

	FCC TEST REPORT FCC ID:2BBONYW160
Report Number	: ZHT-231113037E
Date of Test	: Nov. 13, 2023 to Nov. 24, 2023
Date of issue	: Nov. 24, 2023
Test Result	: PASS
Testing Laboratory	: Guangdong Zhonghan Testing Technology Co., Ltd.
Address	: Room 104, Building 1, Yibaolai Industrial Park, Qiaotou Community Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Applicant's name	: Shenzhen ONEJ Technology Co., Ltd.
Address	B309, Huiju Xinqiao 107, Chuangzhi Park, Xinqiao Street, Baoar District, Shenzhen, China
Manufacturer's name	: Shenzhen ONEJ Technology Co., Ltd.
Address	: B309, Huiju Xinqiao 107, Chuangzhi Park, Xinqiao Street, Baoar District, Shenzhen, China
Test specification:	
Standard	: FCC CFR Title 47 Part 15 Subpart C Section 15.247
Test procedure	: KDB558074 D01 15.247 Meas Guidance v05r02
	ANSI C63.10:2013
Non-standard test method	: N/A
test (EUT) is in compliance with t identified in the report. This report shall not be reproduc	been tested by ZHT, and the test results show that the equipment under the FCC requirements. And it is applicable only to the tested sample ed except in full, without the written approval of ZHT, this document may resonal only, and shall be noted in the revision of the document.
Product name	: Window Cleaning Robot
Trademark	
Model/Type reference	: YW160, YW130, YW131, YW132, YW133, YW134, YW135, YW136
	YW137, YW138, YW139, YW161, YW162, YW163, YW164, YW165 YW166, YW167, YW168, YW169
Model Difference	Only model name is different.
	Adapter 1:
	Model: RY72A240300M2
	Input: 100- 240V~50/60Hz 2.0A Output : 24.0V, 3.0A
	······································
Ratings	
Ratings	Model: BZ065-240300-E2 Input: 100-240v~ 50/60Hz 1.5A

🖂 admin@zht-lab.cn,

2 0755-27782934

		Table of Co	ontents		Page
1. VEI	RSION	75	15		
2. SU	MMARY OF TEST	RESULTS			6
2.1	1 TEST FACILITY				
2 3					7
3. GE	NERAL INFORMAT	FION			8
3.1	1 GENERAL DESC	RIPTION OF EUT			8
3.2	2 DESCRIPTION O	F TEST MODES			9
3.3	3 BLOCK DIGRAM	SHOWING THE CO	NFIGURATION OF SYS	TEM TESTED	
3.4	4 DESCRIPTION O	F SUPPORT UNITS	CONDUCTED MODE)		
			TEMS		
4.1			NENT		
			ISSION Limits		
			DARD		
					-
	4.1.6 TEST RESU	ILTS			14
4.	2 RADIATED EMIS	SION MEASUREMEN	NT		
	4.2.1 RADIATED	EMISSION LIMITS			
	4.2.2 TEST PROC	EDURE			20
			OARD		-
	4.2.5 EUT OPERA	ATING CONDITIONS			21
5.RAD			ENT		
			RD		
					-
					-
6.POV					
			22		

Table of Contents

Page

6.3 DEVIATION FROM STANDARD	20
6.4 TEST SETUP 6.5 EUT OPERATION CONDITIONS	
6.6 TEST RESULTS:	
7.1 APPLIED PROCEDURES / LIMIT	
7.2 TEST PROCEDURE	
7.3 DEVIATION FROM STANDARD	
7.4 TEST SETUP	
7.5 EUT OPERATION CONDITIONS	
8.PEAK OUTPUT POWER TEST	32
8.1 APPLIED PROCEDURES / LIMIT	
8.2 TEST PROCEDURE	
8.3 DEVIATION FROM STANDARD	
8.3 DEVIATION FROM STANDARD	
8.5 EUT OPERATION CONDITIONS	
8.6 TEST RESULTS	
8.0 TEST RESULTS	
9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION	
9.1 APPLICABLE STANDARD	
9.2 TEST PROCEDURE	
9.3 DEVIATION FROM STANDARD	
9.4 TEST SETUP	
9.5 EUT OPERATION CONDITIONS	
10.ANTENNA REQUIREMENT	
11. APPENDIX BLE	25
12. TEST SETUP PHOTOS	48
13. EUT CONSTRUCTIONAL DETAILS	48
IS. LOT CONSTRUCTIONAL DETAILS	40

1. VERSION

I. VERSION			
Report No.	Version	Description	Approved
ZHT-231113037E	Rev.01	Initial issue of report	Nov. 24, 2023

Test procedures according to the technical standards:

FCC Part15 (15.247) , Subpart C							
Standard Section	Test Item	Judgment	Remark				
FCC part 15.203/15.247 (b)(4)	Antenna requirement	PASS					
FCC part 15.207	AC Power Line Conducted Emission	PASS					
FCC part 15.247 (b)(3)	Conducted Peak Output Power	PASS					
FCC part 15.247 (a)(2)	Channel Bandwidth& 99% OCB	PASS					
FCC part 15.247 (e)	Power Spectral Density	PASS	11				
FCC part 15.247(d)	Band Edge	PASS					
FCC part 15.205/15.209	Spurious Emission	PASS					

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

Project No.: ZHT-231113037E Page 7 of 48

Ь

2.1 TEST FACILITY

Guangdong Zhonghan Testing Technology Co., Ltd. Add. : Room 104, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

FCC Registration Number:255941 Designation Number: CN0325 IC Registered No.: 29832 CAB identifier: CN0143

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 % °

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF power conducted	±0.16dB
3	Spurious emissions conducted	±0.21dB
4	All emissions radiated(9k-30MHz)	±4.68dB
5	All emissions radiated(<1G)	±4.68dB
6	All emissions radiated(>1G)	±4.89dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	Occupied Bandwidth	±4.96dB

2 0755-27782934

3. GENERAL INFORMATION

	Product Name:	Window Cleaning Robot	
Ľ	Model No.:	YW160	B
	Hardware Version:	V1.0	
	Software Version:	V1.0	
	Sample(s) Status:	Engineer sample	
	Operation Frequency:	2402MHz~2480MHz	
	Channel Numbers:	40	
5	Channel Separation:	2MHz	
L	Modulation Type:	GFSK	P
	Antenna Type:	PCB antenna	
	Antenna gain:	2.54dBi	
	Power supply:	Adapter 1: Model: RY72A240300M2 Input: 100- 240V~50/60Hz 2.0A Output : 24.0V, 3.0A Adapter 2: Model: BZ065-240300-E2 Input: 100-240v~ 50/60Hz 1.5A Output: 24V,3.0A	Ð

ZHONGHAN

Project No.: ZHT-231113037E Page 9 of 48

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

3.2 DESCRIPTION OF TEST MODES

nominal rated supply voltage		was tuned from 85% to 115% of the ras under the nominal rated supply
C V	(P)	(P)

3.3 BLOCK DIGRAM SHOWING THE C	ONFIGURATION OF SYSTEM TESTED
Radiated Emission	

Adapter		EUT
---------	--	-----

Conducted 3	Spuriou	S
- 7 - 7)	1	

Adapter EUT	Adapter]	EUT
-------------	---------	---	-----

3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
	/		/	1	1
(1)					
	11				
	C		C	C	

Item	Shielded Type	Ferrite Core	Length	1	Note
12)				
S					

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in $\[\]$ Length $\]$ column.

Project No.: ZHT-231113037E Page 11 of 48

3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS Radiation Test equipment

Item	Equipment	Manufacturer	Model	Instrument number	Last Cal.	Next Cal.
1	Receiver	R&S	ESCI	ZH-E005	May 12, 2023	May 11, 2024
2	Loop antenna	EMCI	LAP600	ZH-E036	May 12, 2023	May 11, 2024
3	Amplifier	Schwarzbeck	BBV 9743 B	ZH-E019	May 12, 2023	May 11, 2024
4	Amplifier	Schwarzbeck	BBV 9718 B	ZH-E021	May 12, 2023	May 11, 2024
5	Bilog Antenna	Schwarzbeck	VULB9162	ZH-E017	May 17, 2023	May 16, 2024
6	Horn Antenna	Schwarzbeck	BBHA9120D	ZH-E020	May 17, 2023	May 16, 2024
7	Horn Antenna	A.H.SYSTEMS	SAS574	ZH-E062	May 12, 2023	May 11, 2024
8	Amplifier	AEROFLEX	100KHz-40GHz	ZH-E063	May 12, 2023	May 11, 2024
9	Spectrum Analyzer	R&S	FSV40	ZH-E064	May 12, 2023	May 11, 2024
10	CDNE	Schwarzbeck	CDNE M2 + CDNE M3	ZH-E029	May 12, 2023	May 11, 2024
11	966 Anechoic Chamber	EMToni	9m6m6m	ZH-E001	Nov. 25, 2021	Nov. 24, 2024
12	Spectrum Analyzer	KEYSIGHT	N9020A	ZH-E032	May 12, 2023	May 11, 2024
13	WIDBAND RADIO COMMUNICATI ON TESTER	R&S	CMW500	ZH-E033	May 12, 2023	May 11, 2024
14	Single Generator	Agilent	N5182A	ZH-E034	May 12, 2023	May 11, 2024
15	Power Sensor	MWRFtest	MW100-RFCB	ZH-E066	May 12, 2023	May 11, 2024
16	Audio analyzer	R&S	UPL	ZH-E067	May 12, 2023	May 11, 2024
17	Single Generator	R&S	SMB100A	ZH-E068	May 12, 2023	May 11, 2024
18	Power Amplifier Shielding Room	EMToni	2m3m3m	ZH-E003	Nov. 25, 2021	Nov. 24, 2024

