

JQA APPLICATION NO.: 400-20465 Issue Date : January 23, 2003 Page 1 of 77

EMI TEST REPORT

Final Judgment	: Passed
Received date of EUT	Tokyo 105-8001, Japan : September 30, 2002
Address	:1-1 Shibaura 1-chome, Minato-ku,
Manufacturer	: Toshiba Corporation
	Tokyo 105-8001, Japan
Address	: 1-1 Shibaura 1/chome, Minato-ku,
Applicant	: Toshiba Corporation
FCC ID	: CJ6UDB1H05BT
Regulations Applied	: CFR 47 FCC Rules and Regulations Part 15 \nearrow
Type of Equipment	: Bluetooth TM Disk HOPBIT
Model No.	: UDB1H05JBS
JQA APPLICATION NO.	: 400-20465

Test results in this report are obtained in use of equipment that is traceable to National Institute of Advanced Industrial Science and Technology (AIST) of Japan and Communication Research Laboratory (CRL) of Japan.

The test results only respond to the tested sample. This report should not be reproduced except in full, without the written approval of JQA EMC Engineering Dept. Testing Div.

TABLE OF CONTENTS

1	Docu	mentation	Page
	1.1	Test Regulation	4
	1.2	General Information	4
	1.3	Test Condition	5 - 11
	1.4	EUT Modifications / Deviation from Standard	12
	1.5	Test results	13 - 14
	1.6	Summary	15
	1.7	Test Configuration / Operation of EUT	16
	1.8	EUT Arrangement (Drawing)	17
	1.9	Preliminary Test and Test setup (Drawings)	18 - 26
	1.10	EUT Arrangement (Photographs)	27 - 30

2 Test Data

2.1	Channel Separation	31
2.2	Minimum Hopping Channel	32 - 33
2.3	Occupied Bandwidth	34 - 38
2.4	Dwell Time	39 - 47
2.5	Peak Output Power (Conduction)	48
2.6	Peak Output Power (Radiation)	49
2.7	Peak Power Density (Conduction)	50 - 51
2.8	Peak Power Density (Radiation)	N/A
2.9	Spurious Emissions (Conduction)	52 - 57
2.10	Spurious Emissions (Radiation)	58 - 62
2.11	AC Power Line Conducted Emissions	63 - 66
2.12	RF Exposure Compliance	67
2.13	Spurious Emissions for Receiver (Radiation)	68 - 69
2.14	AC Power Line Conducted Emissions for Receiver	70 - 73

3 Appendix

Test instruments List <u>74 - 77</u>

1 DOCUMENTATION

1.1 TEST REGULATION

FCC Rules and Regulations Part 15 Subpart B and Subpart C Test procedure:

The tests were performed with reference to the FCC Public Notice DA 00-705, released March 30, 2000. The test set-up was made in accordance to the general provisions of ANSIC63.4-1992.

1.2 GENERAL INFORMATION

1.2.1 Test facility:

- Test Facility located at EMC Engineering Dept. Testing Div.:
 No.2 and 3 Anechoic Chambers (3 meters Site).
 Shielded Enclosure.
 Expiration date of FCC test facility filing: May 27, 2005
- 2) EMC Engineering Dept. Testing Div. is recognized under the National Voluntary Laboratory accreditation Program for satisfactory compliance established in title 15, Part 285 Code of Federal Regulations. NVLAP Lab Code: 200189-0 (Effective_through ; June 30, 2003)

1.2.2 Description of the Equipment Under Test (EUT) :

- 1) Type of Equipment
- 2) Product Type
- 3) Category
- 4) EUT Authorization
- 5) FCC ID
- 6) Trade Name
- 7) Model No.
- 8) Operating Frequency Range
- 9) Highest Frequency Used in the EUT
- 10) RF Output Power
- 11) Serial No.
- 12) Date of Manufacture
- 13) Power Rating
- 14) EUT Grounding

- : BluetoothTM Disk HOPBIT
- : Pre-Production
- : Spread Spectrum Transmitter
- : Certification
- : CJ6UDB1H05BT
- : Toshiba Corporation
- : UDB1H05JBS
- : 2402 MHz 2480 MHz
- : 2480 MHz
- : 1 mW(Rated)
- : 0902C123456
- : September 2002
- : DC 5.2V from the AC Adaptor
- : None

1.2.3 Definitions for symbols used in this test report :

- <u>x</u> indicates that the listed condition, standard or equipment is applicable for this report.
- ____ indicates that the listed condition, standard or equipment is not applicable for this report.

1.3 TEST CONDITION

Туре	Number of test instruments
	(Refer to Appendix)
Test Receiver	TR07
Spectrum Analyzer	N/A
Cable	CA11
Attenuator	AU18
Antenna	N/A
	$\langle \rangle$

1.3.2 The measurement of Minimum Hopping Channel

- <u>x</u> was performed.
- was not applicable.

Used test instruments:

1.3.3 The measurement of Occupied Bandwidth

- x was performed.
- ___ was not applicable.

Used test instruments:

Туре	Number of test instruments
	(Refer to Appendix)
Test Receiver	TR07
Spectrum Analyzer	N/A
Cable	CA11
Attenuator	AU18
Antenna	N/A

1.3.4 The measurement of Dwell Time

- <u>x</u> was performed.
- ____ was not applicable.

Used test instruments:

Туре	Number of test instruments
	(Refer to Appendix)
Test Receiver	TR07
Spectrum Analyzer	N/A
Cable	CA11
Attenuator	AU18
Antenna	N/A

1.3.5 The measurement of Peak Output Power and Density (Conduction)

<u>x</u> - was performed. was not applicable.	
Used test instruments:	
Туре	Number of test instruments
	(Refer to Appendix)
Test Receiver ((TR07
Spectrum Analyzer 🔬 📉	N//A
Cable	QA11
Attenuator (/	AU18
Antenna 🗌	N/A
Power Meter	AU03
Power Sensor	AU04
Signal Generator	SG03
Antenna Power Meter Power Sensor Signal Generator	N/A AU03 AU04 SG03

1.3.6 The measurement of Peak Output Power and Density (Radiation)

 \underline{x} - was performed in the following test site.

____ - was not applicable.

Test location:

Safety & EMC Center EMC Engineering Dept. Testing Div. 21-25, Kinuta 1-chome, Setagaya-ku, Tokyo 157-8573, Japan

x - No. 2 site (3 meters) ____ - No. 3 site (3 meters)

Validation of Site Attenuation:

1)	Last	Confirmed	Date	:	N/A
2)	Inte	rval		:	N/A

Used test instruments:

Туре	<	Number of (Refer to	test instruments Appendix)
Test Receiver		TR07	
Spectrum Analyzer	((λ λ λ	
Cable	// /2	CA12, CA1	3
Attenuator		AU18	
Antenna		AN10, AN1	1
Power Meter		AU03	
Power Sensor		AU04	
Signal Generator		SG03	

1.3.7 The measurement of Spurious Emissions (Conduction)

- \underline{x} was performed.
- ____ was not applicable.

Used test instruments:

Туре	Number of test instruments
	(Refer to Appendix)
Test Receiver	TR07
Spectrum Analyzer	N/A
Cable	CA11
Attenuator	AU18

1.3.8 The measurement of Spurious Emissions (Radiation)(9 kHz - 30 MHz)

x - was performed in the following test size.

- was not applicable.

Test location :

Safety & EMC Center EMC Engineering Dept. Testing Div. 21-25, Kinuta 1-chome, Setagaya-ku, Tokyo 157-8573, Japan

<u>x</u> - Anechoic Chamber No. 2 (3 meters) - Anechoic Chamber No. 3 (3 meters)

Validation of Site Attenuation:

Last Confirmed Date : N/A
 Interval : N/A

Used test instruments:

Туре	Number of test instruments
	(Refer to Appendix)
Test Receiver	TR07
Cable	CA06
Antenna	AN01

1.3.10 The measurement of Spurious Emissions (Radiation) (Above 1000 MHz) \underline{x} - was performed in the following test site. - was not applicable. Test location: Safety & EMC Center EMC Engineering Dept. Testing Div. 21-25, Kinuta 1-chome, Setagaya-ku, Tokyo 157-8573, Japan x - No. 2 site (3 meters) - No. 3 site (3 meters) Validation of Site Attenuation : 1) Last Confirmed Date : N/A 2) Interval : N/A Used test instruments : Number of test instruments Type (Refer to Appendix) Test Receiver TRO7 ŊλA $\langle \rangle$ Spectrum Analyzer Cable CA11, CA12, CA13 AN10, AN12 Antenna RF Amplifier AM09 Band Reject Filter AU16 High Pass Filter AU17

1.3.11 The measurement of AC Power Line Conducted Emissions

 $\underline{\mathbf{x}}$ - was performed in the following test site.

