SAR TEST REPORT **Applicant** Huawei Technologies Co., Ltd. FCC ID QISBAH2-W19 **Product** Tablet Model BAH2-W19 Report No. R1806H0070-S1V1 Issue Date July 23, 2018 TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **IEEE 1528-2013**, **ANSI C95.1**: **1992/IEEE C95.1**: **1991.** The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report. Performed by: Jiangpeng Lan Jiang peng Lan Approved by: Kai Xu # TA Technology (Shanghai) Co., Ltd. No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000 # **Table of Contents** | 1 | Te | st Laborat | ory | 3 | |----|------|--------------|---|----| | | 1.1 | Notes of | f the Test Report | 3 | | | 1.2 | Test fac | ility | 3 | | | 1.3 | Testing | Location | 4 | | | 1.4 | Laborate | ory Environment | 4 | | 2 | Sta | atement of | Compliance | 5 | | 3 | De | escription o | of Equipment under Test | 6 | | 4 | Te | st Specific | ation, Methods and Procedures | 8 | | 5 | Op | perational (| Conditions during Test | 9 | | ; | 5.1 | Test Pos | sitions | 9 | | ; | 5.2 | Measure | ement Variability | 11 | | ; | 5.3 | Test Co | nfiguration | | | | | 5.3.1 | Wi-Fi Test Configuration ····· | | | | | 5.3.2 | BT Test Configuration ····· | | | | | 5.3.3 | Proximity sensor Power reduction description ······ | 13 | | 6 | SA | AR Measur | ements System Configuration | 17 | | (| 6.1 | SAR Me | asurement Set-up | 17 | | (| 6.2 | DASY5 | E-field Probe System | 18 | | (| 6.3 | SAR Me | asurement Procedure | 19 | | 7 | Ma | ain Test Ed | uipment | 21 | | 8 | Tis | ssue Diele | ctric Parameter Measurements & System Verification | 22 | | | 8.1 | Tissue \ | /erification | 22 | | ; | 8.2 | System | Performance Check | 23 | | 9 | No | ormal and I | Maximum Output Power | 25 | | ! | 9.1 | WLAN N | Лоde | 25 | | , | 9.2 | Bluetoot | h Mode | 32 | | 10 | Me | easured ar | nd Reported (Scaled) SAR Results | 33 | | | 10.1 | Measure | ed SAR Results | 33 | | | 10.2 | Simultar | neous Transmission Analysis | 38 | | 11 | Me | easuremer | nt Uncertainty | 40 | | A١ | INE | KA: Test L | ayout | 41 | | A١ | INE | K B: Syste | m Check Results | 43 | | | | _ | st Graph Results | | | A١ | INE | X D: Probe | Calibration Certificate | 52 | | A١ | INE | K E: D2450 | 0V2 Dipole Calibration Certificate | 63 | | A١ | INE | K F: D5GH | zV2 Dipole Calibration Certificate | 71 | | A١ | NE) | K G: DAE4 | Calibration Certificate | 85 | 1 Test Laboratory 1.1 Notes of the Test Report This report shall not be reproduced in full or partial, without the written approval of **TA technology** (shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein . Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above. 1.2 Test facility CNAS (accreditation number:L2264) TA Technology (Shanghai) Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS). FCC (Designation number: CN1179, Test Firm Registration Number: 446626) TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements. IC (recognition number is 8510A) TA Technology (Shanghai) Co., Ltd. has been listed by industry Canada to perform electromagnetic emission measurement. VCCI (recognition number is C-4595, T-2154, R-4113, G-10766) TA Technology (Shanghai) Co., Ltd. has been listed by industry Japan to perform electromagnetic emission measurement. A2LA (Certificate Number: 3857.01) TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement. 1.3 Testing Location Company: TA Technology (Shanghai) Co., Ltd. Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China City: Shanghai Post code: 201201 Country: P. R. China Contact: Xu Kai Telephone: +86-021-50791141/2/3 Fax: +86-021-50791141/2/3-8000 Website: http://www.ta-shanghai.com E-mail: xukai@ta-shanghai.com # 1.4 Laboratory Environment | Temperature | Min. = 18°C, Max. = 25 °C | |--------------------------|---------------------------| | Relative humidity | Min. = 30%, Max. = 70% | | Ground system resistance | < 0.5 Ω | Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards. # 2 Statement of Compliance The maximum results of Specific Absorption Rate (SAR) found during testing for the EUT are as follows: Table 2.1: Highest Reported SAR | Mode | Highest Reported SAR (W/kg) | |------------------|------------------------------| | Mode | 1g Body SAR | | Wi-Fi (2.4G) | 0.36 | | Wi-Fi (5G) | 0.55 | | Bluetooth | 0.18 | | Date of Testing: | June 29, 2018~ June 30, 2018 | Note: The device is in compliance with SAR for Uncontrolled Environment /General Population exposure limits (1.6 W/kg) specified in ANSI C95.1: 1992/IEEE C95.1: 1991, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013. Note: 1) The highest Reported SAR for body-worn and simultaneous transmission exposure conditions are 0.55 W/kg and 0.55 W/kg. 3 Description of Equipment under Test # **Client Information** | Applicant | Huawei Technologies Co., Ltd. | | | | | | |----------------------|---|--|--|--|--|--| | Applicant address | Administration Building, Headquarters of Huawei Technologies Co., | | | | | | | | Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.China. | | | | | | | Manufacturer | Huawei Technologies Co., Ltd. | | | | | | | Manufacturar address | Administration Building, Headquarters of Huawei Technologies Co., | | | | | | | Manufacturer address | Ltd., Bantian, Longgang District, Shenzhen, 518129, P.R.China. | | | | | | # **General Technologies** | Application Purpose: | Original Grant | | | | | | |----------------------|---|--|--|--|--|--| | EUT Stage | Identical Prototype | | | | | | | Model: | BAH2-W19 | | | | | | | SN: | 18052675749 | | | | | | | Hardware Version: | SH0BAH2LM | | | | | | | Software Version: | BAH2-W19 8.0.0.10(C605) | | | | | | | Antenna Type: | Internal Antenna | | | | | | | Wi-Fi Hotspot | Wi-Fi 2.4G
Wi-Fi 5G U-NII-1&U-NII-3 | | | | | | | | EUT Accessory | | | | | | | Adapter 1 | Manufacturer: Salcomp (Shenzhen) Co., Ltd. Model: HW-059200UHQ | | | | | | | Adapter 2 | Manufacturer: HUIZHOU BYD ELECTRONIC CO.,LTD. Model: HW-059200UHQ | | | | | | | Adapter 3 | Manufacturer: Salcomp (Shenzhen) Co., Ltd. Model: HW-090200UH0 | | | | | | | Adapter 4 | Manufacturer: Shenzhen Kuntkey Electric Co., Ltd. Model: HW-090200UH0 | | | | | | | Battery 1 | Manufacturer: SCUD (Fujian) Electronics Co., Ltd. Model: HB2994I8ECW | | | | | | | Battery 2 | Manufacturer: SUNWODA Electronic Co., Ltd Model: HB2994I8ECW | | | | | | | Battery 3 | Manufacturer: Huizhou Desay Battery Co., Ltd Model: HB2994I8ECW | | | | | | | USB Cable 1 | 100cm Cable, Shielded | | | | | | | USB Cable 2 | 100cm Cable, Shielded | | | | | | # Wireless Technology and Frequency Range | Wireless
Technology | | Modulation | Operating mode | Tx (MHz) | | | |------------------------|---------------|------------------------|------------------------|-------------|--|--| | ВТ | 2.4G | Ver | sion 4.2 LE | 2402 ~2480 | | | | | 2.40 | DSSS,OFDM | 802.11b/g/n HT20 | 2412 ~ 2462 | | | | | 2.4G | OFDM | 802.11n HT40 | 2422 ~ 2452 | | | | Wi-Fi | 50 | OFDM | 802.11a/n HT20/ HT40/ | 5150 ~ 5350 | | | | | 5G | OFDM | ac VHT20/ VHT40/ VHT80 | 5470 ~ 5850 | | | | | Does this dev | rice support MIMO □Yes | ⊠No | | | | BAH2-W19 has two storage scenarios, with different memory. EMCP Storage Capacity is 3GB+32GB, LPDDR3+EMMC separation Scheme storage capacity is 4GB+64GB. The two storage mode of peripheral circuit has slight change, but does not affect product performance. The differences about storage scenarios are showed in the following table. Other parts of the Tablet are the same, including the appearance, the antenna, Chipset, Bluetooth mode, Wifi mode, Adapter, Battery, Mainboard, Software and so on. | Configuration | Conf. 1 | Conf. 2 | | | | |-------------------|----------|-------------|--|--|--| | Model | BAH2-W19 | | | | | | Storage Scenarios | EMCP | LPDDR3+eMMC | | | | | Storage capacity | 3GB+32GB | 4GB+64GB | | | | # 4 Test Specification, Methods and Procedures The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE 1528- 2013, ANSI C95.1: 1992/IEEE C95.1: 1991, the following FCC Published RF exposure KDB procedures: 248227 D01 802.11 Wi-Fi SAR v02r02 447498 D01 General RF Exposure Guidance v06 648474 D04 Handset SAR v01r03 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04 865664 D02 RF Exposure Reporting v01r02 690783 D01 SAR Listings on Grants v01r03 616217 D04 SAR for laptop and tablets v01r02 FCC SAR Test Report No: R1806H0070-S1V1 # 5 Operational Conditions during Test #### 5.1 Test Positions According to KDB 616217 D04, SAR evaluation is required for back surface and edges of the devices. The back surface and edges of the tablet are tested with the tablet touching the phantom. Exposures from antennas through the front surface of the display section of a tablet are generally limited to the user's hands. Exposures to hands for typical consumer transmitters used in tablets are not expected to exceed the extremity SAR limit; therefore, SAR evaluation for the front