B

Project No.: ZHT-231113037E Page 12 of 48

Conduction	on Test equipment				
Equipment	Manufacturer	Model	Instrument number	Last Cal.	Next Cal.
Receiver	R&S	ESCI	ZH-E005	May 12, 2023	May 11, 2024
LISN	R&S	ENV216	ZH-E006	May 12, 2023	May 11, 2024
ISN CAT 6	Schwarzbeck	NTFM 8158	ZH-E012	May 12, 2023	May 11, 2024
ISN CAT 5	Schwarzbeck	CAT5 8158	ZH-E013	May 12, 2023	May 11, 2024
Capacitive Voltage Probe	Schwarzbeck	CVP 9222 C	ZH-E014	May 12, 2023	May 11, 2024
Current Transformer Clamp	Schwarzbeck	SW 9605	ZH-E015	May 12, 2023	May 11, 2024
CE Shielding Room	EMToni	9m4m3m	ZH-E002	Nov. 25, 2021	Nov. 24, 2024
B		B	B		B

🖀 0755-27782934 🛛 🖂 admin@zht-lab.cn, 🖤 🏐 http://www.zht-lab.cn

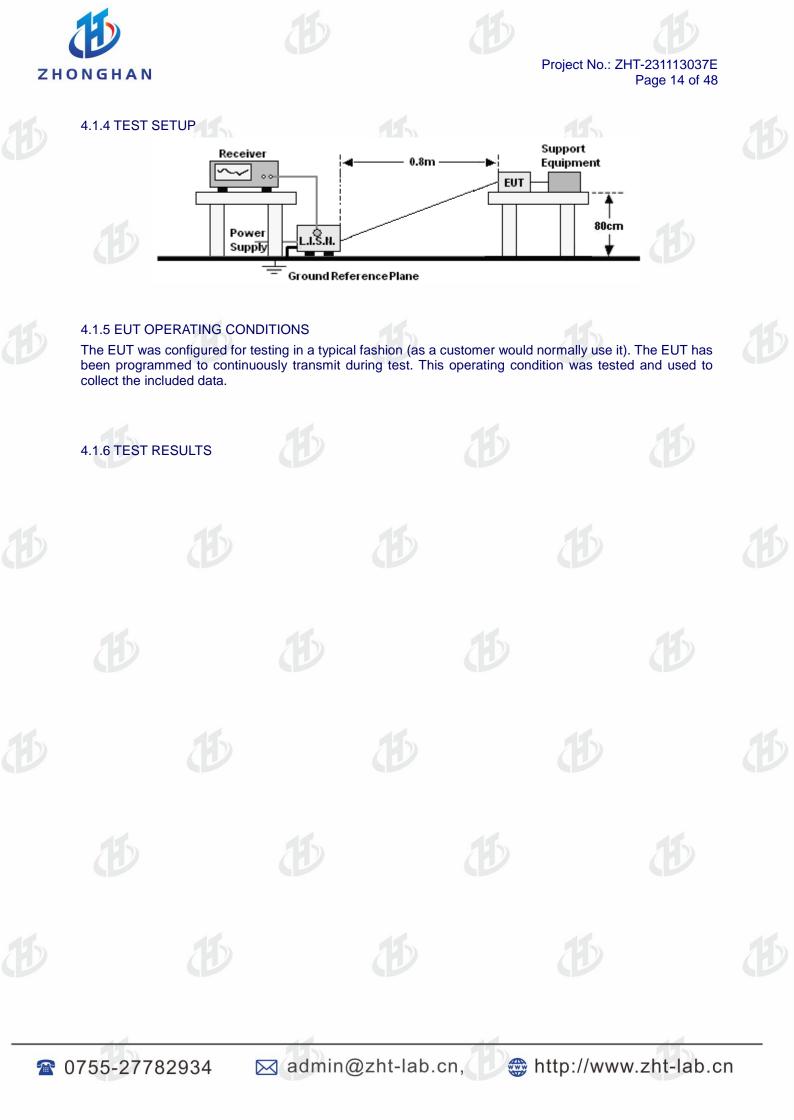
4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.207	
Test Method:	ANSI C63.10:2013	11
Test Frequency Range:	150KHz to 30MHz	P
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto	

4.1.1 POWER LINE CONDUCTED EMISSION Limits

	Limit (Chandard	
FREQUENCY (MHz)	QP	AVG	Standard
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC


Note:

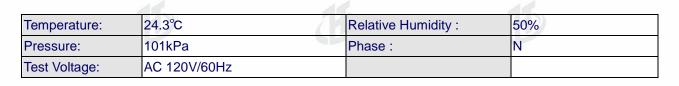
(1) *Decreases with the logarithm of the frequency.

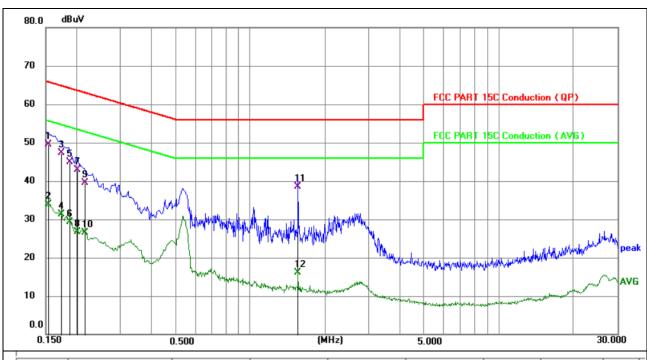
4.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD No deviation

Nodel: RY72A24	0300M2 24.3°C		- 4	Deletive Llu	an ialite e	500/		
Temperature: Pressure:	24.3 C 101kP			Relative Hu	midity :	50%		
Test Voltage:		a)V/60Hz		F 11050 .				
80.0 dBuV								
80.0 4544								
70								
60					FCC PART	15C Conduction	on (QP)	
*					FCC PART	15C Conductio	on (AVG)	
50 35								
40	- why							-
30	12	AAAA		. Januaria				
20	my.		in hour chain had	And the work		hundhundra	hours and a second	WI p
20		1 marine	Anarra	in the	shikhiniyihiliniyihini	Artenia II. I		~
10			Hit as more the	marker than	and the second	and and the state of the state		-
0.0		0.500		MHz)	5.000			0.000
0.130		0.500		1	5.000	1		1.000
	quency	Reading	Factor	Level	Limit	Margin	Detector	P
· · ·	MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)		
1 * 0	.1500	42.22	9.89	52.11	66.00	-13.89	QP	F
2 0	.1500	25.39	9.89	35.28	56.00	-20.72	AVG	F
3 0	.1615	38.23	9.89	48.12	65.39	-17.27	QP	F
4 0	.1615	22.38	9.89	32.27	55.39	-23.12	AVG	F
5 0	.1680	37.70	9.90	47.60	65.06	-17.46	QP	F
6 0	.1680	23.84	9.90	33.74	55.06	-21.32	AVG	F
	.1860	35.47	9.90	45.37	64.21	-18.84	QP	F
	.1860	19.05	9.90	28.95	54.21	-25.26	AVG	F
	.2084	33.48	9.91	43.39	63.27	-19.88	QP	F
	.2084	17.45	9.91	27.36	53.27	-25.91	AVG	F
	.2310	31.23	9.92	41.15	62.41	-21.26	QP	F
12 0	.2310	16.32	9.92	26.24	52.41	-26.17	AVG	F


Notes:

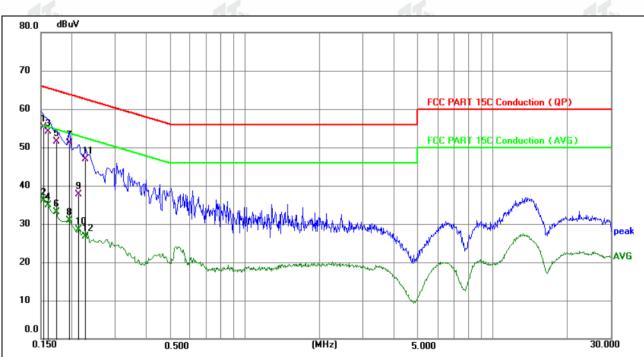

1.An initial pre-scan was performed on the line and neutral lines with peak detector.

2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission. 3.Mesurement Level = Reading level + Correct Factor

4. The test data shows only the worst case Low Channel: 2402 MHz.

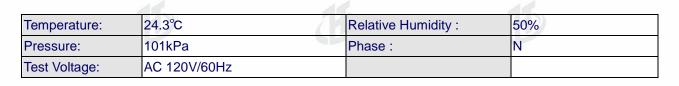
N	lo.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F
1	*	0.1539	39.53	9.89	49.42	65.79	-16.37	QP	Р
2	2	0.1539	23.92	9.89	33.81	55.79	-21.98	AVG	Р
3	3	0.1725	37.38	9.90	47.28	64.84	-17.56	QP	Р
4	1	0.1725	21.32	9.90	31.22	54.84	-23.62	AVG	Р
5	5	0.1874	35.06	9.91	44.97	64.15	-19.18	QP	Р
6	3	0.1874	19.46	9.91	29.37	54.15	-24.78	AVG	Р
7	7	0.2007	32.90	9.91	42.81	63.58	-20.77	QP	Р
8	3	0.2007	16.83	9.91	26.74	53.58	-26.84	AVG	Р
ę	9	0.2162	29.60	9.92	39.52	62.96	-23.44	QP	Р
1	0	0.2162	16.59	9.92	26.51	52.96	-26.45	AVG	Р
1	1	1.5585	28.41	10.06	38.47	56.00	-17.53	QP	Р
1	2	1.5585	6.03	10.06	16.09	46.00	-29.91	AVG	Р
Notoc					100				

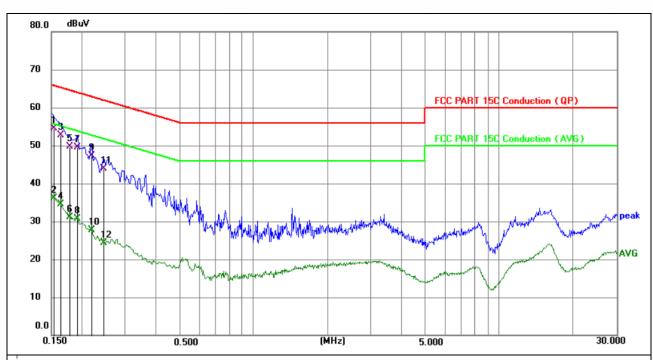
Notes:


1.An initial pre-scan was performed on the line and neutral lines with peak detector.

