

PCTEST

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

MEASUREMENT REPORT LTE Band 8

Applicant Name: Cisco Systems Inc. 125 West Tasman Drive San Jose, California **United States**

Date of Testing: 5/28/2021 - 6/11/2021 Test Site/Location:

PCTEST Lab. Columbia, MD, USA

Test Report Serial No.: 1M2105260058-01.LDK

FCC ID: LDK-LTEAEAB8 **APPLICANT:** Cisco Systems Inc.

Application Type: Class II Permissive Change

Model: P-LTEA-EA **EUT Type:** Radio Module

FCC Classification: PCS Licensed Transmitter (PCB)

FCC Rule Part: Part 27 Subpart P

Test Procedure(s): ANSI C63.26-2015, KDB 971168 D01 v03r01

Class II Permissive Change: Adding LTE Band 8 Frequency

Original Grant Date: 07/27/2021

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President

FCC ID: LDK-LTEAEAB8	MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 1 of 30
1M2105260058-01.LDK	5/28/2021 - 6/11/2021	Radio Module	rage 1 01 30

TABLE OF CONTENTS

1.0	INTF	RODUCTION	3
	1.1	Scope	3
	1.2	PCTEST Test Location	3
	1.3	Test Facility / Accreditations	3
2.0	PRC	DUCT INFORMATION	4
	2.1	Equipment Description	4
	2.2	Device Capabilities	4
	2.3	Test Configuration	4
	2.4	EMI Suppression Device(s)/Modifications	4
	2.5	Software and Firmware	4
3.0	DES	CRIPTION OF TESTS	5
	3.1	Evaluation Procedure	5
	3.2	Broadband Frequency Assignment	5
	3.3	Radiated Power and Radiated Spurious Emissions	5
4.0	MEA	SUREMENT UNCERTAINTY	7
5.0	TES	T EQUIPMENT CALIBRATION DATA	8
6.0	SAM	PLE CALCULATIONS	9
7.0	TES	T RESULTS	10
	7.1	Summary	10
	7.2	Transmitter Conducted Output Power/ Effective Radiated Power	11
	7.3	Occupied Bandwidth	13
	7.4	Band Edge Emissions at Antenna Terminal	16
	7.5	Spurious and Harmonic Emissions at Antenna Terminal	
	7.6	Peak-Average Ratio	22
	7.7	Radiated Spurious Emissions Measurements	25
	7.8	Frequency Stability / Temperature Variation	28
8.0	CON	ICLUSION	30

FCC ID: LDK-LTEAEAB8	MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dog 2 of 20
1M2105260058-01.LDK	5/28/2021 - 6/11/2021	Radio Module	Page 2 of 30

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 PCTEST Test Location

These measurement tests were conducted at the PCTEST facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

- PCTEST is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (2451B) test laboratory with the site description on file with ISED.

FCC ID: LDK-LTEAEAB8	MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 3 of 30
1M2105260058-01.LDK	5/28/2021 - 6/11/2021	Radio Module	rage 3 of 30

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the Cisco System Inc. Cellular Module FCC ID: LDK-LTEAEAB8.

The test data contained in this report pertains only to the emissions due to the EUT's LTE licensed transmitter for Band 8 (897.5 MHz – 900.5 MHz) operations only.

Test Device Serial No.: 28543

2.2 Device Capabilities

This device contains the following capabilities:

LTE Bands 2/25, 4, 5/26, 7, 8, 12, 13, 30, 41

2.3 Test Configuration

The EUT was tested on a development board with an external connection to an SMA port from which all measurements were made. The EUT was tested per the guidance of ANSI/TIA-603-E-2016 and KDB 971168 D01 v03r01. See Section 7.0 of this test report for a description of the radiated and antenna port conducted emissions tests.

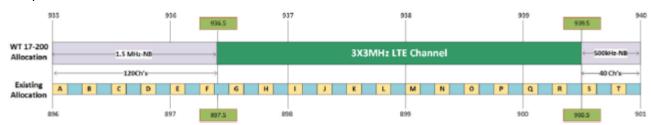
2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

2.5 Software and Firmware

Testing was conducted with software/firmware version 02.30.01.01 installed on the EUT.

FCC ID: LDK-LTEAEAB8	MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 4 of 30
1M2105260058-01.LDK	5/28/2021 - 6/11/2021	Radio Module	rage 4 of 30


3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

This device was evaluated to the technical service rules presented in Part 27 Subpart P. The device operates using standard wideband LTE operation within the allocated 3 MHz spectrum residing from 897.5 MHz to 900.5 MHz.