surface of tablet display screens are generally not necessary. When voice mode is supported on a tablet and it is limited to speaker mode or headset operations only, additional SAR testing for this type of voice use is not required. Fig-4.1 Illustration for Tablet Setup According to KDB 447498 D01, the SAR test exclusion condition is based on source-based time-averaged maximum conducted output power, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions. The SAR exclusion threshold is determined by the following formula. (1) The SAR exclusion threshold for distances \leq 50mm is defined by the following equation: # (max. power of channel, including tune-up tolerance, mW) *√ Frequency (GHz) ≤3.0 (min. test separation distance, mm) - (2) The SAR exclusion threshold for distances >50mm is defined by the following equation, as illustrated in KDB 447498 D01 Appendix B: - a) at 100 MHz to 1500 MHz [Power allowed at numeric Threshold at 50 mm in step 1) + (test separation distance - 50 mm) · (f (MHz)/150)] mW b) at > 1500 MHz and \leq 6 GHz [Power allowed at numeric Threshold at 50 mm in step 1) + (test separation distance - 50 mm) ·10] mW # The Detailed Antenna Locations refer to SAR Test Setup and Antenna Locations. | | | | Max. Back Side L | | Left Edge Right Edge | | | Top Edge | | | Bottom Edge | | | | | | | | |------------|--------------------|--------|---------------------------|--------------------------|----------------------|----------------|--------------------------|----------------|----------------|--------------------------|----------------|----------------|--------------------------|----------------|----------------|--------------------------|----------------|----------------| | Band | Frequency
(MHz) | Sensor | Tune-up
Power
(dBm) | Test
Distance
(mm) | Evaluati
on | Conclu
sion | Test
Distance
(mm) | Evaluatio
n | Concl
usion | Test
Distance
(mm) | Evaluati
on | Conclu
sion | Test
Distance
(mm) | Evaluatio
n | Concl
usion | Test
Distance
(mm) | Evaluatio
n | Concl
usion | | Ni-Fi 2.4G | 2462 | on | 10.00 | <5 | 3.14 | Yes | Not Applicable | | Not Applicable | | е | <5 | 3.14 | Yes | Not | Applicable | е | | | Wi-Fi 5G | 5825 | on | 10.00 | <5 | 4.83 | Yes | Not | Applicabl | е | Not Applicable | | е | <5 | 4.83 | Yes | Not | Applicable | е | | вт | 2480 | off | 10.00 | <5 | 3.15 | Yes | 55.4 | 54.31 | No | 157.8 | 1078.31 | No | <5 | 3.15 | Yes | 154 | 1040.31 | No | | Ni-Fi 2.4G | 2462 | off | 17.50 | 13 | 6.79 | Yes | 55.4 | 55.76 | Yes | 157.8 | 1079.76 | No | 14 | 6.30 | Yes | 154 | 1041.76 | No | | Wi-Fi 5G | 5825 | off | 18.00 | 13 | 11.71 | Yes | 55.4 | 57.05 | Yes | 157.8 | 1081.05 | No | 14 | 10.88 | Yes | 154 | 1043.05 | No | # 5.2 Measurement Variability Per FCC KDB Publication 865664 D01, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results. SAR Measurement Variability was assessed using the following procedures for each frequency band: - 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once. - 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit). - 3) A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20. - 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds. ## 5.3 Test Configuration #### 5.3.1 Wi-Fi Test Configuration SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration. The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the *initial* test position(s) by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The *initial* test position(s) is measured using the highest FCC SAR Test Report No: R1806H0070-S1V1 measured maximum output power channel in the required wireless mode test configuration(s). When the *reported* SAR for the *initial test position* is: - ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures. - 0.4 W/kg, SAR is repeated using the same wireless mode test configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions are tested. - ♦ For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested. - ♦ When it is unclear, all equivalent conditions must be tested. - For all positions/configurations tested using the *initial test position* and subsequent test positions, when the *reported* SAR is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the *reported* SAR is ≤ 1.2 W/kg or all required test channels are considered. - The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction. To determine the initial test position, Area Scans were performed to determine the position with the Maximum Value of SAR (measured). The position that produced the highest Maximum Value of SAR is considered the worst case position; thus used as the initial test position. A Wi-Fi device must be configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools for SAR measurement. CC SAR Test Report No: R1806H0070-S1V1 #### 5.3.2 BT Test Configuration For BT SAR testing, BT engineering testing software installed on the EUT can provide continuous transmitting RF signal with maximum output power, and the CBT control the EUT operating with hoping off and data rate set for 2DH5. The SAR measurement takes full account of the BT duty cycle and is reflected in the report, and the duty factor of the device is as follow: Note: Duty factor= Ton (ms)/ T(on+off) (ms)=2.880/3.760=76.6% #### 5.3.3 Proximity sensor Power reduction description This device uses a proximity sensor that share the same metallic electrode as the transmitting antenna to facilitate triggering in typical user interactivity with the device. Due to the operating configurations and exposure conditions required by the device, the proximity sensor is used to indicate when the tablet is held close to a user's body exposure condition. It utilizes the proximity sensor to reduce the output power in specific wireless and operating modes to ensure SAR compliance for the following scenarios: To reduce the output power of main antennas during body operating configurations. CC SAR Test Report No: R1806H0070-S1V1 # 1) Antennas and sensor placement details Figue1: The location of the antennas and the proximity sensor Figue2: The picture of the SAR sensor Note: The proximity sensor and Wi-Fi/BT antenna use same metallic electrode, so the location is same. | | Antenna/Ser | Antenna/Sensor-to- DUT sides separation distances | | | | | | | | | | | |------------|-----------------------------------|---|-----------
------------|----------|-------------|--|--|--|--|--|--| | Tx ANT | Front side | Back side | Left side | Right side | Top side | Bottom side | | | | | | | | Wi-Fi ANT | 1.89mm | 2mm | 55.4mm | 157.8mm | 0 | 154mm | | | | | | | | Sensor pad | 1.89mm 2mm 55.4mm 157.8mm 0 154mm | | | | | | | | | | | | # 2) Power Reduction operation table | | Wi-Fi ANT power(dBm) | | | | | | | | | | | | | | |-----------------|----------------------|-------------|---------------|---------------|-----------|-------------|-------------|--------------|--------------|--------------|--|--|--|--| | Sensor | Wi-Fi2.4G-b | Wi-Fi2.4G-g | Wi-Fi2.4G-n20 | Wi-Fi2.4G-n40 | Wi-Fi5G-a | Wi-Fi5G-n20 | Wi-Fi5G-n40 | Wi-Fi5G-ac20 | Wi-Fi5G-ac40 | Wi-Fi5G-ac80 | | | | | | off | 17.50 | 11.00 | 11.00 | 8.00 | 18.00 | 18.00 | 18.00 | 18.00 | 18.00 | 18.00 | | | | | | on | 10.00 | 10.00 | 10.00 | 8.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | | | | | | Power reduction | 7.50 | 1.00 | 1.00 | 0.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | | | | | # 3) proximity sensor coverage, distance and angle 3.1) Procedures for determining proximity sensor triggering distances (Per KDB616217§6.2) The proximity sensor triggering distance measurement method as below: Top side Back side | | Trigger distance-T | op Side | Trigger distance-B | ack Side | | |------------|--------------------|--------------|--------------------|--------------|--| | Band(MHz) | Moving toward | Moving away | Moving toward | Moving away | | | | phantom | from phantom | phantom | from phantom | | | Sensor pad | 15 | 15 | 14 | 14 | | Table: Summary of Trigger Distances The detailed conducted power measurement data to determine the triggering distances is as below: 3.1a) The DUT (Top side, Back side) is moved towards the flat phantom: | | Conducted power(dBm) for Top side | | | | | | | | | | | | | | | |--------------|-----------------------------------|-------------|---------------|-----------|-------------|-------------|--------------|--------------|--------------|--|--|--|--|--|--| | Distance(mm) | Wi-Fi2.4G-b | Wi-Fi2.4G-g | Wi-Fi2.4G-n20 | Wi-Fi5G-a | Wi-Fi5G-n20 | Wi-Fi5G-n40 | Wi-Fi5G-ac20 | Wi-Fi5G-ac40 | Wi-Fi5G-ac80 | | | | | | | | 26 | 15.54 | 8.44 | 8.03 | 16.22 | 16.53 | 15.95 | 16.45 | 15.88 | 17.18 | | | | | | | | 21 | 15.54 | 8.44 | 8.03 | 16.22 | 16.53 | 15.95 | 16.45 | 15.88 | 17.18 | | | | | | | | 18 | 15.54 | 8.44 | 8.03 | 16.22 | 16.53 | 15.95 | 16.45 | 15.88 | 17.18 | | | | | | | | 17 | 15.54 | 8.44 | 8.03 | 16.22 | 16.53 | 15.95 | 16.45 | 15.88 | 17.18 | | | | | | | | 16 | 15.54 | 8.44 | 8.03 | 16.22 | 16.53 | 15.95 | 16.45 | 15.88 | 17.18 | | | | | | | | 15 | 8.39 | 7.08 | 7.03 | 8.57 | 8.70 | 7.51 | 8.62 | 7.44 | 9.08 | | | | | | | | 14 | 8.39 | 7.08 | 7.03 | 8.57 | 8.70 | 7.51 | 8.62 | 7.44 | 9.08 | | | | | | | | 13 | 8.39 | 7.08 | 7.03 | 8.57 | 8.70 | 7.51 | 8.62 | 7.44 | 9.08 | | | | | | | | 10 | 8.39 | 7.08 | 7.03 | 8.57 | 8.70 | 7.51 | 8.62 | 7.44 | 9.08 | | | | | | | | 5 | 8.39 | 7.08 | 7.03 | 8.57 | 8.70 | 7.51 | 8.62 | 7.44 | 9.08 | | | | | | | | | Conducted power(dBm) for Back side | | | | | | | | | | | | |--------------|------------------------------------|-------------|---------------|-----------|-------------|-------------|--------------|--------------|--------------|--|--|--| | Distance(mm) | Wi-Fi2.4G-b | Wi-Fi2.4G-g | Wi-Fi2.4G-n20 | Wi-Fi5G-a | Wi-Fi5G-n20 | Wi-Fi5G-n40 | Wi-Fi5G-ac20 | Wi-Fi5G-ac40 | Wi-Fi5G-ac80 | | | | | 25 | 15.54 | 8.44 | 8.03 | 16.22 | 16.53 | 15.95 | 16.45 | 15.88 | 17.18 | | | | | 20 | 15.54 | 8.44 | 8.03 | 16.22 | 16.53 | 15.95 | 16.45 | 15.88 | 17.18 | | | | | 17 | 15.54 | 8.44 | 8.03 | 16.22 | 16.53 | 15.95 | 16.45 | 15.88 | 17.18 | | | | | 16 | 15.54 | 8.44 | 8.03 | 16.22 | 16.53 | 15.95 | 16.45 | 15.88 | 17.18 | | | | | 15 | 15.54 | 8.44 | 8.03 | 16.22 | 16.53 | 15.95 | 16.45 | 15.88 | 17.18 | | | | | 14 | 8.39 | 7.08 | 7.03 | 8.57 | 8.70 | 7.51 | 8.62 | 7.44 | 9.08 | | | | | 13 | 8.39 | 7.08 | 7.03 | 8.57 | 8.70 | 7.51 | 8.62 | 7.44 | 9.08 | | | | | 12 | 8.39 | 7.08 | 7.03 | 8.57 | 8.70 | 7.51 | 8.62 | 7.44 | 9.08 | | | | | 9 | 8.39 | 7.08 | 7.03 | 8.57 | 8.70 | 7.51 | 8.62 | 7.44 | 9.08 | | | | | 4 | 8.39 | 7.08 | 7.03 | 8.57 | 8.70 | 7.51 | 8.62 | 7.44 | 9.08 | | | | 3.1b) The DUT (Top side, Back side) is moved away from the flat phantom: | | | | Cor | nducted power(| dBm) for Top sid | le | | | | |--------------|-------------|-------------|---------------|----------------|------------------|-------------|--------------|--------------|--------------| | Distance(mm) | Wi-Fi2.4G-b | Wi-Fi2.4G-g | Wi-Fi2.4G-n20 | Wi-Fi5G-a | Wi-Fi5G-n20 | Wi-Fi5G-n40 | Wi-Fi5G-ac20 | Wi-Fi5G-ac40 | Wi-Fi5G-ac80 | | 0 | 8.39 | 7.08 | 7.03 | 8.57 | 8.70 | 7.51 | 8.62 | 7.44 | 9.08 | | 5 | 8.39 | 7.08 | 7.03 | 8.57 | 8.70 | 7.51 | 8.62 | 7.44 | 9.08 | | 10 | 8.39 | 7.08 | 7.03 | 8.57 | 8.70 | 7.51 | 8.62 | 7.44 | 9.08 | | 13 | 8.39 | 7.08 | 7.03 | 8.57 | 8.70 | 7.51 | 8.62 | 7.44 | 9.08 | | 14 | 8.39 | 7.08 | 7.03 | 8.57 | 8.70 | 7.51 | 8.62 | 7.44 | 9.08 | | 15 | 8.39 | 7.08 | 7.03 | 8.57 | 8.70 | 7.51 | 8.62 | 7.44 | 9.08 | | 16 | 15.54 | 8.44 | 8.03 | 16.22 | 16.53 | 15.95 | 16.45 | 15.88 | 17.18 | | 17 | 15.54 | 8.44 | 8.03 | 16.22 | 16.53 | 15.95 | 16.45 | 15.88 | 17.18 | | 18 | 15.54 | 8.44 | 8.03 | 16.22 | 16.53 | 15.95 | 16.45 | 15.88 | 17.18 | | 21 | 15.54 | 8.44 | 8.03 | 16.22 | 16.53 | 15.95 | 16.45 | 15.88 | 17.18 | | 26 | 15.54 | 8.44 | 8.03 | 16.22 | 16.53 | 15.95 | 16.45 | 15.88 | 17.18 | 7.03 7.03 8.62 7 44 8.70 7 44 8.57 8.70 7.44 7.03 16.22 16.22 16.53 16.53 15.95 15.95 16.45 8 44 8.03 16.45 8.44 16.22 16.53 15.95 16.45 17.18 20 15.54 8.44 8.03 16.22 16.53 15.95 15.95 16.45 17.18 16.53 3.2) Procedures for determining antenna and proximity sensor coverage (Per KDB616217 §6.3) There is no spatial offset between the Wi-Fi antenna and the proximity sensor element, so procedures for determining the proximity sensor coverage does not need to be assessed. 3.3) Procedures for determining device tilt angle influences to proximity sensor triggering (Per KDB616217 §6.4) The DUT was positioned directly below the flat phantom at the minimum measured trigger distance with Top side parallel to the base of the flat phantom for each band. The DUT was rotated about Top side for angles up to +/- 45°. If the output power increased during the rotation the DUT was moved 1mm toward the phantom and the rotation repeated. This procedure was repeated until the power remained reduced for all angles up to +/- 45°. The proximity sensor triggering tilt angle measurement method as below: Table: Summary of Tablet Tilt Angle Influence to Proximity Sensor Triggering (Top side) | Wi-Fi | | Power Reduction Status for Top side (Distance=15mm) | | | | | | | | | | |---------------|------|---|------|------|-----|----|----|-----|-----|-----|-----| | Antenna | -45° | -35° | -25° | -15° | -5° | 0° | 5° | 15° | 25° | 35° | 45° | | Wi-Fi2.4G-b | on | Wi-Fi2.4G-g | on | Wi-Fi2.4G-n20 | on | Wi-Fi2.4G-n40 | on | Wi-Fi5G-a | on | Wi-Fi5G-n20 | on | Wi-Fi5G-n40 | on | Wi-Fi5G-ac20 | on | Wi-Fi5G-ac40 | on | Wi-Fi5G-ac80 | on # 4) Summary SAR test Plan for Proximity sensor power reduction The proximity sensor is used to indicate when the device is held close to a user's body exposure condition. SAR tests with proximity sensor power reduction are required for Top side, Back side of Wi-Fi Antenna. For the other side of the device, SAR is still tested at the maximum power level with sensor off. Moreover, since the capacitive proximity sensor triggering distance is n mm, a conservative distance of (n-1) mm was required for additional SAR test at maximum power level with sensor off. 6 SAR Measurements System Configuration # 6.1 SAR Measurement Set-up The DASY system for performing compliance tests consists of the following items: - A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - An isotropic Field probe optimized and calibrated for the targeted measurement. - A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. - > The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - A computer running WinXP or Win7 and the DASY software. - Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc. - ➤ The phantom, the device holder and other accessories according to the targeted measurement. FCC SAR Test Report No: R1806H0070-S1V1 # 6.2 DASY5 E-field Probe System The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. #### **EX3DV4 Probe Specification** Construction Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE) Calibration ISO/IEC 17025 calibration service available Frequency 10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz) Directivity ± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis) Dynamic 10 μ W/g to > 100 mW/g Linearity: Range \pm 0.2dB
(noise: typically < 1 μ W/g) Dimensions Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm Application High precision dosimetric measurements in any exposure Scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%. #### **E-field Probe Calibration** Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees. E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based FCC SAR Test Report No: R1806H0070-S1V1 temperature probe is used in conjunction with the E-field probe. #### SAR=CAT/At Where: Δt = Exposure time (30 seconds), C = Heat capacity of tissue (brain or muscle), ΔT = Temperature increase due to RF exposure. Or # SAR=IEI²σ/ρ Where: σ = Simulated tissue conductivity, ρ = Tissue density (kg/m³). #### 6.3 SAR Measurement Procedure #### **Power Reference Measurement** The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties. #### Area Scan The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly. Area scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. | | ≤3 GHz | > 3 GHz | |--|-------------------------|-----------------------------| | Maximum distance from closest | | | | measurement point (geometric center of | 5 ± 1 mm | ½·δ·ln(2) ± 0.5 mm | | probe sensors) to phantom surface | | | | Maximum probe angle from probe axis to | | | | phantom surface normal at the | 30° ± 1° | 20° ± 1° | | measurement location | | | | | ≤ 2 GHz: ≤ 15 mm | 3 – 4 GHz: ≤ 12 mm | | | 2 – 3 GHz: ≤ 12 mm | 4 – 6 GHz: ≤ 10 mm | | | When the x or y dimens | sion of the test device, in | | Maximum area scan spatial resolution: | the measurement plar | ne orientation, is smaller | | ΔxArea, ΔyArea | than the above, the m | neasurement resolution | | | must be ≤ the correspo | nding x or y dimension of | | | the test device with at | least one measurement | | | point on the | e test device. | #### Zoom Scan Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label. Zoom scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. | | | | ≤3GHz | > 3 GHz | |--------------------|-------------|---|-----------------|-------------------------| | Maximum zo | om scan | spatial resolution:△x _{zoom} | ≤2GHz: ≤8mm | 3 – 4GHz: ≤5mm* | | | \triangle | y zoom | 2 – 3GHz: ≤5mm* | 4 – 6GHz: ≤4mm* | | Massinassina | | | | 3 – 4GHz: ≤4mm | | Maximum | Uı | niform grid: $\triangle z_{zoom}(n)$ | ≤5mm | 4 – 5GHz: ≤3mm | | zoom scan | | | | 5 – 6GHz: ≤2mm | | spatial | | $\triangle z_{zoom}(1)$: between 1 st two | | 3 – 4GHz: ≤3mm | | resolution, | Cradad | points closest to phantom | ≤4mm | 4 – 5GHz: ≤2.5mm | | normal to | Graded | surface | | 5 – 6GHz: ≤2mm | | phantom
surface | grid | $\triangle z_{zoom}(n>1)$: between | <1.5. ^ - | z (n. 1) | | Suriace | | subsequent points | ≤1.5•△∠ | z _{zoom} (n-1) | | Minimum | | | | 3 – 4GHz: ≥28mm | | zoom scan | | X, y, z | ≥30mm | 4 – 5GHz: ≥25mm | | volume | | | | 5 – 6GHz: ≥22mm | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. ### **Volume Scan Procedures** The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR. #### **Power Drift Monitoring** All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested. ^{*} When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4W/kg, ≤8mm, ≤7mm and ≤5mm zoom scan resolution may be applied, respectively, for 2GHz to 3GHz, 3GHz to 4GHz and 4GHz to 6GHz. C SAR Test Report No: R1806H0070-S1V1 # 7 Main Test Equipment | Name of Equipment | Manufacturer | Type/Model | Serial
Number | Last Cal. | Cal. Due
