28 LTE Band 41(HPUE) 20M QPSK 100RB 0Offset Left Side 5mm Ch40185 Communication System: UID 0, LTE-TDD (0); Frequency: 2549.5 MHz; Duty Cycle: 1:2.33 Medium: HSL_2600 Medium parameters used: f = 2549.5 MHz; $\sigma = 1.989$ S/m; $\epsilon_r = 38.447$; $\rho = 1000$ kg/m³ Date: 2019/11/8 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.8 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3935; ConvF(7.38, 7.38, 7.38); Calibrated: 2018/11/26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn690; Calibrated: 2019/1/23 - Phantom: SAM2; Type: SAM; Serial: TP-1754 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch40185/Area Scan (41x81x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 1.12 W/kg Ch40185/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 21.73 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 1.44 W/kg SAR(1 g) = 0.637 W/kg; SAR(10 g) = 0.270 W/kg Maximum value of SAR (measured) = 1.11 W/kg 0 dB = 1.12 W/kg = 0.49 dBW/kg #### 29 WLAN2.4GHz 802.11b 1Mbps Bottom Side 5mm Ch6 Communication System: UID 0, 802.11b (0); Frequency: 2437 MHz; Duty Cycle: 1:1.025 Medium: HSL_2450 Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.741$ S/m; $\varepsilon_r = 40.095$; $\rho = 1000$ kg/m³ Date: 2019/11/6 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.7 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3935; ConvF(7.69, 7.69, 7.69); Calibrated: 2018/11/26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn690; Calibrated: 2019/1/23 - Phantom: SAM2; Type: SAM; Serial: TP-1754 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch6/Area Scan (41x91x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.892 W/kg **Ch6/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 14.06 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.991 W/kg SAR(1 g) = 0.403 W/kg; SAR(10 g) = 0.163 W/kg Maximum value of SAR (measured) = 0.756 W/kg 0 dB = 0.892 W/kg = -0.50 dBW/kg #### 30_Bluetooth_1Mbps_Bottom Side_5mm_Ch0 Communication System: UID 0, Bluetooth (0); Frequency: 2402 MHz; Duty Cycle: 1:1.292 Medium: HSL_2450 Medium parameters used: f = 2402 MHz; $\sigma = 1.704$ S/m; $\epsilon_r = 40.239$; $\rho = 1000$ kg/m³ Date: 2019/11/6 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.7 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3935; ConvF(7.69, 7.69, 7.69); Calibrated: 2018/11/26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn690; Calibrated: 2019/1/23 - Phantom: SAM2; Type: SAM; Serial: TP-1754 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch0/Area Scan (41x91x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.181 W/kg Ch0/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.911 V/m; Power Drift = 0.17 dB Peak SAR (extrapolated) = 0.217 W/kg SAR(1 g) = 0.091 W/kg; SAR(10 g) = 0.036 W/kg Maximum value of SAR (measured) = 0.168 W/kg 0 dB = 0.181 W/kg = -7.42 dBW/kg #### 31 WLAN5.2GHz 802.11n-HT40 MCS0 Bottom Side 5mm Ch38 Communication System: UID 0, 802.11n (0); Frequency: 5190 MHz; Duty Cycle: 1:1.159 Medium: HSL_5000 Medium parameters used: f = 5190 MHz; σ = 4.521 S/m; ϵ_r = 36.525; ρ = 1000 kg/m³ Date: 2019/11/10 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.7 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(4.74, 4.74, 4.74); Calibrated: 2019/9/26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1279; Calibrated: 2018/10/22 - Phantom: SAM2; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch38/Area Scan (51x101x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.580 W/kg Ch38/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 10.16 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 0.799 W/kg SAR(1 g) = 0.268 W/kg; SAR(10 g) = 0.089 W/kg Maximum value of SAR (measured) = 0.549 W/kg 0 dB = 0.580 W/kg = -2.37 dBW/kg #### 34_WLAN5GHz 802.11n-HT40 MCS0 Bottom Side 5mm Ch159 Communication System: UID 0, 802.11n (0); Frequency: 5795 MHz; Duty Cycle: 1:1.159 Medium: HSL_5000 Medium parameters used: f = 5795 MHz; σ = 5.207 S/m; ϵ_r = 35.516; ρ = 1000 kg/m³ Date: 2019/11/13 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.7 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(4.44, 4.44, 4.44); Calibrated: 2019/9/26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1279; Calibrated: 2018/10/22 - Phantom: SAM1; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) Ch159/Area Scan (51x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.475 W/kg Ch159/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 7.702 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.726 W/kg SAR(1 g) = 0.199 W/kg; SAR(10 g) = 0.055 W/kg Maximum value of SAR (measured) = 0.495 W/kg 0 dB = 0.495 W/kg = -3.05 dBW/kg #### 35 WCDMA Band V RMC 12.2Kbps Back 5mm Ch4132 Communication System: UID 0, WCDMA (0); Frequency: 826.4 MHz; Duty Cycle: 1:1 Medium: HSL_850 Medium parameters used: f = 826.4 MHz; $\sigma = 0.92$ S/m; $\epsilon_r = 42.315$; $\rho = 1000$ kg/m³ Date: 2019/10/27 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C #### **DASY5** Configuration: - Probe: EX3DV4 SN3935; ConvF(10.48, 10.48, 10.48); Calibrated: 2018/11/26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn690; Calibrated: 2019/1/23 - Phantom: SAM2; Type: SAM; Serial: TP-1754 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch4132/Area Scan (71x71x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.76 W/kg Ch4132/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 32.77 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 2.13 W/kg SAR(1 g) = 1.17 W/kg; SAR(10 g) = 0.703 W/kg SAR(1 g) = 1.17 W/kg; SAR(10 g) = 0.703 W/kg Maximum value of SAR (measured) = 1.73 W/kg 0 dB = 1.76 W/kg = 2.46 dBW/kg #### 36 WCDMA Band IV_RMC 12.2Kbps Front 5mm Ch1513 Communication System: UID 0, WCDMA (0); Frequency: 1752.6 MHz; Duty Cycle: 1:1 Medium: HSL_1750 Medium parameters used: f = 1752.6 MHz; $\sigma = 1.385$ S/m; $\epsilon_r = 39.691$; $\rho = 1000$ kg/m³ Date: 2019/10/25 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3935; ConvF(8.91, 8.91, 8.91); Calibrated: 2018/11/26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn690; Calibrated: 2019/1/23 - Phantom: SAM2; Type: SAM; Serial: TP-1754 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch1513/Area Scan (71x71x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.62 W/kg Ch1513/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.19 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 1.96 W/kg SAR(1 g) = 1.04 W/kg; SAR(10 g) = 0.545 W/kg SAR(1 g) = 1.04 W/kg; SAR(10 g) = 0.545 W/kg Maximum value of SAR (measured) = 1.58 W/kg 0 dB = 1.62 W/kg = 2.10 dBW/kg #### 37 WCDMA Band II_RMC 12.2Kbps Front 5mm Ch9538 Communication System: UID 0, WCDMA (0); Frequency: 1907.6 MHz; Duty Cycle: 1:1 Medium: HSL_1900 Medium parameters used: f = 1907.6 MHz; $\sigma = 1.421$ S/m; $\epsilon_r = 39.413$; $\rho = 1000$ kg/m³ Date: 2019/11/3 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.9 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3935; ConvF(8.5, 8.5, 8.5); Calibrated: 2018/11/26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn690; Calibrated: 2019/1/23 - Phantom: SAM2; Type: SAM; Serial: TP-1754 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch9538/Area Scan (71x71x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.36 W/kg Ch9538/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.54 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 1.73 W/kg SAR(1 g) = 0.872 W/kg; SAR(10 g) = 0.443 W/kg Maximum value of SAR (measured) = 1.40 W/kg 0 dB = 1.36 W/kg = 1.34 dBW/kg #### 38_LTE Band 12 10M QPSK 1RB 0Offset Back 5mm Ch23095 Communication System: UID 0, LTE-FDD (0); Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: HSL_750 Medium parameters used: f = 707.5 MHz; $\sigma = 0.852$ S/m; $\epsilon_r = 42.282$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3 °C; Liquid Temperature: 22.8 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3935; ConvF(10.83, 10.83, 10.83); Calibrated: 2018/11/26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn690; Calibrated: 2019/1/23 - Phantom: SAM2; Type: SAM; Serial: TP-1754 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch23095/Area Scan (71x71x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.971 W/kg Ch23095/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 28.85 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 1.35 W/kg SAR(1 g) = 0.723 W/kg; SAR(10 g) = 0.441 W/kg Maximum value of SAR (measured) = 1.08 W/kg 0 dB = 0.971 W/kg = -0.13 dBW/kg #### 39 LTE Band 13 10M QPSK 25RB 0Offset Back 5mm Ch23230 Communication System: UID 0, LTE-FDD (0); Frequency: 782 MHz; Duty Cycle: 1:1 Medium: HSL_750 Medium parameters used: f = 782 MHz; $\sigma = 0.923$ S/m; $\epsilon_r = 41.296$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.3 °C; Liquid Temperature : 22.8 °C #### DASY5
Configuration: - Probe: EX3DV4 SN3935; ConvF(10.83, 10.83, 10.83); Calibrated: 2018/11/26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn690; Calibrated: 2019/1/23 - Phantom: SAM2; Type: SAM; Serial: TP-1754 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch23230/Area Scan (71x71x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.06 W/kg Ch23230/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 25.61 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 1.57 W/kg SAR(1 g) = 0.918 W/kg; SAR(10 g) = 0.512 W/kg Maximum value of SAR (measured) = 1.21 W/kg 0 dB = 1.06 W/kg = 0.25 dBW/kg #### 40 LTE Band 26 15M QPSK 36RB 0Offset Back 5mm Ch26865 Communication System: UID 0, LTE-FDD (0); Frequency: 831.5 MHz; Duty Cycle: 1:1 Medium: HSL_850 Medium parameters used: f = 831.5 MHz; $\sigma = 0.925$ S/m; $\epsilon_r = 42.258$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3935; ConvF(10.48, 10.48, 10.48); Calibrated: 2018/11/26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn690; Calibrated: 2019/1/23 - Phantom: SAM2; Type: SAM; Serial: TP-1754 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch26865/Area Scan (71x71x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.32 W/kg Ch26865/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 28.43 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.59 W/kg SAR(1 g) = 0.998 W/kg; SAR(10 g) = 0.541 W/kg Maximum value of SAR (measured) = 1.27 W/kg 0 dB = 1.32 W/kg = 1.21 dBW/kg #### 41 LTE Band 25 20M QPSK 1RB 0Offset Front 5mm Ch26590 Communication System: UID 0, LTE-FDD (0); Frequency: 1905 MHz; Duty Cycle: 1:1 Medium: HSL_1900 Medium parameters used: f = 1905 MHz; $\sigma = 1.419$ S/m; $\epsilon_r = 39.424$; $\rho = 1000$ kg/m³ Date: 2019/11/3 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.9 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3935; ConvF(8.5, 8.5, 8.5); Calibrated: 2018/11/26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn690; Calibrated: 2019/1/23 - Phantom: SAM2; Type: SAM; Serial: TP-1754 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch26590/Area Scan (71x71x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.38 W/kg Ch26590/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.26 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 1.62 W/kg SAR(1 g) = 0.827 W/kg; SAR(10 g) = 0.423 W/kg Maximum value of SAR (measured) = 1.33 W/kg 0 dB = 1.38 W/kg = 1.40 dBW/kg #### 42 LTE Band 66 20M QPSK 1RB 0Offset Front 5mm Ch132572 Communication System: UID 0, LTE-FDD (0); Frequency: 1770 MHz; Duty Cycle: 1:1 Medium: HSL_1750 Medium parameters used: f = 1770 MHz; $\sigma = 1.401$ S/m; $\epsilon_r = 39.629$; $\rho = 1000$ kg/m³ Date: 2019/10/25 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3935; ConvF(8.91, 8.91, 8.91); Calibrated: 2018/11/26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn690; Calibrated: 2019/1/23 - Phantom: SAM2; Type: SAM; Serial: TP-1754 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch132572/Area Scan (71x71x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.40 W/kg Ch132572/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.49 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 1.70 W/kg SAR(1 g) = 0.935 W/kg; SAR(10 g) = 0.495 W/kg Maximum value of SAR (measured) = 1.45 W/kg 0 dB = 1.40 W/kg = 1.46 dBW/kg #### 43 LTE Band 7 20M QPSK 50RB 0Offset Front 5mm Ch21100 Communication System: UID 0, LTE-FDD (0); Frequency: 2535 MHz; Duty Cycle: 1:1 Medium: HSL_2600 Medium parameters used: f = 2535 MHz; $\sigma = 1.969$ S/m; $\epsilon_r = 38.504$; $\rho = 1000$ kg/m³ Date: 2019/11/8 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.8 