3.2 Broadband Frequency Assignment

The spectrum for this band is allocated as shown below.

3.3 Radiated Power and Radiated Spurious Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. For measurements below 1GHz, the absorbers are removed. A raised turntable is used for radiated measurement. The turn table is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm tall test table made of Styrodur is placed on top of the turn table. A Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

The equipment under test was transmitting while connected to its integral antenna and is placed on a wooden turntable 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer. Radiated power levels are also investigated with the receive antenna horizontally and vertically polarized. The maximized power level is recorded using the spectrum analyzer "Channel Power" function with the integration band set to the emissions' occupied bandwidth, a RMS detector, RBW = 100kHz, VBW = 300kHz, and a 1 second sweep time over a minimum of 10 sweeps, per the guidelines of KDB 971168 D01 v03r01.

Per the guidance of ANSI/TIA-603-E-2016, a half-wave dipole is then substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer level previously recorded from the spurious emission from the EUT. The power of the emission is calculated using the following formula:

Where, P_d is the dipole equivalent power, P_g is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to $P_{g \, [dBm]}$ – cable loss $_{[dB]}$.

FCC ID: LDK-LTEAEAB8	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 5 of 30
1M2105260058-01.LDK	5/28/2021 - 6/11/2021	Radio Module	rage 5 of 50

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

For fundamental radiated power measurements, the guidance of KDB 971168 D01 v03r01 is used to record the EUT power level that is subsequently matched via the aforementioned substitution method given in ANSI/TIA-603-E-2016.

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 414788 D01.

FCC ID: LDK-LTEAEAB8	PCTEST MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage C of 20	
1M2105260058-01.LDK	5/28/2021 - 6/11/2021	Radio Module	Page 6 of 30	

MEASUREMENT UNCERTAINTY 4.0

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: LDK-LTEAEAB8	MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 7 of 30
1M2105260058-01.LDK	5/28/2021 - 6/11/2021	Radio Module	Page 7 01 30

TEST EQUIPMENT CALIBRATION DATA 5.0

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	AP1	EMC Cable and Switch System	9/10/2020	Annual	9/10/2021	AP1
-	LTx4	Licensed Transmitter Cable Set	9/16/2020	Annual	9/16/2021	LTx4
Keysight Technologies	N9020A	MXA Signal Analyzer	8/14/2020	Annual	8/14/2021	US46470561
Anritsu	MT8821C	Radio Communication Analyzer		N/A		6200901190
Emco	3115	Horn Antenna (1-18GHz)	6/18/2020	Biennial	6/18/2022	9704-5182
Rohde & Schwarz	CMW500	Radio Communication Tester	N/A		112347	
Rohde & Schwarz	FSW67	Signal / Spectrum Analyzer	8/10/2020	Annual	8/10/2021	103200

Table 5-1. Summary of Test Results

Notes:

1. Equipment with a calibration date of "N/A" shown in this list was not used to make direct calibrated measurements.

FCC ID: LDK-LTEAEAB8	MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogg 0 of 20	
1M2105260058-01.LDK	5/28/2021 - 6/11/2021	Radio Module	Page 8 of 30	

6.0 SAMPLE CALCULATIONS

Emission Designator

QPSK Modulation

Emission Designator = 8M62G7D

LTE BW = 8.62 MHz
G = Phase Modulation
7 = Quantized/Digital Info

D = Data transmission, telemetry, telecommand

QAM Modulation

Emission Designator = 8M45W7D

LTE BW = 8.45 MHz W = Amplitude/Angle Modulated 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

Spurious Radiated Emission – LTE Band

Example: Middle Channel LTE Mode 2nd Harmonic (1564 MHz)

The average spectrum analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the spectrum analzyer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 1564 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.501 dBm so this harmonic was 25.501 dBm - (-24.80).

