

FCC Test Report

Report No.: RWAQ202400265A

Applicant: Shenzhen VanTop Technology & Innovation Co., Ltd.

Address: 506, BLDG 4, Pingshan minQi Technology Park, No. 65 Lishan

Road, Pingshan Community, Taoyuan Street, Nanshan District,

Shenzhen, China

Product Name: REMOTE

Product Model: DR-ST130B

Multiple Models: DR-ATM11B

Trade Mark: N/A

FCC ID: 2AQ3A-ST130BR2423

Standards: FCC CFR Title 47 Part 15C (§15.249)

Test Date: 2024-04-01to 2024-04-09

Test Result: Complied

Report Date: 2024-04-17

Reviewed by:

Approved by:

Abel Chen

Project Engineer

Jacob Kong

Jacob Gong

Manager

Prepared by:

World Alliance Testing & Certification (Shenzhen) Co., Ltd

No. 1002, East Block, Laobing Building, Xingye Road 3012, Xixiang street, Bao'an District, Shenzhen, Guangdong, People's Republic of China

This report may contain data that are not covered by the NVLAP accreditation and shall be marked with an asterisk "★"

Report Template: TR-4-E-049/V1.0 Page 1 of 28

Announcement

- 1. This test report shall not be reproduced except in full, without the written approval of World Alliance Testing & Certification (Shenzhen) Co., Ltd
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.
- 5. The information marked "#" is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

Revision History

Version No. Issued Date		Description	
00	2024-04-17	Original	

Report Template: TR-4-E-049/V1.0 Page 2 of 28

Contents

1	Genei	al information	4
	1.1	Client Information	4
	1.2	Product Description of EUT	4
	1.3	Antenna information	4
	1.4	Related Submittal(s)/Grant(s)	5
	1.5	Measurement Uncertainty	5
	1.6	Laboratory Location	5
	1.7	Test Methodology	5
2	Descr	iption of Measurement	6
	2.1	Test Configuration	6
	2.2	Test Auxiliary Equipment	6
	2.3	Test Setup	7
	2.4	Test Procedure	8
	2.5	Measurement Method	. 10
	2.6	Measurement Equipment	. 10
3	Test F	Results	. 11
	3.1	Test Summary	11
	3.2	Limit	. 12
	3.3	AC Line Conducted Emissions Test Data	. 13
	3.4	Radiated emission Test Data	. 14
	3.5	Bandwidth Test Data	. 26
4	Test S	Setup Photo	. 27
_	E 11 T	Photo	20

1 General Information

1.1 Client Information

Applicant:	Shenzhen VanTop Technology & Innovation Co., Ltd.			
Address:	506, BLDG 4, Pingshan minQi Technology Park, No. 65 Lishan Road,			
	Pingshan Community, Taoyuan Street, Nanshan District, Shenzhen, China			
Manufacturer:	Shenzhen VanTop Technology & Innovation Co., Ltd.			
Address:	506, BLDG 4, Pingshan minQi Technology Park, No. 65 Lishan Road,			
	Pingshan Community, Taoyuan Street, Nanshan District, Shenzhen, China			

1.2 Product Description of EUT

The EUT is REMOTE that contains a 2.4G SRD radio, this report covers the full testing of the 2.4G SRD radio.

Test Model	DR-ST130B
Multiple Models	DR-ATM11B
Sample Serial Number	74-2 for RE test (assigned by WATC)
Sample Received Date	2024-3-28
Sample Status	Good Condition
Frequency Range	2420-2460MHz
Maximum E-field Strength:	100.19dBuV/m@3m
Modulation Technology	GFSK
Antenna Gain [#]	0dBi
Spatial Streams [#]	SI (1TX)
Power Supply	DC 4.5V from battery
Operating temperature#	0 deg.C to +40 deg.C
Adapter Information	N/A
Modification	Sample No Modification by the test lab

1.3 Antenna information

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Device Antenna information:

The antenna is an internal antenna which cannot replace by end-user. Please see product internal photos for details.

Report Template: TR-4-E-049/V1.0 Page 4 of 28

1.4 Related Submittal(s)/Grant(s)

No Related Submittal(s)/Grant(s)

1.5 Measurement Uncertainty

Parameter		Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))		
AC Power Lines Condu	ucted Emissions	±3.14dB		
	Below 30MHz	±2.78dB		
Emissions, Radiated	Below 1GHz	±4.84dB		
	Above 1GHz	±5.44dB		
Bandwidth		0.34%		

Note 1: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Note 2: The Decision Rule is based on simple acceptance with ISO Guide 98-4:2012 Clause 8.2 (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

1.6 Laboratory Location

World Alliance Testing & Certification (Shenzhen) Co., Ltd

No. 1002, East Block, Laobing Building, Xingye Road 3012, Xixiang street, Bao'an District, Shenzhen, Guangdong, People's Republic of China

Tel: +86-755-29691511, Email: qa@watc.com.cn

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 463912, the FCC Designation No. : CN5040.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0160.

