

1.91

1.44

1.51

1.53

1.55

for FCC

ANTENNA R&S HF907 (1 GHZ - 18 GHZ) 7.4

Frequency	AF R&S HF907	Corr.	cable loss 1 (relay + cable inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit, atten- uator &	cable loss 4 (to receiver)		
Frequency	dB	COIT.	chamber)	chamber)	pre-amp)	Teceiver)		
MHz	(1/m)	dB	dB	dB	dB	dB		
1000	24.4	-19.4	0.99	0.31	-21.51	0.79		
2000	28.5	-17.4	1.44	0.44	-20.63	1.38		
3000	31.0	-16.1	1.87	0.53	-19.85	1.33		
4000	33.1	-14.7	2.41	0.67	-19.13	1.31		
5000	34.4	-13.7	2.78	0.86	-18.71	1.40		
6000	34.7	-12.7	2.74	0.90	-17.83	1.47		
7000	35.6	-11.0	2.82	0.86	-16.19	1.46		
	AF		cable loss 1 (relay	cable loss	cable loss 3	cable loss 4 (switch unit, atten-	cable loss	
	R&S		inside	2 (inside	(outside	uator &	5 (to	
Frequency	HF907	Corr.	chamber)	chamber)	chamber)	pre-amp)	receiver)	
rrequeries				,	,	F F/	/	
· · ·	dB		-					
MHz	dB (1/m)	dB	dB	dB	dB	dB	dB	
MHz 3000	dB (1/m) 31.0	dB -23.4	dB 0.47	dB 1.87	dB 0.53	dB -27.58	dB 1.33	
MHz 3000 4000	dB (1/m) 31.0 33.1	dB -23.4 -23.3	dB 0.47 0.56	dB 1.87 2.41	dB 0.53 0.67	dB -27.58 -28.23	dB 1.33 1.31	
MHz 3000 4000 5000	dB (1/m) 31.0 33.1 34.4	dB -23.4 -23.3 -21.7	dB 0.47 0.56 0.61	dB 1.87 2.41 2.78	dB 0.53 0.67 0.86	dB -27.58 -28.23 -27.35	dB 1.33 1.31 1.40	
MHz 3000 4000 5000 6000	dB (1/m) 31.0 33.1 34.4 34.7	dB -23.4 -23.3 -21.7 -21.2	dB 0.47 0.56 0.61 0.58	dB 1.87 2.41 2.78 2.74	dB 0.53 0.67 0.86 0.90	dB -27.58 -28.23 -27.35 -26.89	dB 1.33 1.31 1.40 1.47	
MHz 3000 4000 5000	dB (1/m) 31.0 33.1 34.4	dB -23.4 -23.3 -21.7	dB 0.47 0.56 0.61	dB 1.87 2.41 2.78	dB 0.53 0.67 0.86	dB -27.58 -28.23 -27.35	dB 1.33 1.31 1.40	
MHz 3000 4000 5000 6000	dB (1/m) 31.0 33.1 34.4 34.7	dB -23.4 -23.3 -21.7 -21.2	dB 0.47 0.56 0.61 0.58	dB 1.87 2.41 2.78 2.74	dB 0.53 0.67 0.86 0.90	dB -27.58 -28.23 -27.35 -26.89	dB 1.33 1.31 1.40 1.47	
MHz 3000 4000 5000 6000 7000 Frequency	dB (1/m) 33.1 33.1 34.4 34.7 35.6 AF R&S HF907 dB	dB -23.4 -23.3 -21.7 -21.2 -19.8 Corr.	dB 0.47 0.56 0.61 0.58 0.66 cable loss 1 (relay inside chamber)	dB 1.87 2.41 2.78 2.74 2.82 cable loss 2 (High Pass)	dB 0.53 0.67 0.86 0.90 0.86 cable loss 3 (pre- amp)	dB -27.58 -28.23 -27.35 -26.89 -25.58 cable loss 4 (inside chamber)	dB 1.33 1.31 1.40 1.47 1.46 cable loss 5 (outside chamber)	
MHz 3000 4000 5000 6000 7000 Frequency MHz	dB (1/m) 31.0 33.1 34.4 34.7 35.6 AF R&S HF907 dB (1/m)	dB -23.4 -23.3 -21.7 -21.2 -19.8 Corr.	dB 0.47 0.56 0.61 0.58 0.66 cable loss 1 (relay inside chamber) dB	dB 1.87 2.41 2.78 2.74 2.82 cable loss 2 (High Pass) dB	dB 0.53 0.67 0.86 0.90 0.86 cable loss 3 (pre- amp) dB	dB -27.58 -28.23 -27.35 -26.89 -25.58 cable loss 4 (inside chamber) dB	dB 1.33 1.31 1.40 1.47 1.46 cable loss 5 (outside chamber) dB	