FCC ID: LDK-LTEAEAB8	MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 0 of 20
1M2105260058-01.LDK	5/28/2021 - 6/11/2021	Radio Module	Page 9 of 30

© 2021 PCTEST V1.3 12/31/2020

7.0 TEST RESULTS

7.1 Summary

Company Name: <u>Cisco System Inc.</u>
FCC ID: LDK-LTEAEAB8

Mode(s): <u>LTE Band 8</u>

Test Condition	Test Description	FCC Part Section(s)	Test Limit	Test Result	Reference
	Transmitter Conducted Output Power / Effective Radiated Power	2.1046, 27.1507(a)(3)	< 10 Watts max. ERP	PASS	Section 7.2
TED	Occupied Bandwidth	2.1049, 27.1506	N/A	PASS	Section 7.3
_	Conducted Band Edge / Spurious Emissions	2.1051, 27.1509(a)	Attenuation > 43 + 10log10(P[Watts]) at Band Edge and for all out-of-band emissions	PASS	Sections 7.4, 7.5
8	Peak-to-Average Ratio	2.1051, 27.1507(d)	< 13 dB	PASS	Section 7.6
	Frequency Stability		Fundamental emissions stay within authorized frequency block	PASS	Section 7.8
RADIATED	Radiated Spurious Emissions	2.1053, 24.238(a)	Attenuation > 43 + 10 log10 (P[Watts]) for all out-of-band emissions	PASS	Section 7.7

Table 7-1. Summary of Test Results

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in Section 7.0 were taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables, directional couplers, and attenuators used as part of the system to maintain a link between the call box and the EUT at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST EMC Software Tool Version 9.

FCC ID: LDK-LTEAEAB8	PCTEST* Proud to be part of @element	MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 10 of 20
1M2105260058-01.LDK	5/28/2021 - 6/11/2021	Radio Module	Page 10 of 30

© 2021 PCTEST

All rights recoved. Uplace atherwise specified as part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical including photocopying and

7.2 Transmitter Conducted Output Power/ Effective Radiated Power

Test Overview

The transmitter conducted output power is a measure of the total average power contained within 1.4MHz and 3MHz channels as defined in §27.1506. All modes of operation were investigated and the worst-case configuration results are reported in this section.

Test Procedure Used

ANSI C63.26-2015 - Section 5.2.4.2

Test Settings

All conducted powers were measured using the signal analyzer's channel power measurement function.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

Test Notes

None.

FCC ID: LDK-LTEAEAB8	Proud to be part of @element	MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 11 of 20
1M2105260058-01.LDK	5/28/2021 - 6/11/2021	Radio Module	Page 11 of 30

LTE Band 8 3MHz Bandwidth					
			Mid Channel		
Modulation	Number of RB	RB Offset	21640 (899.0 MHz)		
			Conducted Power [dBm]		
	1	0	22.69		
QPSK	1	8	22.47		
QPSK	1	14	22.61		
	15	0	21.72		
16-QAM	1	0	21.65		
	1	8	21.51		
	1	14	21.46		
	15	0	20.70		

Table 7-2. Transmitter Conducted Output Power Measurements (3 MHz)

	LTE Band 8 1.4MHz Bandwidth							
Modulation	Number of RB	RB Offset	Low Channel 21632 (898.2MHz) Conducted Power [dBm]	Mid Channel 21640 (899.0 MHz) Conducted Power [dBm]	High Channel 21648 (899.8MHz) Conducted Power [dBm]			
	1	0	22.55	22.48	22.68			
ODCK	1	3	22.69	22.52	22.53			
QPSK	1	5	22.55	22.21	22.71			
	6	0	21.32	21.66	21.25			
	1	0	21.86	21.67	21.60			
16-QAM	1	3	21.96	21.86	21.67			
	1	5	21.64	21.71	21.40			
	6	0	20.37	20.77	20.35			

Table 7-3. Transmitter Conducted Output Power Measurements (1.4MHz)

Frequency Band [MHz]	Maximum Conducted Power [dBm]	Maximum ERP [dBm]	Maximum Antenna Gain [dBi]
899	24	40	18.15

Table 7-4. ERP Data (LTE Band 8)

Note: The 18.15 dBi antenna gain shown in the table above is the maximum theoretical antenna gain that can be used by this device in order to reach the 10W ERP limit (42.15dBm EIRP) for operation in this band. An actual antenna was not used for testing to determine ERP compliance.