1.7 Test Methodology

FCC CFR 47 Part 2

FCC CFR 47 Part 15

ANSI C63.10-2013

Report Template: TR-4-E-049/V1.0 Page 5 of 28

2 Description of Measurement

2.1 Test Configuration

Operating channels:						
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	
1	2420	2	2440	3	2460	

According to ANSI C63.10-2013 chapter 5.6.1 Table 11 requirement, select lowest/middle/highest frequency in the frequency range in which device operates for testing. The detailed frequency points are as follows:

Lowest channel		Middle channel		Highest channel	
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
1	2420	2	2440	3	2460

Test Mode:					
Transmitting mode:	Kee	Keep the EUT in continuous transmitting with modulation			
Exercise software [#] :	Eng	ngineering mode, EUT was configured to test mode by manufacturer			
Mode		Power Level Setting [#]			
		Low Channel	Middle Channel	High Channel	
SRD		Default	Default	Default	
The exercise software and the maximum power setting that provided by manufacturer.					

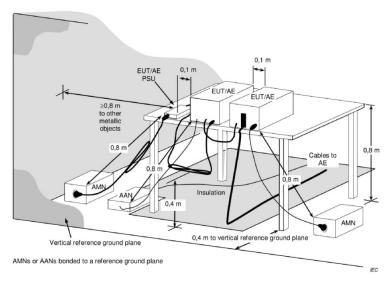
Worst-Case Configuration:

For radiated emissions, EUT was investigated in three orthogonal orientation, the worst-case orientation was recorded in report

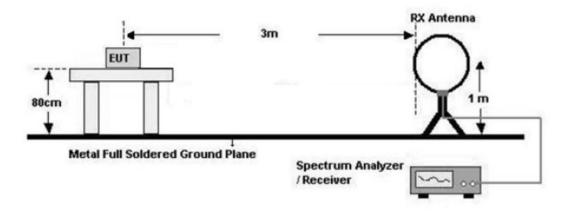
For radiated emission 9kHz-30MHz and above 18GHz were performed with the EUT transmits at the channel with highest output power as worst-case scenario.

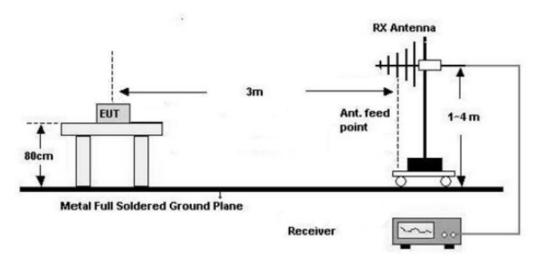
2.2 Test Auxiliary Equipment

Manufacturer	Description	Model	Serial Number
1	1	1	1

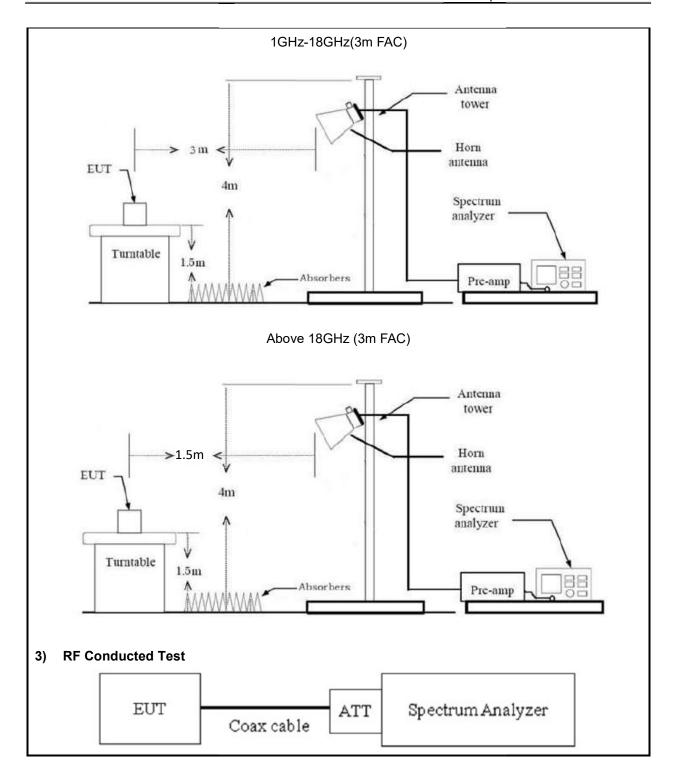

Report Template: TR-4-E-049/V1.0 Page 6 of 28

2.3 Test Setup


1) Conducted emission measurement:


Note: The 0.8 m distance specified between EUT/AE/PSU and AMN/AAN, is applicable only to the EUT being measured. If the device is AE then it shall be >0.8 m.

2) Radiated emission measurement:


Below 30MHz (3m SAC)

30MHz-1GHz (3m SAC)

2.4 Test Procedure

Conducted emission:

- 1. The E.U.T is placed on a non-conducting table 40cm from the vertical ground plane and 80cm above the horizontal ground plane (Please refer to the block diagram of the test setup and photographs).
- 2. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
- 3. Line conducted data is recorded for both Line and Neutral

Radiated Emission Procedure:

a) For below 30MHz

- 1. All measurements were made at a test distance of 3 m. The measured data was extrapolated from the test distance (3m) to the specification distance (300 m from 9-490 kHz and 30 m from 490 kHz- 30 MHz) to clearly show the relative levels of fundamental and spurious emissions and demonstrate compliance with the requirement that the level of any spurious emissions be below the level of the intentionally transmitted signal. The extrapolation factor for the limits were 40*Log (test distance / specification distance).
- 2. Loop antenna use, investigation was done on the three antenna orientations (parallel, perpendicular, gound-parallel)

b) For 30MHz-1GHz:

- 1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m.
- 2. EUT works in each mode of operation that needs to be tested. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.

c) For above 1GHz:

- 1. The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m (1-18GHz) and 1.5 m (above 18GHz).
- 2. EUT works in each mode of operation that needs to be tested, and having the EUT continuously working. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.
- 3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
- 4. Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

Bandwidth Test:

- 1. The antenna port of EUT was connected to the RF port of the Spectrum analyzer through Attenuator and RF cable.
- 2. The EUT is keeping in continuous transmission mode.
- 3. Test the bandwidth and record the result

2.5 Measurement Method

Description of Test	Measurement Method
AC Line Conducted Emissions	ANSI C63.10-2013 Section 6.2
20dB Emission Bandwidth	ANSI C63.10-2013 Section 6.9.2
Field strength of fundamental and Radiated emission	ANSI C63.10-2013 Section 6.3&6.4&6.5&6.6&7.6

2.6 Measurement Equipment

Manufacturer	Description	Model	Management No.	Calibration Date	Calibration Due Date	
Radiated Emission Test						
R&S	EMI test receiver	ESR3	102758	2023/7/3	2024/7/2	
ROHDE& SCHWARZ	SPECTRUM ANALYZER	FSV40-N	101608	2023/7/3	2024/7/2	
SONOMA INSTRUMENT	Low frequency amplifier	310	186014	2023/7/12	2024/7/11	
COM-POWER	preamplifier	PAM-118A	18040152	2023/8/21	2024/8/20	
COM-POWER	Amplifier	PAM-840A	461306	2023/8/8	2024/8/7	
BACL	Loop Antenna	1313-1A	4010611	2024/2/7	2027/2/6	
SCHWARZBECK	Log - periodic wideband antenna	VULB 9163	9163-872	2023/7/7	2024/7/6	
Astro Antenna Ltd	Horn antenna	AHA-118S	3015	2023/7/6	2024/7/5	
Ducommun technologies	Horn Antenna	ARH-4223-02	1007726-03	2023/7/10	2024/7/9	
Oulitong	Band Reject Filter	OBSF-2400-248 3.5-50N	OE02103119	2023/9/15	2024/9/14	
N/A	Coaxial Cable	N/A	NO.9	2023/8/8	2024/8/7	
N/A	Coaxial Cable	N/A	NO.10	2023/8/8	2024/8/7	
N/A	Coaxial Cable	N/A	NO.11	2023/8/8	2024/8/7	
Audix	Test Software	E3	191218 V9	1	/	
	RF Conducted Test					
ROHDE& SCHWARZ	SPECTRUM ANALYZER	FSU-26	200680/026	2023/7/12	2024/7/11	
narda	6dB attenuator	603-06-1	N/A	2023/7/26	2024/7/25	

Note: All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or International standards.