Date | |-------------------------------------|-----------------|------------|------------------|------------|------------------| | Network analyzer | Agilent | E5071B | MY42404014 | 2018-05-20 | 2019-05-19 | | Dielectric Probe Kit | HP | 85070E | US44020115 | 2018-05-20 | 2019-05-19 | | Power meter | Agilent | E4417A | GB41291714 | 2018-05-21 | 2019-05-20 | | Power sensor | Agilent | N8481H | MY50350004 | 2018-05-21 | 2019-05-20 | | Power sensor | Agilent | E9327A | US40441622 | 2018-05-20 | 2019-05-19 | | Dual directional coupler | Agilent | 778D-012 | 50519 | 2018-05-21 | 2019-05-20 | | Dual directional coupler | Agilent | 777D | 50146 | 2018-05-20 | 2019-05-19 | | Amplifier | INDEXSAR | IXA-020 | 0401 | 2018-05-20 | 2019-05-19 | | Wideband radio communication tester | R&S | CMW 500 | 113645 | 2018-05-20 | 2019-05-19 | | BT Base Station
Simulator | R&S | СВТ | 100271 | 2018-05-14 | 2019-05-13 | | E-field Probe | SPEAG | EX3DV4 | 3677 | 2018-05-29 | 2019-05-28 | | DAE | SPEAG | DAE4 | 1317 | 2018-03-23 | 2019-03-22 | | Validation Kit 2450MHz | SPEAG | D2450V2 | 786 | 2017-08-29 | 2020-08-28 | | Validation Kit 5GHz | SPEAG | D5GHzV2 | 1151 | 2017-01-05 | 2020-01-04 | | Temperature Probe | Tianjin jinming | JM222 | AA1009129 | 2018-05-17 | 2019-05-16 | | Hygrothermograph | Anymetr | NT-311 | 20150731 | 2018-05-17 | 2019-05-16 | | Software for Test | Speag | DASY5 | 52.8.8.1222 | 1 | / | | Software for Tissue | Agilent | 85070 | E06.01.36 | 1 | 1 | 8 Tissue Dielectric Parameter Measurements & System Verification #### 8.1 Tissue Verification The temperature of the tissue-equivalent medium used during measurement must also be within 18°C to 25°C and within \pm 2°C of the temperature when the tissue parameters are characterized. The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3-4 days of use; or earlier if the dielectric parameters can become out of tolerance. #### **Target values** | Frequency
(MHz) | | Water
(%) | Salt
(%) | Sugar
(%) | Glycol
(%) | Preventol (%) | Cellulose
(%) | ε _r | σ(s/m) | |--------------------|--------------------|--------------|-----------------------------------|--------------|---------------|---------------|------------------|----------------|--------| | Body | 2450 | 73.2 | 0.1 | 0 | 26.7 | 0 | 0 | 52.7 | 1.95 | | - | Frequency
(MHz) | | Diethylenglycol
monohexylether | | | Triton X-100 | | ε _r | σ(s/m) | | | 5250 | 72.52 | | 13.74 |
| 13.74 | | 48.9 | 5.36 | | Body | 5600 | 72.52 | 13.74 | | 13.74 | | 48.5 | 5.77 | | | | 5750 | 72.52 | | 13.74 | | 13.74 | | 48.3 | 5.94 | #### Measurements results | Frequency | | To d Date | Temp | | Dielectric
neters | • | Dielectric
neters | | nit
n ±5%) | |-----------|------|-----------|------|------|----------------------|----------------|----------------------|---------------------------|---------------| | (M | Hz) | Test Date | ℃ | ٤r | σ(s/m) | ε _r | σ(s/m) | Dev
ε _r (%) | Dev
σ(%) | | 2450 | Body | 6/29/2018 | 21.5 | 51.8 | 1.93 | 52.7 | 1.95 | -1.71 | -1.03 | | 5250 | Body | 6/30/2018 | 21.5 | 46.7 | 5.42 | 48.9 | 5.36 | -4.50 | 1.12 | | 5600 | Body | 6/29/2018 | 21.5 | 47.3 | 6.00 | 48.5 | 5.77 | -2.47 | 3.99 | | 5750 | Body | 6/30/2018 | 21.5 | 47.7 | 6.07 | 48.3 | 5.94 | -1.24 | 2.19 | Note: The depth of tissue-equivalent liquid in a phantom must be \geq 15.0 cm for SAR measurements \leq 3 GHz and \geq 10.0 cm for measurements > 3 GHz. # 8.2 System Performance Check The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulates were measured using the dielectric probe kit and the network analyzer. A system check measurement for every day was made following the determination of the dielectric parameters of the Tissue simulates, using the dipole validation kit. The dipole antenna was placed under the flat section of the twin SAM phantom. System check is performed regularly on all frequency bands where tests are performed with the DASY system. **Picture 1 System Performance Check setup** **Picture 2 Setup Photo** C SAR Test Report No: R1806H0070-S1V1 # **Justification for Extended SAR Dipole Calibrations** Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (< - 20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB 865664 D01: | Dipole | | Date of Measurement | Return Loss(dB) | Δ% | Impedance (Ω) | ΔΩ | |-----------------------|--------|---------------------|-----------------|-------|---------------|-------| | Dipole
D5GHzV2 | Body | 1/5/2017 | -24.7 | 1 | 50.4 | 1 | | SN: 1151
(5250MHz) | Liquid | 1/4/2018 | -24.4 | 1.2% | 49.9 | -0.5Ω | | Dipole
D5GHzV2 | Body | 1/5/2017 | -23.3 | 1 | 57.2 | 1 | | SN: 1151
(5600MHz) | Liquid | 1/4/2018 | -23.4 | -0.4% | 56.8 | -0.4Ω | | Dipole
D5GHzV2 | Body | 1/5/2017 | -24.9 | 1 | 56.0 | 1 | | SN: 1151
(5750MHz) | Liquid | 1/4/2018 | -25.2 | -1.2% | 56.4 | 0.4Ω | # **System Check results** | _ | uency
Hz) | Test Date | Temp
℃ | 250mW/
100mW
Measured
SAR _{1g}
(W/kg) | 1W
Normalized
SAR _{1g}
(W/kg) | 1W
Target
SAR _{1g}
(W/kg) | Δ %
(Limit
±10%) | Plot No. | |------|--------------|-----------|-----------|--|---|---|------------------------|----------| | 2450 | Body | 6/29/2018 | 21.5 | 12.50 | 50.00 | 50.80 | -1.57 | 1 | | 5250 | Body | 6/30/2018 | 21.5 | 7.46 | 74.60 | 75.60 | -1.32 | 2 | | 5600 | Body | 6/29/2018 | 21.5 | 8.10 | 81.00 | 80.20 | 1.00 | 3 | | 5750 | Body | 6/30/2018 | 21.5 | 7.15 | 71.50 | 74.60 | -4.16 | 4 | Note: Target Values used derive from the calibration certificate Data Storage and Evaluation. CC SAR Test Report No: R1806H0070-S1V1 # 9 Normal and Maximum Output Power KDB 447498 D01 at the maximum rated output power and within the tune-up tolerance range specified for the product, but not more than 2 dB lower than the maximum tune-up tolerance limit. # 9.1 WLAN Mode | Wi-Fi 2.4G
(Sensor off)
Mode | Channel | Frequency
(MHz) | Data
Rates
(bps) | Average Conducted Power
Measured (dBm) | Tune-up
Limit (dBm) | TX Power
Setting level | |------------------------------------|---------------|--------------------|------------------------|---|------------------------|---------------------------| | | 1 | 2412 | 1M | 16.03 | 17.5 | 15.50 | | 802.11b | 6 | 2437 | 1M | 15.67 | 17.5 | 15.50 | | | 11 | 2462 | 1M | 15.54 | 17.5 | 15.50 | | Mode | Channel | Frequency
(MHz) | 1 | Average Conducted Power
Measured (dBm) | Tune-up
Limit (dBm) | TX Power
Setting level | | | 1 | 2412 | 6M | 8.32 | 11.0 | 9.00 | | 802.11g | 6 | 2437 | 6M | 8.44 | 11.0 | 9.00 | | | 11 | 2462 | 6M | 8.16 | 11.0 | 9.00 | | Mode | Channel | Frequency
(MHz) | / | Average Conducted Power Measured (dBm) | Tune-up
Limit (dBm) | TX Power Setting level | | 202.44 | 1 | 2412 | 6.5M | 8.03 | 11.0 | 9.00 | | 802.11n | 6 | 2437 | 6.5M | 8.15 | 11.0 | 9.00 | | (HT20) | 11 | 2462 | 6.5M | 7.94 | 11.0 | 9.00 | | Mode | Channel | Frequency
(MHz) | 1 | Average Conducted Power Measured (dBm) | Tune-up
Limit (dBm) | TX Power
Setting level | | 000 445 | 3 | 2422 | 13.5M | 5.11 | 8.0 | 6.00 | | 802.11n
(HT40) | 6 | 2437 | 13.5M | 5.89 | 8.0 | 6.00 | | (11140) | 9 | 2452 | 13.5M | 5.22 | 8.0 | 6.00 | | Note: Initial te | est configura | tion is 802.11b r | node, sin | ce the highest maximum outp | out power. | | | F | CC SAR Test R | eport | | Report No: R1806H0070-S1V1 | | | | | | |-----------------------------------|---------------|--------------------|------------------------|---|------------------------|---------------------------|--|--|--| | Wi-Fi 2.4G
(Sensor on)
Mode | Channel | Frequency
(MHz) | Data
Rates
(bps) | Average Conducted Power
Measured (dBm) | Tune-up
Limit (dBm) | TX Power
Setting level | | | | | | 1 | 2412 | 1M | 7.27 | 10.0 | 8.00 | | | | | 802.11b | 6 | 2437 | 1M | 7.06 | 10.0 | 8.00 | | | | | | 11 | 2462 | 1M | 8.39 | 10.0 | 8.00 | | | | | Mode | Channel | Frequency
(MHz) | 1 | Average Conducted Power
Measured (dBm) | Tune-up
Limit (dBm) | TX Power
Setting level | | | | | | 1 | 2412 | 6M | 7.31 | 10.0 | 8.00 | | | | | 802.11g | 6 | 2437 | 6M | 7.08 | 10.0 | 8.00 | | | | | | 11 | 2462 | 6M | 8.40 | 10.0 | 8.00 | | | | | Mode | Channel | Frequency
(MHz) | 1 | Average Conducted Power
Measured (dBm) | Tune-up
Limit (dBm) | TX Power
Setting level | | | | | 000.44 | 1 | 2412 | 6.5M | 7.03 | 10.0 | 8.00 | | | | | 802.11n
(HT20) | 6 | 2437 | 6.5M | 6.53 | 10.0 | 8.00 | | | | | (11120) | 11 | 2462 | 6.5M | 7.46 | 10.0 | 8.00 | | | | | Mode | Channel | Frequency
(MHz) | 1 | Average Conducted Power
Measured (dBm) | Tune-up
Limit (dBm) | TX Power
Setting level | | | | | 000 11n | 3 | 2422 | 13.5M | 4.80 | 8.0 | 6.00 | | | | | 802.11n