— - was not applicable.

Test location:

Safety & EMC Center EMC Engineering Dept. Testing Div. 21-25, Kinuta 1-chome, Setagaya-ku, Tokyo 157-8573, Japan

x - Shielded Enclosure
 - Anechoic Chamber No. 2 (portable Type)

Used test instruments:

Туре

Test Receiver Spectrum Analyzer Cable AMN(for EUT) AMN(for Peripheral) Termination

Number of test instruments (Refer to Appendix) TR01 Zer N/A CA03 NE01 N/A N/A

1.4 EUT MODIFICATION / Deviation from Standard

1.4.1 EUT MODIFICATION

<u>x</u> - No modifications were conducted by JQA to achieve compliance to Class B levels.
 <u>-</u> To achieve compliance to Class B levels, the following changes were made by JQA during the compliance test.

1.5 TEST RESULTS

Channel Separation [§15.247(a)(1)]	<u>x</u> - Applicable	- NOT Applicable
The requirements are	x - PASSED	- NOT PASSED
Remarks :		
Minimum Hopping Channel [§15.247(a)(1)(iii)]	<u>x</u> - Applicable	NOT Applicable
The requirements are	x - PASSED	- NOT PASSED
Remarks:		
Occupied Bandwidth	Applicable	<u>x</u> - NOT Applicable
The requirements are	- PASSED	- NOT PASSED
Remarks:		
Dwell Time	$\underline{x} - Applicable$	<pre>- NOT Applicable</pre>
[§15.247(a)(1)(iii)/(g)]		
The requirements are	<u>x</u> - PASSED	- NOT PASSED
Remarks:	\rangle	
Peak Output Power (Conduction)	<u>x</u> - Applicable	- NOT Applicable
The requirements are	x - PASSED	- NOT PASSED
Remarks:		
Peak Output Power (Radiation)	<u>x</u> - Applicable	NOT Applicable
[§15.247(b)(1)]		
Remarks:		NOI PASSED
Peak Power Density (Conduction)	x - Applicable	- NOT Applicable
[§15.247(d)]		
The requirements are	x - PASSED	- NOT PASSED
Remarks:		
Peak Power Density (Radiation)	Applicable	<u>x</u> - NOT Applicable
The requirements are	- PASSED	- NOT PASSED
Remarks:		

was carried out each ac adaptor.

1.6 SUMMARY

General Remarks:

The EUT was tested according to the requirements of FCC Rules and Regulations Part 15 Subpart B and Subpart C under the test configuration, as shown in clause 1.7 to 1.10.

The conclusion for the test items which are required by the applied regulation is indicated under the final judgment.

Final Judgment:

The "as received" sample;

- \underline{x} fulfill the test requirements of the regulation mentioned on clause 1.1.
- ____ fulfill the test requirements of the regulation mentioned on clause 1.1, but with certain qualifications.
- doesn't fulfill the test regulation mentioned on clause 1.1.

Begin of testing: September 30, 200

End of testing: January 21, 2003

- JAPAN QUALITY ASSURANCE ORGANIZATION - Approved by:

m. Jachashi

Masaaki Takahashi Senior Manager JQA EMC Engineering Dept.

Issued by:

Shigeru Osawa Assistant Manager JQA EMC Engineering Dept.

1.7 TEST CONFIGURATION / OPERATION OF EUT

1.7.1 Test Configuration

The equipment under test (EUT) consists of:

Symbol	Item	Manufacturer	Model No.	FCC ID	Serial No.
А	$Bluetooth^{TM}$ Disk		UDB1H05JBS	CJ6UDB1H05BT	0902C123456
	HOPBIT	Toshiba corporation			

Note: This Bluetooth[™] Disk HOPBIT was operated with the AC adaptor (below symbol "B1" or "B2" Input:100 - 240VAC 50/60Hz, Output:5.2VDC by Toshiba Corporation).

The measurement was carried out with the following support equipment connected:

Symbol	Item	Manufacturer	Model No.	FCC ID	Serial No.
B1(*1)	AC Adaptor	Toshiba Corp.	UDA0001JAB	N/A	None
B2(*1)	AC Adaptor	Toshiba Corp.	UDA0001EAB	N/A	None
C(*2)	Interface Board for Test Mode Operation	-	None	N/A	None

(*1) The alternative ac adaptor is prepared to the EUT.

(*2) This support equipment is a temporary board that is achieved the test Mode.

Type of Cable:

-11		$\langle \frown \rangle$				
Symbol	Description	Identífication	Connector	Cable	Ferrite	Length
		(Manufacturer etc.)	Shielded	Shielded	Core	(m)
			YES / NO	YES / NO		. ,
1	DC Power Cable of Bl		YES	YES	NO	1.9
2	DC Power Cable of B2	- > /	YES	YES	NO	1.9
3	AC Power Cable of B2	$\left \right\rangle - \right\rangle$	NO	NO	NO	2.0
4	USB Cable	k))-	YES	YES	YES	1.3
5(*3)	Interface Board Cable	-	NO	NO	YES	0.3
(+) m			1. 1	1	NC	

(*3) This cable is a temporary cable that is achieved the test Mode.

1.7.2 Operating condition

Power supply Voltage: AC120V, 60Hz(The EUT was operated with the AC adaptor (Input:100 - 240VAC 50/60Hz, Output:5.2VDC)

The tests have been carried out the following mode. 1-1) TX 2402 MHz (Max power setting) 1-2) TX 2402 MHz (Min power setting) 2-1) TX 2441 MHz (Max power setting) 2-2) TX 2441 MHz (Min power setting) 3-1) TX 2480 MHz (Max power setting) 3-2) TX 2480 MHz (Min power setting) 4) Inquiry mode 5) Paging mode 6-1) TX Hopping ON (Max power setting) 6-2) TX Hopping ON (Min power setting) RX (including all RX modes) 7) 8-1) RX 2402 MHz 8-2) RX 2441 MHz 8-3) RX 2480 MHz

1.7.3 Generating and Operating frequency of EUT

TX Function: 32 MHz and 2402 MHz to 2480 MHz RX Function: 32 MHz and 2402 MHz to 2480 MHz (Direct Conversion)

1.8 EUT ARRANGEMENT (DRAWINGS)

1.9 PRELIMINARY TEST AND TEST-SETUP (DRAWINGS)

1.9.1 Channel Separation

```
The EUT have its hopping function enabled.
Use the following spectrum analyzer settings:
Span = wide enough to capture the peaks of two adjacent channels
Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span
Video (or Average) Bandwidth (VBW) ≥ RBW
Sweep = auto
Detector function = peak
Trace = max hold
```

Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

1.9.3 Occupied Bandwidth

```
Use the following spectrum analyzer settings:

Span = approximately 2 to 3 times the 6 dB or 20 dB bandwidth, centered on a channel

RBW \geq 1% of the 6 dB or 20 dB bandwidth

VBW \geq RBW

Sweep = auto

Detector function = peak

Trace = max hold
```

The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 6 dB or 20 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 6 dB or 20 dB bandwidth of the emission. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation.

Measurement setup is same as sub-clause 1.9.1.

1.9.4 Dwell Time

```
The EUT must have its hopping function enabled.
Use the following spectrum analyzer settings:
Span = zero span, centered on a hopping channel
RBW ≤ Channel Separation
VBW ≥ RBW
Sweep = as necessary to capture the entire dwell time per hopping channel
Detector function = peak
Trace = max hold
```

If possible, use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation.

Measurement setup is same as sub-clause 1.9.1.

1.9.5 Peak Output Power (Conduction)

```
(Step 1) Use the following spectrum analyzer settings:
Span = approximately 5 times the 20 dB bandwidth, centered on a channel
RBW > the 20 dB bandwidth of the emission being measured
VBW ≥ RBW
Sweep = auto
Detector function = peak
Trace = max hold
Allow the trace to stabilize. Use the marker-to-peak function to set the marker to
```

the peak of the emission. Record the reading P1. (Step 2) Replace the EUT with the signal generator. Adjust the level of the signal

generator output until the reading P1.

(Step 3) Replace the spectrum analyzer with the power meter. Record the reading of power meter P2. The peak output power of the EOT is P2.

Step 3

1.9.6 Peak Power Density (Conduction) Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a channel RBW = Specified Value VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Measurement setup is same as sub-clause 1.9.1.