Report Template: TR-4-E-049/V1.0 Page 10 of 28

3 Test Results

3.1 Test Summary

FCC Rules	Description of Test	Result
FCC §15.203	Antenna Requirement	Compliance
FCC §15.207(a)	AC Line Conducted Emissions	N/A
FCC §15.215(c)	20dB Emission Bandwidth	Report only
FCC §15.205, §15.209, §15.249	Field strength of fundamental and Radiated emission	Compliance

3.2 Limit

Test items	Limit							
AC Line Conducted Emissions	See details §15.207 (a)							
	The field strength of fundamental and harmonic emissions measured at 3 m shall not exceed the limits as below:							
	Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)					
	902-928 MHz	50	500					
	2400-2483.5 MHz	50	500					
	5725-5875 MHz	50	500					
	24.0-24.25 GHz	250	2500					
Field strength of fundamental and Radiated emission	fundamental emiss measurements usi (CISPR) quasi-pea Emissions radiated harmonics, shall be fundamental or to the lesser attenuat For frequencies abbased on average not exceed the ma	d outside of the specified freque e attenuated by at least 50 dB t the general radiated emission li	928 MHz, which is based on mmittee on Radio Interference ency bands, except for pelow the level of the emits in § 15.209, whichever is th limits in above table are strength of any emission shall					

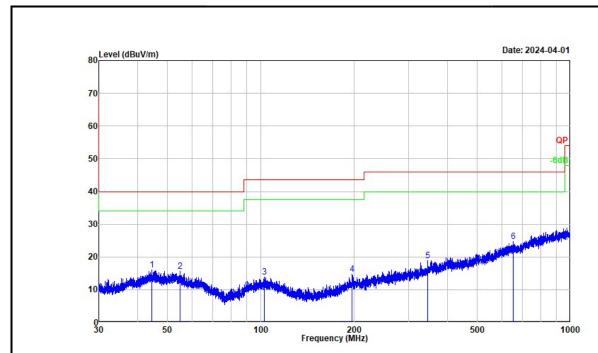
3.3 AC Line Conducted Emissions Test Data

Not applicable, the device only powered by battery

3.4 Radiated emission Test Data

9 kHz-30MHz:

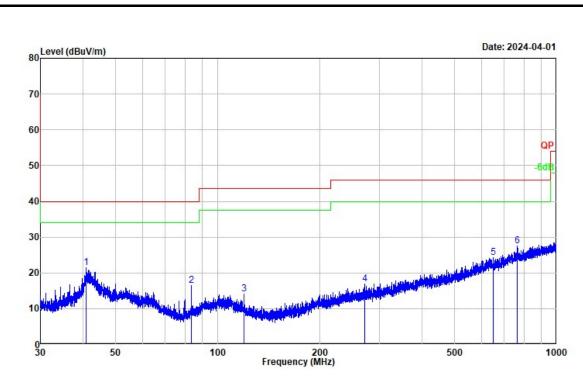
Test Date:	2024-04-01	Test By:	Bard Huang
Environment condition:	Temperature: 24.2°C; Relative	Humidity:65%; ATM Pr	essure: 100.4kPa


For radiated emissions below 30MHz, there were no emissions found within 20dB of limit.

Report Template: TR-4-E-049/V1.0 Page 14 of 28

30MHz-1GHz:

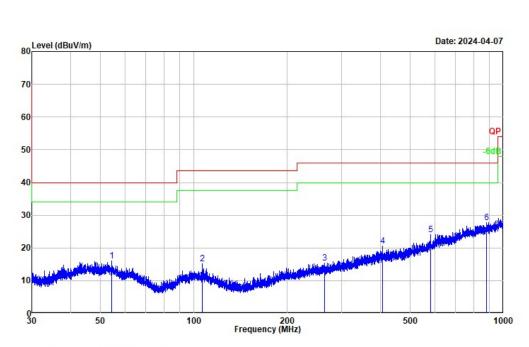
Test Date:	2024-04-01	Test By:	Bard Huang
Environment condition:	Temperature: 24.2°C; Relative	Humidity:65%; ATM Pr	essure: 100.4kPa



Project No. : RWAQ202400265 Test Mode : Transmitting Test Voltage : Power by battery Environment : 24.2℃/65%R.H./100.4kPa