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3935; ConvF(7.38, 7.38, 7.38); Calibrated: 2018/11/26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn690; Calibrated: 2019/1/23 - Phantom: SAM2; Type: SAM; Serial: TP-1754 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch21100/Area Scan (81x81x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 1.12 W/kg Ch21100/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 15.24 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 1.68 W/kg SAR(1 g) = 0.731 W/kg; SAR(10 g) = 0.353 W/kg Maximum value of SAR (measured) = 1.30 W/kg 0 dB = 1.12 W/kg = 0.49 dBW/kg #### 44 LTE Band 41 20M QPSK 1RB 0Offset Front 5mm Ch39750 Communication System: UID 0, LTE-TDD (0); Frequency: 2506 MHz; Duty Cycle: 1:1.59 Medium: HSL_2600 Medium parameters used: f = 2506 MHz; $\sigma = 1.933$ S/m; $\epsilon_r = 38.627$; $\rho = 1000$ kg/m³ Date: 2019/11/8 Ambient Temperature : 23.3 °C; Liquid Temperature : 22.8 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3935; ConvF(7.38, 7.38, 7.38); Calibrated: 2018/11/26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn690; Calibrated: 2019/1/23 - Phantom: SAM2; Type: SAM; Serial: TP-1754 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch39750/Area Scan (91x81x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 1.15 W/kg Ch39750/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.65 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 1.87 W/kg SAR(1 g) = 0.782 W/kg; SAR(10 g) = 0.355 W/kg Maximum value of SAR (measured) = 1.43 W/kg 0 dB = 1.15 W/kg = 0.61 dBW/kg #### 45 LTE Band 41(HPUE) 20M QPSK 1RB 0Offset Front 5mm Ch40185 Communication System: UID 0, LTE-TDD (0); Frequency: 2549.5 MHz; Duty Cycle: 1:2.33 Medium: HSL_2600 Medium parameters used: f = 2549.5 MHz; $\sigma = 1.989$ S/m; $\epsilon_r = 38.447$; $\rho = 1000$ kg/m³ Date: 2019/11/8 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.8 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3935; ConvF(7.38, 7.38, 7.38); Calibrated: 2018/11/26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn690; Calibrated: 2019/1/23 - Phantom: SAM2; Type: SAM; Serial: TP-1754 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch40185/Area Scan (91x81x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.799 W/kg Ch40185/Zoom Scan (7x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.821 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 1.19 W/kg SAR(1 g) = 0.524 W/kg; SAR(10 g) = 0.240 W/kg Maximum value of SAR (measured) = 0.909 W/kg 0 dB = 0.799 W/kg = -0.97 dBW/kg ### 46_WLAN2.4GHz_802.11b 1Mbps_Front_5mm_Ch11 Communication System: UID 0, 802.11b (0); Frequency: 2462 MHz; Duty Cycle: 1:1.025 Medium: HSL_2450 Medium parameters used: f = 2462 MHz; $\sigma = 1.769$ S/m; $\epsilon_r = 40.01$; $\rho = 1000$ kg/m³ Date: 2019/11/6 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.7 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3935; ConvF(7.69, 7.69, 7.69); Calibrated: 2018/11/26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn690; Calibrated: 2019/1/23 - Phantom: SAM2; Type: SAM; Serial: TP-1754 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch11/Area Scan (81x81x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.309 W/kg Ch11/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.167 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 0.544 W/kg SAR(1 g) = 0.235 W/kg; SAR(10 g) = 0.098 W/kg Maximum value of SAR (measured) = 0.322 W/kg 0 dB = 0.309 W/kg = -5.10 dBW/kg #### 47_Bluetooth_1Mbps_Front_5mm_Ch0 Communication System: UID 0, Bluetooth (0); Frequency: 2402 MHz; Duty Cycle: 1:1.292 Medium: HSL_2450 Medium parameters used: f = 2402 MHz; $\sigma = 1.704$ S/m; $\epsilon_r = 40.239$; $\rho = 1000$ kg/m³ Date: 2019/11/6 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.7 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3935; ConvF(7.69, 7.69, 7.69); Calibrated: 2018/11/26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn690; Calibrated: 2019/1/23 - Phantom: SAM2; Type: SAM; Serial: TP-1754 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch0/Area Scan (91x91x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.110 W/kg Ch0/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.574 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 0.153 W/kg SAR(1 g) = 0.066 W/kg; SAR(10 g) = 0.027 W/kg Maximum value of SAR (measured) = 0.122 W/kg 0 dB = 0.110 W/kg = -9.59 dBW/kg #### 48 WLAN5.2GHz 802.11n-HT40 MCS0 Front 5mm Ch38 Communication System: UID 0, 802.11n (0); Frequency: 5190 MHz; Duty Cycle: 1:1.159 Medium: HSL_5000 Medium parameters used: f = 5190 MHz; $\sigma = 4.521$ S/m; $\epsilon_r = 36.525$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.2 °C; Liquid Temperature: 22.7 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(4.74, 4.74, 4.74); Calibrated: 2019/9/26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn690; Calibrated: 2019/1/23 - Phantom: SAM2; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) Ch38/Area Scan (101x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.524 W/kg Ch38/Zoom Scan
(8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 1.588 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.805 W/kg SAR(1 g) = 0.248 W/kg; SAR(10 g) = 0.073 W/kg Maximum value of SAR (measured) = 0.545 W/kg 0 dB = 0.524 W/kg = -2.81 dBW/kg #### 49 WLAN5.3GHz 802.11n-HT40 MCS0 Front 5mm Ch54 Communication System: UID 0, 802.11n (0); Frequency: 5270 MHz; Duty Cycle: 1:1.159 Medium: HSL_5000 Medium parameters used: f = 5270 MHz; $\sigma = 4.623$ S/m; $\epsilon_r = 36.391$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.2 °C; Liquid Temperature: 22.7 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(4.74, 4.74, 4.74); Calibrated: 2019/9/26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn690; Calibrated: 2019/1/23 - Phantom: SAM2; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) Ch54/Area Scan (101x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.536 W/kg Ch54/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 2.159 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.780 W/kg SAR(1 g) = 0.236 W/kg; SAR(10 g) = 0.071 W/kg Maximum value of SAR (measured) = 0.522 W/kg 0 dB = 0.536 W/kg = -2.71 dBW/kg #### 50 WLAN5.5GHz 802.11n-HT40 MCS0 Front 5mm Ch102 Communication System: UID 0, 802.11n (0); Frequency: 5510 MHz; Duty Cycle: 1:1.159 Medium: HSL_5000 Medium parameters used: f = 5510 MHz; $\sigma = 4.883$ S/m; $\epsilon_r = 35.979$; $\rho = 1000$ kg/m³ Date: 2019/11/9 Ambient Temperature: 23.4 °C; Liquid Temperature: 22.