1.9.7 Peak Output Power and Peak Power Density (Radiation)

The radiated power output and the field strength of the transmitter radiation were measured at the distance at 3 meters away from the transmitter under test which was placed on a turntable 0.8 meter in height. The receiving antenna was oriented for vertical polarization and raised or lowered through 1 to 4 meters until the maximum signal level was detected on the measuring instrument. The transmitter under test was rotated through 360° until the maximum signal was received. The measurement was repeated with the receiving antenna in the horizontal polarization

The transmitter was removed and replaced with the antenna. The center of the antenna was placed approximately at the same location as the center of the transmitter. The antenna was fed with a signal generator, and the output level of the signal generator was adjusted to obtain the previously recorded maximum reading at the particular frequency and recorded. This procedure was repeated with the receiving antenna and the antenna in the orthogonal polarization,

The input power into the antenna was measured using the power meter. The level of the emissions in dBm(EIRP) were calculated from the following formula:

Transmitter Power[dBm](EIRP)= (Meter Reading of Power Meter) + (Antenna Gain[dBi])

```
Use the following spectrum analyzer settings:
Span = approximately 5 times the 20 dB bandwidth, centered on a channel
RBW : Greater then the 20 dB bandwidth of the emission being measured
or Specified Value
VBW ≥ RBW
Sweep = auto
Detector function = peak
Trace = max hold
Allow the trace to stabilize. Use the marker-to-peak function to set the marker to
the peak of the emission.
```


FCC ID : CJ6UDB1H05BT Issue Date : January 23, 2003 Page 22 of 77

1.9.8 Spurious Emission (Conduction)

Band-edge Compliance of RF Conducted Emissions

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the emission operating on the channel closest to the band-edge, as well as any modulation products which fall outside of the authorized band of operation

RBW ≥ 1% of the span VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold

Allow the trace to stabilize. Set the marker on the emission at the bandedge, or on the highest modulation product outside of the band, if this level is greater than that at the bandedge. Enable the marker-delta function, then use the marker-to-peak function to move the marker to the peak of the in-band emission.

Now, using the same instrument settings, enable the hopping function of the EUT. Allow the trace to stabilize. Follow the same procedure listed above to determine if any spurious emissions caused by the hopping function also comply with the specified limit.

Spurious RF Conducted Emissions

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.

RBW = 100 kHz

 $VBW \geq RBW$

Sweep = auto Detector function = peak

Trace = max hold

Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded. The level displayed must comply with the limit specified in this Section.

Measurement setup is same as sub-clause 1.9.1.

1.9.9 Radiated Emission (9 kHz - 30 MHz):

According to description of ANSI C63.4-1992 sec.13.1.4.1, the preliminary radiated emissions measurement was carried out. The preliminary radiated measurements were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration, cable configuration and mode of operation were determined for producing the maximum level of emissions. These configurations were used for the final radiated emissions measurements.

FCC ID : CJ6UDB1H05BT Issue Date : January 23, 2003 Page 24 of 77

1.9.10 Radiated Emission (30 MHz - 1000 MHz):

According to description of ANSI C63.4-1992 sec.13.1.4.1, the preliminary radiated emissions measurement was carried out. The preliminary radiated measurements were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration, cable configuration and mode of operation were determined for producing the maximum level of emissions. These configurations were used for the final radiated emissions measurements.

FCC ID : CJ6UDB1H05BT Issue Date : January 23, 2003 Page 25 of 77

1.9.11 Radiated Emission (Above 1 GHz):

According to description of ANSI C63.4-1992 sec.13.1.4.1, the preliminary radiated emissions measurements were carried out. The preliminary radiated measurements were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration, cable configuration and mode of operation were determined for producing the maximum level of emissions. These configurations were used for the final radiated emissions measurements.

JAPAN QUALITY ASSURANCE ORGANIZATION

1.9.12 AC Power Line Conducted Emission (150 kHz - 30 MHz) :

According to description of ANSI C63.4-1992 sec.13.1.3.1, the AC power line preliminary conducted emissions measurements were carried out.

The preliminary conducted measurements were performed using the spectrum analyzer to observe the emission characteristics of the EUT.

The EUT configuration, cable configuration and mode of operation were determined for producing the maximum level of emissions. These configurations were used for final AC power line conducted emissions measurements.

Shielded Enclosure

FCC ID : CJ6UDB1H05BT Issue Date : January 23, 2003 Page 27 of 77

1.10 TEST ARRANGEMENT (PHOTOGRAPHS)

PHOTOGRAPHS OF EUT CONFIGURATION FOR RADIATED EMISSIONS MEASUREMENT

Photograph present configuration with maximum emission

JAPAN QUALITY ASSURANCE ORGANIZATION

FCC ID : CJ6UDB1H05BT Issue Date : January 23, 2003 Page 28 of 77

FCC ID : CJ6UDB1H05BT Issue Date : January 23, 2003 Page 29 of 77

AC Adaptor B1 (Model No.: UDA0001JAB) PHOTOGRAPHS OF EUT CONFIGURATION FOR AC POWER LINE CONDUCTED EMISSIONS MEASUREMENT Photograph present configuration with maximum emission

- Front View -

JAPAN QUALITY ASSURANCE ORGANIZATION

FCC ID : CJ6UDB1H05BT Issue Date : January 23, 2003 Page 30 of 77

AC Adaptor B2 (Model No.: UDA0001EAB) PHOTOGRAPHS OF EUT CONFIGURATION FOR AC POWER LINE CONDUCTED EMISSIONS MEASUREMENT Photograph present configuration with maximum emission

- Front View -

2 TEST DATA

2.1 Channel Separation

Date : September 30, 2002 Temp.: 23 °C Humi.: 70 %

Mode of EUT : TX Hopping ON (Max RF power setting) Test Port : Temporary antenna connector

Shigeru Osawa Testing Engineer

2.2 Minimum Hopping Channel

Date :	Septembe	er 30,	2002	
Temp.:	23 °C	Humi.:	70 %	5

Mode of EUT : TX Hopping ON(Max RF power setting) Test Port : Temporary antenna connector

Tested by : _ Shigern Osawa

Shigeru Osawa Testing Engineer

2.3 Occupied Bandwidth

Mode of EUT : TX 2441 MHz(Max RF power setting) Test Port : Temporary antenna connector

Bandwidth	Limit
(kHz)	(kHz)
877.8	N/A

Mode of EUT : TX 2480 MHz(Max RF power setting) Test Port : Temporary antenna connector

Bandwidth	Limit
(kHz)	(kHz)
877.8	N/A

Mode of EUT : Inquiry Test Port : Temporary antenna connector

Bandwidth	Limit
(kHz)	(kHz)
573.2	N/A

Mode of EUT : Paging Test Port : Temporary antenna connector

Limit
(kHz)
N/A

Tested by :

Isawa. Spigeru

Shigeru Osawa Testing Engineer

2.4 Dwell Time

Date :	September	30,	2002	
Temp.:	23 °C H	umi.	: 70	00

Mode of EUT : TX Hopping ON(DH1 packet, Max RF power setting) Test Port : Temporary antenna connector

Dwell Time	Limit
(ms)	
137.25	400 ms per 31.6 s

Note : The system makes worst case 1600 hops per second or 1 time slot has a length of 625µs with 79 channels. A DH1 Packet need 1 time slot for transmitting and 1 time slot for receiving. Then the system makes worst case 800 hops per second with 79 channels. So the system has each channel 10.1266 times per second and so for 31.6 seconds the system have 320 times of appearance.

Each tx-time per appearance is 0.4289 ms.

Mode of EUT : TX Hopping ON(DH3 packet, Max RF power setting) Test Port : Temporary antenna connector

Dwell Time	Limit
(ms)	
270.94	400 ms per 31.6 s

Note : A DH3 Packet need 3 time slot for transmitting and 1 time slot for receiving. Then the system makes worst case 400 hops per second with 79 channels. So the system have each channel 5.063 times per second and so for 31.6 seconds the system have 160 times of appearance.

Each tx-time per appearance is 1.6934 ms.

Dwell time = 160 * 1.6934 = 270.94 ms

FCC ID : CJ6UDB1H05BT Issue Date : January 23, 2003 Page 41 of 77

Mode of EUT : TX Hopping ON(DH5 packet, Max RF power setting) Test Port : Temporary antenna connector

> Dwell Time Limit (ms) 314.23 400 ms per 31.6 s

Note : A DH5 Packet need 5 time slot for transmitting and 1 time slot for receiving. Then the system makes worst case 266.667 hops per second with 79 channels. So the system have each channel 3.3755 times per second and so for 31.6 seconds the system have 106.667 times of appearance. Each tx-time per appearance is 2.9459 ms.