(HT40) | 6 | 2437 | 13.5M | 5.56 | 8.0 | 6.00 | | | | | (11170) | 9 | 2452 | 13.5M | 6.09 | 8.0 | 6.00 | | | | Note: Initial test configuration is 802.11b mode, since the highest maximum output power. | <u> </u> | FCC SAR Test Rep | | | | Report No. K 1000 | 6H0070-S1V1 | | |--------------------|------------------|---------|-----------|-------------------------------|-------------------|---------------|--| | Wi-Fi 5G | Band | Channel | Frequency | Average Conducted Power (dBm) | Tune-up | TX Power | | | (Sensor off) Mode | Banu | Channel | (MHz) | 6M | Limit (dBm) | Setting level | | | | | 36 | 5180 | 15.77 | 18.0 | 16.00 | | | | U-NII-1 | 40 | 5200 | 15.62 | 18.0 | 16.00 | | | | U-INII- I | 44 | 5220 | 15.29 | 18.0 | 16.00 | | | | | 48 | 5240 | 15.44 | 18.0 | 16.00 | | | | | 52 | 5260 | 15.15 | 18.0 | 16.00 | | | | 11 111 24 | 56 | 5280 | 15.15 | 18.0 | 16.00 | | | | U-NII-2A | 60 | 5300 | 15.35 | 18.0 | 16.00 | | | 802.11a | | 64 | 5320 | 15.31 | 18.0 | 16.00 | | | | | 100 | 5500 | 16.22 | 18.0 | 16.00 | | | | | 116 | 5580 | 15.45 | 18.0 | 16.00 | | | | U-NII-2C | 132 | 5660 | 15.66 | 18.0 | 16.00 | | | | | 140 | 5700 | 15.49 | 18.0 | 16.00 | | | | | 149 | 5745 | 15.94 | 18.0 | 16.00 | | | | U-NII-3 | 157 | 5785 | 15.77 | 18.0 | 16.00 | | | | | 165 | 5825 | 15.33 | 18.0 | 16.00 | | | Mada | Band | Channal | Frequency | MCS0 | Tune-up | TX Power | | | Mode | Dallu | Channel | (MHz) | MCSU | Limit (dBm) | Setting level | | | | | 36 | 5180 | 15.99 | 18.0 | 16.00 | | | | U-NII-1 | 40 | 5200 | 15.88 | 18.0 | 16.00 | | | | O-IVII-1 | 44 | 5220 | 15.93 | 18.0 | 16.00 | | | | | 48 | 5240 | 15.67 | 18.0 | 16.00 | | | | | 52 | 5260 | 15.48 | 18.0 | 16.00 | | | | U-NII-2A | 56 | 5280 | 15.43 | 18.0 | 16.00 | | | 000 44= | U-INII-ZA | 60 | 5300 | 15.67 | 18.0 | 16.00 | | | 802.11n
(HT20) | | 64 | 5320 | 15.64 | 18.0 | 16.00 | | | (11120) | | 100 | 5500 | 16.53 | 18.0 | 16.00 | | | | U-NII-2C | 116 | 5580 | 15.77 | 18.0 | 16.00 | | | | U-MII-2C | 132 | 5660 | 15.89 | 18.0 | 16.00 | | | | | 140 | 5700 | 15.81 | 18.0 | 16.00 | | | | | 149 | 5745 | 16.28 | 18.0 | 16.00 | | | | U-NII-3 | 157 | 5785 | 16.03 | 18.0 | 16.00 | | | | | 165 | 5825 | 15.65 | 18.0 | 16.00 | | | Mode | Band | Channel | Frequency | MCS0 | Tune-up | TX Power | | | | | | (MHz) | | Limit (dBm) | Setting level | | | 802.11n | U-NII-1 | 38 | 5190 | 15.42 | 18.0 | 16.00 | | | (HT40) | | 46 | 5230 | 15.26 | 18.0 | 16.00 | | | ` ′ | U-NII-2A | 54 | 5270 | 15.03 | 18.0 | 16.00 | | | | | 62 | 5310 | 15.18 | 18.0 | 16.00 | |----------|----------|---------|-----------------|-------|------------------------|---------------------------| | | | | | 10.10 | 10.0 | 10.00 | | | | 102 | 5510 | 15.95 | 18.0 | 16.00 | | l . | | 110 | 5550 | 15.89 | 18.0 | 16.00 | | | J-NII-2C | 118 | 5590 | 15.38 | 18.0 | 16.00 | | | | 134 | 5670 | 15.43 | 18.0 | 16.00 | | | | 151 | 5755 | 15.64 | 18.0 | 16.00 | | ' | U-NII-3 | 159 | 5795 | 15.48 | 18.0 | 16.00 | | Mode | Band | Channel | Frequency (MHz) | 6M | Tune-up
Limit (dBm) | TX Power
Setting level | | | | 36 | 5180 | 15.94 | 18.0 | 16.00 | | | | 40 | 5200 | 15.88 | 18.0 | 16.00 | | | U-NII-1 | 44 | 5220 | 15.78 | 18.0 | 16.00 | | | | 48 | 5240 | 15.69 | 18.0 | 16.00 | | | | 52 | 5260 | 15.42 | 18.0 | 16.00 | | | | 56 | 5280 | 15.35 | 18.0 | 16.00 | | | J-NII-2A | 60 |
5300 | 15.74 | 18.0 | 16.00 | | 802.11ac | | 64 | 5320 | 15.66 | 18.0 | 16.00 | | (VHT20) | | 100 | 5500 | 16.45 | 18.0 | 16.00 | | | | 116 | 5580 | 15.76 | 18.0 | 16.00 | | L | U-NII-2C | 132 | 5660 | 15.93 | 18.0 | 16.00 | | | | 140 | 5700 | 15.63 | 18.0 | 16.00 | | | | 149 | 5745 | 16.22 | 18.0 | 16.00 | | , | U-NII-3 | 157 | 5785 | 16.15 | 18.0 | 16.00 | | | | 165 | 5825 | 15.55 | 18.0 | 16.00 | | Mode | Band | Channel | Frequency (MHz) | MCS0 | Tune-up | TX Power
Setting level | | | | 38 | 5190 | 15.33 | 18.0 | 16.00 | | | U-NII-1 | 46 | 5230 | 15.21 | 18.0 | 16.00 | | | | 54 | 5270 | 14.92 | 18.0 | 16.00 | | | J-NII-2A | 62 | 5310 | 14.99 | 18.0 | 16.00 | | 802.11ac | | 102 | 5510 | 15.88 | 18.0 | 16.00 | | (VHT40) | | 110 | 5550 | 15.84 | 18.0 | 16.00 | | | J-NII-2C | 118 | 5590 | 15.36 | 18.0 | 16.00 | | | | 134 | 5670 | 15.33 | 18.0 | 16.00 | | | | 151 | 5755 | 15.69 | 18.0 | 16.00 | | | U-NII-3 | 159 | 5795 | 15.48 | 18.0 | 16.00 | | Mode | Band | Channel | Frequency (MHz) | MCS0 | Tune-up
Limit (dBm) | TX Power
Setting level | | 802.11ac | U-NII-1 | 42 | 5210 | 16.49 | 18.0 | 16.00 | | | | | | 16.13 | 18.0 | 16.00 | | 74 | | |----|---------------------| | | FCC SAR Test Report | | | | | | - | | |-----------|-----|------|-------|------|-------| | U-NII-2C | 106 | 5530 | 17.18 | 18.0 | 16.00 | | 0-1111-20 | 122 | 5610 | 16.27 | 18.0 | 16.00 | | U-NII-3 | 155 | 5775 | 16.63 | 18.0 | 16.00 | #### Sensor on | Wi-Fi 5G
(Sensor on)
Mode | Band | Channel | Frequency
(MHz) | Average Conducted Power (dBm) 6M | Tune-up
Limit (dBm) | TX Power
Setting level | |---------------------------------|-----------|---------|--------------------|----------------------------------|------------------------|---------------------------| | | | 36 | 5180 | 7.61 | 10.0 | 8.00 | | | | 40 | 5200 | 7.63 | 10.0 | 8.00 | | | U-NII-1 | 44 | 5220 | 6.85 | 10.0 | 8.00 | | | | 48 | 5240 | 7.17 | 10.0 | 8.00 | | | | 52 | 5260 | 7.32 | 10.0 | 8.00 | | | 11 111 04 | 56 | 5280 | 6.88 | 10.0 | 8.00 | | | U-NII-2A | 60 | 5300 | 7.41 | 10.0 | 8.00 | | 802.11a | | 64 | 5320 | 7.48 | 10.0 | 8.00 | | | | 100 | 5500 | 8.57 | 10.0 | 8.00 | | | | 116 | 5580 | 7.60 | 10.0 | 8.00 | | | U-NII-2C | 132 | 5660 | 7.85 | 10.0 | 8.00 | | | | 140 | 5700 | 6.77 | 10.0 | 8.00 | | | U-NII-3 | 149 | 5745 | 7.78 | 10.0 | 8.00 | | | | 157 | 5785 | 8.12 | 10.0 | 8.00 | | | | 165 | 5825 | 7.48 | 10.0 | 8.00 | | Mode | Band | Channel | Frequency
(MHz) | MCS0 | Tune-up
Limit (dBm) | TX Power
Setting level | | | | 36 | 5180 | 7.27 | 10.0 | 8.00 | | | | 40 | 5200 | 7.72 | 10.0 | 8.00 | | | U-NII-1 | 44 | 5220 | 7.21 | 10.0 | 8.00 | | | | 48 | 5240 | 7.72 | 10.0 | 8.00 | | | | 52 | 5260 | 7.32 | 10.0 | 8.00 | | | | 56 | 5280 | 7.44 | 10.0 | 8.00 | | 802.11n | U-NII-2A | 60 | 5300 | 7.23 | 10.0 | 8.00 | | (HT20) | | 64 | 5320 | 7.37 | 10.0 | 8.00 | | | | 100 | 5500 | 8.70 | 10.0 | 8.00 | | | | 116 | 5580 | 7.50 | 10.0 | 8.00 | | | U-NII-2C | 132 | 5660 | 7.77 | 10.0 | 8.00 | | | | 140 | 5700 | 8.02 | 10.0 | 8.00 | | | 11 11 2 | 149 | 5745 | 8.34 | 10.0 | 8.00 | | | U-NII-3 | 157 | 5785 | 8.38 | 10.0 | 8.00 | | | JAK Test Kep | 165 | 5825 | 8.04 | 10.0 | 8.00 | |---------------------|--------------|---------|--------------------|------|------------------------|---------------------------| | Mode | Band | Channel | Frequency | MCS0 | Tune-up
Limit (dBm) | TX Power | | | | 38 | (MHz)
5190 | 7.61 | 10.0 | Setting level
8.00 | | | U-NII-1 | 46 | 5230 | 6.54 | 10.0 | 8.00 | | | | 54 | 5270 | 6.87 | 10.0 | 8.00 | | | U-NII-2A | 62 | 5310 | 7.19 | 10.0 | 8.00 | | 000 115 | | 102 | 5510 | 7.19 | 10.0 | 8.00 | | 802.11n
(HT40) | | 110 | 5550 | 7.62 | 10.0 | 8.00 | | (11140) | U-NII-2C | | | | | 8.00 | | | | 118 | 5590 | 7.55 | 10.0 | | | | | 134 | 5670 | 7.16 | 10.0 | 8.00 | | | U-NII-3 | 151 | 5755 | 7.52 | 10.0 | 8.00 | | | | 159 | 5795 | 7.69 | 10.0 | 8.00 | | Mode | Band | Channel | Frequency
(MHz) | 6M | Tune-up
Limit (dBm) | TX Power Setting level | | | | 36 | 5180 | 8.29 | 10.0 | 8.00 | | | U-NII-1 | 40 | 5200 | 8.23 | 10.0 | 8.00 | | | U-INII- I | 44 | 5220 | 7.93 | 10.0 | 8.00 | | | | 48 | 5240 | 7.88 | 10.0 | 8.00 | | | U-NII-2A | 52 | 5260 | 6.70 | 10.0 | 8.00 | | | | 56 | 5280 | 7.19 | 10.0 | 8.00 | | 000.44 | | 60 | 5300 | 7.75 | 10.0 | 8.00 | | 802.11ac
(VHT20) | | 64 | 5320 | 7.22 | 10.0 | 8.00 | | (VH120) | | 100 | 5500 | 8.62 | 10.0 | 8.00 | | | | 116 | 5580 | 7.49 | 10.0 | 8.00 | | | U-NII-2C | 132 | 5660 | 7.81 | 10.0 | 8.00 | | | | 140 | 5700 | 7.84 | 10.0 | 8.00 | | | | 149 | 5745 | 8.41 | 10.0 | 8.00 | | | U-NII-3 | 157 | 5785 | 8.50 | 10.0 | 8.00 | | | | 165 | 5825 | 7.90 | 10.0 | 8.00 | | Mode | Band | Channel | Frequency
(MHz) | MCS0 | Tune-up
Limit (dBm) | TX Power
Setting level | | | | 38 | 5190 | 7.52 | 10.0 | 8.00 | | | U-NII-1 | 46 | 5230 | 6.49 | 10.0 | 8.00 | | | | 54 | 5270 | 6.76 | 10.0 | 8.00 | | 802.11ac | U-NII-2A | 62 | 5310 | 7.08 | 10.0 | 8.00 | | 802.11ac
(VHT40) | | 102 | 5510 | 7.44 | 10.0 | 8.00 | | | | 110 | 5550 | 8.01 | 10.0 | 8.00 | | | U-NII-2C | 118 | 5590 | 7.09 | 10.0 | 8.00 | | | | 134 | 5670 | 7.21 | 10.0 | 8.00 | FCC SAR Test Report | | U-NII-3 | 151 | 5755 | 7.90 | 10.0 | 8.00 | |---------------------|-----------|---------|-----------|--------|-------------|---------------| | | 0-1111-3 | 159 | 5795 | 7.63 | 10.0 | 8.00 | | Mode | Band | Channel | Frequency | MCS0 | Tune-up | TX Power | | Wode | Dallu | Charine | (MHz) | IVICOU | Limit (dBm) | Setting level | | | U-NII-1 | 42 | 5210 | 9.14 | 10.0 | 8.00 | | 000 44 | U-NII-2A | 58 | 5290 | 9.46 | 10.0 | 8.00 | | 802.11ac
(VHT80) | 11 111 20 | 106 | 5530 | 9.08 | 10.0 | 8.00 | | (٧ΠΙΟυ) | U-NII-2C | 122 | 5610 | 8.06 | 10.0 | 8.00 | | | U-NII-3 | 155 | 5775 | 8.61 | 10.0 | 8.00 | # 9.2 Bluetooth Mode | | C | onducted Power(dBr | n) | T.,,,,, | |----------|---------------|---------------------|----------------|------------------------| | ВТ | Ch | nannel/Frequency(Mb | Hz) | Tune-up Limit (dBm) | | | Ch 0/2402 MHz | Lillit (dBill) | | | | GFSK | 9.63 | 9.01 | 8.88 | 10.00 | | π/4DQPSK | 9.85 | 9.49 | 9.27 | 10.00 | | 8DPSK | 9.81 | 9.74 | 9.52 | 10.00 | | BLE | Ch 0/2402 MHz | Ch 19/2440 MHz | Ch 39/2480 MHz | Tune-up
Limit (dBm) | | GFSK | 9.59 | 8.85 | 8.86 | 10.00 | # 10 Measured and Reported (Scaled) SAR Results #### 10.1 Measured SAR Results Table 1: Wi-Fi (2.4G) | Test
Position | sensor | Distan
ce | Channe/
Frequency
(MHz) | Mode
802.11b | Duty
Cycle | Tune-up
limit
(dBm) | Conducted
Power
(dBm) | Drift
(dB) | Area
Scan
Max.SAR
(W/Kg) | Measure
d SAR _{1g}
(W/kg) | Scalin
g
Factor | Report
ed
SAR _{1g}
(W/kg) | Plot