Tested by : Bard Huang Polarization : horizontal : 2420MHz

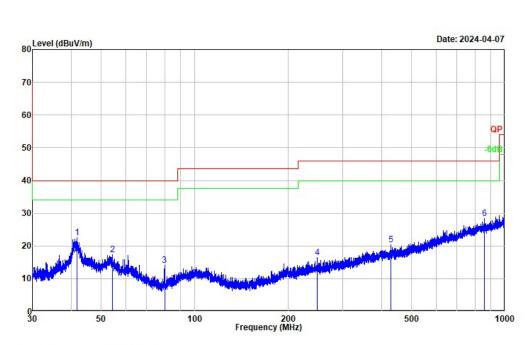
No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	44.569	28.36	-12.24	16.12	40.00	-23.88	Peak
2	55.007	28.29	-12.70	15.59	40.00	-24.41	Peak
3	102.510	27.90	-14.07	13.83	43.50	-29.67	Peak
4	197.420	28.77	-13.92	14.85	43.50	-28.65	Peak
5	345.701	28.74	-9.79	18.95	46.00	-27.05	Peak
6	654.771	28.72	-4.03	24.69	46.00	-21.31	Peak


Project No. : RWAQ202400265
Test Mode : Transmitting
Test Voltage : Power by battery

Environment : 24.2°C/65%R.H./100.4kPa

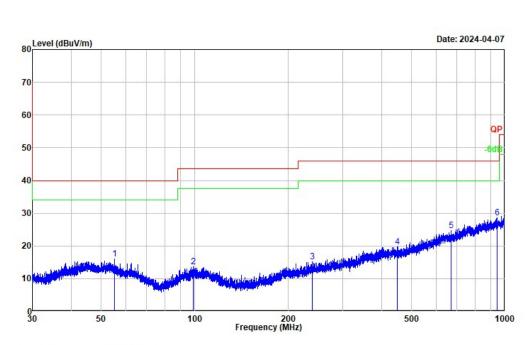
Tested by : Bard Huang Polarization : vertical Remark : 2420MHz

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	40.990	34.17	-12.81	21.36	40.00	-18.64	Peak
2	83.496	33.89	-17.45	16.44	40.00	-23.56	Peak
3	119.666	29.79	-15.78	14.01	43.50	-29.49	Peak
4	271.280	28.86	-12.00	16.86	46.00	-29.14	Peak
5	649.625	28.35	-4.11	24.24	46.00	-21.76	Peak
6	766.368	29.73	-2.25	27.48	46.00	-18.52	Peak



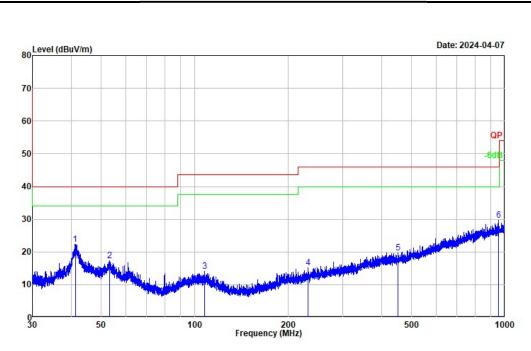
Tested by : Bard Huang Polarization : horizontal Remark : 2440MHz

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	54.265	28.50	-12.55	15.95	40.00	-24.05	Peak
2	106.776	29.13	-14.03	15.10	43.50	-28.40	Peak
3	264.934	27.53	-12.14	15.39	46.00	-30.61	Peak
4	407.469	29.06	-8.48	20.58	46.00	-25.42	Peak
5	582.192	29.66	-5.60	24.06	46.00	-21.94	Peak
6	882.553	28.61	-0.87	27.74	46.00	-18.26	Peak



Tested by : Bard Huang Polarization : vertical Remark : 2440MHz

No.	Frequency (MHz)	Reading (dBµV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	41.770	35.11	-12.58	22.53	40.00	-17.47	Peak
2	54.313	29.81	-12.56	17.25	40.00	-22.75	Peak
3	79.985	32.16	-18.08	14.08	40.00	-25.92	Peak
4	248.509	28.88	-12.45	16.43	46.00	-29.57	Peak
5	428.913	28.60	-8.30	20.30	46.00	-25.70	Peak
6	858.512	29.56	-1.19	28.37	46.00	-17.63	Peak



