

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE200901903V01

FCC REPORT

(BLE)

Applicant: Shenzhen Huafurui Technology Co., Ltd.

Address of Applicant: Unit 1401 14/F, Jin qi zhi gu mansion Liu xian street, Xili, Nan

shan district Shenzhen China

Equipment Under Test (EUT)

Product Name: Smartphone

Model No.: KINGKONG MINI 2

Trade mark: CUBOT

FCC ID: 2AHZ5KKMN2

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 09 Sep., 2020

Date of Test: 10 Sep., to 09 Oct., 2020

Date of report issued: 02 Nov., 2020

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	10 Oct., 2020	Original
01	02 Nov., 2020	Update Applicant, Address, Manufacturer Address, Factory Address.

Mike. DU

Test Engineer Tested by: Date: 02 Nov., 2020

Winner thang Reviewed by: Date: 02 Nov., 2020

Project Engineer

3 Contents

Page
1
2
3
4
5
5
5
6
6
6
6
6
6
7
8
8
9
12
13
14
15
15
16
21
21
22
27
28
29
70

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	Shenzhen Huafurui Technology Co., Ltd.
Address:	Unit 1401 14/F, Jin qi zhi gu mansion Liu xian street, Xili, Nan shan district Shenzhen China
Manufacturer/ Factory:	Shenzhen Huafurui Technology Co., Ltd.
Address:	Unit 1401 14/F, Jin qi zhi gu mansion Liu xian street, Xili, Nan shan district Shenzhen China

5.2 General Description of E.U.T.

Product Name:	Smartphone
Model No.:	KINGKONG MINI 2
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.65 dBi
Power supply:	Rechargeable Li-ion Battery DC3.85V-3000mAh
AC adapter:	Model: HJ-0501000E1-US
	Input: AC100-240V, 50/60Hz, 0.2A
	Output: DC 5.0V, 1.0A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.110~116, Building B, Jinyuan Business Building, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Report No: CCISE200901903V01

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.110~116, Building B, Jinyuan Business Building, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.9 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-21-2020	07-20-2021
Loop Antenna	SCHWARZBECK	FMZB1519B	044	03-07-2020	03-06-2021
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-20-2020	06-19-2021
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2019	11-17-2020
EMI Test Software	AUDIX	E3	Version: 6.110919b		0
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0		

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2020	07-17-2021
Cable	HP	10503A	N/A	03-05-2020	03-04-2021
EMI Test Software	AUDIX	E3	V	ersion: 6.110919l)

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 1.65 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	,	
Test Frequency Range:	150 kHz to 30 MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9kHz, VBW=30kHz		
Limit:	Frequency range (MHz)	Limit (,
	. , ,	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30 * Decreases with the logarithm	60	50
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement. 		
Test setup:	Reference LISN 40cm AUX Equipment E.U.T Test table/Insulation plane Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Net	BOcm Filter Filter Receiver	– AC power
	Test table height=0.8m	WOTA	
Test Instruments:			
Test Instruments: Test mode:	Test table height=0.8m		

Measurement Data:

Product name:	Smartphone	Product model:	KINGKONG MINI 2
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5 °C Huni: 55%

	Freq	Kead Level	Factor	Factor	Loss	Level	Limit	Limit	Remark
1	MHz	dBu∇	<u>ab</u>	<u>ā</u>	dB	dBu₹	—dBu∇	<u>ab</u>	
1	0.471	21.26	-0.44	-0.15	10.75	31.42	46.49	-15.07	Average
2	3.364	34.75	-0.42	-0.15	10.91	45.09	56.00	-10.91	QP
2	3.364	21.48	-0.42	-0.15	10.91	31.82	46.00	-14.18	Average
4	3.509	37.45	-0.42	-0.12	10.90	47.81	56.00	-8.19	QP
4 5 6	3.681	37.61	-0.41	-0.09	10.90	48.01	56.00	-7.99	QP
6	3.779	22.19	-0.41	-0.08	10.90	32.60	46.00	-13.40	Average
7	3.840	36.13	-0.41	-0.07	10.89	46.54	56.00	-9.46	QP
8	3.985	35.74	-0.41	-0.05	10.89	46.17	56.00	-9.83	QP
9	4.136	35.17	-0.40	-0.03	10.88	45.62	56.00	-10.38	QP
10	4.247	24.00	-0.40	-0.01	10.88	34.47	46.00	-11.53	Average
11	4.672	23.71	-0.40	0.04	10.86	34.21	46.00	-11.79	Average
12	5.653	24.42	-0.45	0.53	10.83	35.33	50.00	-14.67	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Product name:	Smartphone	Product model:	KINGKONG MINI 2
Test by:	Mike	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5 °C Huni: 55%