Dwell time = 106.667 * 2.9459 = 314.23 ms

FCC ID : CJ6UDB1H05BT Issue Date : January 23, 2003 Page 43 of 77

FCC ID : CJ6UDB1H05BT Issue Date : January 23, 2003 Page 46 of 77

FCC ID : CJ6UDB1H05BT Issue Date : January 23, 2003 Page 47 of 77

Tested by : Shigern Osawa

Shigeru Osawa Testing Engineer

FCC ID : CJ6UDB1H05BT Issue Date : January 23, 2003 Page 48 of 77

.5 Peak Out	tput I	Power (Co	onduction)					
					Date :	Septembe	er 30, 2	002
					Temp.:	23 °C	Humi.:	70 %
Mode of EU	ידי די	(2402 MH;	z (Max powe	er setting)				
Test Port	: Temp	orary ant	tenna conne	ector				
	-	1						
Percentag	je of	Cable Loss	Att.Loss	Meter Readin	g Peak Pov	wer Limi	t	
Rated Su	pply	(dB)	(dB)	(dBm)	(dBm)	(dBm)	
85 %		0.94	10.08	-13.07	-2.05	5 30		
100 %	6	0.94	10.08	-13.07	-2.05	5 30		
115 %	6	0.94	10.08	-13.07	-2.05	5 30		
Mode of EU	т : т	X 2441 MH:	z (Max powe	er setting)				
Test Port	: Tem <u>r</u>	orary and	tenna conne	ector <	$\widehat{\Lambda}$			
Percentag	je of	Cable Loss	Att.Loss	Meter Readin	g	wer Limi	t	
Rated Su	pply	(dB)	(dB)	(dBm)	(dBm)	(dBm)	
85 %		0.94	10.08	-12,26	/-1.24	1 30		
100 %	5	0.94	10.08 <	-12,26	-1.24	1 30		
115 8	5	0.94	10.08	-12.26	-1.24	1 30		
Mode of EU Test Port	Т : Т2 : Тетр	X 2480 MH: porary and	z (Max powe Senna conne	er setting) ector				
Percentag	je of	Cable Loss	Att. Loss	Meter Readin	g Peak Pov	wer Limi	t	
Rated Su	pply	(dB)	(dB)	(dBm)	(dBm)	(dBm)	
85 %		0.94	10.08	-11.15	-0.13	3 30		
100 %	6	0.94	10.08	-11.15	-0.13	3 30		
115 %	5	0.94	10.08	-11.15	-0.13	3 30		
Note :1) H	Rated	Supply Vo	ltage : 12	0 VAC for t	he AC Ada	ptor.		
2) 2	A samp	le calcul	ation was	made at 240	2 MHz.			
	CL + 4	AL + MR =	0.94 + 10.	08 -13.07 :	= -2.05 (d	lBm)		
	CL : (Cable Loss	5					
	AL : A	Attenuator	r Loss					
	MR : N	leter Read	ling					
3) N	Measur	ing Instr	uments Set	ting:				
	Dete	ctor Fund	ction Re	solution Ba	ndwidth			
		Peak		1 MHz				
				Tes	ted by : _	Shig	reru (Isawa
						Shigeru	ı Osawa	
						Testing	g Engine	er
		J	IAPAN QUALITY	ASSURANCE C	DRGANIZATIO	N		

setting) ading (dBa Vert -16.6 -16.6 -16.6 setting) ading (dBa Vert 17.0 -17.0 setting) ading (dBa	Da Te (j) (dBm) (rtt. .60 .60 .60 .60 .01 .01 .01 .01	ate emp.	: Peak Hori -3.31 -3.31 -3.31 Peak	Power z.	r (dBm) Vert. -7.30 -7.30 -7.30	Limit (dBm) 30 30 30
setting) adding (dBa Vert -16.6 -16.6 setting) adding (dBa Vert 17.0 -17.0 setting) adding (dBa	dBm) art. .60 .60 .60 .01 .01 .01		Peak Hori -3.31 -3.31 -3.31	Power	r (dBm) Vert. -7.30 -7.30 -7.30	Limit (dBm) 30 30 30
setting) ading (dBa Vert -16.6 -16.6 -16.6 setting) ading (dBa Vert 17.0 -17.0 setting) ading (dBa	dBm) ert. .60 .60 .60 .01 .01 .01		Peak Hori -3.31 -3.31 -3.31	Power z.	r (dBm) Vert. -7.30 -7.30 -7.30	Limit (dBm) 30 30 30
ading (dBu Vert -16.6 -16.6 setting) ading (dBu Vert 17.0 -17.0 setting)	dBm) ert. .60 .60 .60 .01 .01 .01		Peak Hori -3.31 -3.31 -3.31	Powei z.	r (dBm) Vert. -7.30 -7.30 -7.30	Limit (dBm) 30 30 30
ading (dBr Vert -16.6 -16.6 -16.6 setting) ading (dBr Vert 17.0 -17.0 setting)	dBm) ert. .60 .60 .60 .01 .01 .01		Peak Hori -3.31 -3.31 -3.31	Powei z.	r (dBm) Vert. -7.30 -7.30 -7.30	Limit (dBm) 30 30 30
vert -16.6 -16.6 -16.6 setting) adding (dBu Vert 17.0 -17.0 setting)	dBm) ert. .60 .60 .60 .60 .01 .01 .01		Peak Hori -3.31 -3.31 -3.31 Peak	z.	r (dBm) Vert. -7.30 -7.30 -7.30	Limit (dBm) 30 30 30
Vert -16.6 -16.6 setting) adding (dBr Vert 17.0 -17.0 setting) adding (dBr	rrt. .60 .60 .60 .60 .01 .01 .01		Hori -3.31 -3.31 -3.31 Peak	Z .	vert. -7.30 -7.30 -7.30	(dBm) 30 30
-16.6 -16.6 -16.6 setting) adding (dBu vert 17.0 -17.0 setting)	.60 .60 .60 .60 .01 .01 .01		-3.31 -3.31 -3.31 Peak		-7.30 -7.30 -7.30	30 30 30
-16.6 -16.6 setting) adding (dBa Vert 17.0 -17.0 setting)	.60 .60 g) dBm ert. .01 .01 .01		-3.31 -3.31 Peak		-7.30	30 30
-16.6 setting) adding (dBn Vert 17.0 -17.0 setting)	.60 g) dBm .rrt. .01 .01 .01		Peak		-7.30	30
setting) ading (dBn Vert 17.0 -17.0 setting) ading (dBn	dBm) dBm) ert. .01 .01 .01		Peak			
vert 17.0 17.0 -17.0 setting)	dBm) ert. .01 .01 .01	\searrow	Peak			
vert 17.0 17.0 -17.0 setting)	dBm) ert. .01 .01 .01	\bigvee	Peak			
Vert 17.0 17.0 -17.0 setting)	dBm) ert. .01 .01 .01	\bigvee	Peak			
Vert 17.0 17.0 -17.0 setting) adding (dBu	ert. .01 .01 .01	\bigvee	> I	Power	r (dBm)	Limit
17.0 -17.0 -17.0 setting)	.01 < .01 .01		> Hori	z.	Vert.	(dBm)
-17.0 -17.0 setting)	.01 .01 g)		-4.61		-7.71	30
-17.0 setting)	.01 g)		-4.61		-7.71	30
setting)	g)		-4.61		-7.71	30
setting) ading (dBr	3)					
ading (dBr						
ading (dB						
auing (ubi	dBm)		Deek	Dowei	r (dBm)	T.imi+
Vort	ubiii)		Peak	FOWEI	Vort	(dpm)
16 0	00		2 44	2.	7 EQ	(0.5)
-10.0	.09		2.17		7.59	20
-10.0	.09		-2.44		-7.59	30
-	y (V∈ 16 16	Vert. 16.89 16.89	Vert. 16.89 16.89 16.89	Vert. Peak 16.89 -2.44 16.89 -2.44 16.89 -2.44	Yert. Horiz. 16.89 -2.44 16.89 -2.44 16.89 -2.44	Yert. Horiz. Vert. 16.89 -2.44 -7.59 16.89 -2.44 -7.59 16.89 -2.44 -7.59
	Fo	for th	for the Λ	for the AC Adar	for the AC Adaptor	for the λ C Adaptor

Shigeru Osawa Testing Engineer

FCC ID : CJ6UDB1H05BT Issue Date : January 23, 2003 Page 50 of 77

JAPAN QUALITY ASSURANCE ORGANIZATION

Tested by :

higeru awa

Shigeru Osawa Testing Engineer

2.8 Peak Power Density (Radiation)

Note : This test was not applicable.

2.9 Spurious Emissions (Conduction)

Date :	September	c 30,	200	2	
Temp.:	23 °C	Humi.	:	70	%

2.9.1 Band Edge Compliance

Mode of EUT : TX Hopping ON (Max power setting) Test Port : Temporary antenna connector

FCC ID : CJ6UDB1H05BT Issue Date : January 23, 2003 Page 54 of 77

Mode of EUT : TX Hopping ON (Min power setting) Test Port : Temporary antenna connector

2.9.2 Other Spurious Emissions

Mode of EUT : TX 2402 MHz (Max power setting) Test Port : Temporary antenna connector

Frequency	Cable Loss	Att.Loss	Meter Reading	Emission	Reference	Limit
(MHz)	(dB)	(dB)	(dBm)	Levels	Level(*1)	(dBm)
				(dBm)	(dBm)	
					-3.37	-23.37

No spurious emissions in the range 20 dB below the limit.