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(4.47, 4.47, 4.47); Calibrated: 2019/9/26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn690; Calibrated: 2019/1/23 - Phantom: SAM2; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) Ch102/Area Scan (101x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.731 W/kg Ch102/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 2.989 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 1.07 W/kg SAR(1 g) = 0.305 W/kg; SAR(10 g) = 0.095 W/kg Maximum value of SAR (measured) = 0.700 W/kg 0 dB = 0.731 W/kg = -1.36 dBW/kg #### 51 WLAN5.8GHz 802.11n-HT40 MCS0 Front 5mm Ch159 Communication System: UID 0, 802.11n (0); Frequency: 5795 MHz; Duty Cycle: 1:1.159 Medium: HSL_5000 Medium parameters used: f = 5795 MHz; σ = 5.207 S/m; ϵ_r = 35.516; ρ = 1000 kg/m³ Ambient Temperature : 23.2 °C; Liquid Temperature : 22.7 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(4.44, 4.44, 4.44); Calibrated: 2019/9/26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn690; Calibrated: 2019/1/23 - Phantom: SAM2; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) Ch159/Area Scan (101x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.212 W/kg Ch159/Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 1.624 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 0.321 W/kg SAR(1 g) = 0.065 W/kg; SAR(10 g) = 0.020 W/kg Maximum value of SAR (measured) = 0.215 W/kg 0 dB = 0.212 W/kg = -6.74 dBW/kg #### 52 LoRa Front 5mm Ch926 Communication System: UID 0, Lora (0); Frequency: 926 MHz; Duty Cycle: 1:7.353 Medium: HSL_900 Medium parameters used: f = 926 MHz; σ = 1.011 S/m; ϵ_r = 41.594; ρ = 1000 Date: 2020/2/26 kg/m^3 Ambient Temperature: 23.5 °C; Liquid Temperature: 22.8 °C #### DASY5 Configuration: - Probe: ES3DV3 SN3293; ConvF(6.23, 6.23, 6.23); Calibrated: 2019/11/25 - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1338; Calibrated: 2019/11/20 - Phantom: SAM2; Type: SAM; Serial: TP-1503 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.13 (7474) Ch926/Area Scan (71x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.337 W/kg Ch926/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.595 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.545 W/kg SAR(1 g) = 0.240 W/kg; SAR(10 g) = 0.109 W/kg Maximum value of SAR (measured) = 0.299 W/kg 0 dB = 0.299 W/kg = -5.24 dBW/kg ## Appendix C. DASY Calibration Certificate Report No.: FA950807 The DASY calibration certificates are shown as follows. Sporton International (Kunshan) Inc. Report Version: Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: 2AMBHRW2266 Page C1 of C1 Issued Date: Mar. 06, 2020 n Collaboration with CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn Client Sporton Certificate No: Z19-60081 ## CALIBRATION CERTIFICATE Object D750V3 - SN: 1087 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: March 27, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106277 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Power sensor NRP8S | 104291 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Reference Probe EX3DV4 | SN 3617 | 31-Jan-19(SPEAG,No.EX3-3617_Jan19) | Jan-20 | | DAE4 | SN 1331 | 06-Feb-19(SPEAG,No.DAE4-1331_Feb19) | Feb-20 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 23-Jan-19 (CTTL, No.J19X00336) | Jan-20 | | NetworkAnalyzer E5071C | MY46110673 | 24-Jan-19 (CTTL, No.J19X00547) | Jan-20 | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 多老 | | Reviewed by: | Lin Hao | SAR Test Engineer | 林路 | | Approved by: | Qi Dianyuan | SAR Project Leader | - and | Issued: March 29, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z19-60081 Page I of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z19-60081 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn #### Measurement Conditions DASY system configuration, as far as not given on page 1 | DASY Version | DASY52 | 52.10.2.1495 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | Head TSL parameters The
following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 43.0 ± 6 % | 0.90 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | (2004 | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.10 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.36 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.42 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.65 W/kg ± 18.7 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) *C | 56.9 ± 6 % | 0.94 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | Tanana . | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.09 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 8.58 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 1.41 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 5.75 W/kg ±18.7 % (k=2) | Certificate No: Z19-60081 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn ## Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.4Ω- 2.59jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 29.3dB | | ## Antenna Parameters with Body TSL | Impedance, transformed to feed point | 51.6Ω- 3.86jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 27.7dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 0.898 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## Additional EUT Data | Name of the second seco | | |--|-------| | Manufactured by | SPEAG | Certificate No: Z19-60081 Page 4 of 8 Add: No.51 Xueyuun Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.com ## DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 750 MHz; Type: D750V3; Scrial: D750V3 - SN: 1087 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; $\sigma = 0.903$ S/m; $\varepsilon_r = 43.01$; $\rho = 1000$ kg/m³ Phantom section: Right Section DASY5 Configuration: Probe; EX3DV4 - SN3617; ConvF(10.03, 10.03, 10.03) @ 750 MHz; Calibrated: 1/31/2019 Date: 03.26,2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 2/6/2019 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) # Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.05 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.00 W/kg SAR(1 g) = 2.1 W/kg; SAR(10 g) = 1.42 W/kg Maximum value of SAR (measured) = 2.72 W/kg 0 dB = 2.72 W/kg = 4.35 dBW/kg Certificate No: Z19-60081 Page 5 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China. Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.com ## Impedance Measurement Plot for Head TSL Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@ehinattl.com http://www.chinattl.cn ### DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1087 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; $\sigma = 0.935$ S/m; $e_r = 56.85$; $\rho = 1000$ kg/m³ Phantom section: Center Section DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(9.85, 9.85, 9.85) @ 750 MHz; Calibrated: 1/31/2019 Date: 03.26.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 2/6/2019 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) ## Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.71 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.08 W/kg SAR(1 g) = 2.09 W/kg; SAR(10 g) = 1.41 W/kg Maximum value of SAR (measured) = 2.75 W/kg 0 dB = 2.75 W/kg = 4.39 dBW/kg ## Impedance Measurement Plot for Body TSL # CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl/a/chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn Client Sporton Certificate No: Z19-60082 ## CALIBRATION CERTIFICATE Object D835V2 - SN: 4d151 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: March 27, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106277 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Power sensor NRP8S | 104291 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Reference Probe EX3DV4 | SN 3617 | 31-Jan-19(SPEAG,No.EX3-3617_Jan19) | Jan-20 | | DAE4 | SN 1331 | 06-Feb-19(SPEAG,No.DAE4-1331_Feb19) | Feb-20 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 23-Jan-19 (CTTL, No.J19X00336) | Jan-20 | | NetworkAnalyzer E5071C | MY46110673 | 24-Jan-19 (CTTL, No.J19X00547) | Jan-20 | | | Name | Function | Signature | |----------------|-------------
--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 超 | | Reviewed by: | Lin Hao | SAR Test Engineer | 献粉 | | Approved by: | Qi Dianyuan | SAR Project Leader | ->- | Issued: March 30, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z19-60082 Page 1 of 8 Add: No.51 Xueyuan Road, Flaidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z19-60082 Page 2 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl/d/chinattl.com http://www.chinattl.cn #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.2.1495 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.7 ± 6 % | 0.93 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | :=== | 1945 | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.36 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.30 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.56 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.16 W/kg ± 18.7 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 56.7 ± 6 % | 0.94 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | *** | 2644 | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.32 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 9.53 W /kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 1.52 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 6.20 W/kg ± 18.7 % (k=2) | Certificate No: Z19-60082 Page 3 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.8Ω- 3.28jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 29.5dB | | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 46.7Ω- 3.98jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 25.5dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.253 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: Z19-60082 #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d151 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.925$ S/m; $\epsilon_r = 42.68$; $\rho = 1000$ kg/m3 Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(9.75, 9.75, 9.75) @ 835 MHz; Calibrated: 1/31/2019 Date: 03.26,2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 2/6/2019 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) # Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.34 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 3.55 W/kg SAR(1 g) = 2.36 W/kg; SAR(10 g) = 1.56 W/kg Maximum value of SAR (measured) = 3.14 W/kg 0 dB = 3.14 W/kg = 4.97 dBW/kg Certificate No: Z19-60082 Page 5 of 8 # Impedance Measurement Plot for Head TSL #### DASY5 Validation Report for Body TSL Date: 03.26.2019 Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d151 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.944$ S/m; $\varepsilon_r = 56.66$; $\rho = 1000$ kg/m³ Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(9.61, 9.61, 9.61) @ 835 MHz; Calibrated: 1/31/2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 2/6/2019 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) # Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid; dx=5mm, dy=5mm, dz=5mm Reference Value = 56.03 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 3.53 W/kg SAR(1 g) = 2.32 W/kg; SAR(10 g) = 1.52 W/kg Maximum value of SAR (measured) = 3.12 W/kg 0 dB = 3.12 W/kg = 4.94 dBW/kg Certificate No: Z19-60082 Page 7 of 8 # Impedance Measurement Plot for Body TSL Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: ettl@chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn Client Sporton Certificate No: Z19-60083 # CALIBRATION CERTIFICATE Object D900V2 - SN:1d137 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: March 28, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed
laboratory facility: environment temperature(22±3) € and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | 77 20-Aug-18 (CTTL, No.J18X06862)
91 20-Aug-18 (CTTL, No.J18X06862) | Aug-19
Aug-19 | |--|--| | | Aug-19 | | | 100 | | 617 31-Jan-19(SPEAG,No.EX3-3617_Jan19) | Jan-20 | | 331 06-Feb-19(SPEAG,No.DAE4-1331_Feb19) | Feb-20 | | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | 9071430 23-Jan-19 (CTTL, No.J19X00336) | Jan-20 | | 3110673 24-Jan-19 (CTTL, No.J19X00547) | Jan-20 | | | Cal Date(Calibrated by, Certificate No.)