2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.3.Mesurement Level = Reading level + Correct Factor

4. The test data shows only the worst case Low Channel: 2402 MHz.




Adapter 2: Model: BZ065-24	0300-E2				
Temperature:	24.3°C	F	Relative Humidity :	50%	
Pressure:	101kPa	F	Phase :	L	
Test Voltage:	AC 120V/60Hz				
				÷	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F
1 *	0.1539	45.39	9.89	55.28	65.79	-10.51	QP	Р
2	0.1539	26.19	9.89	36.08	55.79	-19.71	AVG	Р
3	0.1607	44.24	9.89	54.13	65.43	-11.30	QP	Р
4	0.1607	25.08	9.89	34.97	55.43	-20.46	AVG	Р
5	0.1731	41.66	9.90	51.56	64.81	-13.25	QP	Р
6	0.1731	23.14	9.90	33.04	54.81	-21.77	AVG	Р
7	0.1955	41.27	9.91	51.18	63.80	-12.62	QP	Р
8	0.1955	20.93	9.91	30.84	53.80	-22.96	AVG	Р
9	0.2139	27.84	9.92	37.76	63.05	-25.29	QP	Р
10	0.2139	18.57	9.92	28.49	53.05	-24.56	AVG	Р
11	0.2268	36.93	9.92	46.85	62.57	-15.72	QP	Ρ
12	0.2268	16.88	9.92	26.80	52.57	-25.77	AVG	Р

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F
1 *	0.1539	44.57	9.89	54.46	65.79	-11.33	QP	Р
2	0.1539	26.26	9.89	36.15	55.79	-19.64	AVG	Р
3	0.1635	42.86	9.90	52.76	65.28	-12.52	QP	Р
4	0.1635	24.54	9.90	34.44	55.28	-20.84	AVG	Р
5	0.1770	39.85	9.90	49.75	64.63	-14.88	QP	Р
6	0.1770	21.27	9.90	31.17	54.63	-23.46	AVG	Р
7	0.1905	39.53	9.91	49.44	64.01	-14.57	QP	Р
8	0.1905	20.77	9.91	30.68	54.01	-23.33	AVG	Р
9	0.2175	37.37	9.92	47.29	62.91	-15.62	QP	Р
10	0.2175	17.74	9.92	27.66	52.91	-25.25	AVG	Р
11	0.2445	34.02	9.93	43.95	61.94	-17.99	QP	Р
12	0.2445	14.33	9.93	24.26	51.94	-27.68	AVG	Р
Notes:				5		115		

1.An initial pre-scan was performed on the line and neutral lines with peak detector.

2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.3.Mesurement Level = Reading level + Correct Factor

4. The test data shows only the worst case Low Channel: 2402 MHz.

Project No.: ZHT-231113037E Page 19 of 48

4.2 RADIATED EMISSION MEASUREMENT

(1)	(12		7 M D					
Test Requirement:	FCC Part15 C Sect	FCC Part15 C Section 15.209							
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement Dista	nce: 3m	D .		C				
Receiver setup:	Frequency	Detector	RBW	VBW	Value				
	9KHz-150KHz	Quasi-peak	200Hz	600Hz	Quasi-peak				
	150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak				
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak				
	Above 1GHz	Peak	1MHz	3MHz	Peak				
	Above IGHZ	Peak	1MHz	10Hz	Average				
A 1 2 4		(

4.2.1 RADIATED EMISSION LIMITS

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

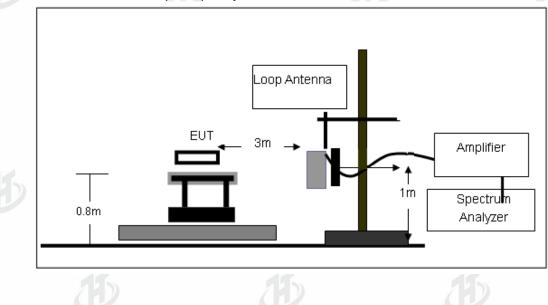
LIMITS OF RADIATED EMISSION MEASUREMENT

	Limit (dBuV/	m) (at 3M)
FREQUENCY (MHz)	PEAK	AVERAGE
Above 1000	74	54
Notoo		

Notes:

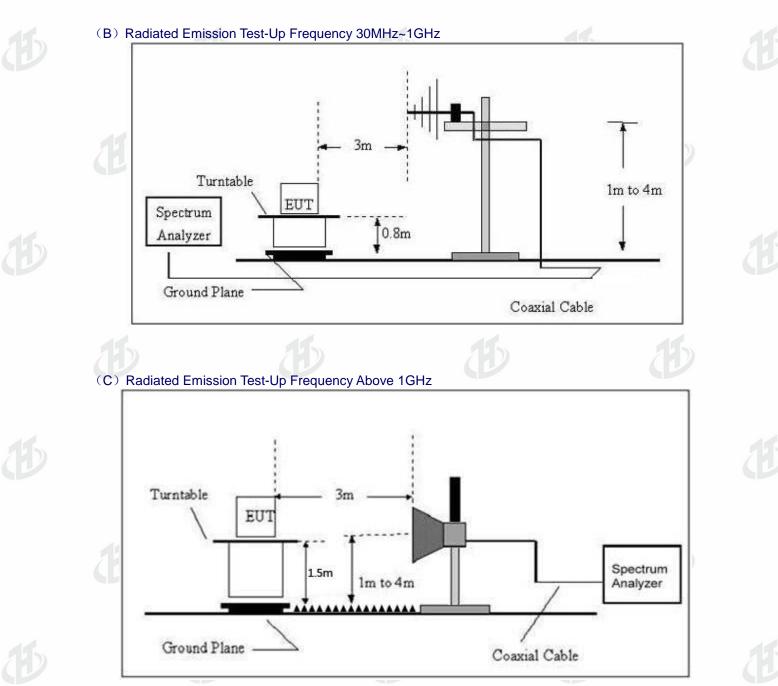
- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

Project No.: ZHT-231113037E Page 20 of 48


4.2.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 25GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-chamber test. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8m; above 1GHz, the height was 1.5m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos.
- g. For the radiated emission test above 1GHz:
 - Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.
- The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. Note:
 - Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

4.2.3 DEVIATION FROM TEST STANDARD No deviation


4.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

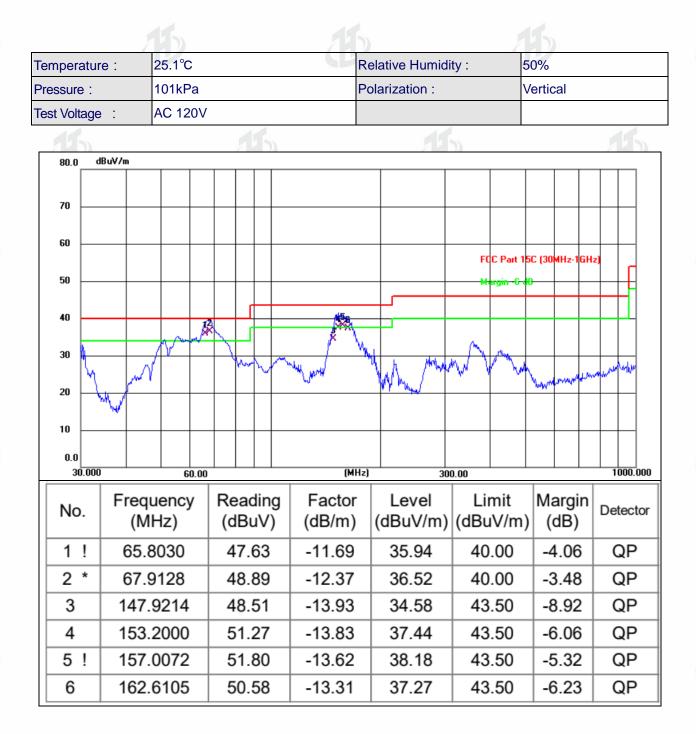
Project No.: ZHT-231113037E Page 21 of 48

4.2.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

4.2.6 TEST RESULTS (Between 9KHz - 30 MHz)

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.