Mode of EUT : TX 2441 MHz (Max power setting) Test Port : Temporary antenna connector

CableLoss Att.Loss Meter Reading Limit Frequency Emission Reference (MHz) (dB) (dB) (dBm) Lévels Level(*1) (dBm) (dBm) (dBm) -3.37 -23.37

No spurious emissions in the range 20 dB below the limit.

Mode of EUT : TX 2480 MHz (Max power setting) Test Port : Temporary antenna connector

Frequency Cable Loss Loss Meter Reading Emission Reference Limit Att (MHz) (dB) (dB) (dBm) Level(*1) (dBm) Levels (dBm) (dBm) -3.37 -23.37

No spurious emissions in the range 20 dB below the limit.

Mode of EUT : TX 2402 MHz (Min power setting) Test Port : Temporary antenna connector Frequency CableLoss Att.Loss Meter Reading Emission Reference Limit (dB) Level(*1) (dBm) (MHz) (dB) (dBm) Levels (dBm) (dBm) -3.37 -23.37No spurious emissions in the range 20 dB below the limit. Mode of EUT : TX 2441 MHz (Min power setting) Test Port : Temporary antenna connector Frequency CableLoss Att.Loss Meter Reading Emission Reference Limit (dBm) (MHz) (dB) (dB) Level(*1) (dBm) Levels (∕ð}Bm) (dBm) -3.37 -23.37 No spurious emissions in the range 20 dB below the limit. Mode of EUT : TX 2480 MHg (Min power setting) Test Port : Temporary antenna connector Frequency Cable Loss Att. Løss Meter Reading Emission Reference Limit (MHz) (dB) drR) (dBm) Levels Level(*1) (dBm) (dBm) (dBm) -3.37 -23.37 No spurious emissions in the range 20 dB below the limit.

Note : 1) Reference level is minimum value of all channels. 2) Measuring Instruments Setting : Detector Function Resolution Bandwidth Peak 100 kHz

awa Shigeru

Shigeru Osawa Testing Engineer

Tested by :

2.10 Spurious Emissions (Radiation)

Date :	October	1, 2002	
Temp.:	24 °C	Humi.:	75 %

2.10.1 Band Edge Compliance

Mode of EUT : TX Hopping ON (Max power setting) Test Port : Enclosure

FCC ID : CJ6UDB1H05BT Issue Date : January 23, 2003 Page 60 of 77

Mode of EUT : TX Hopping ON (Min power setting) Test Port : Enclosure

2.10.2 Other Spurious Emissions

Test Port : Enclosure

Spurious Emissions in the frequency range from 9 kHz to 30 MHz Mode of EUT : TX 2402 MHz/ 2441 MHz/ 2480 MHz, Max/Min power setting

No spurious emissions in the range 20 dB below the limit.

Spurious Emissions in the frequency range from 30 MHz to 1000 MHz Mode of EUT : TX 2402 MHz/ 2441 MHz/ 2480 MHz, Max/Min power setting

Frequency	r Antenna	a Meter R	eading	Limits	Emissio	n Levels	Mar	gins
	Factor	(d:	BuV)		/\ (dΒι	ıV/m)	(d	В)
(MHz)	(dB)	Horiz.	Vert.	(dBuV/m)	Horiz.	Vert.	Horiz.	Vert.
240.0	19.3	5.2	2.8	46.0	24.5	22.1	21.5	23.9
272.0	20.2	6.1	4.1	46.0	26.3	∧ 24.3	19.7	21.7
Notes :	1) The 2) The 3) The 4) The 5) A sa	spectrum v cable loss symbol of symbol of mple calcu Af + Mu Af = An Mr = M	vas check s is incl "<"means ulation w c =19.3 + htenna Fa eter Read	ed from 30 uded in the "or less" "or great as made at 5.2 = 24 ctor	MHz to 10 e antexna ". ter". 240 (MHz .5 (dBuV/r	00 MHz. factor. z). n)		
Spurious	Emissions	in the f	requency	v above 10	000 MHz			

Mode of EUT : TX 2402 MHz/ 2441 MHz/ 2480 MHz (Max power setting)

No spurious emissions in the range 20 dB below the limit.

Mode of EUT : TX 2402 MHz/ 2441 MHz/ 2480 MHz (Min power setting)

No spurious emissions in the range 20 dB below the limit.

Tested by : _ tsawa

Shigeru Osawa Testing Engineer

2.11AC Power Line Conducted Emissions 2.11.1 AC Adaptor B1 (Model No.: UDA0001JAB)

Date :	Septembe	er 30, 20	02
Temp.:	23 °C	Humi.:	66 %

Mode of EUT : TX Test Port : AC power line

Frequency	/ LISN	Me	eter Read	ding (dBu	V)	Limi	ts	Emissi	on Lev	rel Mar	gins
	Factor	V-	A	V-I	3	(dB	uV)	(dE	BuV)	(c	lB)
(MHz)	(dB)	Q.P	AVE	Q.P	AVE	Q.P	AVE	Q.P	AVE	Q.P	AVE
0.34	0.2	31.2	_	38.4	_	59.2	49.2	38.6	_	20.6	_
0.68	0.2	22.3	_	27.5	_	56.0	46.0	27.7	_	28.3	_
1.03	0.2	16.4	_	25.8	_	56.0	46.0	26.0	_	30.0	_
1.37	0.2	16.2	-	24.3	-	56.0	46.0	24.5	-	31.5	_
1.71	0.2	14.6	-	27.2	_	56,0	46.0	27.4	_	28.6	-
						4					
2.05	0.2	15.7	-	27.4	- /	5610	46.0	27.6	-	28.4	-
2.74	0.2	34.2	-	41.1	-/-	56.0	46.0	41.3	-	14.7	-
3.08	0.2	37.8	-	45.0	40.8	56.0	46.0	45.2	41.0	10.8	5.0
3.43	0.2	28.3	-	24.2		56.0	46.0	28.5	-	27.5	-
5.82	0.2 <	10.0	-	19.7	-))	60.0~	50.0	19.9	-	40.1	-
8.68	0.2 <	10.0	-	12.8	\bigvee	60.0	50.0	13.0	-	47.0	-
12.00	0.2	24.5	- /	30.0		^{>} 60.0	50.0	30.2	-	29.8	-
15.07	0.3 <	10.0	- ((13.5	\checkmark	60.0	50.0	13.8	-	46.2	-
20.04	0.4 <	10.0	~- //	< 10.0)	-	60.0	50.0	< 10.4	-	> 49.6	-
26.19	0.5	13.5		16.4	-	60.0	50.0	16.9	-	43.1	-
29.94	0.6 <	10.0 ((-	12.5	-	60.0	50.0	13.1	-	46.9	_
Notes :	1) The	spectrum	was che	ked from	0.15	MHz to	30 MHz	•			
	2) The	cable lo	ss is in	cluded in	the L	ISN fac	tor.				
	3) The	symbol o:	E "<"mean	ns "or l	ess".						
	4) The	symbol o:	E ">"meai	ns "or g	reater	".					
	5) The	symbol o:	E "-"meai	ns "Not	applic	able".					
	6) V-A	: One end	d & Grou	nd V-	B : Th	e other	end &	Ground			
	7) Q.P	: Quasi-j	peak	AVE : Av	erage						
	8) Asam	ple calc	ulation w	was made	at 0.3	4 (MHz	:).				
		Lf + Mr	=0.2 +	38.4 = 3	38.6(d1	BuV)					
		Lf = LI	SN Facto	or							
		Mr = Me	ter Read	ling							