9071430 23-Jan-19 (CTTL, No.J19X00336) | Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: March 30, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z19-60083 Page 2 of 6 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52,10.2,1495 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 900 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.97 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.6 ± 6 % | 0.97 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | (2000) | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.67 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 10.8 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.76 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 7.09 W/kg ± 18.7 % (k=2) | Certificate No: Z19-60083 Page 3 of 6 # Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.4Ω- 1.77jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 34.5dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.278 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | SPEAG | |-------| | | #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 1d137 Communication System: UID 0, CW; Frequency: 900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 900 MHz; $\sigma = 0.965$ S/m; $\epsilon_r = 42.62$; $\rho = 1000$ kg/m³ Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(9.66, 9.66, 9.66) @ 900 MHz; Calibrated: 1/31/2019 Date: 03.27.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 2/6/2019 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) # Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.37 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.99 W/kg SAR(1 g) = 2.67 W/kg; SAR(10 g) = 1.76 W/kg Maximum value of SAR (measured) = 3.54 W/kg 0 dB = 3.54 W/kg = 5.49 dBW/kg Certificate No: Z19-60083 Page 5 of 6 #### Impedance Measurement Plot for Head TSL In Collaboration with Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl:achinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn Client Sporton Certificate No: Z19-60084 # CALIBRATION CERTIFICATE Object D1750V2 - SN: 1090 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: March 27, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106277 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Power sensor NRP8S | 104291 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Reference Probe EX3DV4 | SN 3617 | 31-Jan-19(SPEAG,No.EX3-3617_Jan19) | Jan-20 | | DAE4 | SN 1331 | 06-Feb-19(SPEAG,No.DAE4-1331_Feb19) | Feb-20 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 23-Jan-19 (CTTL, No.J19X00336) | Jan-20 | | NetworkAnalyzer E5071C | MY46110673 | 24-Jan-19 (CTTL, No.J19X00547) | Jan-20 | Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: March 29, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz
to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.2.1495 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) *C | 41.3 ± 6 % | 1.37 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | 1 41100 | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.04 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 36.4 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 4.79 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.2 W/kg ± 18.7 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.4 | 1.49 mha/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.0 ± 6 % | 1.45 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | Page 1 | | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.21 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 37.7 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 4.89 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 19.9 W/kg ± 18.7 % (k=2) | # Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 47.5Ω- 2.34 jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 29,2 dB | | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 43.9Ω- 2.19 jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 23.2 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.085 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: Z19-60084 Page 4 of 8 #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1090 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.37$ S/m; $\varepsilon_r = 41.27$; $\rho = 1000$ kg/m³ Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(8.38, 8.38, 8.38) @ 1750 MHz; Calibrated: 1/31/2019 Date: 03.26.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 2/6/2019 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) # System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.03 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 17.1 W/kg SAR(1 g) = 9.04 W/kg; SAR(10 g) = 4.79 W/kg Maximum value of SAR (measured) = 14.2 W/kg 0 dB = 14.2 W/kg = 11.52 dBW/kg Certificate No: Z19-60084 Page 5 of 8 # Impedance Measurement Plot for Head TSL #### DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1090 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.449$ S/m; $\varepsilon_r = 54.97$; $\rho = 1000$ kg/m³ Phantom section: Center Section DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(8.03, 8.03, 8.03) @ 1750 MHz; Calibrated: 1/31/2019 Date: 03.26.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 2/6/2019 - Phantom: MFP V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) #### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.13 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 16.8 W/kg SAR(1 g) = 9.21 W/kg; SAR(10 g) = 4.89 W/kg Maximum value of SAR (measured) = 14.2 W/kg 0 dB = 14.2 W/kg = 11.52 dBW/kg Certificate No: Z19-60084 Page 7 of 8 # Impedance Measurement Plot for Body TSL In Collaboration with # CALIBRATION LABORATORY CALIBRATION **CNAS L0570** Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn Client Sporton Certificate No: Z19-60085 # CALIBRATION CERTIFICATE Object D1900V2 - SN: 5d170 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: March 26, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) to and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106277 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Power sensor NRP8S | 104291 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Reference Probe EX3DV4 | SN 3617 | 31-Jan-19(SPEAG,No.EX3-3617_Jan19) | Jan-20 | | DAE4 | SN 1331 | 06-Feb-19(SPEAG,No.DAE4-1331_Feb19) | Feb-20 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 23-Jan-19 (CTTL, No.J19X00336) | Jan-20 | | NetworkAnalyzer E5071C | MY46110673 | 24-Jan-19 (CTTL, No.J19X00547) | Jan-20 | Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: March 29, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z19-60085 Page 1 of 8 lossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless
communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52,10,2,1495 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | #### Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) *C | 40.5 ± 6 % | 1.44 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | M++1 | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.90 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 39.0 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 5.12 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.3 W/kg ± 18.7 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53,3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.5 ± 6 % | 1.56 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | - | SAR result with Body TSL | SAR averaged over 1 cm3 (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.1 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 40.0 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.28 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.0 W/kg ± 18.7 % (k=2) | ## Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.7Ω+ 6.73jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 23.3dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 47.8Ω+ 6.72jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 22.8dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.066 ns | |-----------------------------------|----------| | Electrical Delay (offe difection) | T,UDD HS | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | | | _ | |-----------------|-------|---| | Manufactured by | SPEAG | | Certificate No: Z19-60085 Page 4 of 8 #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d170 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.441 \text{ S/m}$; $\varepsilon_r = 40.48$; $\rho = 1000 \text{ kg/m}3$ Phantom section: Center Section DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(8.14, 8.14, 8.14) @ 1900 MHz; Calibrated: 1/31/2019 Date: 03.26,2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 2/6/2019 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) # System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.54 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 18.9 W/kg SAR(1 g) = 9.9 W/kg; SAR(10 g) = 5.12 W/kg Maximum value of SAR (measured) = 15.6 W/kg 0 dB = 15.6 W/kg = 11.93 dBW/kg # Impedance Measurement Plot for Head TSL #### DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d170 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.56$ S/m; $\varepsilon_r = 54.52$; $\rho = 1000$ kg/m3 Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(7.78, 7.78, 7.78) @ 1900 MHz; Calibrated: 1/31/2019 Date: 03.26.