Project No.: ZHT-231113037E Page 22 of 48

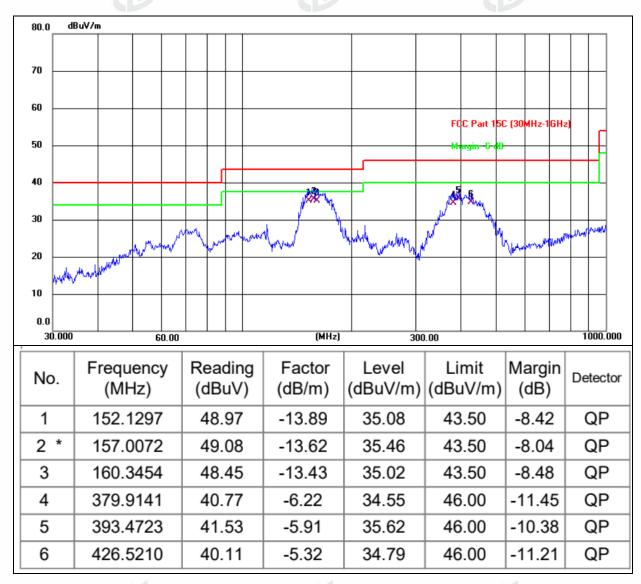
Temperatur	emperature : 25.1°C						Relative Humidity :			Ę	50%				
Pressure :		101kP	a				Polarization :					Horizontal			
Test Voltage	:	AC 12	0V		4										
80.0	lBuV/m														
70						_									
60															
50										FC Ma	:C Part 1 Ingin -G d		(Hz-1GH)	2]	
40											ER.		-		
30						_	<u>**</u>	W.		A 14			_		
20	respinational	W. M. W. W.	hand the		Windon	<u> </u>	h h	X	Murry	/~		Vulor	mAlom	endernikker	
10						+								+	-
0.0)		50.00				(MI	łz)	30	0.00				1	000.000
No.		quency /IHz)	y		adi Bu'	•	Factor (dB/m)	(Level dBuV/m)		mit IV/m)		irgin IB)	Def	ector
1 *	153	.2000		4	7.1	0	-13.83	╈	33.27	43	.50	-10).23	0	ΩΡ
2	164	.9071		4	5.9	1	-13.18		32.73	43	.50	-10).77	C	ΩΡ
3	168	.4137	'	4	5.5	4	-12.98		32.56	43	.50	-10).94	C	γP
4	374	.6225		3	9.0	5	-6.34		32.71	46	.00	-13	3.29	C	γP
5	417	.6409		4	0.0	4	-5.47		34.57	46	.00	-11	1.43	C	ΩΡ
6	432	.5455		4	0.2	0	-5.22		34.98	46	.00	-11	1.02	0	ΩΡ

3

đ

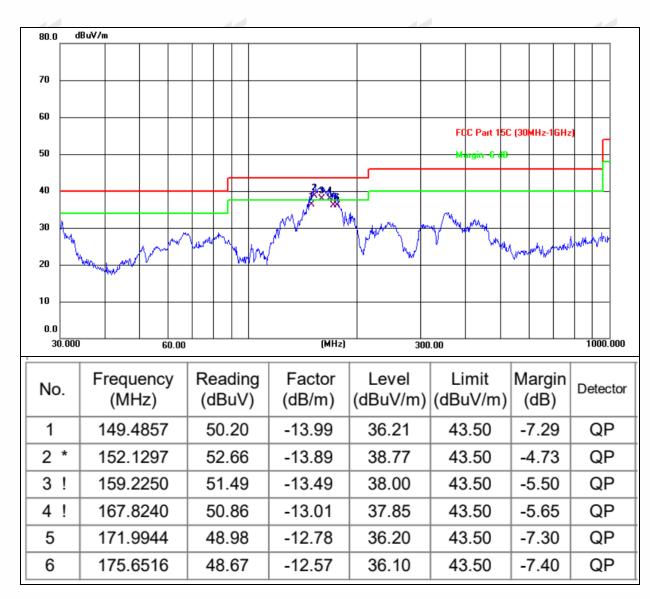
B

2 0755-27782934


🖂 admin@zht-lab.cn,

http://www.zht-lab.cn

Adapter 2: Model: BZ065-240300-E2


Temperature :	25.1°C	Relative Humidity :	50%
Pressure :	101kPa	Polarization :	Horizontal
Test Voltage :	AC 120V		15

Temperature :	25.1°C	Relative Humidity :	50%
Pressure :	101kPa	Polarization :	Vertical
Test Voltage :	AC 120V		

Remarks:

2 0755-27782934

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Project No.: ZHT-231113037E Page 26 of 48

10	GHz~25GHz								
Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
				Low Cha	nnel:2402M	Hz			
V	4806.00	57.71	30.55	5.77	24.66	57.59	74	-16.41	Pk
V	4806.00	43.41	30.55	5.77	24.66	43.29	54	-10.71	AV
V	7206.00	59.1	30.33	6.32	24.55	59.64	74	-14.36	Pk
V	7206.00	42.29	30.33	6.32	24.55	42.83	54	-11.17	AV
Н	4806.00	56.65	30.55	5.77	24.66	56.53	74	-17.47	Pk
Н	4806.00	42.77	30.55	5.77	24.66	42.65	54	-11.35	AV
Н	7206.00	59.47	30.33	6.32	24.55	60.01	74	-13.99	Pk
Н	7206.00	44.25	30.33	6.32	24.55	44.79	54	-9.21	AV
			N	liddle Ch	annel:2440l	MHz			
V	4882.00	57.77	30.55	5.77	24.66	57.65	74	-16.35	Pk
V	4882.00	41.32	30.55	5.77	24.66	41.2	54	-12.8	AV
V	7320.00	59.54	30.33	6.32	24.55	60.08	74	-13.92	Pk
V	7320.00	43.4	30.33	6.32	24.55	43.94	54	-10.06	AV
H	4882.00	55.3	30.55	5.77	24.66	55.18	74	-18.82	Pk
Н	4882.00	41.93	30.55	5.77	24.66	41.81	54	-12.19	AV
Н	7320.00	56.8	30.33	6.32	24.55	57.34	74	-16.66	Pk
Н	7320.00	41.05	30.33	6.32	24.55	41.59	54	-12.41	AV
				High Cha	nnel:2480N	1Hz			
V	4940.00	59.88	30.55	5.77	24.66	59.76	74	-14.24	Pk
V	4940.00	41.2	30.55	5.77	24.66	41.08	54	-12.92	AV
V	7440.00	57.66	30.33	6.32	24.55	58.2	74	-15.8	Pk
V	7440.00	43.81	30.33	6.32	24.55	44.35	54	-9.65	AV
Н	4940.00	56.07	30.55	5.77	24.66	55.95	74	-18.05	Pk
Н	4940.00	43.35	30.55	5.77	24.66	43.23	54	-10.77	AV
н	7440.00	57.9	30.33	6.32	24.55	58.44	74	-15.56	Pk
H 🖌	7440.00	43.69	30.33	6.32	24.55	44.23	54	-9.77	AV

Remark:

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss - Pre-amplifier,

Margin= Emission Level - Limit

2. If peak below the average limit, the average emission was no test.

3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

2 0755-27782934

🖂 admin@zht-lab.cn,

5.RADIATED BAND EMISSION MEASUREMENT

5.1 TEST REQUIREMENT:

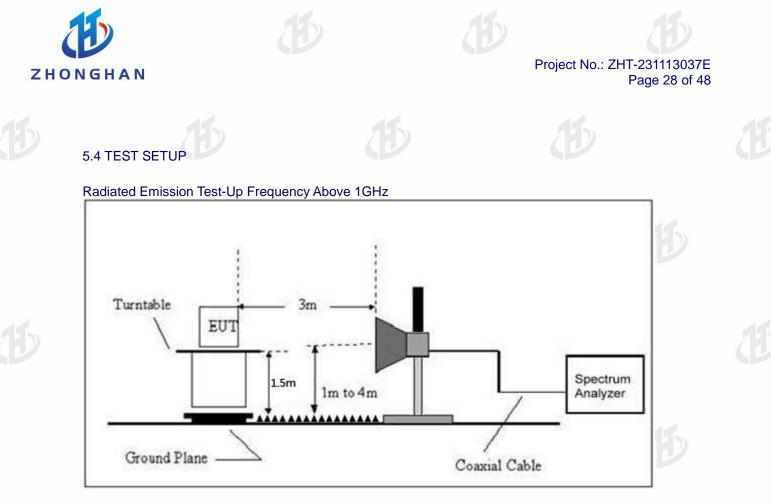
est Requirement:	FCC Part15 C Section 15.209 and 15.205							
est Method:	ANSI C63.10: 2013							
est Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.							
est site:	Measurement Distance: 3m							
eceiver setup:	Frequency	Detector	RBW	VBW	Value			
	Above	Peak	1MHz	3MHz	Peak			
	1GHz	Average	1MHz	3MHz	Average			
	est Method: est Frequency Range: est site:	est Method: ANSI C63.10: ast Frequency Range: All of the restriction to 2500MHz) of ast site: Measurement eceiver setup: Frequency Above	ANSI C63.10: 2013 ast Method: ANSI C63.10: 2013 All of the restrict bands were t to 2500MHz) data was showe ast site: Measurement Distance: 3m acceiver setup: Frequency Detector Above Peak	ANSI C63.10: 2013 ANSI C63.10: 2013 All of the restrict bands were tested, only to 2500MHz) data was showed. All of the restrict bands were tested, only to 2500MHz) data was showed. All of the restrict bands were tested, only to 2500MHz) data was showed. Extense E	ast Method: ANSI C63.10: 2013 ast Frequency Range: All of the restrict bands were tested, only the worst to 2500MHz) data was showed. ast site: Measurement Distance: 3m eceiver setup: Frequency Detector RBW VBW Above Peak 1MHz 3MHz			

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	Limit (dBuV/	/m) (at 3M)
FREQUENCY (MHz)	PEAK	AVERAGE
Above 1000	74	54

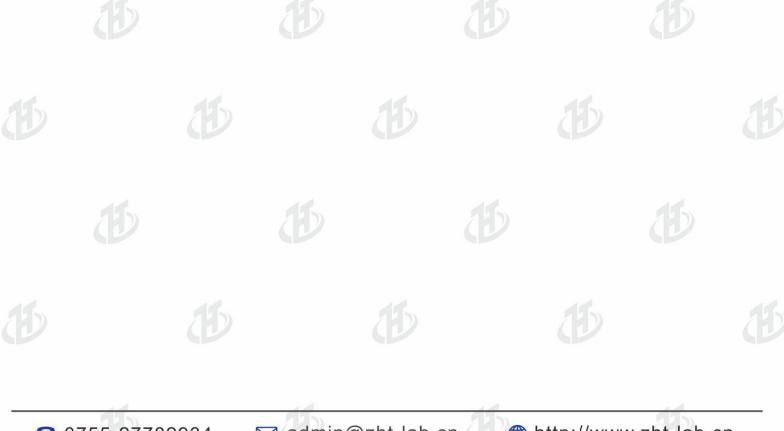
Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).