No. | |-------------------------|--------|--------------|-------------------------------|-----------------|---------------|---------------------------|-----------------------------|---------------|-----------------------------------|--|-----------------------|---|-------------| | | | | | | | Body SA | .R | | | | | | | | Back Side | on | 0mm | 11/2462 | DSSS | 1:1 | 10.00 | 8.39 | 0.000 | 0.182 | 0.177 | 1.45 | 0.256 | / | | Top Edge | on | 0mm | 11/2462 | DSSS | 1:1 | 10.00 | 8.39 | 0.063 | 0.118 | 0.159 | 1.45 | 0.230 | / | | Back Side | off | 13mm | 1/2412 | DSSS | 1:1 | 17.50 | 16.03 | 0.120 | 0.073 | 0.078 | 1.40 | 0.109 | / | | Left Edge | off | 0mm | 1/2412 | DSSS | 1:1 | 17.50 | 16.03 | 0.123 | 0.112 | 0.139 | 1.40 | 0.195 | / | | Right Edge | N/A | Top Edge | off | 14mm | 1/2412 | DSSS | 1:1 | 17.50 | 16.03 | 0.040 | 0.109 | 0.128 | 1.40 | 0.180 | / | | Bottom Edge | N/A | Back Side
(Battery2) | on | 0mm | 11/2462 | DSSS | 1:1 | 10.00 | 8.39 | 0.000 | 0.173 | 0.224 | 1.45 | 0.325 | / | | Back Side
(Battery3) | on | 0mm | 11/2462 | DSSS | 1:1 | 10.00 | 8.39 | 0.000 | 0.213 | 0.248 | 1.45 | 0.359 | 5 | | Back Side
(Conf. 2) | on | 0mm | 11/2462 | DSSS | 1:1 | 10.00 | 8.39 | 0.000 | 0.190 | 0.219 | 1.45 | 0.317 | / | Note: 1. The value with blue color is the maximum SAR Value of each test band. ^{2.} Initial test configuration is 802.11b mode, since the highest maximum output power. ^{3.} Per KDB 248227, when the adjusted SAR is $\, \leqslant \, 1.2 \, \text{W/kg}$, SAR is not required for the other band/ configuration ## Table 2: Wi-Fi (5G, U-NII-2A) Per 248227, for band U-NII-1 and U-NII-2A, when the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is \leq 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, each band is tested independently for SAR. | Test
Position | sensor | Dista
nce | Channel/
Frequency
(MHz) | Mode
802.11
ac
VHT80 | Duty
Cycle | Tune-u
p
limit
(dBm) | d
Power
(dBm) | Drift
(dB) | Area
Scan
Max.SAR
(W/Kg) | Measure
d SAR _{1g}
(W/kg) | Scaling
Factor | Report
ed
SAR _{1g}
(W/kg) | Plot
No. | |-------------------------|----------|--------------|--------------------------------|-------------------------------|---------------|-------------------------------|---------------------|---------------|-----------------------------------|--|-------------------|---|-------------| | | Body SAR | | | | | | | | | | | | | | Back Side | on | 0mm | 58/5290 | OFDM | 96.23% | 10.00 | 9.46 | 0.000 | 0.053 | 0.080 | 1.18 | 0.094 | / | | Top Edge | on | 0mm | 58/5290 | OFDM | 96.23% | 10.00 | 9.46 | 0.163 | 0.148 | 0.224 | 1.18 | 0.264 | / | | Back Side | off | 13mm | 58/5290 | OFDM | 96.23% | 18.00 | 16.13 | 0.000 | 0.068 | 0.055 | 1.60 | 0.088 | / | | Left Edge | off | 0mm | 58/5290 | OFDM | 96.23% | 18.00 | 16.13 | 0.186 | 0.177 | 0.343 | 1.60 | 0.548 | 6 | | Right Edge |
N/A | Top Edge | off | 14mm | 58/5290 | OFDM | 96.23% | 18.00 | 16.13 | -0.024 | 0.159 | 0.151 | 1.60 | 0.241 | / | | Bottom Edge | N/A | Left Edge
(Battery2) | off | 0mm | 58/5290 | OFDM | 96.23% | 18.00 | 16.13 | 0.034 | 0.167 | 0.331 | 1.60 | 0.529 | / | | Left Edge
(Battery3) | off | 0mm | 58/5290 | OFDM | 96.23% | 18.00 | 16.13 | 0.077 | 0.169 | 0.336 | 1.60 | 0.537 | / | | Left Edge
(Conf. 2) | off | 0mm | 58/5290 | OFDM | 96.23% | 18.00 | 16.13 | -0.020 | 0.161 | 0.319 | 1.60 | 0.510 | / | Note: 1. The value with blue color is the maximum SAR Value of each test band. ^{2.} Per KDB 248227 D01, when the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth 802.11ac VHT80 mode is used for Initial test configuration. ^{3.} Per KDB 248227 D01, when the adjusted SAR is \leq 1.2 W/kg, SAR is not required for the other band/ configuration. FCC SAR Test Report Report No: R1806H0070-S1V1 | Table | 2. | \ \/: | C: /E | C 11 | KIII | 201 | |-------|------------|--------------|-------|------|------|------| | Table | 3 : | VVI- | FI (5 | G. U | -NII | -26) | | Test
Position | sensor | Dista
nce | Channel/
Frequenc
y
(MHz) | Mode
802.11
ac
VHT80 | Duty
Cycle | Tune-u
p
limit
(dBm) | Conducted
Power
(dBm) | Drift
(dB) | Area
Scan
Max.SAR
(W/Kg) | Measure
d SAR _{1g}
(W/kg) | Scalin
g
Factor | Report
ed
SAR _{1g}
(W/kg) | Plot
No. | |------------------------|----------|--------------|------------------------------------|-------------------------------|---------------|-------------------------------|-----------------------------|---------------|-----------------------------------|--|-----------------------|---|-------------| | | Body SAR | | | | | | | | | | | | | | Back Side | on | 0mm | 106/5530 | OFDM | 96.23% | 10.00 | 9.08 | 0.000 | 0.044 | 0.085 | 1.28 | 0.109 | / | | Top Edge | on | 0mm | 106/5530 | OFDM | 96.23% | 10.00 | 9.08 | 0.039 | 0.078 | 0.162 | 1.28 | 0.208 | / | | Back Side | off | 13mm | 106/5530 | OFDM | 96.23% | 18.00 | 17.18 | 0.017 | 0.089 | 0.044 | 1.26 | 0.055 | / | | Left Edge | off | 0mm | 106/5530 | OFDM | 96.23% | 18.00 | 17.18 | 0.065 | 0.168 | 0.258 | 1.26 | 0.324 | / | | Right Edge | N/A | Top Edge | off | 14mm | 106/5530 | OFDM | 96.23% | 18.00 | 17.18 | 0.053 | 0.284 | 0.266 | 1.26 | 0.334 | 7 | | Bottom Edge | N/A | Top Edge
(Battery2) | off | 14mm | 106/5530 | OFDM | 96.23% | 18.00 | 17.18 | 0.025 | 0.264 | 0.230 | 1.26 | 0.289 | / | | Top Edge
(Battery3) | off | 14mm | 106/5530 | OFDM | 96.23% | 18.00 | 17.18 | 0.026 | 0.166 | 0.147 | 1.26 | 0.184 | / | | Top Edge
(Conf. 2) | off | 14mm | 106/5530 | OFDM | 96.23% | 18.00 | 17.18 | 0.182 | 0.177 | 0.146 | 1.26 | 0.183 | / | Note: 1. The value with blue color is the maximum SAR Value of each test band. ^{2.} Per KDB 248227 D01, when the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth 802.11ac VHT80 mode is used for Initial test configuration. ^{3.} Per KDB 248227 D01, when the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the other band/ configuration. FCC SAR Test Report No: R1806H0070-S1V1 Table 4: Wi-Fi (5G, U-NII-3) | Test
Position | sensor | Dista
nce | Channel/
Frequenc
y
(MHz) | Mode
802.11
ac
VHT80 | Duty
Cycle | Tune-
up
limit
(dBm) | Conducted
Power
(dBm) | Drift
(dB) | Area
Scan
Max.SAR
(W/Kg) | Measure
d SAR _{1g}
(W/kg) | Scaling
Factor | Report
ed
SAR _{1g}
(W/kg) | Plot
No. | |------------------------|--------|--------------|------------------------------------|-------------------------------|---------------|-------------------------------|-----------------------------|---------------|-----------------------------------|--|-------------------|---|-------------| | Body SAR | | | | | | | | | | | | | | | Back Side | on | 0mm | 155/5775 | OFDM | 96.23% | 10.00 | 8.61 | 0.089 | 0.202 | 0.210 | 1.43 | 0.301 | 1 | | Top Edge | on | 0mm | 155/5775 | OFDM | 96.23% | 10.00 | 8.61 | 0.104 | 0.138 | 0.143 | 1.43 | 0.205 | / | | Back Side | off | 13mm | 155/5775 | OFDM | 96.23% | 18.00 | 16.63 | 0.157 | 0.125 | 0.115 | 1.42 | 0.164 | 1 | | Left Edge | off | 0mm | 155/5775 | OFDM | 96.23% | 18.00 | 16.63 | 0.100 | 0.160 | 0.250 | 1.42 | 0.356 | 1 | | Right Edge | N/A | Top Edge | off | 14mm | 155/5775 | OFDM | 96.23% | 18.00 | 16.63 | 0.104 | 0.291 | 0.262 | 1.42 | 0.373 | 8 | | Bottom Edge | N/A | Top Edge
(Battery2) | off | 14mm | 155/5775 | OFDM | 96.23% | 18.00 | 16.63 | 0.021 | 0.242 | 0.169 | 1.42 | 0.241 | 1 | | Top Edge
(Battery3) | off | 14mm | 155/5775 | OFDM | 96.23% | 18.00 | 16.63 | 0.027 | 0.226 | 0.173 | 1.42 | 0.246 | / | | Top Edge
(Conf. 2) | off | 14mm | 155/5775 | OFDM | 96.23% | 18.00 | 16.63 | 0.108 | 0.201 | 0.148 | 1.42 | 0.211 | 1 | Note: 1. The value with blue color is the maximum SAR Value of each test band. ^{2.} Per KDB 248227 D01, when the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth 802.11ac VHT80 mode is used for Initial test configuration. ^{3.} Per KDB 248227 D01, when the adjusted SAR is \leq 1.2 W/kg, SAR is not required for the other band/ configuration. | Test
Position | Cover
Type | Channel/
Frequency
(MHz) | Mode | Duty
Cycle | Tune-up
limit
(dBm) | Conducted
Power
(dBm) | Drift
(dB) | Area
Scan
Max.SAR
(W/Kg) | Measure
d SAR _{1g}
(W/kg) | Scaling
Factor | Report
ed
SAR _{1g}
(W/kg) | Plot