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 2/6/2019 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) #### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.48 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 18.6 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.28 W/kg Maximum value of SAR (measured) = 15.7 W/kg 0 dB = 15.7 W/kg = 11.96 dBW/kg Certificate No: Z19-60085 Page 7 of 8 # Impedance Measurement Plot for Body TSL In Collaboration with # CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl/a/chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn Client Sporton Certificate No: Z19-60087 # CALIBRATION CERTIFICATE Object D2450V2 - SN: 908 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: March 25, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106277 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Power sensor NRP8S | 104291 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Reference Probe EX3DV4 | SN 3617 | 31-Jan-19(SPEAG,No.EX3-3617_Jan19) | Jan-20 | | DAE4 | SN 1331 | 06-Feb-19(SPEAG,No.DAE4-1331_Feb19) | Feb-20 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 23-Jan-19 (CTTL, No.J19X00336) | Jan-20 | | NetworkAnalyzer E5071C | MY46110673 | 24-Jan-19 (CTTL, No.J19X00547) | Jan-20 | Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: March 28, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice
for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z19-60087 Page 2 of 8 #### Measurement Conditions DASY system configuration, as far as not given on page 1 | DASY Version | DASY52 | 52.10.2.1495 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) "C | 39.6 ± 6 % | 1.84 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | 1200 | | #### SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.3 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.8 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.07 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.2 W/kg ± 18.7 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.8 ± 6 % | 2.00 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | 2000 | | #### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.8 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 50.8 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.91 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.6 W/kg ± 18.7 % (k=2) | Certificate No: Z19-60087 Page 3 of 8 # Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 57.3Ω+ 5.18 μΩ | | |--------------------------------------|----------------|--| | Return Loss | - 21.6dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 52.6Ω+ 5.81 JΩ | | |--------------------------------------|----------------|--| | Return Loss | - 24.1dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.020 ns | |----------------------------------|----------| | Ciscinesi Beisy (one direction) | 1.020 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: Z19-60087 Page 4 of 8 #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 908 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.841$ S/m; $\varepsilon_t = 39.63$; $\rho = 1000$ kg/m³ Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(7.62, 7.62, 7.62) @ 2450 MHz; Calibrated: 1/31/2019 Date: 03.25.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 2/6/2019 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.04 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 28.3 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.07 W/kg Maximum value of SAR (measured) = 22.4 W/kg 0 dB = 22.4 W/kg = 13.50 dBW/kg # Impedance Measurement Plot for Head TSL #### DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 908 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 2.003$ S/m; $\varepsilon_r = 53.78$; $\rho = 1000$ kg/m³ Phantom section: Center Section DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(7.79, 7.79, 7.79) @ 2450 MHz; Calibrated: 1/31/2019 Date: 03.25.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 2/6/2019 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.51 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 27.1 W/kg SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.91 W/kg Maximum value of SAR (measured) = 21.4 W/kg 0 dB = 21.4 W/kg = 13.30 dBW/kg Certificate No: Z19-60087 Page 7 of 8 # Impedance Measurement Plot for Body TSL n Collaboration with # S P E A G Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn Client Sporton Certificate No: Z19-60060 # **CALIBRATION CERTIFICATE** Object D2600V2 - SN: 1078 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: March 6, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106277 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Power sensor NRP8S | 104291 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Reference Probe EX3DV4 | SN 3617 | 31-Jan-19(SPEAG,No.EX3-3617_Jan19) | Jan-20 | | DAE4 | SN 1331 | 06-Feb-19(SPEAG,No.DAE4-1331_Feb19) | Feb-20 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 23-Jan-19 (CTTL, No.J19X00336) | Jan-20 | | Network Analyzer E5071C | MY46110673 | 24-Jan-19 (CTTL, No.J19X00547) | Jan-20 | | | | | | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 经 | | Reviewed by: | Lin Hao |
SAR Test Engineer | 林梅 | | Approved by: | Qi Dianyuan | SAR Project Leader | | Issued: March 8, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z19-60060 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.2.1495 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2600 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.9 ± 6 % | 1.99 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |--|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.5 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 57.6 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.41 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.5 W/kg ± 18.7 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.5 | 2.16 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.0 ± 6 % | 2.14 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | SAR result with Body TSL | SAR averaged over 1 cm^3 (1 g) of Body TSL | Condition | | |--|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.4 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 53.7 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 ${\it cm}^3$ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.93 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.7 W/kg ± 18.7 % (k=2) | Certificate No: Z19-60060 Page 3 of 8 ### Appendix(Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.6Ω- 6.35jΩ | |--------------------------------------|---------------| | Return Loss | - 23.9dB | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 46.0Ω- 5.66jΩ | |--------------------------------------|---------------| | Return Loss | - 22.8dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.016 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: Z19-60060 Page 4 of 8 #### **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1078 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 1.992 \text{ S/m}$; $\epsilon_r = 38.91$; $\rho = 1000 \text{ kg/m}3$ Phantom section: Center Section DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(7.19, 7.19, 7.19) @ 2600 MHz; Calibrated: 1/31/2019 Date: 03.05.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 2/6/2019 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) **Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.73 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 31.6 W/kg SAR(1 g) = 14.5 W/kg; SAR(10 g) = 6.41 W/kg Maximum value of SAR (measured) = 25.0 W/kg 0 dB = 25.0 W/kg = 13.98 dBW/kg ### Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1078 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 2.139 \text{ S/m}$; $\epsilon_r = 51.97$; $\rho = 1000 \text{ kg/m}3$ Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(7.49, 7.49, 7.49) @ 2600 MHz; Calibrated: 1/31/2019 Date: 03.05.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 2/6/2019 - Phantom: MFP V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) **Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.97 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 29.3 W/kg SAR(1 g) = 13.4 W/kg; SAR(10 g) = 5.93 W/kg Maximum value of SAR (measured) = 22.9 W/kg 0 dB = 22.9 W/kg = 13.60 dBW/kg Certificate No: Z19-60060 ### Impedance Measurement Plot for Body TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No: D5GHzV2-1113 Sep19 Accreditation No.: SCS 0108 ### CALIBRATION CERTIFICATE Object D5GHzV2 - SN:1113 Calibration procedure(s) QA CAL-22.v4 Calibration Procedure for SAR Validation Sources between 3-6 GHz Calibration date: September 24, 2019 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------