5.2 TEST PROCEDURE

Above 1GHz test procedure as below:

- a. 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the Highest channel
- Note:


Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

5.3 DEVIATION FROM TEST STANDARD No deviation

5.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Project No.: ZHT-231113037E Page 29 of 48

5.6 TEST RESULT

	Polar (H/V)	Frequenc y	Meter Reading	Pre- amplifier	Cable Loss	Antenna Factor	Emission level	Limit (dBuV	Margi n	Detec tor	Result
	(1,, , , ,	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	/m)	(dB)	Туре	
	12			Low	Channe	I: 2402MHz	z		1		
	H	2390.00	62.92	30.22	4.85	23.98	61.53	74.00	-12.47	PK	PASS
	Н	2390.00	46.06	30.22	4.85	23.98	44.67	54.00	-9.33	AV	PASS
	Н	2400.00	59.47	30.22	4.85	23.98	58.08	74.00	-15.92	PK	PASS
	Н	2400.00	48.59	30.22	4.85	23.98	47.20	54.00	-6.80	AV	PASS
	V	2390.00	59.11	30.22	4.85	23.98	57.72	74.00	-16.28	PK	PASS
	V	2390.00	47.04	30.22	4.85	23.98	45.65	54.00	-8.35	AV	PASS
	V	2400.00	60.37	30.22	4.85	23.98	58.98	74.00	-15.02	PK	PASS
GFSK	V	2400.00	48.56	30.22	4.85	23.98	47.17	54.00	-6.83	AV	PASS
GFSK	High Channel: 2480MHz										
	Н	2483.50	48.06	30.22	4.85	23.98	46.67	54.00	-7.33	AV	PASS
	Н	2483.50	60.70	30.22	4.85	23.98	59.31	74.00	-14.69	PK	PASS
	H	2500.00	48.40	30.22	4.85	23.98	47.01	54.00	-6.99	AV	PASS
	H)	2500.00	61.04	30.22	4.85	23.98	59.65	74.00	-14.35	PK	PASS
	V	2483.50	48.32	30.22	4.85	23.98	46.93	54.00	-7.07	AV	PASS
	V	2483.50	61.61	30.22	4.85	23.98	60.22	74.00	-13.78	PK	PASS
	V	2500.00	47.54	30.22	4.85	23.98	46.15	54.00	-7.85	AV	PASS
	V	2500.00	48.06	30.22	4.85	23.98	46.67	54.00	-7.33	AV	PASS
1. Emis	ssion Lev	el = Meter R	eading + Ar	ntenna Fact	Remar or + Cab		Pre-amplifier,	Margin= I	Emission	Level - L	imit

Project No.: ZHT-231113037E Page 30 of 48

6.POWER SPECTRAL DENSITY TEST

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247	Power Spectral Density	8dBm/3kHz	2400-2483.5	PASS		

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP SPECTRUM EUT ANALYZER

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

Temperature :	25.8°C	Relative Humidity :	52%	
Test Mode :	GFSK	Test Voltage :	DC 20V	

6.6 TEST RESULTS: Please refer to the Appendix BLE

Project No.: ZHT-231113037E Page 31 of 48

7. Channel Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

7.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS	

7.2 TEST PROCEDURE

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

EUT	 SI	PECTRUM
	A	NALYZER

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Temperature :	25.8°C	Relative Humidity :	52%	
Test Mode :	GFSK	Test Voltage :	DC 20V	

7.6 TEST RESULTS: Please refer to the Appendix BLE

8.PEAK OUTPUT POWER TEST

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

8.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS		

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the Power meter
- 8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

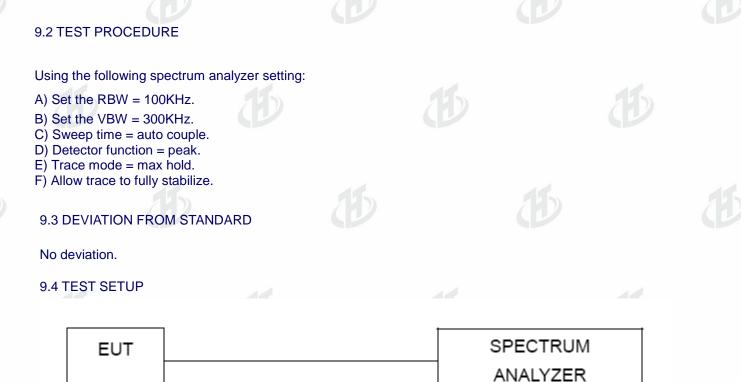
8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Temperature :	25.8°C	Relative Humidity : 52%	
Test Mode :	GFSK	Test Voltage : DC 20V	

8.6 TEST RESULTS

Please refer to the Appe	endix BLE			



9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

Test Requirement:	FCC Part15 C Section 15.247 (d)	
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02	

9.1 APPLICABLE STANDARD

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

9.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Temperature :	25.8°C	Relative Humidity :	52%
Test Mode :	GFSK	Test Voltage :	DC 20V

9.6 TEST RESULTS Please refer to the Appendix BLE

10.ANTENNA REQUIREMENT

Standard requirement: FCC Part15 C Section 15.203 /247(b)(4) 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 15.247(b) (4) requirement: (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the						
UT Antenna:	of the antenna exc PCB antenna, the		the antennas is 2	2.54dBi, reference	e to the appendix	II for details
B		Ð		Ð		B

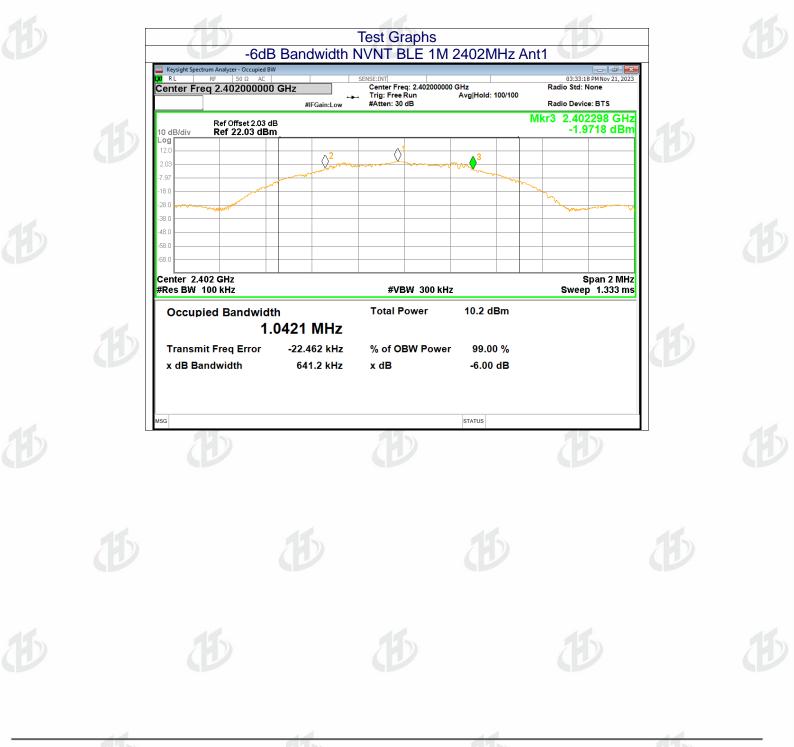
🖀 0755-27782934 🛛 🖂 admin@zht-lab.cn, 🖉 🏐 http://www.zht-lab.cn

1

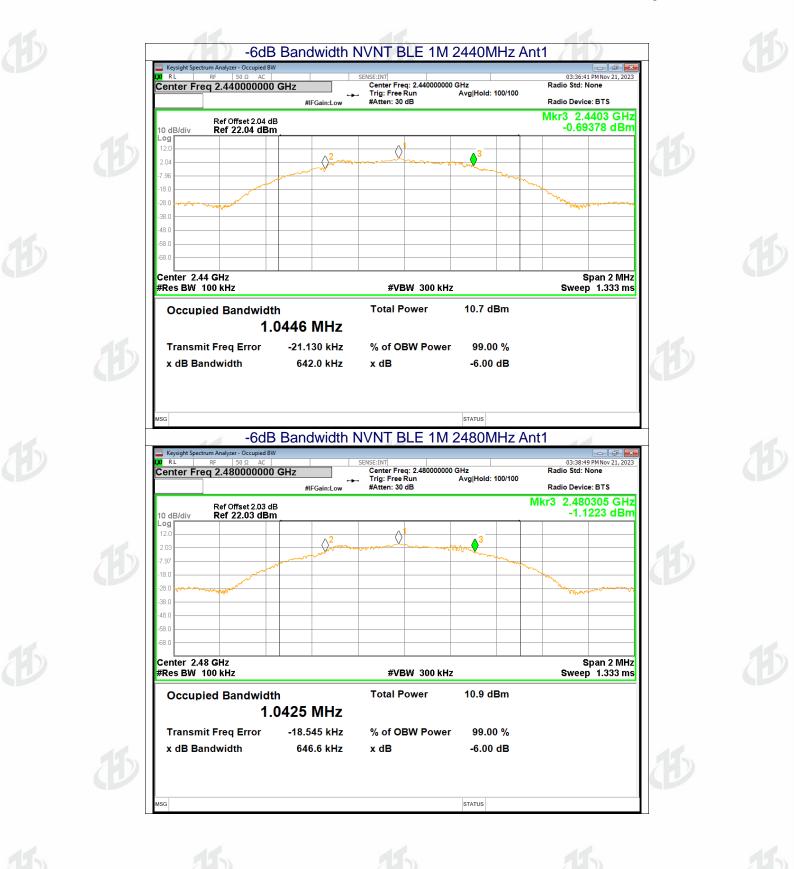
Project No.: ZHT-231113037E Page 35 of 48