No. | |------------------|---------------|--------------------------------|-------------|---------------|---------------------------|-----------------------------|---------------|-----------------------------------|--|-------------------|---|-------------| | | | | | Boo | ly SAR (Di | stance 0mm) |) | | | | | | | Back Side | Standard | 0/2402 | π/4DQPSK | 76.6% | 10.00 | 9.85 | 0.000 | 0.120 | 0.104 | 1.35 | 0.141 | / | | Left Edge | N/A | Right Edge | N/A | Top Edge | Standard | 0/2402 | π/4DQPSK | 76.6% | 10.00 | 9.85 | 0.156 | 0.047 | 0.056 | 1.35 | 0.075 | / | | Bottom Edge | N/A | Back Side | Battery2 | 0/2402 | π/4DQPSK | 76.6% | 10.00 | 9.85 | 0.000 | 0.082 | 0.116 | 1.35 | 0.157 | / | | Back Side | Battery3 | 0/2402 | π/4DQPSK | 76.6% | 10.00 | 9.85 | 0.000 | 0.151 | 0.131 | 1.35 | 0.177 | 9 | | Back Side | Conf. 2 | 0/2402 | π/4DQPSK | 76.6% | 10.00 | 9.85 | 0.000 | 0.102 | 0.125 | 1.35 | 0.169 | / | | Note: 1. The v | alue with b | lue color is the | e maximum S | SAR Valu | e of each t | est band. | | | | | | | 10.2 Simultaneous Transmission Analysis | Simultaneous Transmission Configurations | Body | |--|------| | Wi-Fi-2.4GHz(data) + Bluetooth(data) | No | | Wi-Fi-5GHz(data) + Bluetooth(data) | Yes | | Wi-Fi-2.4GHz(data) + Wi-Fi-5GHz(data) | No | #### **General Note:** - 1. The Scaled SAR summation is calculated based on the same configuration and test position. - 2. Per KDB 447498 D01, simultaneous transmission SAR is compliant if, - i) Scalar SAR summation < 1.6W/kg, simultaneously transmission SAR measurement is not necessary. - ii) SPLSR = (SAR1 + SAR2)^1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan. - iii) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary. #### **About BT and WIFI** | SAR _{1g} (W/kg) | DT | | MAY TOAD | | | |--------------------------|-------|----------|----------|---------|-------------------------| | Test Position | ВТ | U-NII-2A | U-NII-2C | U-NII-3 | MAX. ΣSAR _{1g} | | Back Side | 0.177 | 0.094 | 0.109 | 0.301 | 0.478 | | Left Edge | 0.400 | 0.548 | 0.324 | 0.356 | 0.948 | | Right Edge | 0.400 | 0.400 | 0.400 | 0.400 | 0.800 | | Top Edge | 0.075 | 0.264 | 0.334 | 0.373 | 0.448 | | Bottom Edge | 0.400 | 0.400 | 0.400 | 0.400 | 0.800 | Note: 1.The value with blue color is the maximum ΣSAR_{1q} Value. - 2. According to the KDB 447498 D01 section 4.3.2 b) 2), when an antenna qualifies for the standalone SAR test exclusion of 4.3.1 and also transmits simultaneously with other antennas, the standalone SAR value must be estimated to determine the simultaneous transmission SAR test exclusion criteria, and 0.4 W/kg for 1-g SAR, when the test separation distance is > 50 mm. - 2. MAX. ΣSAR_{1g} =Unlicensed SAR_{MAX} +Licensed SAR_{MAX} #### Conclusion: - 1) MAX. Σ SAR_{1g} = 0.948 W/kg <1.6 W/kg, so the Simultaneous transimition SAR with volum scan are not required for BT and WIFI 5G. - 2) According to the KDB 690783 D01 section 1) d) i), when the sum of 1-g SAR applies for simultaneous transmission SAR test exclusion, the highest sum of 1-g SAR according to the highest reported stand-alone SAR values is used, and the highest Reported SAR for simultaneous transmission exposure conditions is 0.55 W/kg. #### 11 Measurement Uncertainty Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528- 2013 is not required in SAR reports submitted for equipment approval. ### **ANNEX A: Test Layout** #### **Tissue Simulating Liquids** For the measurement of the field distribution inside the flat phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For Body SAR testing, the liquid height from
the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Picture 3. Picture 3: Liquid depth in the flat Phantom #### **ANNEX B: System Check Results** Plot 1 System Performance Check at 2450 MHz Body TSL DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786 Date: 6/29/2018 Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.93 mho/m; ϵ_r = 51.8; ρ = 1000 kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.53, 7.53, 7.53); Calibrated: 5/29/2018; Electronics: DAE4 SN1317; Calibrated: 3/23/2018 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) $\textbf{d=10mm, Pin=250mW/Area Scan (41x71x1):} \ \ \text{Measurement grid: } \ \ \text{dx=1.200 mm, dy=1.200 mm}$ Maximum value of SAR (interpolated) = 16 mW/g d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 81.2 V/m; Power Drift = 0.003 dB Peak SAR (extrapolated) = 25.4 W/kg SAR(1 g) = 12.5 mW/g; SAR(10 g) = 6.20 mW/g # Plot 2 System Performance Check at 5250 MHz Body TSL DUT: Dipole 5250 MHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1151 Date: 6/30/2018 Communication System: CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5250 MHz; $\sigma = 5.42 \text{ mho/m}$; $\varepsilon_r = 46.7$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(5.04, 5.04, 5.04); Calibrated: 5/29/2018; Electronics: DAE4 SN1317; Calibrated: 3/23/2018 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **d=10mm, Pin=250mW/Area Scan (61x101x1):** Measurement grid: dx=1.000mm, dy=1.000mm Maximum value of SAR (interpolated) = 7.69 mW/g **d=10mm, Pin=250mW/Zoom Scan (7x7x12)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 36.3 V/m; Power Drift = 0.0277 dB Peak SAR (extrapolated) = 47.7 W/kg SAR(1 g) = 7.46 mW/g; SAR(10 g) = 2.26 mW/g Maximum value of SAR (measured) = 7.94 mW/g # Plot 3 System Performance Check at 5600 MHz Body TSL DUT: Dipole 5600 MHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1151 Date: 6/29/2018 Communication System: CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5600 MHz; $\sigma = 6.00 \text{ mho/m}$; $\varepsilon_r = 47.3$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(4.27, 4.27, 4.27); Calibrated: 5/29/2018; Electronics: DAE4 SN1317; Calibrated: 3/23/2018 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **d=10mm, Pin=250mW/Area Scan (61x101x1):** Measurement grid: dx=1.000mm, dy=1.000mm Maximum value of SAR (interpolated) = 7.84 mW/g **d=10mm, Pin=250mW/Zoom Scan (7x7x12)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 38 V/m; Power Drift = -0.018 dB Peak SAR (extrapolated) = 22.6 W/kg SAR(1 g) = 8.10 mW/g; SAR(10 g) = 2.11 mW/gMaximum value of SAR (measured) = 8.585 mW/g # Plot 4 System Performance Check at 5750 MHz Body TSL DUT: Dipole 5750 MHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1151 Date: 6/30/2018 Communication System: CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5750 MHz; $\sigma = 6.07 \text{ mho/m}$; $\varepsilon_r = 47.7$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(4.43, 4.43, 4.43); Calibrated: 5/29/2018; Electronics: DAE4 SN1317; Calibrated: 3/23/2018 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **d=10mm, Pin=250mW/Area Scan (61x101x1):** Measurement grid: dx=1.000mm, dy=1.000mm Maximum value of SAR (interpolated) = 7.84 mW/g **d=10mm, Pin=250mW/Zoom Scan (7x7x12)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 38 V/m; Power Drift = -0.018 dB Peak SAR (extrapolated) = 22.6 W/kg **SAR(1 g) = 7.15 mW/g; SAR(10 g) = 1.99 mW/g**Maximum value of SAR (measured) = 8.58 mW/g #### **ANNEX C: Highest Graph Results** #### Plot 5 802.11b Back Side High (Battery 3, Distance 0mm) Date: 6/29/2018 Communication System: UID 0, WiFi (0); Frequency: 2462 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2462 MHz; $\sigma = 1.945$ S/m; $\epsilon_r = 51.797$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃ Phantom section: Flat Section **DASY5** Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.53, 7.53, 7.53); Calibrated: 5/29/2018; Electronics: DAE4 SN1317; Calibrated: 3/23/2018 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Back Side High/Area Scan (171x231x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.286 W/kg Back Side High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 0.662 W/kg SAR(1 g) = 0.248 W/kg; SAR(10 g) = 0.095 W/kg Maximum value of SAR (measured) = 0.264 W/kg #### Plot 6 802.11ac VHT80 U-NII-2A Left Edge CH58 (Distance 0mm) Date: 6/30/2018 Communication System: UID 0, WiFi (0); Frequency: 5290 MHz; Duty Cycle: 1:1.04 Medium parameters used: f = 5290 MHz; $\sigma = 5.479$ S/m; $\epsilon_r = 46.602$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(5.04, 5.04, 5.04); Calibrated: 5/29/2018; Electronics: DAE4 SN1317; Calibrated: 3/23/2018 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) #### Left Edge CH58/Area Scan (51x271x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.348 W/kg #### Left Edge CH58/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.017 V/m; Power Drift = 0.186 dB Peak SAR (extrapolated) = 0.925 W/kg #### SAR(1 g) = 0.343 W/kg; SAR(10 g) = 0.106 W/kg Maximum value of SAR (measured) = 0.492 W/kg #### Plot 7 802.11acVHT80 U-NII-2C Top Edge CH106 (Distance 14mm) Date: 6/29/2018 Communication System: UID 0, WiFi (0); Frequency: 5530 MHz;Duty Cycle: 1:1.04 Medium parameters used: f = 5530 MHz; $\sigma = 5.841$ S/m; $\epsilon_r = 47.669$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(4.27, 4.27, 4.27); Calibrated: 5/29/2018; Electronics: DAE4 SN1317; Calibrated: 3/23/2018 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Top Edge CH106/Area Scan (41x271x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.289 W/kg Top Edge CH106/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.049 V/m; Power Drift = 0.053 dB Peak SAR (extrapolated) = 0.707 W/kg SAR(1 g) = 0.266 W/kg; SAR(10 g) = 0.119 W/kg Maximum value of SAR (measured) = 0.288 W/kg #### Plot 8 802.11acVHT80 U-NII-3 Top Edge CH155 (Distance 14mm) Date: 6/30/2018 Communication System: UID 0, WiFi (0); Frequency: 5775 MHz; Duty Cycle: 1:1.04 Medium parameters used: f = 5775 MHz; $\sigma = 6.092$ S/m; $\varepsilon_r = 47.66$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(4.43, 4.43, 4.43); Calibrated: 5/29/2018; Electronics: DAE4 SN1317; Calibrated: 3/23/2018 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Top Edge CH155/Area Scan (51x271x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.281 W/kg Top Edge CH155/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.654 V/m; Power Drift = 0.104 dB Peak SAR (extrapolated) = 0.686 W/kg SAR(1 g) = 0.262 W/kg; SAR(10 g) = 0.121 W/kg Maximum value of SAR (measured) = 0.291 W/kg #### Plot 9 Bluetooth Back Side Low (Battery 3, Distance 0mm) Date: 6/29/2018 Communication System: UID 0, BT (0); Frequency: 2402 MHz; Duty Cycle: 1:1.3055 Medium parameters used: f = 2402 MHz; $\sigma = 1.871$ S/m; $\epsilon_r = 51.973$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.53, 7.53, 7.53); Calibrated: 5/29/2018; Electronics: DAE4 SN1317; Calibrated: 3/23/2018 Phantom: ELI 4.0; Type: QDOVA001BA; Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Back Side Low/Area Scan (171x231x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.235 W/kg Back Side Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 0.334 W/kg SAR(1 g) = 0.131 W/kg; SAR(10 g) = 0.051 W/kg Maximum value of SAR (measured) = 0.155 W/kg Client Report No: R1806H0070-S1V1 #### **ANNEX D: Probe Calibration Certificate** Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191,