------------------------| | Power meter NRP | SN: 104778 | 03-Apr-19 (No. 217-02892/02893) | Apr-20 | | Power sensor NRP-Z91 | SN: 103244 | 03-Apr-19 (No. 217-02892) | Apr-20 | | Power sensor NRP-Z91 | SN: 103245 | 03-Apr-19 (No. 217-02893) | Apr-20 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-19 (No. 217-02894) | Apr-20 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-19 (No. 217-02895) | Apr-20 | | Reference Probe EX3DV4 | SN: 3503 | 25-Mar-19 (No. EX3-3503_Mar19) | Mar-20 | | DAE4 | SN: 601 | 30-Apr-19 (No. DAE4-601_Apr19) | Apr-20 | | Secondary Standards | ID # | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 | | | Name | Function | Signature | | Calibrated by: | Jeton Kastrati | Laboratory Technician | 2/12 | | Approved by: | Katja Pokovic | Technical Manager | mm | Issued: September 25, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di faratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Additional Documentation: e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.2 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz | | ### Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | to tollowing parameters and comments and appropriate | Temperature | Permittivity | Conductivity | |--|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.1 ± 6 % | 4.53 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | 32000 | Brown | ### SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.09 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.5 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.33 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.1 W/kg ± 19.5 % (k=2) | Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.6 ± 6 % | 4.88 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | 2003 | #### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 83.4 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2,40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.8 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1113_Sep19 # Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | he following parameters and calculations were appli | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.4 ± 6 % | 5.03 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | (4000) | ## SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.06 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.0 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.30 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.8 W/kg ± 19.5 % (k=2) | ### Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 51.7 Ω - 6.2 μΩ | |--------------------------------------|-----------------| | Return Loss | -24.0 dB | ### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 56.0 Ω - 2.7 μΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 24.1 dB | | ### Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 56.7 Ω - 1.0 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.9 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.195 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### Additional EUT Data | Manufactured by | SPEAG | ٦ | |-----------------|-------|---| ### DASY5 Validation Report for Head TSL Date: 24.09.2019 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole D5GHzV2;
Type: D5GHzV2; Serial: D5GHzV2 - SN:1113 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.53$ S/m; $\epsilon_r = 35.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.88$ S/m; $\epsilon_r = 34.6$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.03$ S/m; $\epsilon_r = 34.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.4, 5.4, 5.4) @ 5250 MHz, ConvF(4.95, 4.95, 4.95) @ 5600 MHz, ConvF(4.98, 4.98, 4.98) @ 5750 MHz; Calibrated: 25.03.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 30.04.2019 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470) ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 78.54 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 27.9 W/kg SAR(1 g) = 8.09 W/kg; SAR(10 g) = 2.33 W/kg Maximum value of SAR (measured) = 18.1 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 78.00 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 31.1 W/kg SAR(1 g) = 8.40 W/kg; SAR(10 g) = 2.40 W/kg Maximum value of SAR (measured) = 19.4 W/kg ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.13 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 31.8 W/kg SAR(1 g) = 8.06 W/kg; SAR(10 g) = 2.30 W/kg Maximum value of SAR (measured) = 19.0 W/kg 0 dB = 18.1 W/kg = 12.58 dBW/kg ### Impedance Measurement Plot for Head TSL #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Accreditation No.: SCS 0108 Certificate No: DAE4-1338 Nov19 ### CALIBRATION CERTIFICATE Object DAE4 - SD 000 D04 BM - SN: 1338 Calibration procedure(s) QA CAL-06.v29 Calibration procedure for the data acquisition electronics (DAE) Calibration date: November 20, 2019 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%, Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|--------------------|----------------------------|------------------------| | Keithley Multimeter Type 2001 | SN: 0610278 | 03-Sep-19 (No:25949) | Sep-20 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Auto DAE Calibration Unit | SE UWS 053 AA 1001 | 07-Jan-19 (in house check) | In house check: Jan-20 | | Calibrator Box V2.1 | SE UMS 006 AA 1002 | 07-Jan-19 (in house check) | In house check: Jan-20 | Name Function Signature Calibrated by: Enc Hainfeld Laboratory Technician Approved by: Sven Kühn Deputy Manager Issued: November 20, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. ### Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. ### Appendix (Additional assessments outside the scope of SCS0108) 1. DC Voltage Linearity | High Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 200032.47 | -3.15 | -0.00 | | Channel X + Input | 20005.24 | -0.41 | -0.00 | | Channel X - Input | -20006.33 | -0.08 | 0.00 | | Channel Y + Input | 200035,56 | -0.12 | -0.00 | | Channel Y + Input | 20004.04 | -1.44 | -0.01 | | Channel Y - Input | -20008.42 | -2.09 | 0.01 | | Channel Z + Input | 200033.57 | -2,10 | -0.00 | | Channel Z + Input | 20004.49 | -0.96 | -0.00 | | Channel Z - Input | -20008.50 | -2.10 | 0.01 | | | | | | | Low Range | Reading (µV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 2001,19 | 0.11 | 0.01 | | Channel X + Input | 201.01 | -0.01 | -0.00 | | Channel X - Input | -199.18 | -0.36 | 0.18 | | Channel Y + Input | 2001.08 | 0.17 | 0.01 | | Channel Y + Input | 199.87 | -0.94 | -0.47 | | Channel Y - Input | -200.25 | -1.26 | 0.64 | | Channel Z + Input | 2000.89 | -0.01 | -0.00 | | Channel Z + Input | 199.87 | -0.86 | -0.43 | | Channel Z - Input | -199.91 | -0.91 | 0.46 | Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | 7.80 | 5.74 | | | - 200 | -6.09 | -7.67 | | Channel Y | 200 | -21.26 | -21.58 | | | - 200 | 19,76 | 19.35 | | Channel Z | 200 | -2.47 | -2.52 | | | - 200 | 0.78 | 0.74 | ### 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (µV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | 5 | 3.28 | -2,96 | | Channel Y | 200 | 7.86 | 2 | 4.97 | | Channel Z | 200 | 8.87 | 6.08 | 5 | ### **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: 1LSB = LSB = $6.1\mu V$. full range = -100...+300 mV Low Range: 1LSB = 61nV . full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | X | Y | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 403.688 ± 0.02% (k=2) | 404.268 ± 0.02% (k=2) | 404.224 ± 0.02% (k=2) | | Low Range | 3.97425 ± 1.50% (k=2) | 3.97933 ± 1.50% (k=2) | 3.97493 ± 1.50% (k=2) | ### **Connector Angle** | Connector Angle to be used in DASY system | 239.5 ° ± 1 ° | |--|---------------| | Connector Angle to be used in DAG 1 system | 239.5 ± 1 | 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 16190 | 14025 | | Channel Y | 16291 | 16862 | | Channel Z | 16104 | 15099 | 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (µV) | |-----------|--------------|------------------|------------------|---------------------| | Channel X | -0.07 | -1.18 | 1.09 | 0.42 | | Channel Y | -0.64 | -1.62 | 0.80 | 0.39 | | Channel Z | -0.63 | -1.81 | 0.20 | 0.36 | #### 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing
(kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | 中国认可国际互认 图际互认 校准 CALIBRATION CNAS L0570 Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 Http://www.chinattl.cn Client : Sporton Certificate No: Z19-60028 ### CALIBRATION CERTIFICATE Object DAE4 - SN: 690 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: January 23, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------------------|---------|--|-----------------------| | Process Calibrator 753 | 1971018 | 20-Jun-18 (CTTL, No.J18X05034) | June-19 | | | | | | Name Function Calibrated by: Viv Zanguing SAR Test Engineer Yu Zongying SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: January 24, 2019 Signature This calibration certificate shall not be reproduced except in full without written approval of the laboratory.