Tested by : _ ima

Yoichi Nakajima Testing Engineer

AC POWER LINE CONDUCTED EMISSION MEASUREMENT

Model No. : UDB1H05JBS

FCC ID : CJ6UDB1H05BT Issue Date : January 23, 2003 Page 65 of 77

2.11.2 AC Adaptor B2 (Model No.: UDA0001EAB)

Date :	January	21, 2003	8	
Temp.:	20 °C	Humi.:	35	0

Mode of EUT : TX Test Port : AC power line

Frequency	LISN	Me	eter Rea	ding (dBu	ιV)	Limi	ts	Emissi	on Lev	vel Mar	gins
	Factor	V-	A	V-1	В	(dE	BuV)	(dE	BuV)	(d	В)
(MHz)	(dB)	Q.P	AVE	Q.P	AVE	Q.P	AVE	Q.P	AVE	Q.P	AVE
0.18	0.2	47.0	_	46.8	-	64.5	54.5	47.2	-	17.3	-
0.27	0.2	36.8	-	36.8	-	61.1	51.1	37.0	-	24.1	-
0.37	0.2	31.0	-	32.2	-	58.5	48.5	32.4	-	26.1	-
0.47	0.2	32.5	-	35.5	-	56.5	46.5	35.7	-	20.8	-
0.64	0.2	21.2	-	30.5	-	56.0	46.0	30.7	-	25.3	-
0.87	0.2	28.0	-	30.5	-	56.0	46.0	30.7	-	25.3	-
1.28	0.2	30.0	-	31.7	-	56.0	46.0	31.9	-	24.1	-
2.00	0.2	25.5	-	27.8	-	5610	46.0	28.0	-	28.0	-
3.05	0.2	20.5	-	25.5	- /	256.0	46.0	25.7	-	30.3	-
5.00	0.2	14.5	-	17.5	_ ~</td <td>-56-Q</td> <td>46.0</td> <td>17.7</td> <td>-</td> <td>38.3</td> <td>-</td>	-56-Q	46.0	17.7	-	38.3	-
7.00	0.2 <	10.0	-	15.0		60.0	50.0	15.2	-	44.8	-
10.00	0.2 <	10.0	-	< 10.0<	-))	60.0	50.0	< 10.2	-	> 49.8	-
12.00	0.2 <	10.0	-	< 10.0	\searrow	60.0	50.0	< 10.2	-	> 49.8	-
15.00	0.3 <	10.0	-	5 10.0	$\langle \langle \rangle$	∕60.0	50.0	< 10.3	-	> 49.7	-
20.00	0.4 <	10.0	- ((€ 10.0	, ž	60.0	50.0	< 10.4	-	> 49.6	-
24.88	0.5	17.0	1 -2	(15.2)) –	60.0	50.0	17.5	-	42.5	-
25.53	0.5	20.5	\frown	19.8	-	60.0	50.0	21.0	-	39.0	-
27.49	0.6	17.7 (-	16.5	-	60.0	50.0	18.3	-	41.8	-
29.46	0.6	16.2	_	/]14.2	-	60.0	50.0	16.8	-	43.2	-
Notes :	1) The	spectrum	was che	ecked from	m 0.15	MHz to	30 MH	z.			
	2) The	cable lo	ss is ir	ncluded i	n the	LISN fa	ictor.				
	2		C								

- 3) The symbol of "<"means "or less".
- 4) The symbol of ">"means "or greater".
- 5) The symbol of "-"means "Not applicable".

6) V-A : One end & Ground $$\rm V-B$$: The other end & Ground

7) Q.P : Quasi-peak AVE : Average

8) Asample calculation was made at 0.18 (MHz).

- Lf + Mr = 0.2 + 47 = 47.2(dBuV)
 - Lf = LISN Factor
 - Mr = Meter Reading

Tested by : ima

Yoichi Nakajima Testing Engineer

AC POWER LINE CONDUCTED EMISSION MEASUREMENT

Model No. : UDB1H05JBS

FCC ID : CJ6UDB1H05BT Issue Date : January 23, 2003 Page 67 of 77

2.12 RF Exposure Compliance

See attached information.

_

2.13 Spurious Emissions for Receiver (Radiation)

Date :	September	30,	2002	
Temp.:	24 °C H	Iumi.	: 74	%

Test Port : Enclosure

Spurious Emissions in the frequency range from 30 MHz to 1000 MHz

Mode of EUT : RX 2402 MHz/ 2441 MHz/ 2480 MHz

Frequency	Antenna Meter Reading		ading	Limits	Emission	Levels	Margins			
	Factor	(dE	uV)		(dBu	V/m)		(d	lB)	
(MHz)	(dB)	Horiz.	Vert.	(dBuV/m)	Horiz.	Vert.		Horiz.	Vert.	
30.0	15.4 <	< 0.0	12.4	40.0	< 15.4	27.8	>	24.6	12.2	
69.6	6.5 <	< 0.0	13.0	40.0	< ⁄6.5	19.5	>	33.5	20.5	
144.0	15.5	4.1	16.0	43.5	<1þ.6	31.5		23.9	12.0	
216.0	18.4	2.0	4.7	43.5 /	> 20.4	23.1		23.1	20.4	
240.0	19.3	5.2	2.8	46.0	24,5	22.1		21.5	23.9	
272.0	20.2	6.1	4.1	46.0	26.3	24.3		19.7	21.7	
396.0	19.0	5.0	9.1	46.0	24.0	28.1		22.0	17.9	
720.0	24.7	8.1	7.2 <	46.0//	32.8	31.9		13.2	14.1	
864.0	26.3	15.2	15.1	46.0	41.5	41.4		4.5	4.6	
Notes :	1) The s	pectrum w	as check	ed from 30	MHz to 10	00 MHz.				
	2) The c	able loss	is incl	uded in th	le antenna	factor.				
	3) The s	ymbol of	"k"means	")or less	".					
	4) The s	ymbol of	">"means	/or grea	ter".					
	5) A sam	pl¢ calcu	lation w	as made at	30 (MHz)	•				
		Af + Mr	=15-,4 +	12.4 = 2	7.8 (dBuV/	m)				
		At = Ar	tenna Fa	ctor						
		Mr = Me	ter Read	ing						

Spurious Emissions in the frequency above 1000 MHz

Mode of EUT : RX 2402 MHz

Frequency	P-A	Correction	Polari-	Mete:	r Re	eading	Lin	nits	I	Emissi	on	Level	s	Ma	rgi	ins
	Factor	Factor	zation	(dBu	(V)	(dB	uV/m)		(dE	BuV	/m)		(dB)
(GHz)	(dB)	(dB)		AV		Peak	AV	Peak		AV		Peak		AV		Peak
4.8040	0.0	8.8		< 27.0	<	40.0	54.0	74.0	<	35.8	<	48.8	>	18.2	>	25.2
7.2060	0.0	13.3		< 27.0	<	40.0	54.0	74.0	<	40.3	<	53.3	>	13.7	>	20.7
9.6080	0.0	16.5	v	29.0	<	40.0	54.0	74.0		45.5	<	56.5		8.5	>	17.5

Mode of EUT : RX 2441 MHz

No spurious emissions in the range 20 dB below the limit.

				<u> </u>				
Mode of	EUT :	RX 2480 MHz			\geq			
Frequency	P-A	Correction Polari-	Meter Reading	Limits	Emission	Levels	Marg	gins
	Factor	Factor zation	(dBuy)	(dBuV/r	n) (dBuV	/m)	(d)	В)
(GHz)	(dB)	(dB)	AV Peak	AV Pe	ak AV	Peak	AV	Peak
4.9600	0.0	9.0 н	29.5 40.0	54.0 74	.0 38.5 <	49.0	15.5 >	25.0
7.4400	0.0	13.7 - ((< 27.0 < 40.0	54.0 74	.0 < 40.7 <	53.7 >	13.3 >	20.3
9.9200	0.0	16.7 <u>H</u>	29.2 / 40.0	54.0 74	.0 45.9 <	56.7	8.1 >	17.3
_								
1	Notes :	1) The spectrum wa	as checked from 1	.0 GHz to	12.4 GHz.			
2) The cable loss, amp. gain and antenna factor are included in the correction factor.								
		3) The symbol of	/ '<"means "or les	s".				
		4) The symbol of '	'>"means "or gre	ater".				
		5) A sample calcul	lation(Peak) was	made at 4	.804 (GHz).			
		PA + Ci	E + Mr = 0 + 8.8	+ 40 = 4	8.8 (dBuV/m)			
		PA = Pe	eak to Average Fa	actor(P-A	Factor)			
		Cf = Cc	orrection Factor					
		Mr = Me	eter Reading					
		6) Measuring Inst	rument Setting :					
		Detector fund	ction <u>Resolut</u>	ion Bandw	<u>vidth</u> <u>Video</u> Ba	<u>ndwidth</u>		
		Average(AV	<i>I</i>)	1 MHz	10 H	Iz		
		Peak		1 MHz	1 MH	Iz		