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
2	MHz	dBu∀	dB	<u>dB</u>	₫B	dBu₹	₫₿uѶ	dB	
1	0.415	24.46	-0.63	-0.05	10.73	34.51			Average
2	0.471	25.08	-0.64	0.01	10.75	35.20	46.49	-11.29	Average
2	3.584	37.35	-0.65	0.44	10.90	48.04	56.00	-7.96	QP
4	3.584	26.64	-0.65	0.44	10.90	37.33	46.00	-8.67	Average
5	3.985	38.23	-0.64	0.51	10.89	48.99	56.00	-7.01	QP
4 5 6	4.247	25.31	-0.64	0.56	10.88	36.11	46.00	-9.89	Average
7	4.407	38.08	-0.64	0.58	10.87	48.89	56.00	-7.11	QP
8	4.926	37.20	-0.64	0.66	10.85	48.07	56.00	-7.93	QP
7 8 9	5.194	25, 20	-0.65	0.69	10.84	36.08	50.00	-13.92	Average
10	6.454	25.96	-0.72	0.80	10.81	36.85	50.00	-13.15	Average
11	6.878	39.18	-0.74	0.83	10.80	50.07	60.00	-9.93	
12	7.329	39.08	-0.75	0.90	10.82	50.05	60.00	-9.95	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

6.3 Conducted Output Power

Measurement Data: Refer to Appendix A - BLE

6.4 Occupy Bandwidth

Measurement Data: Refer to Appendix A - BLE

6.5 Power Spectral Density

Measurement Data: Refer to Appendix A - BLE

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data: Refer to Appendix A - BLE

6.6.2 Radiated Emission Method

0.0.2 Radiated Lillission	T WCUIOG								
Test Requirement:	FCC Part 15 C	FCC Part 15 C Section 15.205 and 15.209							
Test Frequency Range:	2310 MHz to 2	2390 MHz and	2483.5MHz to 2	2500 MHz					
Test Distance:	3m								
Receiver setup:	Frequency	Detector	RBW	VBW	Remark				
·	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
		RMS	1MHz	3MHz	Average Value				
Limit:	Frequen	icy Lir	mit (dBuV/m @3	,	Remark				
	Above 10	GHz -	54.00 74.00	A	verage Value Peak Value				
Test Procedure:	the grount o determ 2. The EUT antenna, tower. 3. The anter the groun Both horiz make the 4. For each case and meters are to find the 5. The test-specified 6. If the emite the limits of the EU have 10 ce	d at a 3 meter ine the position was set 3 meter which was more many height is various to determine zontal and vertimeasurement, suspected emitten the antend the rota table maximum real receiver system. Bandwidth with specified, then the T would be republicated to the position of the po	camber. The tan of the highest ers away from the tanted on the top aried from one of the maximum of the maximum of the maximum of the maximum of the ewas turned from the ewas tu	ble was rotated radiation. The interference of a variable of the first of the anter to four walue of the first of the anter to heights from 0 degrees and better the mode was 1 astopped and the the emissione by one united the stopped and the the emissione by one united the stopped and the stopped and the the emissione by one united the interference of the stopped and the stopped a	meters above ield strength. Inna are set to do to its worst in 1 meter to 4 is to 360 degrees inction and do dB lower than do the peak values ons that did not sing peak, quasi-				
Test setup:	AE (T	Test Receiver	Horn Artenna Reference Plane Pre- Amplifer Cont	Antenna Tower					
Test Instruments:	Refer to section	on 5.9 for detail	s						
Test mode:	Refer to section	on 5.3 for detail	S						
Test results:	Passed								

Product Name:	Smartphone	Product Model:	KINGKONG MINI 2		
Test By:	Mike	Test mode:	BLE Tx mode		
Test Channel:	Lowestchannel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp:24 [°] C Huni:57%		