MHz 3000 4000 5000 6000 7000 Frequency MHz 7000	dB (1/m) 31.0 33.1 34.4 34.7 35.6 AF R&S HF907 dB (1/m) 35.6	dB -23.4 -23.3 -21.7 -21.2 -19.8 Corr. dB -57.3	dB 0.47 0.56 0.61 0.58 0.66 cable loss 1 (relay inside chamber) dB 0.56	dB 1.87 2.41 2.78 2.74 2.82 cable loss 2 (High Pass) dB 1.28	dB 0.53 0.67 0.86 0.90 0.86 cable loss 3 (pre- amp) dB -62.72	dB -27.58 -28.23 -27.35 -26.89 -25.58 cable loss 4 (inside chamber) dB 2.66	dB 1.33 1.31 1.40 1.47 1.46 cable loss 5 (outside chamber) dB 0.94	
MHz 3000 4000 5000 6000 7000 7000 Frequency MHz 7000 8000	dB (1/m) 31.0 33.1 34.4 34.7 35.6 AF R&S HF907 dB (1/m) 35.6 36.3	dB -23.4 -21.7 -21.2 -19.8 Corr. dB -57.3 -56.3	dB 0.47 0.56 0.61 0.58 0.66 cable loss 1 (relay inside chamber) dB 0.56 0.69	dB 1.87 2.41 2.78 2.74 2.82 cable loss 2 (High Pass) dB 1.28 0.71	dB 0.53 0.67 0.86 0.90 0.86 cable loss 3 (pre- amp) dB -62.72 -61.49	dB -27.58 -28.23 -27.35 -26.89 -25.58 cable loss 4 (inside chamber) dB 2.66 2.84	dB 1.33 1.31 1.40 1.47 1.46 cable loss 5 (outside chamber) dB 0.94 1.00	
MHz 3000 4000 5000 6000 7000 7000 Frequency MHz 7000 8000 9000	dB (1/m) 31.0 33.1 34.4 34.7 35.6 AF R&S HF907 dB (1/m) 35.6 36.3 37.1	dB -23.4 -21.7 -21.2 -19.8 Corr. dB -57.3 -56.3 -55.3	dB 0.47 0.56 0.61 0.58 0.66 cable loss 1 (relay inside chamber) dB 0.56 0.69 0.68	dB 1.87 2.41 2.78 2.74 2.82 cable loss 2 (High Pass) dB 1.28 0.71 0.65	dB 0.53 0.67 0.86 0.90 0.86 cable loss 3 (pre- amp) dB -62.72 -61.49 -60.80	dB -27.58 -28.23 -27.35 -26.89 -25.58 cable loss 4 (inside chamber) dB 2.66 2.84 3.06	dB 1.33 1.31 1.40 1.47 1.46 cable loss 5 (outside chamber) dB 0.94 1.00 1.09	
MHz 3000 4000 5000 6000 7000 7000 7000 8000 9000 10000	dB (1/m) 33.1 34.4 34.7 35.6 AF R&S HF907 dB (1/m) 35.6 36.3 37.1 37.5	dB -23.4 -23.3 -21.7 -21.2 -19.8 Corr. dB -57.3 -56.3 -55.3 -55.3 -56.2	dB 0.47 0.56 0.61 0.58 0.66 cable loss 1 (relay inside chamber) dB 0.56 0.69 0.68 0.70	dB 1.87 2.41 2.78 2.74 2.82 cable loss 2 (High Pass) dB 1.28 0.71 0.65 0.54	dB 0.53 0.67 0.86 0.90 0.86 cable loss 3 (pre- amp) dB -62.72 -61.49 -60.80 -61.91	dB -27.58 -28.23 -27.35 -26.89 -25.58 cable loss 4 (inside chamber) dB 2.66 2.84 3.06 3.28	dB 1.33 1.31 1.40 1.47 1.46 cable loss 5 (outside chamber) dB 0.94 1.00 1.09 1.20	