Tested by : _ Shigern Osawa

Shigeru Osawa Testing Engineer

2.14 AC Power Line Conducted Emissions for Receiver 2.14.1 AC Adaptor B1 (Model No.: UDA0001JAB)

Date :	Septemb	er 30, 20	02
Temp.:	23 °C	Humi.:	66 %

Mode of EUT : RX (including all RX mode) Test Port : AC power line

Frequency	LISN	Me	eter Read	ding (dBu	ıV)	Limi	ts	Emissi	on Lev	el Mar	gins
	Factor	V-	-A	V-1	В	(dE	BuV)	(dI	BuV)	(c	lB)
(MHz)	(dB)	Q.P	AVE	Q.P	AVE	Q.P	AVE	Q.P	AVE	Q.P	AVE
0.34	0.2	31.2	_	38.4	_	59.2	49.2	38.6	_	20.6	_
0.68	0.2	22.5	-	28.4	-	56.0	46.0	28.6	-	27.4	_
1.03	0.2	17.0	-	26.8	-	56.0	46.0	27.0	-	29.0	-
1.37	0.2	16.6	-	25.4	-	56.0	46.0	25.6	-	30.4	-
1.71	0.2	15.0	-	28.0	-	56.Q	46.0	28.2	-	27.8	-
2.05	0.2	16.2	_	28.9	-	56.0	46.0	29.1	-	26.9	-
2.74	0.2	35.6	-	43.2	- / -	256.0	46.0	43.4	-	12.6	-
3.08	0.2	39.2	-	46.8	42.8	56.0	46.0	47.0	43.0	9.0	3.0
3.43	0.2	30.7	-	38.0		56.0	¥6.0	38.2	-	17.8	-
5.82	0.2 <	: 10.0	-	20.9	-))	60.0<	50.0	21.1	-	38.9	-
8.68	0.2 <	: 10.0		< 10.0	\searrow	60.0	50.0	< 10.2	_	> 49.8	_
12.00	0.2	25.2	- /	31.7	\sim	260.0	50.0	31.9	-	28.1	_
15.07	0.3 <	: 10.0	- ((12.0	\checkmark	60.0	50.0	12.3	-	47.7	-
20.04	0.4 <	: 10.0	<u> </u>	< 10.0) –	60.0	50.0	< 10.4	-	> 49.6	-
26.19	0.5	17.0		19.3	/ _	60.0	50.0	19.8	-	40.2	-
29.94	0.6 <	: 10.0 (14.0	-	60.0	50.0	14.6	-	45.4	-
Notes :	1) The	spectrum	\was che	ked from	n 0.15	MHz to	30 MHz	•			
	2) The	cable lo	ss is in	øluded in	the L	ISN fac	tor.				
	3) The	symbol o	f "<"mea	ns "or l	ess".						
	4) The	symbol o	f ">"mea	ns "or g	greater	".					
	5) The	symbol o	f "-"mea	ns "Not	applic	able".					
	6) V-A	: One en	d & Grou	nd V-	B: Th	e other	end &	Ground			
	7) Q.P	: Quasi-	peak	AVE : Av	verage						
				_							

8) Asample calculation was made at 0.34 (MHz).

Lf + Mr = 0.2 + 38.4 = 38.6(dBuV)

- Lf = LISN Factor
- Mr = Meter Reading

ma Tested by :

Yoichi Nakajima Testing Engineer

AC POWER LINE CONDUCTED EMISSION MEASUREMENT

Model No. : UDB1H05JBS

2.14.2 AC Adaptor B2 (Model No.: UDA0001EAB)

Date :	January	21, 2003		
Temp.:	20 °C	Humi.:	35	00

Mode of EUT : RX (including all RX mode) Test Port : AC power line

Frequency	LISN	Me	ter Rea	ding (dBu	ıV)	Limi	ts	Emissi	on Lev	el Mar	gins
	Factor	V-	A	V-	В	(dE	uV)	(dB	uV)	(d	B)
(MHz)	(dB)	Q.P	AVE	Q.P	AVE	Q.P	AVE	Q.P	AVE	Q.P	AVE
0.18	0.2	48.8	-	48.6	_	64.5	54.5	49.0	_	15.5	_
0.28	0.2	38.8	-	39.0	-	60.8	50.8	39.2	_	21.6	-
0.39	0.2	34.4	-	32.0	-	58.1	48.1	34.6	-	23.5	-
0.48	0.2	31.5	-	36.7	-	56.3	46.3	36.9	-	19.4	-
0.67	0.2	24.0	-	32.8	-	56.0	46.0	33.0	-	23.0	-
0.88	0.2	30.5	-	33.5	-	56.0	46.0	33.7	-	22.3	-
1.29	0.2	33.5	-	34.3	-	58.0	46.0	34.5	-	21.5	-
2.02	0.2	28.0	-	31.0	- /.	256.0	46.0	31.2	-	24.8	-
3.06	0.2	25.2	-	27.7	_<~~	56.0	46.0	27.9	-	28.1	-
5.04	0.2	18.5	-	22.0		60.0	50.0	22.2	-	37.8	-
7.00	0.2	12.2	_	18,0	_))	60.0	50.0	18.2	-	41.8	_
10.00	0.2 <	10.0	-	11.0	\sim	60.0	50.0	11.2	-	48.8	-
12.00	0.2 <	10.0	- ;	10.0		∕60.0	50.0	< 10.2	-	> 49.8	-
15.00	0.3 <	10.0	- (1	10.0	Ì	60.0	50.0	< 10.3	-	> 49.7	-
20.00	0.4 <	10.0	(< 10.0) -	60.0	50.0	< 10.4	-	> 49.6	-
24.88	0.5	15.0 /		14.4	-	60.0	50.0	15.5	-	44.5	_
25.53	0.5	20.5 (/	-	19.5	-	60.0	50.0	21.0	-	39.0	-
27.49	0.6	18.2	-	//17.0	-	60.0	50.0	18.8	-	41.3	_
29.46	0.6	16.5	<u> </u>	14.3	-	60.0	50.0	17.1	-	42.9	-
Notes :	1) The	spectrum	was che	, ecked fro	m 0.15	MHz to	30 MH	z.			
	2) The	cable lo	ss is ir	ncluded i	n the	LISN fa	ctor.				
	3) The	symbol o	f "<"mea	ans "or	less".						
	4) The	symbol o	f ">"mea	ans "or	greate	r".					
	5) The	symbol o	f "-"mea	ans "Not	appli	cable".					
	6) V-A	: One en	d & Groi	ind V	-в : т	he othe	r end	& Ground			
	7) Q.P	: Quasi-	peak	AVE : A	verage						
	8) Asam	ple calc	ulation	was made	at 0.	18 (MH	z).				
		Lf + Mr	=0.2 +	48.8 =	49 (dBu	IV)					

- Lf = LISN Factor
- Mr = Meter Reading

ma Tested by : _

Yoichi Nakajima Testing Engineer

AC POWER LINE CONDUCTED EMISSION MEASUREMENT

Model No. : UDB1H05JBS

FCC ID : CJ6UDB1H05BT Issue Date : January 23, 2003 Page 74 of 77

Appendix

December 17, 2002

FCC ID : CJ6UDB1H05BT Issue Date : January 23, 2003

Test Receivers

No.	Туре	Model	Manufacturer	Serial	ID	Last Cal.	Interval
TR01	Test Receiver	ESH-2	Rohde & Schwarz	880370/016	119-01-503E0	May 2002	1 Year
TR02	Test Receiver	ESH-3	Rohde & Schwarz	881460/030	119-01-023E0	May 2002	1 Year
TR03	Test Receiver	ESHS10	Rohde & Schwarz	835871/004	119-01-505E0	May 2002	1 Year
TR04	Test Receiver	ESV	Rohde & Schwarz	872148/039	119-03-008E0	May 2002	1 Year
TR05	Test Receiver	ESVS10	Rohde & Schwarz	826148/002	119-03-504E0	May 2002	1 Year
TR06	Test Receiver	ESVS10	Rohde & Schwarz	832699/001	119-03-506E0	May 2002	1 Year
TR07	Test Receiver	ESI26	Rohde & Schwarz	100043	119-04-511E0	Aug. 2002	1 Year

Spectrum Analyzers

No.	Туре	Model	Manufacturer	Serial	ID	Last Cal.	Interval
SA01	Spectrum Analyzer	8560E	Hewlett Packard \wedge	3240A00189	122-02-504E0	Oct. 2002	1 Year
SA02	Spectrum Analyzer	8566B	Hewlett Packard	2140201091	122-02-501E0	Oct. 2002	1 Year
SA03	RF Pre-selector	85685A	Hewlett Packard	2648A00522	122-02-503E0	Oct. 2002	1 Year
SA04	Spectrum Analyzer	8566B	Hewlett Packard)	2747A05855	122-02-517E0	Apr. 2002	1 Year
SA05	RF Pre-selector	85685A	Hewlett Packard	2091A00933	122-02-519E0	Apr. 2002	1 Year
SA06	Spectrum Analyzer	8568A (Hewlett Rackard	1743A00140	122-02-508E0	Jun. 2002	1 Year
Ante	nnas						