	Freq		Antenna Factor							
	MHz	dBu∇	dB/m	dB	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2390.000 2390.000									

Remark:

- $1. \ \ \textit{Final Level} = \textit{Receiver Read level} + \textit{Antenna Factor} + \textit{Cable Loss} \textit{Preamplifier Factor}.$
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Smartphone	Product Model:	KINGKONG MINI 2
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Lowestchannel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor					Limit Line		Remark
	MHz	dBu₹	<u>dB</u> /m	dB	<u>d</u> B	<u>dB</u>	dBu√/m	dBu√/m	dB	
1 2	2390.000 2390.000									

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Smartphone	Product Model:	KINGKONG MINI 2
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highestchannel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp:24℃ Huni:57%

	Freq		Antenna Factor				Limit Line		
	MHz	dBu₹	$\overline{dB/m}$	 <u>ab</u>	<u>dB</u>	$\overline{\mathtt{dBuV/m}}$	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

Remark

- $1. \ \ \textit{Final Level} = \textit{Receiver Read level} + \textit{Antenna Factor} + \textit{Cable Loss} \textit{Preamplifier Factor}.$
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Smartphone	Product Model:	KINGKONG MINI 2
Test By:	Mike	Test mode:	BLE Tx mode
Test Channel:	Highestchannel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor					
	MHz	dBu₹	— <u>d</u> B/m	 	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	
1 2	2483.500 2483.500							

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data: Refer to Appendix A - BLE

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.2	05 and 15.209				
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	3m						
Receiver setup:	Frequency	Detector	RBW	VB	W	Remark	
·	30MHz-1GHz	Quasi-peak	120KHz	300KHz		Quasi-peak Value	
	Above 1GHz	Peak	1MHz	3MHz		Peak Value	
	Above Toriz	RMS	1MHz	3M	Hz	Average Value	
Limit:	Frequency	<i>/</i> I	_imit (dBuV/m @	3m)		Remark	
	30MHz-88M	Hz	40.0		Q	luasi-peak Value	
	88MHz-216N		43.5			uasi-peak Value	
	216MHz-960N	•	46.0			luasi-peak Value	
	960MHz-1G	Hz	54.0		Q	luasi-peak Value	
	Above 1GH	lz	54.0			Average Value	
			74.0		L	Peak Value table 0.8m(below	
	 1GHz)/1.5m(above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 						
Test setup:	EUT	4m 4m V V V V V V V V V V V V V V V V V			Antenna Search Antenn Test eeiver —		

Measurement Data (worst case):

Below 1GHz:

Product Name:	Smartphone	Product Model:	KINGKONG MINI 2
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp:24 [℃] Huni:57%

	T	ReadAntenna				Preamp Factor Level		Limit	Over	P1-
	rreq	rever	ractor	Loss	ractor	ractor	rever	Line	Limit	Remark
	MHz	dBu∜	∃dB/m	₫B	₫B	₫B	dBu√/m	dBuV/m	d₿	
1	32.864	45.22	12.27	0.36	0.00	29.96	27.89	40.00	-12.11	QP
2	46.503	40.58	12.99	0.38	0.00	29.85	24.10	40.00	-15.90	QP
2	81.783	41.43	12.38	0.47	0.00	29.63	24.65	40.00	-15.35	QP
4	93.440	45.51	9.43	0.50	0.00	29.56	25.88	43.50	-17.62	QP
5	135.982	45.53	13.56	0.59	0.00	29.29	30.39	43.50	-13.11	QP
6	165.487	42.84	15.70	0.64	0.00	29.09	30.09	43.50	-13.41	QP

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Product Name:	Smartphone	Product Model:	KINGKONG MINI 2
Test By:	Mike	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp:24 [℃] Huni:57%

	Freq		intenna Factor					Limit Line	Over Limit	
-	MHz	dBu₹			<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
1	158.112	40.67	15.13	0.63	0.00				-16.22	
2	175.652 187.096	38.32 38.67	16.81 17.29	0.67 0.69	0.00 0.00				-16.71 -15.77	
4	193.095	37.97	17.65	0.71	0.00	28.88	27.45	43.50	-16.05	QP
2 3 4 5 6	266.609 340.782	33.36 35.82	18.57 18.78	0.81 0.92	0.00 0.00		24.23 26.98		-21.77 -19.02	