MHz 3000 4000 5000 6000 7000 7000 8000 9000 10000 11000	dB (1/m) 31.0 33.1 34.4 34.7 35.6 AF R&S HF907 dB (1/m) 35.6 36.3 37.1 37.5 37.5	dB -23.4 -21.7 -21.2 -19.8 Corr. dB -57.3 -56.3 -55.3 -56.2 -55.3	dB 0.47 0.56 0.61 0.58 0.66 cable loss 1 (relay inside chamber) dB 0.56 0.69 0.68 0.70 0.80	dB 1.87 2.41 2.78 2.74 2.82 cable loss 2 (High Pass) dB 1.28 0.71 0.65 0.54 0.61	dB 0.53 0.67 0.86 0.90 0.86 cable loss 3 (pre- amp) dB -62.72 -61.49 -60.80 -61.91 -61.40	dB -27.58 -28.23 -27.35 -26.89 -25.58 cable loss 4 (inside chamber) dB 2.66 2.84 3.06 3.28 3.43	dB 1.33 1.31 1.40 1.47 1.46 cable loss 5 (outside chamber) dB 0.94 1.00 1.09 1.20 1.27	
MHz 3000 4000 5000 6000 7000 7000 8000 9000 10000 11000 12000	dB (1/m) 31.0 33.1 34.4 34.7 35.6 AF R&S HF907 dB (1/m) 35.6 36.3 37.1 37.5 37.5 37.6	dB -23.4 -23.3 -21.7 -21.2 -19.8 - 0 -57.3 -56.3 -55.3 -55.3 -55.3 -55.3 -55.3 -55.3 -55.3 -55.3	dB 0.47 0.56 0.61 0.58 0.66 cable loss 1 (relay inside chamber) dB 0.56 0.69 0.68 0.70 0.80 0.84	dB 1.87 2.41 2.78 2.74 2.82 cable loss 2 (High Pass) dB 1.28 0.71 0.65 0.54 0.61 0.42	dB 0.53 0.67 0.86 0.90 0.86 cable loss 3 (pre- amp) dB -62.72 -61.49 -60.80 -61.91 -61.40 -59.70	dB -27.58 -28.23 -27.35 -26.89 -25.58 cable loss 4 (inside chamber) dB 2.66 2.84 3.06 3.28 3.43 3.53	dB 1.33 1.31 1.40 1.47 1.46 cable loss 5 (outside chamber) dB 0.94 1.00 1.09 1.20 1.27 1.26	
MHz 3000 4000 5000 6000 7000 7000 8000 9000 10000 11000 12000 13000	dB (1/m) 31.0 33.1 34.4 34.7 35.6 AF R&S HF907 dB (1/m) 35.6 36.3 37.1 37.5 37.5 37.5 37.6 38.2	dB -23.4 -23.3 -21.7 -21.2 -19.8 Corr. dB -57.3 -56.3 -55.3 -55.3 -55.3 -55.3 -55.3 -55.3 -55.3	dB 0.47 0.56 0.61 0.58 0.66 cable loss 1 (relay inside chamber) dB 0.56 0.69 0.68 0.70 0.80 0.84 0.83	dB 1.87 2.41 2.78 2.74 2.82 cable loss 2 (High Pass) dB 1.28 0.71 0.65 0.54 0.61 0.42 0.44	dB 0.53 0.67 0.86 0.90 0.86 cable loss 3 (pre- amp) dB -62.72 -61.49 -60.80 -61.91 -61.40 -59.70 -59.81	dB -27.58 -28.23 -27.35 -26.89 -25.58 cable loss 4 (inside chamber) dB 2.66 2.84 3.06 3.28 3.43 3.53 3.75	dB 1.33 1.31 1.40 1.47 1.46 cable loss 5 (outside chamber) dB 0.94 1.00 1.09 1.20 1.27 1.26 1.32	
MHz 3000 4000 5000 6000 7000 7000 8000 9000 10000 11000 12000	dB (1/m) 31.0 33.1 34.4 34.7 35.6 AF R&S HF907 dB (1/m) 35.6 36.3 37.1 37.5 37.5 37.6	dB -23.4 -23.3 -21.7 -21.2 -19.8 - 0 -57.3 -56.3 -55.3 -55.3 -55.3 -55.3 -55.3 -55.3 -55.3 -55.3	dB 0.47 0.56 0.61 0.58 0.66 cable loss 1 (relay inside chamber) dB 0.56 0.69 0.68 0.70 0.80 0.84	dB 1.87 2.41 2.78 2.74 2.82 cable loss 2 (High Pass) dB 1.28 0.71 0.65 0.54 0.61 0.42	dB 0.53 0.67 0.86 0.90 0.86 cable loss 3 (pre- amp) dB -62.72 -61.49 -60.80 -61.91 -61.40 -59.70	dB -27.58 -28.23 -27.35 -26.89 -25.58 cable loss 4 (inside chamber) dB 2.66 2.84 3.06 3.28 3.43 3.53	dB 1.33 1.31 1.40 1.47 1.46 cable loss 5 (outside chamber) dB 0.94 1.00 1.09 1.20 1.27 1.26	