FCC ID: LDK-LTEAEAB8	Proud to be part of @element	MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 12 of 20
1M2105260058-01.LDK	5/28/2021 - 6/11/2021	Radio Module	Page 12 of 30

7.3 Occupied Bandwidth

Test Overview

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedure Used

ANSI C63.26-2015 - Section 5.4.4

Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2-7 were repeated after changing the RBW such that it would be within 1-5% of the 99% occupied bandwidth observed in Step 7

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-2. Test Instrument & Measurement Setup

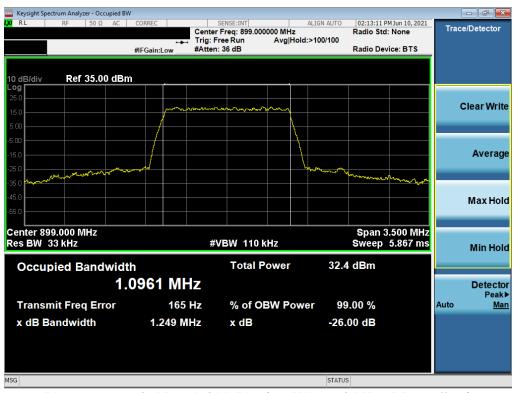
Test Notes

None

FCC ID: LDK-LTEAEAB8	PCTEST MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 12 of 20
1M2105260058-01.LDK	5/28/2021 - 6/11/2021	Radio Module	Page 13 of 30

Plot 7-1. Occupied Bandwidth Plot (3 MHz, QPSK, 15 RB, 0 Offset)

Plot 7-2. Occupied Bandwidth Plot (3 MHz, 16QAM, 15 RB, 0 Offset)


FCC ID: LDK-LTEAEAB8	Proud to be part of @element	MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 14 of 30
1M2105260058-01.LDK	5/28/2021 - 6/11/2021	Radio Module	Page 14 01 30

© 2021 PCTEST V1.3 12/31/2020

Plot 7-3. Occupied Bandwidth Plot (1.4 MHz, QPSK, 6 RB, 0 Offset)

Plot 7-4. Occupied Bandwidth Plot (1.4 MHz, 16QAM, 6 RB, 0 Offset)

FCC ID: LDK-LTEAEAB8	Proud to be part of @ element	MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	D 45 -4 00
1M2105260058-01.LDK	5/28/2021 - 6/11/2021	Radio Module	Page 15 of 30
© 2021 PCTEST	•	•	V1.3 12/31/2020

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

7.4 Band Edge Emissions at Antenna Terminal

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is $43 + 10 \log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

Test Procedure Used

ANSI C63.26-2015 - Section 5.7.3

Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW > 1% of the emission bandwidth
- 4. $VBW > 3 \times RBW$
- 5. Detector = RMS
- 6. Number of sweep points ≥ 2 x Span/RBW
- 7. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

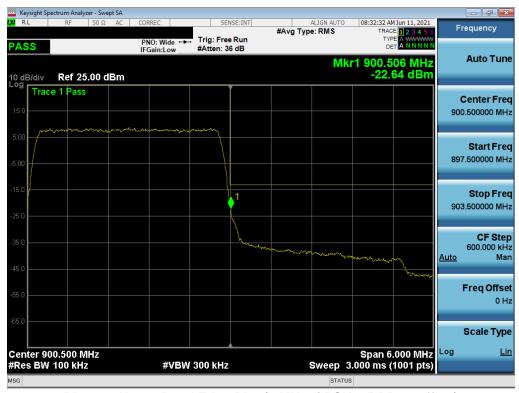
The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup

Test Notes

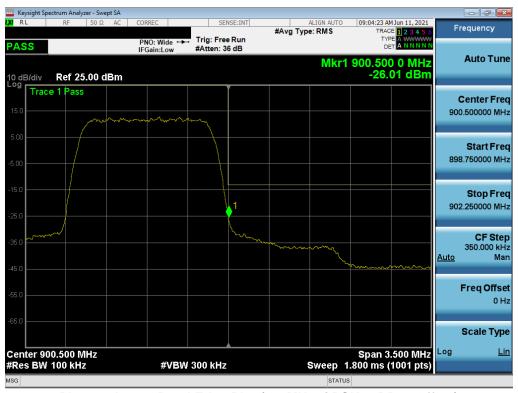
Per §27.1509(c), in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to demonstrate compliance with the out-of-band emissions limit. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

FCC ID: LDK-	-LTEAEAB8	Proud to be part of the element	MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Approved by: Technical Manager
Test Report S	S/N:	Test Dates:	EUT Type:	Dogo 16 of 20
1M2105260058	-01.LDK	5/28/2021 - 6/11/2021	Radio Module	Page 16 of 30


© 2021 PCTEST

V1.3 12/31/2020
All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical including photocopying and

Plot 7-5. Lower Band Edge Plot (3 MHz, QPSK, 15 RB, 0 Offset)


Plot 7-6. Upper Band Edge Plot (3 MHz, QPSK, 15 RB, 0 Offset)