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz

ADOVE IGIIZ										
			Te	est channe	el: Lowest c	hannel				
				Detecto	or: Peak Val	ue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	47.64	30.78	6.80	2.44	41.81	45.85	74.00	-28.15	Vertical	
4804.00	46.67	30.78	6.80	2.44	41.81	44.88	74.00	-29.12	Horizontal	
				Detector:	Average Va	alue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	38.97	30.78	6.80	2.44	41.81	37.18	54.00	-16.82	Vertical	
4804.00	38.42	30.78	6.80	2.44	41.81	36.63	54.00	-17.37	Horizontal	
Test channel: Middle channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	47.90	30.96	6.86	2.47	41.84	46.35	74.00	-27.65	Vertical	
4884.00	46.83	30.96	6.86	2.47	41.84	45.28	74.00	-28.72	Horizontal	
				Detector:	Average Va	alue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	38.60	30.96	6.86	2.47	41.84	37.05	54.00	-16.95	Vertical	
4884.00	37.92	30.96	6.86	2.47	41.84	36.37	54.00	-17.63	Horizontal	
			Te		el: Highest c					
				l	r: Peak Val	ue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	47.76	31.11	6.91	2.49	41.87	46.40	74.00	-27.60	Vertical	
4960.00	46.57	31.11	6.91	2.49	41.87	45.21	74.00	-28.79	Horizontal	
				Detector:	Average Va	alue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	

Remark:

4960.00

4960.00

39.31

38.84

2.49

2.49

41.87

41.87

37.95

37.48

31.11

31.11

6.91

6.91

Project No.: CCISE2009019

Vertical

Horizontal

54.00

54.00

-16.05

-16.52

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss + Aux Factor - Preamplifier Factor.

The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Span 10.00 MHz Sweep 1.333 ms (10001 pts)

Appendix A - BLE Test Data

Maximum Conducted Output Power

Condition	Mode	Frequency	Antenna	Conducted	Duty	Total	Limit	Verdict
		(MHz)		Power (dBm)	Factor	Power	(dBm)	
					(dB)	(dBm)		
NVNT	BLE	2402	Ant1	-4.877	0	-4.877	30	Pass
NVNT	BLE	2442	Ant1	-5.438	0	-5.438	30	Pass
NVNT	BLE	2480	Ant1	-5.92	0	-5.92	30	Pass

Power NVNT BLE 2402MHz Ant1

#VBW 8.0 MHz

Center 2.402000 GHz #Res BW 3.0 MHz

Power NVNT BLE 2480MHz Ant1

-6dB Bandwidth

oup bank	AWIGHT					
Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE	2402	Ant1	0.682	0.5	Pass
NVNT	BLE	2442	Ant1	0.672	0.5	Pass
NVNT	BLE	2480	Ant1	0.678	0.5	Pass

-6dB Bandwidth NVNT BLE 2442MHz Ant1

Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE	2402	Ant1	1.040619345
NVNT	BLE	2442	Ant1	1.041240158
NVNT	BLE	2480	Ant1	1.042787187

OBW NVNT BLE 2402MHz Ant1

OBW NVNT BLE 2480MHz Ant1

Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	-19.881	8	Pass
NVNT	BLE	2442	Ant1	-20.448	8	Pass
NVNT	BLE	2480	Ant1	-20.941	8	Pass

PSD NVNT BLE 2402MHz Ant1

PSD NVNT BLE 2442MHz Ant1

Band Edge

Ī	Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
	NVNT	BLE	2402	Ant1	-44.19	-20	Pass
Ī	NVNT	BLE	2480	Ant1	-42.58	-20	Pass

Band Edge NVNT BLE 2480MHz Ant1 Ref

Conducted RF Spurious Emission

Conductod III Opunious Emission							
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict	
NVNT	BLE	2402	Ant1	-31.57	-20	Pass	
NVNT	BLE	2442	Ant1	-30.83	-20	Pass	
NVNT	BLE	2480	Ant1	-30.88	-20	Pass	

----End of report-----