China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com Http://www.chinattl.cn TA(shanghai) Certificate No: Z18-60093 #### CALIBRATION CERTIFICATE Object EX3DV4 - SN:3677 Calibration Procedure(s) FF-Z11-004-01 Calibration Procedures for Dosimetric E-field Probes Calibration date: May 29, 2018 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|-------------|--|-----------------------| | Power Meter NRP2 | 101919 | 27-Jun-17 (CTTL, No.J17X05857) | Jun-18 | | Power sensor NRP-Z91 | 101547 | 27-Jun-17 (CTTL, No.J17X05857) | Jun-18 | | Power sensor NRP-Z91 | 101548 | 27-Jun-17 (CTTL, No.J17X05857) | Jun-18 | | Reference10dBAttenuator | 18N50W-10dB | 09-Feb-18(CTTL, No.J18X01133) | Feb-20 | | Reference20dBAttenuator | 18N50W-20dB | 09-Feb-18(CTTL, No.J18X01132) | Feb-20 | | Reference Probe EX3DV4 | SN 3846 | 25-Jan-18(SPEAG,No.EX3-3846_Jan18) | Jan-19 | | DAE4 | SN 777 | 15-Dec-17(SPEAG, No.DAE4-777_Dec17) | Dec -18 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | SignalGeneratorMG3700A | 6201052605 | 27-Jun-17 (CTTL, No.J17X05858) | Jun-18 | | Network Analyzer E5071C | MY46110673 | 14-Jan-18 (CTTL, No.J18X00561) | Jan -19 | | - H | Name | Function | Signature | | Calibrated by: | Yu Zongying | SAR Test Engineer | EN AND | Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: May 31, 201 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z18-60093 Page 1 of 11 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn #### Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ=0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. - Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: Z18-60093 Page 2 of 11 Report No: R1806H0070-S1V1 # Probe EX3DV4 SN: 3677 Calibrated: May 29, 2018 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: Z18-60093 Page 3 of 11 Report No: R1806H0070-S1V1 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn #### DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |----------------------|----------|----------|----------|-----------| | Norm(µV/(V/m)²)A | 0.41 | 0.46 | 0.41 | ±10.0% | | DCP(mV) ⁸ | 99.9 | 102.7 | 102.1 | | #### **Modulation Calibration Parameters** | UID | Communication
System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Unc ^E
(k=2) | |------|------------------------------|---|---------|-----------|-----|---------|----------|---------------------------| | 0 CW | cw | Х | 0.0 | 0.0 | 1.0 | 0.00 | 152.4 | ±2.4% | | | Y | Υ | 0.0 | 0.0 | 1.0 | | 161.7 | | | | | Z | 0.0 | 0.0 | 1.0 | | 152.2 | 7 | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. ^B Numerical linearization parameter: uncertainty not required. Certificate No: Z18-60093 A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 5 and Page 6). ^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn #### DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677 #### Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 9.40 | 9.40 | 9.40 | 0.40 | 0.80 | ±12.1% | | 835 | 41.5 | 0.90 | 9.10 | 9.10 | 9.10 | 0.15 | 1.41 | ±12.1% | | 1750 | 40.1 | 1.37 | 8.19 | 8.19 | 8.19 | 0.21 | 1.15 | ±12.1% | | 1900 | 40.0 | 1.40 | 7.96 | 7.96 | 7.96 | 0.25 | 1.01 | ±12.1% | | 2300 | 39.5 | 1.67 | 7.91 | 7.91 | 7.91 | 0.40 | 0.78 | ±12.1% | | 2450 | 39.2 | 1.80 | 7.57 | 7.57 | 7.57 | 0.53 | 0.76 | ±12.1% | | 2600 | 39.0 | 1.96 | 7.28 | 7.28 | 7.28 | 0.64 | 0.70 | ±12.1% | | 5250 | 35.9 | 4.71 | 5.60 | 5.60 | 5.60 | 0.40 | 1.15 | ±13.3% | | 5600 | 35.5 | 5.07 | 4.87 | 4.87 | 4.87 | 0.45 | 1.05 | ±13.3% | | 5750 | 35.4 | 5.22 | 4.99 | 4.99 | 4.99 | 0.45 | 1.35 | ±13.3% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No: Z18-60093 Page 5 of 11 F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any
distance larger than half the probe tip diameter from the boundary. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn #### DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677 #### Calibration Parameter Determined in Body Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 9.79 | 9.79 | 9.79 | 0.40 | 0.80 | ±12.1% | | 835 | 55.2 | 0.97 | 9.32 | 9.32 | 9.32 | 0.15 | 1.51 | ±12.1% | | 1750 | 53.4 | 1.49 | 7.91 | 7.91 | 7.91 | 0.23 | 1.09 | ±12.1% | | 1900 | 53.3 | 1.52 | 7.70 | 7.70 | 7.70 | 0.20 | 1.18 | ±12.1% | | 2300 | 52.9 | 1.81 | 7.65 | 7.65 | 7.65 | 0.53 | 0.82 | ±12.1% | | 2450 | 52.7 | 1.95 | 7.53 | 7.53 | 7.53 | 0.37 | 1.10 | ±12.1% | | 2600 | 52.5 | 2.16 | 7.16 | 7.16 | 7.16 | 0.55 | 0.80 | ±12.1% | | 5250 | 48.9 | 5.36 | 5.04 | 5.04 | 5.04 | 0.50 | 1.55 | ±13.3% | | 5600 | 48.5 | 5.77 | 4.27 | 4.27 | 4.27 | 0.51 | 1.66 | ±13.3% | | 5750 | 48.3 | 5.94 | 4.43 | 4.43 | 4.43 | 0.50 | 1.81 | ±13.3% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No: Z18-60093 Page 6 of 11 F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Certificate No: Z18-60093 Page 7 of 11 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn ## Receiving Pattern (Φ), θ=0° #### f=600 MHz, TEM ## f=1800 MHz, R22 Certificate No: Z18-60093 Page 8 of 11 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn ## Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ±0.9% (k=2) Certificate No: Z18-60093 Page 9 of 11 Report No: R1806H0070-S1V1 Add: No.51 Xueyuan Road, Haidian District, Beijing. 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn #### **Conversion Factor Assessment** #### f=750 MHz, WGLS R9(H_convF) #### f=1750 MHz, WGLS R22(H_convF) ### **Deviation from Isotropy in Liquid** Certificate No: Z18-60093 Page 10 of 11 Report No: R1806H0070-S1V1 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn #### DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677 #### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 118.3 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 9mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | | Recommended Measurement Distance from Surface | 1.4mm | Certificate No: Z18-60093 ANNEX E: D2450V2 Dipole Calibration Certificate E-mail: cttl@chinattl.com http://www.chinattl.cn TA(Shanghai) **Certificate No:** Z17-97116 Report No: R1806H0070-S1V1 #### CALIBRATION CERTIFICATE Object D2450V2 - SN: 786 Calibration Procedure(s) Client FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: August 29, 2017 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRVD | 102083 | 22-Sep-16 (CTTL, No.J16X06809) | Sep-17 | | Power sensor NRV-Z5 | 100595 | 22-Sep-16 (CTTL, No.J16X06809) | Sep-17 | | Reference Probe EX3DV4 | SN 3617 | 23-Jan-17(SPEAG,No.EX3-3617_Jan17) | Jan-18 | | DAE4 | SN 1331 | 19-Jan-17(CTTL-SPEAG,No.Z17-97015) | Jan-18 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 13-Jan-17 (CTTL, No.J17X00286) | Jan-18 | | Network Analyzer E5071C | MY46110673 | 13-Jan-17 (CTTL, No.J17X00285) | Jan-18 | | | | | | Name Function Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: September 1, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z17-97116 Page 1 of 8 In Collaboration with S P E A G Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)". July 2016 - 6GHz)", July 2016 c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z17-97116 Page 2 of 8 In Collaboration with CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.0.1446 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------
--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.7 ± 6 % | 1.82 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 13.2 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 52.6 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.16 mW/g | | SAR for nominal Head TSL parameters | normalized to 1W | 24.6 mW /g ± 18.7 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.5 ± 6 % | 1.94 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 12.7 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 50.8 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.87 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 23.5 mW /g ± 18.7 % (k=2) | Certificate No: Z17-97116 Page 3 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.4Ω+ 4.29jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 25.5dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 51.0Ω+ 6.61jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 23.6dB | | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1,265 ns | |----------------------------------|----------| | Electrical Delay (one direction) | 1.265 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: Z17-97116 Page 4 of 8