FCC ID: LDK-LTEAEAB8	MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 17 of 30
1M2105260058-01.LDK	5/28/2021 - 6/11/2021	Radio Module	Page 17 01 30

Plot 7-7. Lower Band Edge Plot (1.4 MHz, QPSK, 6 RB, 0 Offset)

Plot 7-8. Lower Band Edge Plot (1.4 MHz, QPSK, 6 RB, 0 Offset)

FCC ID: LDK-LTEAEAB8	Proud to be part of @ element		
Test Report S/N:	Test Dates:	EUT Type:	D 40 -4 00
1M2105260058-01.LDK	5/28/2021 - 6/11/2021	Radio Module	Page 18 of 30
© 2021 PCTEST	•	•	V1.3 12/31/2020

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

7.5 Spurious and Harmonic Emissions at Antenna Terminal

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. Several modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is $43 + 10\log 10(P[Watts])$, where P is the transmitter power in Watts.

Test Procedure Used

ANSI C63.26-2015 - Section 5.7.4

Test Settings

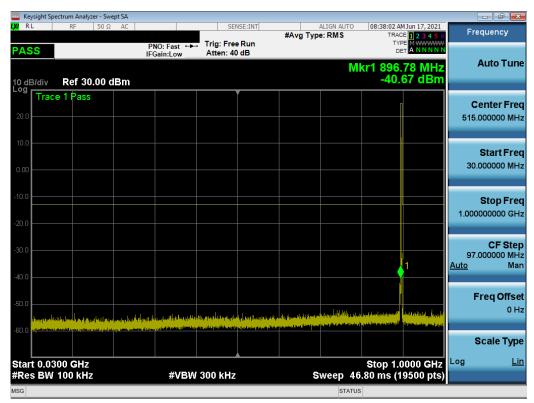
- Start frequency was set to 30MHz and stop frequency was set to 10GHz for Cell (separated into at least two plots per channel)
- 2. Detector = RMS
- 3. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 4. Sweep time = auto couple
- 5. The trace was allowed to stabilize
- 6. Please see test notes below for RBW and VBW settings

Test Setup

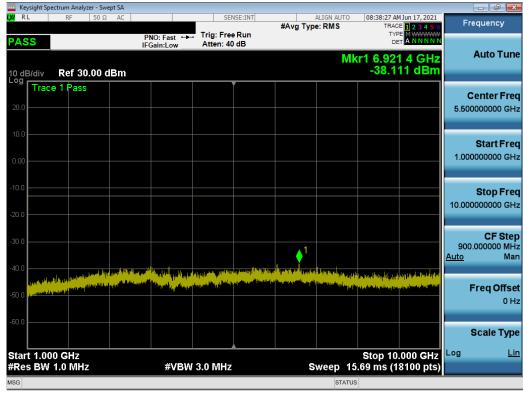
The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-4. Test Instrument & Measurement Setup

Test Notes

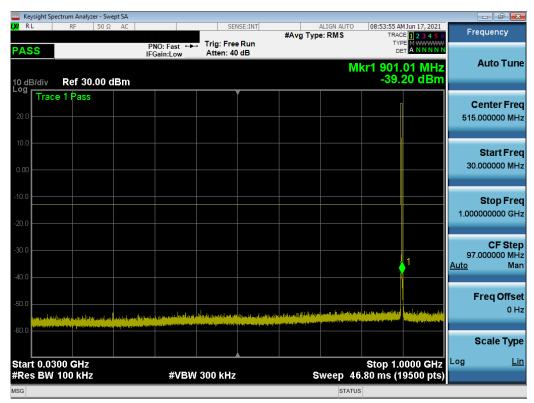

Per 27.1509(a), compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

FCC ID: LDK-LTEAEAB8	PCTEST* MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 19 of 30
1M2105260058-01.LDK	5/28/2021 - 6/11/2021	Radio Module	rage 19 01 30

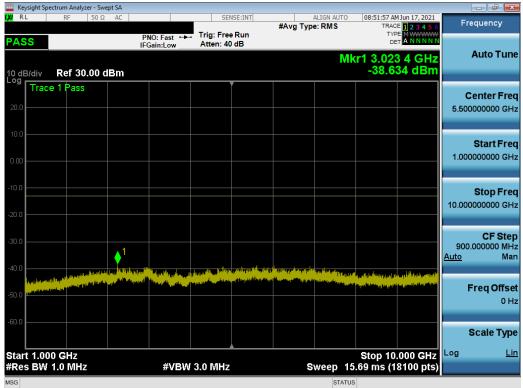

© 2021 PCTEST

V1.3 12/31/2020
All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and

Plot 7-9. Conducted Spurious Plot – Mid Channel (3 MHz, QPSK, 1 RB, 0 Offset)