Antennas

		$\langle \frown \rangle$					
No.	Туре	Model	Manufacturer	Serial	ID	Last Cal.	Interval
AN01	Loop Antenna	нғн2-22	Rohde & Schwarz	881058/62	-	Nov. 2002	1 Year
AN02	Dipole Antenna	КВА-511	Kyoritsu	0-170-1	119-05-506E0	Nov. 2002	1 Year
AN03	Dipole Antenna	KBA-511A	Kyoritsu	0-201-13	119-05-504E0	Nov. 2002	1 Year
AN04	Dipole Antenna	KBA-611	Kyoritsu	0-147-14	119-05-507E0	Nov. 2002	1 Year
AN05	Dipole Antenna	KBA-611	Kyoritsu	0-201-5	119-05-505E0	Nov. 2002	1 Year
AN06	Biconical Antenna	BBA9106	Schwarzbeck	VHA91031150	119-05-111E0	Nov. 2002	1 Year
AN07	Biconical Antenna	BBA9106	Schwarzbeck	-	119-05-078E0	Nov. 2002	1 Year
AN08	Log-peri. Antenna	UHALP9107	Schwarzbeck	-	119-05-079E0	Nov. 2002	1 Year
AN09	Log-peri. Antenna	UHALP9107	Schwarzbeck	-	119-05-110E0	Nov. 2002	1 Year
AN10	Log-peri. Antenna	HL025	Rohde & Schwarz	340182/015	119-05-079E0	Jan. 2002	1 Year
AN11	Horn Antenna	3115	EMC Test Systems	6442	119-05-514E0	Jan. 2002	1 Year
AN12	Horn Antenna	3116	EMC Test Systems	2547	119-05-515E0	May 2002	1 Year

FCC ID : CJ6UDB1H05BT Issue Date : January 23, 2003 Page 76 of 77

Networks

No.	Туре	Model	Manufacturer	Serial	ID	Last Cal.	Interval
NE01	LISN	KNW-407	Kyoritsu	8-833-6	149-04-052E0	Apr. 2002	1 Year
NE02	LISN	KNW-407	Kyoritsu	8-855-2	149-04-055E0	Apr. 2002	1 Year
NE03	LISN	KNW-407	Kyoritsu	8-1130-6	149-04-062E0	Apr. 2002	1 Year

Cables

No.	Туре	Model	Manufacturer	Serial	ID	Last Cal.	Interval			
CA01	RF Cable	5D-2W	Fujikura	-	155-21-001E0	Feb. 2002	1 Year			
CA02	RF Cable	5D-2W	Fujikura	-	155-21-002E0	Feb. 2002	1 Year			
CA03	RF Cable	3D-2W	Fujikura	-	155-21-005E0	Apr. 2002	1 Year			
CA04	RF Cable	3D-2W	Fujikura		155-21-006E0	Apr. 2002	1 Year			
CA05	RF Cable	3D-2W	Fujikura	$\langle 1 \rangle$	155-21-007E0	Apr. 2002	1 Year			
CA06	RF Cable	RG-213/U	Rohde & Schwarz		155-21-010E0	Apr. 2002	1 Year			
CA07	RF Cable(10m)	S 04272B	Suhner	-	155-21-011E0	May 2002	1 Year			
CA08	RF Cable(2m 18GHz)	SUCOFLEX 104	Suhner	_ </td <td>155-21-012E0</td> <td>May 2002</td> <td>1 Year</td>	155-21-012E0	May 2002	1 Year			
CA09	RF Cable(1m 18GHz)	SUCOFLEX 104	Suhner	-	155-21-013E0	May 2002	1 Year			
CA10	RF Cable(1m N)	S 04272B	Suhner	-	155-21-015E0	May 2002	1 Year			
CA11	RF Cable(1m 26GHz)	SUCOFLEX 104	Suhner	182811/4	155-21-016E0	Dec. 2002	1 Year			
CA12	RF Cable(4m 26GHz)	SUCOFLEX 104	Subner	190630	155-21-017E0	Dec. 2002	1 Year			
CA13	RF Cable(10m)	F130-S1S1-394	MEGA PHASE	10510	155-21-018E0	Dec. 2002	1 Year			
			Л							
Ampl	Amplifiers									

Amplifiers

No.	Туре	Model	Manufacturer	Serial	ID	Last Cal.	Interval
AM01	AF Amplifier	P-500L	Accuphase	BOY806	127-01-501E0	Feb. 2002	1 Year
AM02	RF Amplifier	8447D	Hewlett Packard	1937A02168	127-01-065E0	May 2002	1 Year
AM03	RF Amplifier	8447D	Hewlett Packard	2944A07289	127-01-509E0	May 2002	1 Year
AM04	RF Amplifier	ESV-Z3	Rohde & Schwarz	880827/002	127-04-501E0	May 2002	1 Year
AM05	RF Amplifier	DBP-0102N553	DBS Microwave	012	127-02-504E0	Jun. 2002	1 Year
AM06	RF Amplifier	WJ-6882-814	Watkins-Johnson	0414	127-04-017E0	Jun. 2002	1 Year
AM07	RF Amplifier	WJ-5315-556	Watkins-Johnson	106	127-04-006E0	Jun. 2002	1 Year
AM08	RF Amplifier	WJ-5320-307	Watkins-Johnson	645	127-04-005E0	Jun. 2002	1 Year
AM09	RF Amplifier	JS4-00102600 -28-5A	MITEQ	669167	127-04-502E0	Apr. 2002	1 Year

FCC ID : CJ6UDB1H05BT Issue Date : January 23, 2003 Page 77 of 77

Signal Generators

No.	Туре	Model	Manufacturer	Serial	ID	Last Cal.	Interval
SG01	Function Generator	3325B	Hewlett Packard	2847A03284	118-08-124E0	Jul. 2002	1 Year
SG02	Function Generator	VP-7422A	Matsushita Communication	050351E122	118-08-503E0	Jul. 2002	1 Year
SG03	Signal Generator	8664A	Hewlett Packard	3035A00140	118-03-014E0	Jul. 2002	1 Year
SG04	Signal Generator	8664A	Hewlett Packard	3438A00756	118-04-502E0	Jul. 2002	1 Year
SG05	Signal Generator	6061A	Gigatronics	5130593	118-04-024E0	May 2002	1 Year

Auxiliary Equipment

No.	Туре	Model	Manufacturer	Serial	ID	Last Cal.	Interval
AU01	Termination(50)	-	Suhner	-	154-06-501E0	Jan. 2002	1 Year
AU02	Termination(50)	-	Suhner		154-06-502E0	Jan. 2002	1 Year
AU03	Power Meter	436A	Hewlett Packard	1725A01930	100-02-501E0	Apr. 2002	1 Year
AU04	Power Sensor	8482A	Hewlett Packard	1551201013	100-02-501E0	Apr. 2002	1 Year
AU05	Power Sensor	8485A	Hewlett Packard	2942408969	100-04-021E0	Apr. 2002	1 Year
AU06	FM Linear	MS61A	Anritsa	м77486	123-02-008E0	Oct. 2002	1 Year
AU07	Level Meter	ML422C	Anritsu	M87571	114-02-501E0	Jun. 2002	1 Year
AU08	Measuring Amplifier	2636	В&К	1614851	082-01-502E0	Jun. 2002	1 Year
AU09	Microphone	4134	В&К	1269477	147-01-503E0	May 2002	1 Year
AU10	Preamplifier	2639	B&K	1268763	127-01-504E0	May 2002	1 Year
AU11	Pistonphone	4220	B/& K	1165008	147-02-501E0	Mar. 2002	1 Year
AU12	Artificial Mouth	4227	B & K	1274869	-	N/A	N/A
AU13	Frequency Counter	53131A	Hewlett Packard	3546A11807	102-02-075E0	May 2002	1 Year
AU14	Oven	-	Ohnishi	-	023-02-018E0	May 2002	1 Year
AU15	DC Power Supply	6628A	Hewlett Packard	3224A00284	072-05-503E0	Jun. 2002	1 Year
AU16	Band Reject	BRM12294	Micro-tronics	003	149-01-501E0	Jan. 2002	1 Year
AU17	Filter High Pass Filter	F-100-4000 -5-R	RLC Electronics	0149	149-01-502E0	Feb. 2002	1 Year
AU18	Attenuator	43KC-10	Anritsu	-	148-03-506E0	Feb. 2002	1 Year
AU19	Attenuator	43KC-20	Anritsu	-	148-03-507E0	Feb. 2002	1 Year
AU20	Attenuator	355D	Hewlett Packard	219-10782	148-03-065E0	Apr. 2002	1 Year
AU21	FFT Analyzer	R9211C	Advantest	02020253	122-02-506E0	June 2002	1 Year
AU22	Noise Meter	MN-446	Meguro	53030478	082-01-144E0	May 2002	1 Year