Tested by : Bard Huang Polarization : horizontal Remark : 2460MHz

No.	Frequency (MHz)	Reading (dBµV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	55.273	28.78	-12.75	16.03	40.00	-23.97	Peak
2	98.934	28.14	-14.40	13.74	43.50	-29.76	Peak
3	239.314	27.80	-12.72	15.08	46.00	-30.92	Peak
4	450.892	27.98	-8.25	19.73	46.00	-26.27	Peak
5	671.338	28.73	-4.01	24.72	46.00	-21.28	Peak
6	943.777	28.64	0.07	28.71	46.00	-17.29	Peak

Tested by : Bard Huang Polarization : vertical Remark : 2460MHz

No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	41.242	35.05	-12.74	22.31	40.00	-17.69	Peak
2	53.158	29.74	-12.32	17.42	40.00	-22.58	Peak
3	107.386	28.24	-14.04	14.20	43.50	-29.30	Peak
4	232.082	28.14	-12.95	15.19	46.00	-30.81	Peak
5	451.486	28.03	-8.25	19.78	46.00	-26.22	Peak
6	954.177	29.50	0.26	29.76	46.00	-16.24	Peak

Remarks: Factor = Antenna factor + Cable loss - Preamp gain

Remark:

Result = Reading + Factor

Factor = Antenna factor + Cable loss - Amplifier gain

Over Limit = Result – Limit

Above 1GHz:

Test Date:	2024-04-09	Test By:	Bard Huang
Environment condition:	Temperature: 23.6°C; Relative	Humidity:62%; ATM Pr	essure: 100.9kPa

Frequency (MHz)	Reading level (dBµV)	Polar	Corrected Factor (dB/m)	Corrected Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark	
Low Channel								
2420.000	101.79	horizontal	-1.78	100.01	114.00	-13.99	Peak	
2420.000	93.37	vertical	-1.78	91.59	114.00	-22.41	Peak	
2400.000	64.67	horizontal	-1.76	62.91	74.00	-11.09	Peak	
2400.000	55.56	vertical	-1.76	53.80	74.00	-20.20	Peak	
4840.000	56.46	horizontal	0.29	56.75	74.00	-17.25	Peak	
7260.000	60.24	horizontal	3.17	63.41	74.00	-10.59	Peak	
4840.000	54.95	vertical	0.29	55.24	74.00	-18.76	Peak	
7260.000	57.31	vertical	3.17	60.48	74.00	-13.52	Peak	
			Middle C	hannel				
2440.000	101.60	horizontal	-1.78	99.82	114.00	-14.18	Peak	
2440.000	94.23	vertical	-1.78	92.45	114.00	-21.55	Peak	
4880.000	59.33	horizontal	0.44	59.77	74.00	-14.23	Peak	
7320.000	54.80	horizontal	3.04	57.84	74.00	-16.16	Peak	
4880.000	53.58	vertical	0.44	54.02	74.00	-19.98	Peak	
7320.000	54.36	vertical	3.04	57.40	74.00	-16.60	Peak	
			High Ch	annel				
2460.000	101.97	horizontal	-1.78	100.19	114.00	-13.81	Peak	
2460.000	93.06	vertical	-1.78	91.28	114.00	-22.72	Peak	
2483.500	63.05	horizontal	-1.75	61.30	74.00	-12.70	Peak	
2483.500	54.84	vertical	-1.75	53.09	74.00	-20.91	Peak	
4920.000	58.32	horizontal	0.66	58.98	74.00	-15.02	Peak	
7380.000	54.13	horizontal	3.09	57.22	74.00	-16.78	Peak	
4920.000	51.95	vertical	0.66	52.61	74.00	-21.39	Peak	
7380.000	55.28	vertical	3.09	58.37	74.00	-15.63	Peak	

Remark:

Corrected Amplitude= Reading level + corrected Factor

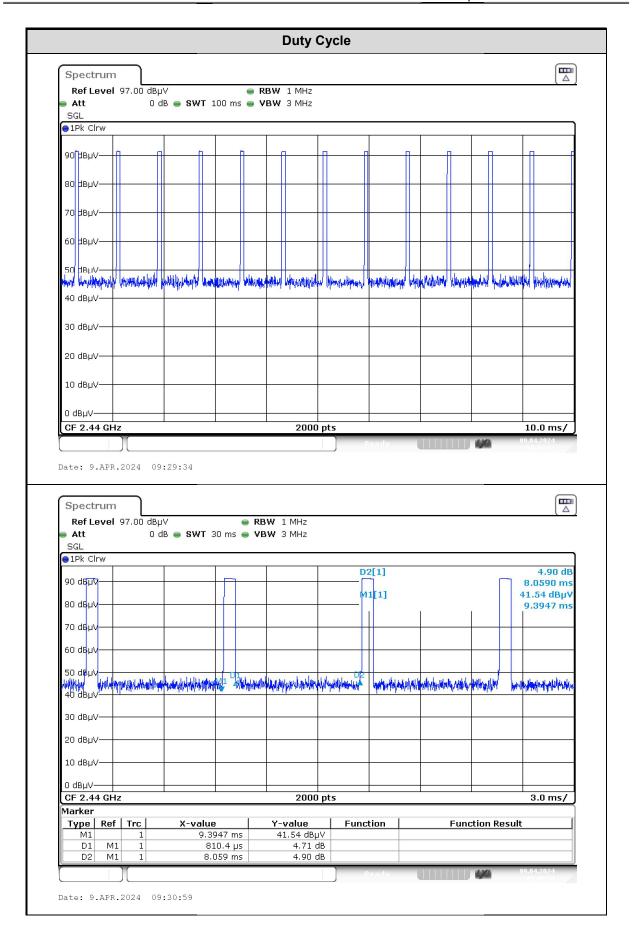
Corrected Factor = Antenna factor + Cable loss – Amplifier gain

Margin = Corrected Amplitude – Limit

The emission levels of other frequencies that were lower than the limit 20dB not show in test report. For emissions in 18GHz-25GHz range, all emissions were investigated and in the noise floor level.

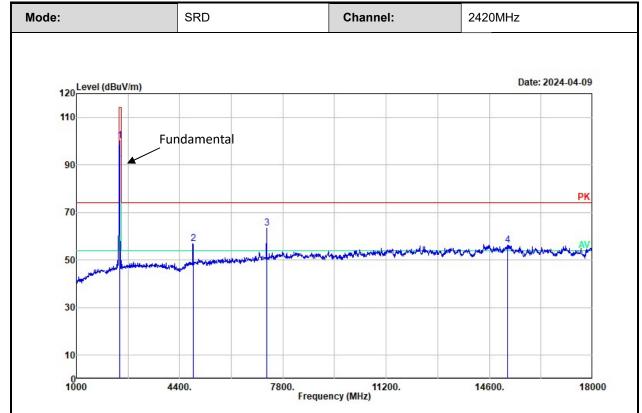
Report Template: TR-4-E-049/V1.0 Page 21 of 28

Field strength of average:

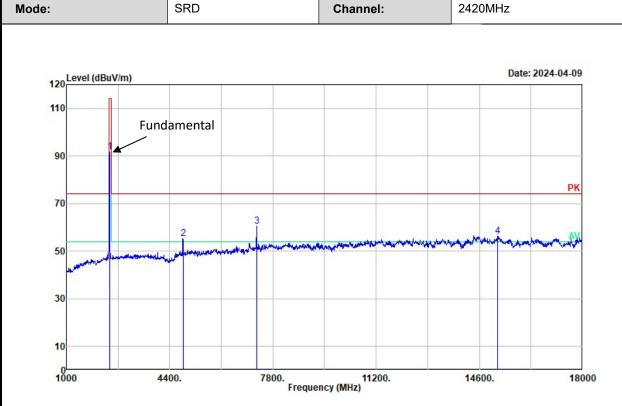

Frequency (MHz)	Peak level (dBµV/m)	Polar (H/V)	Duty Cycle Factor (dB)	Average Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Remark	
	Low Channel							
2420	100.01	horizontal	-19.96	80.05	94	-13.95	Average	
2420	91.59	vertical	-19.96	71.63	94	-22.37	Average	
2400	62.91	horizontal	-19.96	42.95	54	-11.05	Average	
2400	53.8	vertical	-19.96	33.84	54	-20.16	Average	
4840	56.75	horizontal	-19.96	36.79	54	-17.21	Average	
7260	63.41	horizontal	-19.96	43.45	54	-10.55	Average	
4840	55.24	vertical	-19.96	35.28	54	-18.72	Average	
7260	60.48	vertical	-19.96	40.52	54	-13.48	Average	
			Middle C	hannel				
2440	99.82	horizontal	-19.96	79.86	94	-14.14	Average	
2440	92.45	vertical	-19.96	72.49	94	-21.51	Average	
4880	59.77	horizontal	-19.96	39.81	54	-14.19	Average	
7320	57.84	horizontal	-19.96	37.88	54	-16.12	Average	
4880	54.02	vertical	-19.96	34.06	54	-19.94	Average	
7320	57.4	vertical	-19.96	37.44	54	-16.56	Average	
			High Ch	annel				
2460	100.19	horizontal	-19.96	80.23	94	-13.77	Average	
2460	91.28	vertical	-19.96	71.32	94	-22.68	Average	
2483.5	61.3	horizontal	-19.96	41.34	54	-12.66	Average	
2483.5	53.09	vertical	-19.96	33.13	54	-20.87	Average	
4920	58.98	horizontal	-19.96	39.02	54	-14.98	Average	
7380	57.22	horizontal	-19.96	37.26	54	-16.74	Average	
4920	52.61	vertical	-19.96	32.65	54	-21.35	Average	
7380	58.37	vertical	-19.96	38.41	54	-15.59	Average	