Plot 7-10. Conducted Spurious Plot - Mid Channel (3 MHz, QPSK, 1 RB, 0 Offset)


FCC ID: LDK-LTEAEAB8	PCTEST* Proud to be part of @ element		
Test Report S/N:	Test Dates:	EUT Type:	D 00 -f 00
1M2105260058-01.LDK	5/28/2021 - 6/11/2021	Radio Module	Page 20 of 30
© 2021 PCTEST	•	•	V1.3 12/31/2020

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

Plot 7-11. Conducted Spurious Plot – Mid Channel (3 MHz, QPSK, 1 RB, 14 Offset)

Plot 7-12. Conducted Spurious Plot - Mid Channel (3 MHz, QPSK, 1 RB, 14 Offset)

FCC ID: LDK-LTEAEAB8	PCTEST: MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 21 of 30
1M2105260058-01.LDK	5/28/2021 - 6/11/2021	Radio Module	Page 21 01 30

© 2021 PCTEST

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

7.6 Peak-Average Ratio

Test Overview

A peak to average ratio measurement is performed at the conducted port of the EUT. The spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signal spends at or above the level defines the probability for that particular power level.

Test Procedures Used

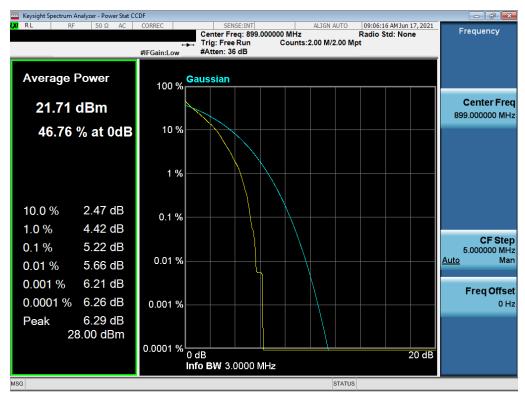
KDB 971168 D01 v03r01 - Section 5.7.1

Test Settings

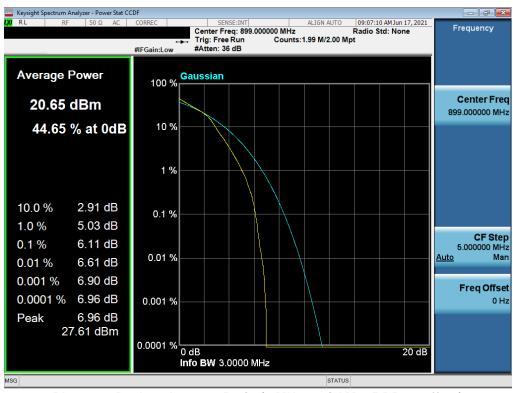
- 1. The signal analyzer's CCDF measurement profile is enabled
- 2. Frequency = carrier center frequency
- 3. Measurement BW ≥ OBW or specified reference bandwidth
- 4. The signal analyzer was set to collect one million samples to generate the CCDF curve
- 5. The measurement interval was set depending on the type of signal analyzed. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms. For burst transmissions, the spectrum analyzer is set to use an internal "RF Burst" trigger that is synced with an incoming pulse and the measurement interval is set to less than the duration of the "on time" of one burst to ensure that energy is only captured during a time in which the transmitter is operating at maximum power

Test Setup

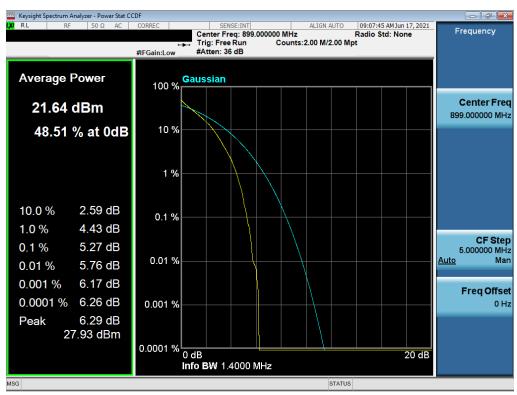
The EUT and measurement equipment were set up as shown in the diagram below.