1.	APF	PEND	IX B	LE	

11.1. MAXIMUM PEAK CONDUCTED OUTPUT POWER							
Condition	Mode	Frequency	Antenna	Conducted	Limit	Verdict	
		(MHz)		Power (dBm)	(dBm)		
NVNT	BLE 1M	2402	Ant1	4.47	30	Pass	
NVNT	BLE 1M	2440	Ant1	5.06	30	Pass	
NVNT	BLE 1M	2480	Ant1	5.21	30	Pass	



Project No.: ZHT-231113037E Page 36 of 48



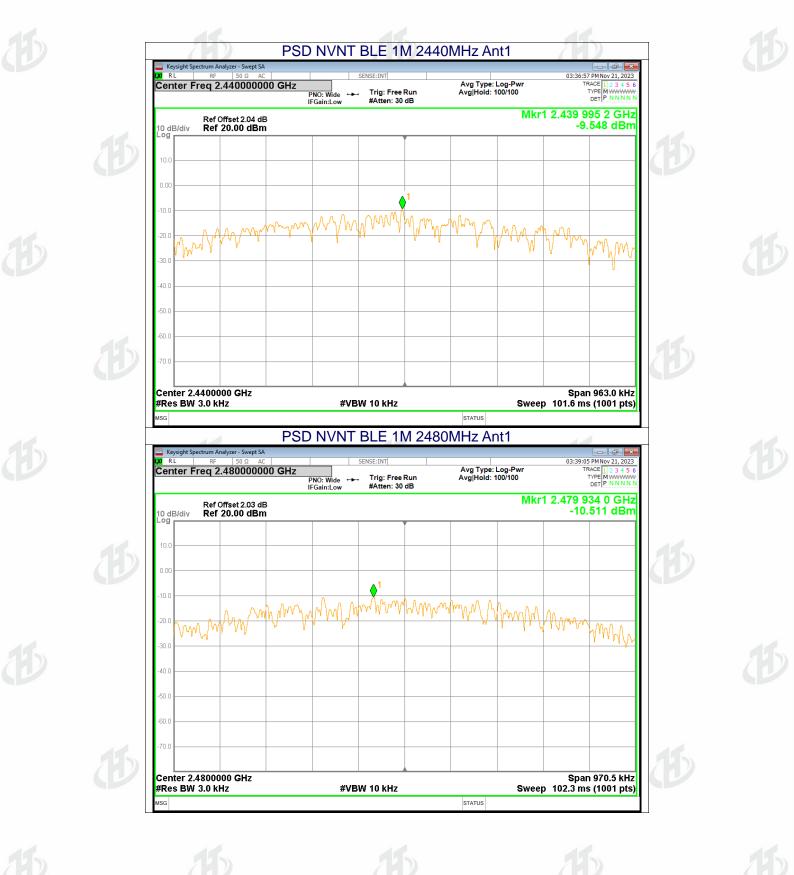
11.26DB B	ANDWIDT	Ή)				
Conditio n	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdic t
NVNT	BLE 1M	2402	Ant1	0.641	0.5	Pass
NVNT	BLE 1M	2440	Ant1	0.642	0.5	Pass
NVNT	BLE 1M	2480	Ant1	0.647	0.5	Pass

Project No.: ZHT-231113037E Page 38 of 48

ndition	Mode		cy (MHz)	Antenna	I 93	% OBW (MHz)	
	BLE 1M		102	Ant1		1.032	
	BLE 1M		140	Ant1		1.029	
IVNT	BLE 1M	24	180	Ant1		1.033	
5			Test Graphs				
			BLE 1M 2402	MHz Ant1			
	sight Spectrum Analyzer - Occupied BW			- 17 11 12-7 \ 1L			
Cen	RF 50 Ω AC ter Freq 2.402000000 I		SENSE:INT Center Freq: 2.4020000 Trig: Free Run	0 GHz Avg Hold: 100/100	03:33:11 Pr Radio Std: Nor	4 Nov 21, 2023 ne	
		+iFGain:Low	#Atten: 30 dB		Radio Device:		
10 dE	Ref Offset 2.03 dB 8/div Ref 22.03 dBm			N	1.820/188/1.82	59 GHZ 06 dBm	
Log 12.0							
2.03							
-7.97 -18.0		and the second		mon			
-28.0							
-38.0					n month		
-48.0	m m m				h	mm (2)	
-68.0							
	ter 2.402 GHz					an 3 MHz	
#Re:	BW 30 kHz		#VBW 100 kH	Z	Sweep	3.333 ms	
Т	ccupied Bandwidth 1.C ansmit Freq Error dB Bandwidth	n)318 MHz -13.398 kHz 1.240 MHz	Total Power % of OBW Powe x dB	10.3 dBm r 99.00 % -26.00 dB			
Т	1.C ansmit Freq Error dB Bandwidth	0318 MHz -13.398 kHz 1.240 MHz	% of OBW Powe x dB	r 99.00 % -26.00 dB			
	1.C ansmit Freq Error dB Bandwidth sight Spectrum Analyzer - Occupied BW	0318 MHz -13.398 kHz 1.240 MHz OBW NVNT	% of OBW Powe x dB BLE 1M 2440	r 99.00 % -26.00 dB			
	1.C ansmit Freq Error dB Bandwidth sight Spectrum Analyzer - Occupied BW	0318 MHz -13.398 kHz 1.240 MHz	% of OBW Powe x dB BLE 1M 244(r 99.00 % -26.00 dB status DMHz Ant1		Nov 21, 2023	
	1.C ansmit Freq Error dB Bandwidth	0318 MHz -13.398 kHz 1.240 MHz	% of OBW Powe x dB BLE 1M 2440	r 99.00 % -26.00 dB status)MHz Ant1 0 GHz Avg Hold: 100/100	03:36:34 Pl Radio Std: Nor Radio Device: I	11Nov 21, 2023 ne BTS	
	1.0 ansmit Freq Error dB Bandwidth sight Spectrum Analyzer - Occupied BW RF 50 Q AC EF Freq 2.440000000	0318 MHz -13.398 kHz 1.240 MHz OBW NVNT GHz #//FGain:Low	% of OBW Powe x dB BLE 1M 244(SENSE:INT) Center Freq: 2.4400000(Trig: Free Run	r 99.00 % -26.00 dB status)MHz Ant1 0 GHz Avg Hold: 100/100	03:36:34 Pl Radio Std: Nor Radio Device: 1 Akr1 2.43998	11Nov 21, 2023 ne BTS	
MSG MSG Cen	1.0 ansmit Freq Error dB Bandwidth sight Spectrum Analyzer - Occupied BW RF 50 Ω AC Err Freq 2.440000000	0318 MHz -13.398 kHz 1.240 MHz OBW NVNT GHz #//FGain:Low	% of OBW Powe x dB BLE 1M 244(SENSE:INT) Center Freq: 2.4400000(Trig: Free Run	r 99.00 % -26.00 dB status)MHz Ant1 0 GHz Avg Hold: 100/100	03:36:34 Pl Radio Std: Nor Radio Device: 1 Akr1 2.43998	4Nov 21, 2023 ne BTS 47 GHz	
MSG MSG MSG MSG MSG MSG MSG MSG	1.0 ansmit Freq Error dB Bandwidth sight Spectrum Analyzer - Occupied BW RF 50 Q AC EF Freq 2.440000000	0318 MHz -13.398 kHz 1.240 MHz OBW NVNT GHz #//FGain:Low	% of OBW Powe x dB BLE 1M 244(SENSE:INT) Center Freq: 2.4400000(Trig: Free Run	r 99.00 % -26.00 dB status)MHz Ant1 0 GHz Avg Hold: 100/100	03:36:34 Pl Radio Std: Nor Radio Device: 1 Akr1 2.43998	4Nov 21, 2023 ne BTS 47 GHz	
MSG MSG MSG MSG MSG MSG MSG MSG MSG MSG	1.0 ansmit Freq Error dB Bandwidth sight Spectrum Analyzer - Occupied BW RF 50 Q AC EF Freq 2.440000000	0318 MHz -13.398 kHz 1.240 MHz OBW NVNT GHz #//FGain:Low	% of OBW Powe x dB BLE 1M 244(SENSE:INT) Center Freq: 2.4400000(Trig: Free Run	r 99.00 % -26.00 dB status)MHz Ant1 0 GHz Avg Hold: 100/100	03:36:34 Pl Radio Std: Nor Radio Device: 1 Akr1 2.43998	4Nov 21, 2023 ne BTS 47 GHz	