0.98

1.23

1.36

1.70

Sample calculation

15000

16000

17000

18000

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

-54.1

-54.1

-54.4

-54.7

40.9

41.3

42.8

44.2

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Tables show an extract of values.

0.54

0.49

0.76

0.53

-61.05

-61.51

-62.36

-62.88

4.02

4.17

4.34

4.41

				•		,		
	45				cable		cable	cable
	AF			cable loss	loss 2	cable loss	loss 4	loss 5
	EMCO			1 (inside	(pre-	3 (inside	(switch	(to
Frequency	3160-09	Corr.		chamber)	amp)	chamber)	unit)	receiver)
MHz	dB (1/m)	dB		dB	dB	dB	dB	dB
18000	40.2	-23.5		0.72	-35.85	6.20	2.81	2.65
18500	40.2	-23.2		0.69	-35.71	6.46	2.76	2.59
19000	40.2	-22.0		0.76	-35.44	6.69	3.15	2.79
19500	40.3	-21.3		0.74	-35.07	7.04	3.11	2.91
20000	40.3	-20.3		0.72	-34.49	7.30	3.07	3.05
20500	40.3	-19.9		0.78	-34.46	7.48	3.12	3.15
21000	40.3	-19.1		0.87	-34.07	7.61	3.20	3.33
21500	40.3	-19.1		0.90	-33.96	7.47	3.28	3.19
22000	40.3	-18.7		0.89	-33.57	7.34	3.35	3.28
22500	40.4	-19.0		0.87	-33.66	7.06	3.75	2.94
23000	40.4	-19.5		0.88	-33.75	6.92	3.77	2.70
23500	40.4	-19.3		0.90	-33.35	6.99	3.52	2.66
24000	40.4	-19.8		0.88	-33.99	6.88	3.88	2.58
24500	40.4	-19.5		0.91	-33.89	7.01	3.93	2.51
25000	40.4	-19.3		0.88	-33.00	6.72	3.96	2.14
25500	40.5	-20.4		0.89	-34.07	6.90	3.66	2.22
26000	40.5	-21.3		0.86	-35.11	7.02	3.69	2.28
26500	40.5	-21.1		0.90	-35.20	7.15	3.91	2.36
			I	0.50	00.20	,.10	0.01	