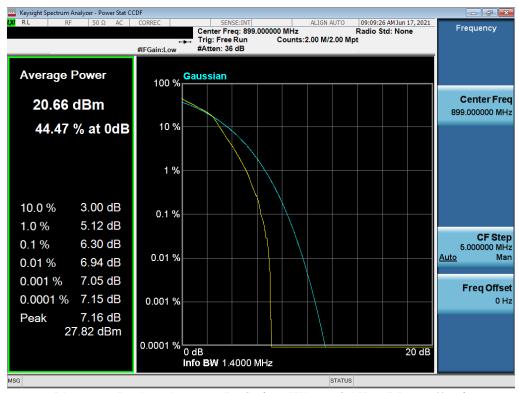

Figure 7-5. Test Instrument & Measurement Setup

Test Notes


None

FCC ID: LDK-LTEAEAB8	PCTEST* Proud to be part of @element	MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 22 of 20
1M2105260058-01.LDK	5/28/2021 - 6/11/2021	Radio Module	Page 22 of 30


Plot 7-13. Peak to Average Ratio (3 MHz, QPSK, 15 RB, 0 Offset)


Plot 7-14. Peak to Average Ratio (3 MHz, 16QAM, 15 RB, 0 Offset)

FCC ID: LDK-LTEAEAB8	Proud to be port of @element	(2)	
Test Report S/N:	Test Dates:	EUT Type:	Page 23 of 30
1M2105260058-01.LDK	5/28/2021 - 6/11/2021	Radio Module	Faye 23 01 30

Plot 7-15. Peak to Average Ratio (1.4 MHz, QPSK, 6 RB, 0 Offset)

Plot 7-16. Peak to Average Ratio (1.4 MHz, 16QAM, 6 RB, 0 Offset)

FCC ID: LDK-LTEAEAB8	Proud to be part of @element	(2) 100 11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Test Report S/N:	Test Dates:	EUT Type:	Page 24 of 30
1M2105260058-01.LDK	5/28/2021 - 6/11/2021	Radio Module	Page 24 01 30

© 2021 PCTEST

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

Radiated Spurious Emissions Measurements 7.7

Test Overview

Radiated spurious emissions measurements are performed using the field strength conversion method outlined in KDB 971168. Measurements on signals operating below 1GHz are performed using horizontally and vertically polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized broadband horn antennas. All measurements are performed as peak measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

Test Procedures Used

KDB 971168 D01 v03r01 - Section 5.8

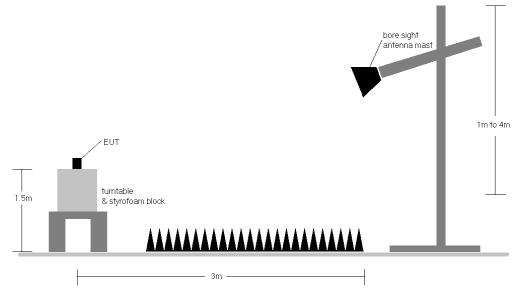
Test Settings

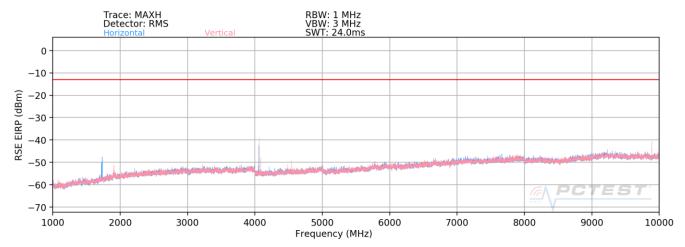
- 1. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 2. VBW \geq 3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points > 2 x span / RBW
- 5. Detector = RMS
- Trace mode = Average (Max Hold for pulsed emissions)
- 7. The trace was allowed to stabilize

FCC ID: LDK-LTEAEAB8	Proud to be port of @element	(2)	
Test Report S/N:	Test Dates:	EUT Type:	Page 25 of 30
1M2105260058-01.LDK	5/28/2021 - 6/11/2021	Radio Module	Fage 25 01 30

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.




Figure 7-6. Test Instrument & Measurement Setup

Test Notes

- 1) Field strengths are calculated using the Measurement quantity conversions in KDB 971168 Section 5.8.4.
 - b) E(dBµV/m) = Measured amplitude level (dBm) + 107 + Cable Loss (dB) + Antenna Factor (dB/m)
 - d) EIRP (dBm) = E(dB μ V/m) + 20logD 104.8; where D is the measurement distance in meters.
- 2) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 3) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case setup is reported in the tables below.
- 4) The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter. The worst-case emissions are reported.
- 5) Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 6) The "-" shown in the following RSE tables are used to denote a noise floor measurement.