MSG MSG MSG MSG MSG MSG MSG MSG	1.0 ansmit Freq Error dB Bandwidth sight Spectrum Analyzer - Occupied BW RF 50 Q AC EF Freq 2.440000000	0318 MHz -13.398 kHz 1.240 MHz OBW NVNT GHz #//FGain:Low	% of OBW Powe x dB BLE 1M 244(SENSE:INT) Center Freq: 2.4400000(Trig: Free Run	r 99.00 % -26.00 dB status)MHz Ant1 0 GHz Avg Hold: 100/100	03:36:34 Pl Radio Std: Nor Radio Device: 1 Akr1 2.43998	4Nov 21, 2023 ne BTS 47 GHz	
Msg Msg X Ri Cen 10 df Log 12.0 2.04 -7.96 -18.0 -28.0 -38.0	1.0 ansmit Freq Error dB Bandwidth sight Spectrum Analyzer - Occupied BW RF 50 Q AC EF Freq 2.440000000	0318 MHz -13.398 kHz 1.240 MHz OBW NVNT GHz #//FGain:Low	% of OBW Powe x dB BLE 1M 244(SENSE:INT) Center Freq: 2.4400000(Trig: Free Run	r 99.00 % -26.00 dB status)MHz Ant1 0 GHz Avg Hold: 100/100	03:36:34 Pl Radio Std: Nor Radio Device: 1 Akr1 2.43998	4Nov 21, 2023 ne BTS 47 GHz	
Msg Msg X Ri Cen 10 df Log 12.0 2.04 -7.96 -18.0 -28.0	1.0 ansmit Freq Error dB Bandwidth sight Spectrum Analyzer - Occupied BW RF 50 Q AC EF Freq 2.440000000	0318 MHz -13.398 kHz 1.240 MHz OBW NVNT GHz #//FGain:Low	% of OBW Powe x dB BLE 1M 244(SENSE:INT) Center Freq: 2.4400000(Trig: Free Run	r 99.00 % -26.00 dB status)MHz Ant1 0 GHz Avg Hold: 100/100	03:36:34 Pl Radio Std: Nor Radio Device: 1 Akr1 2.43998	4Nov 21, 2023 ne BTS 47 GHz	
Msg Msg Msg Msg Msg Msg Ri Cen 10 df Cen 12.0 2.04 -7.96 -18.0 -28.0 -38.0 -48.0	1.0 ansmit Freq Error dB Bandwidth sight Spectrum Analyzer - Occupied BW RF 50 Q AC EF Freq 2.440000000	0318 MHz -13.398 kHz 1.240 MHz OBW NVNT GHz #//FGain:Low	% of OBW Powe x dB BLE 1M 244(SENSE:INT) Center Freq: 2.4400000(Trig: Free Run	r 99.00 % -26.00 dB status)MHz Ant1 0 GHz Avg Hold: 100/100	03:36:34 Pl Radio Std: Nor Radio Device: 1 Akr1 2.43998	4Nov 21, 2023 ne BTS 47 GHz	
Miss Miss Miss Miss Miss Miss Miss Miss	1.0 ansmit Freq Error dB Bandwidth	0318 MHz -13.398 kHz 1.240 MHz OBW NVNT GHz #//FGain:Low	% of OBW Powe x dB BLE 1M 2440 SENSE:INT Center Freq: 2.4400000 Trig: Free Run #Atten: 30 dB	r 99.00 % -26.00 dB	03:36:34 PT Radio Std: Nor Radio Device: Alkr1 2.43998 2.72	ANOV 21, 2023 19 BTS 47 GHz 17 dBm 	
MSG MSG MSG MSG MSG MSG MSG MSG	1.0 ansmit Freq Error dB Bandwidth	0318 MHz -13.398 kHz 1.240 MHz OBW NVNT GHz #//FGain:Low	% of OBW Powe x dB BLE 1M 2440 SENSE:INT Center Freq: 2.44000000 Trig: Free Run #Atten: 30 dB	r 99.00 % -26.00 dB	03:36:34 PT Radio Std: Nor Radio Device: Alkr1 2.43998 2.72	4Nov 21, 2023 19 BTS 47 GHz 17 dBm	
MSG MSG MSG MSG MSG MSG MSG MSG	1.0 ansmit Freq Error dB Bandwidth	0318 MHz -13.398 kHz 1.240 MHz OBW NVNT GHz #IFGain:Low	% of OBW Powe x dB BLE 1M 2440 SENSE:INT Center Freq: 2.4400000 Trig: Free Run #Atten: 30 dB	r 99.00 % -26.00 dB	03:36:34 PT Radio Std: Nor Radio Device: Alkr1 2.43998 2.72	ANOV 21, 2023 19 BTS 47 GHz 17 dBm 	
MSG MSG MSG MSG MSG MSG MSG MSG	1.0 ansmit Freq Error dB Bandwidth	0318 MHz -13.398 kHz 1.240 MHz OBW NVNT GHz #FGain:Low	% of OBW Powe x dB BLE 1M 2440 SENSE:INT Center Freq: 2.44000000 Trig: Free Run #Atten: 30 dB #VBW 100 kH Total Power	r 99.00 % -26.00 dB	03:36:34 PT Radio Std: Nor Radio Device: Alkr1 2.43998 2.72	ANOV 21, 2023 19 BTS 47 GHz 17 dBm 	
MSC MSC MSC MSC MSC MSC MSC MSC	1.0 ansmit Freq Error dB Bandwidth	0318 MHz -13.398 kHz 1.240 MHz OBW NVNT GHz #//FGain:Low	% of OBW Powe x dB BLE 1M 2440 SENSE:INT Center Freq: 2.44000000 Trig: Free Run #Atten: 30 dB	r 99.00 % -26.00 dB STATUS MHZ Ant1 0 GHz Avg Hold: 100/100 2 11.5 dBm r 99.00 %	03:36:34 PT Radio Std: Nor Radio Device: Alkr1 2.43998 2.72	ANOV 21, 2023 19 BTS 47 GHz 17 dBm 	
MSC MSC MSC MSC MSC MSC MSC MSC	1.0 ansmit Freq Error dB Bandwidth	0318 MHz -13.398 kHz 1.240 MHz OBW NVNT GHz #FGain:Low	% of OBW Powe x dB BLE 1M 2440 SENSE:INT Center Freq: 2.44000000 Trig: Free Run #Atten: 30 dB 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	r 99.00 % -26.00 dB	03:36:34 PT Radio Std: Nor Radio Device: Alkr1 2.43998 2.72	ANOV 21, 2023 19 BTS 47 GHz 17 dBm 	