7.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

	AF EMCO		cable loss 1 (inside	cable loss 2 (outside	cable loss 3 (switch	cable loss 4 (to	distance corr. (-20 dB/	d _{Limit} (meas. distance	d _{used} (meas. distance
Frequency	3160-10	Corr.	chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
GHz	dB (1/m)	dB	dB	dB	dB	dB	dB	m	m
26.5	43.4	-11.2	4.4				-9.5	3	1.0
27.0	43.4	-11.2	4.4				-9.5	3	1.0
28.0	43.4	-11.1	4.5				-9.5	3	1.0
29.0	43.5	-11.0	4.6				-9.5	3	1.0
30.0	43.5	-10.9	4.7				-9.5	3	1.0
31.0	43.5	-10.8	4.7				-9.5	3	1.0
32.0	43.5	-10.7	4.8				-9.5	3	1.0
33.0	43.6	-10.7	4.9				-9.5	3	1.0
34.0	43.6	-10.6	5.0				-9.5	3	1.0
35.0	43.6	-10.5	5.1				-9.5	3	1.0
36.0	43.6	-10.4	5.1				-9.5	3	1.0
37.0	43.7	-10.3	5.2				-9.5	3	1.0
38.0	43.7	-10.2	5.3				-9.5	3	1.0
39.0	43.7	-10.2	5.4				-9.5	3	1.0
40.0	43.8	-10.1	5.5				-9.5	3	1.0

7.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

Sample calculation

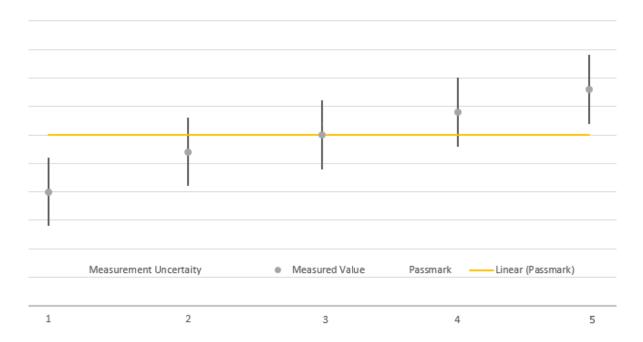
 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

distance correction = -20 * LOG ($d_{\text{Limit}}/d_{\text{used}}$) Linear interpolation will be used for frequencies in between the values in the table.


Table shows an extract of values.

8 MEASUREMENT UNCERTAINTIES

Test Case	Parameter	Uncertainty
AC Power Line	Power	± 3.4 dB
Field Strength of spurious radiation	Power	± 5.5 dB
6 dB / 26 dB / 99% Bandwidth	Power Frequency	± 2.9 dB ± 11.2 kHz
Conducted Output Power	Power	± 2.2 dB
Band Edge Compliance	Power Frequency	± 2.2 dB ± 11.2 kHz
Frequency Stability	Frequency	± 25 Hz
Power Spectral Density	Power	± 2.2 dB

The measurement uncertainties for all parameters are calculated with an expansion factor (coverage factor) k = 1.96. This means, that the true value is in the corresponding interval with a probability of 95 %.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	on pass mark	within pass mark	Passed
4	above pass mark	within pass mark	Failed
5	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so-called shared risk principle.

9 PHOTO REPORT

Please see separate photo report.