FCC ID: LDK-LTEAEAB8	MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 26 of 30
1M2105260058-01.LDK	5/28/2021 - 6/11/2021	Radio Module	Page 20 01 30

Plot 7-17. Radiated Spurious Plot (LTE Band 8)

Bandwidth (MHz):	3
Frequency (MHz):	899.0
RB / Offset:	1/7
Detector / Trace Mode:	RMS / Average
RBW / VBW:	1MHz / 3MHz

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
1737.0	V	313	187	-73.57	-0.18	33.25	-62.01	-13.00	-49.01
1798.0	V	1	-	-76.46	0.87	31.41	-63.85	-13.00	-50.85
1889.0	V	301	318	-76.78	1.81	32.03	-63.23	-13.00	-50.23
2227.0	V	1	-	-77.95	2.44	31.49	-63.77	-13.00	-50.77
2697.0	V	1	-	-77.47	3.77	33.30	-61.96	-13.00	-48.96
4039.0	V	110	159	-63.18	8.61	52.43	-42.83	-13.00	-29.83

Table 7-5. Radiated Spurious Data (LTE Band 8)

FCC ID: LDK-LTEAEAB8	Proud to be port of @element		
Test Report S/N:	Test Dates:	EUT Type:	Page 27 of 30
1M2105260058-01.LDK	5/28/2021 - 6/11/2021	Radio Module	Faye 21 01 30

7.8 Frequency Stability / Temperature Variation

Test Overview and Limit

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-E-2016. The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Test Procedure Used

ANSI/TIA-603-E-2016

Test Settings

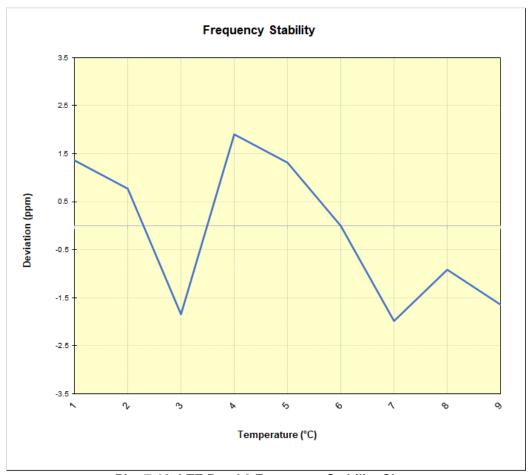
- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

Test Setup

The EUT was connected via an RF cable to a spectrum analyzer with the EUT placed inside an environmental chamber.

Test Notes

None


FCC ID: LDK-LTEAEAB8	MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 29 of 20
1M2105260058-01.LDK	5/28/2021 - 6/11/2021	Radio Module	Page 28 of 30

LTE Band 8 Operating Frequency (Hz): 899,000,000 Ref. Voltage (VDC): 5.00

Voltage (%)	Power (VDC)	Temp (°C)	Frequency (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	5.00	- 30	899,096,567	1,226	0.0001364
		- 20	899,096,031	690	0.0000767
		- 10	899,093,689	-1,652	-0.0001838
		0	899,097,055	1,714	0.0001906
		+ 10	899,096,521	1,180	0.0001312
		+ 20 (Ref)	899,095,341	0	0.0000000
		+ 30	899,093,561	-1,780	-0.0001979
		+ 40	899,094,516	-825	-0.0000918
		+ 50	899,093,867	-1,474	-0.0001639
85 %	4.25	+ 20	899,093,693	-1,648	-0.0001833
115 %	5.75	+ 20	899,097,086	1,745	0.0001941

Table 7-6. LTE Band 8 Frequency Stability Data

Plot 7-18. LTE Band 8 Frequency Stability Chart

FCC ID: LDK-LTEAEAB8	PCTEST MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 29 of 30
1M2105260058-01.LDK	5/28/2021 - 6/11/2021	Radio Module	Faye 29 01 30

8.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the Cisco System Inc. Cellular Module FCC ID: LDK-LTEAEAB8 complies with all the requirements of Part 27 Subpart P of the FCC rules for LTE Operation.

FCC ID: LDK-LTEAEAB8	PCTEST: MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 20 of 20	
1M2105260058-01.LDK	5/28/2021 - 6/11/2021	Radio Module	Page 30 of 30	