Project No.: ZHT-231113037E Page 40 of 48

🖀 0755-27782934 🛛 🖂 admin@zht-lab.cn, 📝 🏐 http://www.zht-lab.cn



Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	BLE 1M	2402	Ant1	-11.79	8	Pass
NVNT	BLE 1M	2440	Ant1	-9.55	8	Pass
NVNT	BLE 1M	2480	Ant1	-10.51	8	Pass

Project No.: ZHT-231113037E Page 42 of 48

Project No.: ZHT-231113037E Page 43 of 48

ondition	Edge Mode	Frequency (MHz	z) Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Antenna Ant1	-60.35	-20	Pass
NVNT	BLE 1M	2402	Ant1	-62.12	-20	Pass
		2100	Test Graph			1 400
		Band Edge NV		402MHz Ant1 Ref		
77)	Keysight Spectrum Ana	alyzer - Swept SA				
		50 Ω AC 402000000 GHz	SENSE:INT	Avg Type: Log-Pwr Avg Hold: 100/100	03:33:40 PM Nov 21, 2023 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N	
		PNO: Wide IFGain:Low				
	Ref O 10 dB/div Ref 2	ffset 2.03 dB 20.00 dBm		MKr13	2.401 984 GHz 4.284 dBm	
	Log					
	10.0		1			
	0.00		m			
	0.00					
	-10.0					
	-20.0					
120	-30.0					
	-40.0					
	-50.0					
	00.0	A der				
	-60.0 vor hor of	Arow Arphon VVV		A water and	marthan	
	-70.0					
	Center 2.40200 #Res BW 100 kl		#VBW 300 kHz	Sween 1 (Span 8.000 MHz 000 ms (1001 pts)	
		116		aweep i.u	7 V V HIS LIVU I DLSI	
	#RES BVV 100 KI			STATUS		
_			FBLE 1M 240	STATUS 2MHz Ant1 Emission		
	MSG Keysight Spectrum Ana	Band Edge NVN				
15	MSG Keysight Spectrum Ana M RL RF	Band Edge NVN1 alyzer - Swept SA 50 g Ac 356000000 GHz	SENSE:INT	2MHz Ant1 Emission	03:33:43 PMNov 21, 2023	
B	MSG Keysight Spectrum Ann X RL RF Center Freq 2.	Band Edge NVNT	SENSE:INT	2MHz Ant1 Emission Avg Type: Log-Pwr Avg Hold: 100/100	03:33:43 PM Nov 21, 2023 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N	
B	MSG Keysight Spectrum An. KR RF Center Freq 2. 10 dB/div Ref 0 10 dB/div Ref 0	Band Edge NVN1 alyzer - Swept SA 50 Q AC 356000000 GHz PN0: Fast	SENSE:INT	2MHz Ant1 Emission Avg Type: Log-Pwr Avg Hold: 100/100	03:33:43 PMNov 21, 2023	
B	MSG Keysight Spectrum An. M RL RF Center Freq 2. Ref 0	Band Edge NVN1 alyzer - Swept SA 50 Q AC 356000000 GHz PNO: Fast IFGain:Low	SENSE:INT	2MHz Ant1 Emission Avg Type: Log-Pwr Avg Hold: 100/100	03:33:43 PM Nov 21, 2023 TRACE 12:3:4:5:6 Type M WWHWWW DET P NNNN 1 2:402 0 GHz	
B	MSG Keysight Spectrum An K RL RF Center Freq 2. Conter Freq 2. Ref 0 10 dB/div Ref 2	Band Edge NVN1 alyzer - Swept SA 50 Q AC 356000000 GHz PNO: Fast IFGain:Low	SENSE:INT	2MHz Ant1 Emission Avg Type: Log-Pwr Avg Hold: 100/100	03:33:43 PM/00/21, 2023 TRACE [] 2 3 4 5 6 TYPE [M WWWW DET P NNNN 1 2.402 0 GHz 4.380 dBm	
B	MSG Keysight Spectrum An Keysight Spectrum An Keysight Spectrum An RE Center Freq 2. Ref 0 10 dB/div Ref 1 10.0 0.00 -10.0	Band Edge NVN1 alyzer - Swept SA 50 Q AC 356000000 GHz PNO: Fast IFGain:Low	SENSE:INT	2MHz Ant1 Emission Avg Type: Log-Pwr Avg Hold: 100/100	03:33:43 PM/00/21, 2023 TRACE [] 2 3 4 5 6 TYPE [M WWWW DET P NNNN 1 2.402 0 GHz 4.380 dBm	
B	MSG Keysight Spectrum An K RL RF Center Freq 2. 10 dB/div Ref 0 10.0 0.00	Band Edge NVN1 alyzer - Swept SA 50 Q AC 356000000 GHz PNO: Fast IFGain:Low	SENSE:INT	2MHz Ant1 Emission Avg Type: Log-Pwr Avg Hold: 100/100	03:33:43 PM Nov 21, 2023 TRACE 1 2:3:4:5:6 TYPE WWWWW DET P NNNN 1 2:402:0 GHz 4:380 dBm	
B	MSG Keysight Spectrum An Keysight Spectrum An Kef Center Freq 2. Center Freq 2. Cog 10 dB/div Ref 2 10.0 0.00 -10.0 -20.0	Band Edge NVN1 alyzer - Swept SA 50 Q AC 356000000 GHz PNO: Fast IFGain:Low	SENSE:INT	2MHz Ant1 Emission Avg Type: Log-Pwr Avg Hold: 100/100	03:33:43 PM Nov 21, 2023 TRACE 1 2:3:4:5:6 TYPE WWWWW DET P NNNN 1 2:402:0 GHz 4:380 dBm	
B	MSG Keysight Spectrum An R R RF Center Freq 2. Center Freq 2. Ref 0 10 dB/div Ref 0 10 dB/div Ref 1 -20.0 -30.0 -40.0 -50.0 4	Band Edge NVN1 alyzer - Swept SA 50 Q AC 356000000 GHz PNO: Fast IFGain:Low	SENSE:INT	2MHz Ant1 Emission Avg Type: Log-Pwr Avg Hold: 100/100	03:33:43 PM Nov 21, 2023 TRACE 1 2:3:4:5:6 TYPE WWWWW DET P NNNN 1 2:402:0 GHz 4:380 dBm	
B	Keysight Spectrum An. RL RF Center Freq 2. Ref 0 Od B/div Ref 0 10.0 0.00 -10.0 -0.0 -30.0 -40.0 -60.0 -44.0	Band Edge NVN1 alyzer - Swept SA 50 Q AC 356000000 GHz PNO: Fast IFGain:Low	SENSE:INT	2MHz Ant1 Emission Avg Type: Log-Pwr Avg Hold: 100/100	03:33:43 PM Nov 21, 2023 TRACE 1 2:3:4:5:6 TYPE WWWWW DET P NNNN 1 2:402:0 GHz 4:380 dBm	
B	MSG Keysight Spectrum An RF Center Freq 2. Call dB/div Ref 0 Call dB/div Ref 0 Call dB/div Ref 1 Call dB/div Ref 1 Call dB/div Ref 2 Ca	Band Edge NVNT	SENSE:INT	2MHz Ant1 Emission	03:33:43 PM Nov 21, 2023 TRACE [2:3:4:5:6 TYPE WWWWW DET P NNN N 1 2:402 0 GHz 4:380 dBm 0L1:1572 dbm	
B	Keysight Spectrum An. RL RF Center Freq 2. Ref 0 Od B/div Ref 0 10.0 0.00 -10.0 -0.0 -30.0 -40.0 -60.0 -44.0	Band Edge NVNT	SENSE:INT	2MHz Ant1 Emission	03:33:43 PM Nov 21, 2023 TRACE 1 2:3:4:5:6 TYPE WWWWW DET P NNNN 1 2:402:0 GHz 4:380 dBm	
B	MSG Keysight Spectrum An RL RF Center Freq 2. Ref 0 10 dB/div Ref 0 10 dB/div Ref 1 10 0 10 0 10 10 0 10 0 1	Band Edge NVNT	SENSE:INT	2MHz Ant1 Emission	03:33:43 PM Nov 21, 2023 TRACE [2:3:4:5:6 TYPE [WWWWW DET P NNNN 1 2:402 0 GHz 4:380 dBm 01-1 01-1572 dbm 01-1572 dbm 00 ms (1001 pts)	
B	MSG Reysight Spectrum An. RL RF Center Freq 2. Ref O 10 dB/div Ref O 10 dB/div Ref O 10 0 0 00 -10 0 -20 0 -30 0 -40 0 -50 0 -50 0 -70 0 Start 2.30600 G #Res BW 100 ki MXR MODE FRE SCL 1 N 1 f	Band Edge NVNT	SENSE:INT Trig: Free Run #Atten: 30 dB	2MHz Ant1 Emission	03:33:43 PM Nov 21, 2023 TRACE [2:3:4:5:6 TYPE [WWWWW DET P NNNN 1 2:402 0 GHz 4:380 dBm 01-1 01-1572 dbm 01-1572 dbm 00 ms (1001 pts)	
B	MSG Keysight Spectrum An R L RF Center Freq 2. Center Freq 2. Ref O 10 dB/div Ref O 10 0 10 0 10 10 0 10 0 1	Band Edge NVNT	SENSE:INT Trig: Free Run #Atten: 30 dB	2MHz Ant1 Emission	03:33:43 PM Nov 21, 2023 TRACE [2:3:4:5:6 TYPE [WWWWW DET P NNNN 1 2:402 0 GHz 4:380 dBm 01-1 01-1572 dbm 01-1572 dbm 00 ms (1001 pts)	
B	MSG RESSIPT Spectrum An RE Center Freq 2. Center Freq 2. Ref 0 10 dB/div Ref 0 10 dB/div Ref 1 10 0 10 0	Band Edge NVNT	SENSE:INT Trig: Free Run #Atten: 30 dB #	2MHz Ant1 Emission	03:33:43 PM Nov 21, 2023 TRACE [2:3:4:5:6 TYPE [WWWWW DET P NNNN 1 2:402 0 GHz 4:380 dBm 01-1 01-1572 dbm 01-1572 dbm 00 ms (1001 pts)	
B	MSG Keysight Spectrum An RL RF Center Freq 2. Center Freq 2. Ref O 10 dB/div Ref O 10 0 0.00 -10.0 -20.0 -30.0 -40.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -50.0 -70.0 Start 2.30600 G #Res BW 100 kit MXR MODE FRC SCL 1 f 3 N 1 f 5 6 - 6	Band Edge NVNT	SENSE:INT Trig: Free Run #Atten: 30 dB #	2MHz Ant1 Emission	03:33:43 PM Nov 21, 2023 TRACE [2:3:4:5:6 TYPE [WWWWW DET P NNNN 1 2:402 0 GHz 4:380 dBm 01-1 01-1572 dbm 01-1572 dbm 00 ms (1001 pts)	

2 0755-27782934

Project No.: ZHT-231113037E Page 44 of 48

Project No.: ZHT-231113037E Page 45 of 48

ondition	Mode	ourious Emission Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict		
NVNT	BLE 1M	2402	Ant1	-60.01	-20	Pass		
NVNT	BLE 1M	2440	Ant1	-60.85	-20	Pass		
NVNT	BLE 1M	2480	Ant1	-61.98	-20	Pass		
	Test Graphs							
	. .		NT BLE 1M 2	2402MHz Ant1 Ref				
	Keysight Spectrum An	alyzer - Swept SA 50 Ω AC 402000000 GHz	SENSE:INT	Avg Type: Log-Pwr	03:33:48 PM Nov 21, 2023			
	Center Freq 2.		Trig: Free Run #Atten: 20 dB	Avg Hold: 100/100	TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N N			
)ffset 2.03 dB		Mkr1 2.4	01 980 5 GHz			
	10 dB/div Ref	12.03 dBm	• 1		4.012 dBm			
	2.03	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
		- A A A A A A A A A A A A A A A A A A A		and a second				
	-7.97	for the second s		www.	~			
	-18.0	r			<u></u>			
15	-28.0				"hy			
P					www.			
	-38.0							
	-48.0							
	-58.0							
	-68.0							
	-00.0							
	-78.0							
	Center 2.40200	00 CH2			Span 1.500 MHz			
	#Res BW 100 k		'BW 300 kHz	Sweep 1.0	00 ms (1001 pts)			
	MSG			STATUS				
(A)	Keysight Spectrum An		BLE 1M 240	02MHz Ant1 Emission				
	LXIRL RF	50 Ω AC 33.265000000 GHz	SENSE:INT	Avg Type: Log-Pwr	03:34:18 PM Nov 21, 2023 TRACE 1 2 3 4 5 6			
	Center Fred I.		➡ Trig: Free Run #Atten: 20 dB	Avg Hold: 10/10				
	Ref C	Offset 2.03 dB		Mkr′	1 2.401 7 GHz			
	Log	12.03 dBm			3.433 dBm			
	-7.97							
	-18.0				DL1 -15.99 dBm			
	-28.0							
	-38.0				2			
	-58.0	→ → → → → → → → → → → → → → → → → → →			b 1 1			
15	-68.0							
	Start 30 MHz				Stop 26.50 GHz			
	#Res BW 100 k	Hz #V	/BW 300 kHz	Sweep 2.5	530 s (30001 pts)			
	MKR MODE TRC SCL		33 dBm	FUNCTION WIDTH FUNCTION	VALUE			
	2 N 1 f 3 N 1 f	24.826 2 GHz -56.0 4.956 1 GHz -65.1	06 dBm 39 dBm					
	4 N 1 f 5 N 1 f 6	7.134 5 GHz -65.8 9.508 0 GHz -67.1	43 dBm 77 dBm		Ξ			
	7 8							
	9 10 11							

http://www.zht-lab.cn

🖂 admin@zht-lab.cn,

2 0755-27782934

Project No.: ZHT-231113037E Page 46 of 48

Project No.: ZHT-231113037E Page 47 of 48

🖀 0755-27782934 🛛 🖂 admin@zht-lab.cn, 🚽 🏐 http://www.zht-lab.cn