Remark:

Average Amplitude= Peak level + Duty Cycle Factor Margin= Average Amplitude - Limit


Duty Cycle=Ton/Tp=0.810/8.059=10.05% Duty Cycle Factor=20*log(Duty Cycle)=-19.96

Test plot for example as below:


Project No. : RWAQ202400265
Test Mode : Transmitting
Test Voltage : Power By Battery

Environment : 23.6℃/62%R.H./100.9kPa

Tested by : Bard Huang Polarization : horizontal Remark : 2420MHz

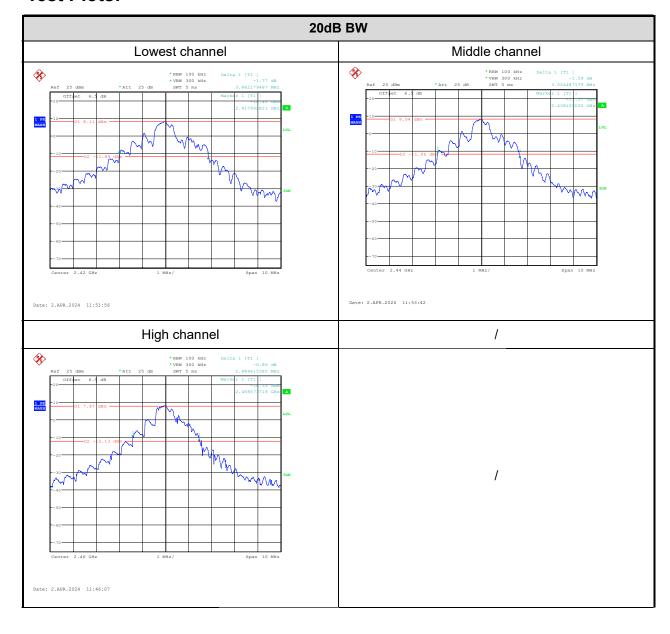
No.	Frequency (MHz)	Reading (dBμV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	2420.000	101.79	-1.78	100.01	114.00	-13.99	Peak
2	4840.000	56.46	0.29	56.75	74.00	-17.25	Peak
3	7260.000	60.24	3.17	63.41	74.00	-10.59	Peak
4	15202.100	47.68	8.71	56.39	74.00	-17.61	Peak

Project No. : RWAQ202400265
Test Mode : Transmitting
Test Voltage : Power By Battery

Environment : 23.6℃/62%R.H./100.9kPa Tested by : Bard Huang

Tested by : Bard Huang Polarization : vertical Remark : 2420MHz

No.	Frequency (MHz)	Reading (dBµV)	Factor (dB/m)	Result (dBμV/m)	Limit (dBμV/m)	Over Limit (dB)	Detector
1	2420.000	93.37	-1.78	91.59	114.00	-22.41	Peak
2	4840.000	54.95	0.29	55.24	74.00	-18.76	Peak
3	7260.000	57.31	3.17	60.48	74.00	-13.52	Peak
4	15202.100	47.58	8.71	56.29	74.00	-17.71	Peak



3.5 Bandwidth Test Data

Test Date:	2024-04-02	Test By:	Ryan Zhang
Environment condition:	Temperature: 23.3°C; Relative Humidity:60%;		essure: 101.3kPa

Channel	20dB BW [MHz]
Low	3.862
Middle	3.554
High	2.885

Test Plots:

4 Test Setup Photo

Please refer to the attachment RWAQ202400265 Test Setup photo.

5 E.U.T Photo

Please refer to the attachment

- 1. RWAQ202400265 DR-ST130B External photo;
- 2. RWAQ202400265 DR-ST130B Internal photo;
- 3. RWAQ202400265 DR-ATM11B External photo;
- 4. RWAQ202400265 DR-ATM11B Internal photo.

---End of Report---

Report Template: TR-4-E-049/V1.0 Page 28 of 28