

Airplove (Xiamen) Electronic Co., Ltd. RF TEST REPORT

Report Type:

FCC Part 15.247 & ISED RSS-247 RF report

Model: AP-M1010L

REPORT NUMBER: 210701060SHA-002

ISSUE DATE: August 12, 2021

DOCUMENT CONTROL NUMBER: TTRF15.247-03_V1 © 2018 Intertek

Intertek Testing Services Shanghai Building No.86, 1198 Qinzhou Road (North) Caohejing Development Zone Shanghai 200233, China

> Telephone: 86 21 6127 8200 www.intertek.com

Report no.: 210701060SHA-002

Applicant:	Airplove (Xiamen) Electronic Co., Ltd. 3F, No.823-1, Fangshan Dong Er Road, Xiang'an District, Xiamen
Manufacturer:	Airplove (Xiamen) Electronic Co., Ltd. 3F, No.823-1, Fangshan Dong Er Road, Xiang'an District, Xiamen
Factory	Airplove (Xiamen) Electronic Co., Ltd. 3F, No.823-1, Fangshan Dong Er Road, Xiang'an District, Xiamen
FCC ID: IC:	2AWVWAPM1010L 26287-APM1010L

SUMMARY:

The equipment complies with the requirements according to the following standard(s) or Specification: **47CFR Part 15 (2019):** Radio Frequency Devices (Subpart C)

ANSI C63.10 (2013): American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

RSS-247 Issue 2 (February 2017): Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

RSS-Gen Issue 5 (March 2019) Amendment 1: General Requirements for Compliance of Radio Apparatus

PREPARED BY:

Frie. U

Project Engineer Eric Li

REVIEWED BY:

Reviewer Daniel Zhao

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Content

REVI	REVISION HISTORY					
MEA	SUREMENT RESULT SUMMARY	6				
1	GENERAL INFORMATION					
1.1 DESCRIPTION OF EQUIPMENT UNDER TEST (EUT)						
1.						
1.						
	.4 DESCRIPTION OF TEST FACILITY					
2	TEST SPECIFICATIONS					
2.	.1 Standards or specification	9				
2.		-				
2.						
2.		-				
2.		-				
2.						
2.	.7 Measurement uncertainty	13				
3	MINIMUM 6DB BANDWIDTH	14				
3.	.1 Liмit	14				
3.						
3.						
3.						
4	MAXIMUM CONDUCTED OUTPUT POWER AND E.I.R.P.	15				
4.	.1 Liмit					
4.	.2 Measurement Procedure					
4.	.3 Test Configuration	16				
4.	.4 TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER	16				
5	POWER SPECTRUM DENSITY	17				
5.	.1 Liмit					
5.						
5.						
5.	.4 Test Results of Power spectrum density	18				
6	EMISSION OUTSIDE THE FREQUENCY BAND	19				
6.	.1 Liмit	19				
6.	.2 Measurement Procedure	19				
6.	.3 Test Configuration	20				
6.	.4 The results of Emission outside the frequency band	20				
7	RADIATED EMISSIONS IN RESTRICTED FREQUENCY BANDS	21				
7.						
7.	.2 Measurement Procedure	21				
7.	Measurement Procedure					
7.						
8	POWER LINE CONDUCTED EMISSION	29				
8.	.1 Liмit	29				
8.	.2 Test Configuration	29				
8.	Measurement Procedure					

intertek Total Quality. Assured.

TEST REPORT

8.4	4 TE	est Results of Power line conducted emission	31
9	οςςι	UPIED BANDWIDTH	33
9.:	1 Lir	МІТ	33
9.2	2 M	IEASUREMENT PROCEDURE	33
9.3	3 TE	EST CONFIGURATION	33
9.4	4 T⊦	HE RESULTS OF OCCUPIED BANDWIDTH	33
10	ANTE	ENNA REQUIREMENT	34
APPE	NDIX	A: TEST RESULTS	35

Revision History

Report No.	Version	Description	Issued Date
210701060SHA-002	Rev. 01	Initial issue of report	August 12, 2021

Measurement result summary

TEST ITEM	FCC REFERANCE	IC REFERANCE	RESULT
Minimum 6dB Bandwidth	15.247(a)(2)	RSS-247 Issue 2 Clause 5.2	Pass
Maximum conducted output power and e.i.r.p.	15.247(b)(3)	RSS-247 Issue 2 Clause 5.4	Pass
Power spectrum density	15.247(e)	RSS-247 Issue 2 Clause 5.2	Pass
Emission outside the frequency band	15.247(d)	RSS-247 Issue 2 Clause 5.5	Pass
Radiated Emissions in restricted frequency bands	15.247(d), 15.205&15.209	RSS-Gen Issue 5 Clause 8.9&8.10	Pass
Power line conducted emission	15.207(a)	RSS-Gen Issue 5 Clause 8.8	Pass
Occupied bandwidth	-	RSS-Gen Issue 5 Clause 6.6	Tested
Antenna requirement	15.203	-	Pass

Notes: 1: NA =Not Applicable

intertek Total Quality. Assured. TEST REPORT

1 GENERAL INFORMATION

1.1 Description of Equipment Under Test (EUT)

Product name:	Smart Air Purifier		
Type/Model/PMN/HVIN:	AP-M1010L		
Description of EUT:	The EUT is air purifier, it supports bluetooth and wifi functions, there is only one model, we test it and list the worst results in this report.		
Rating:	120V~,60Hz,36W		
EUT type:	Table top 🔲 Floor standing		
Software Version:	/		
Hardware Version:	/		
Sample Identification No.:	0210806-15-001		
Sample received date:	2021.8.3		
Date of test:	2021.8.4-2021.8.10		

1.2 Technical Specification

Frequency Band:	2400MHz ~ 2483.5MHz
Support Standards:	IEEE 802.11b, IEEE 802.11g, IEEE 802.11n(HT20)
	IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK)
	IEEE 802.11g: OFDM (64-QAM, 16-QAM, QPSK, BPSK)
Type of Modulation:	IEEE 802.11n(HT20): OFDM (64-QAM, 16-QAM, QPSK, BPSK)
Operating Frequency:	2412MHz to 2462MHz for IEEE 802.11b/g/n(HT20)
Channel Number: 11 Channels for 802.11b, 802.11g and 802.11n(HT20)	
Channel Separation:	5 MHz
Antenna:	PCB Antenna, 3dBi

1.3 Antenna information

Mode	Tx/Rx Function	Beamforming function	CDD function	Directional gain (dBi)
802.11b	1Tx/1Rx	NO	NO	-
802.11g	1Tx/1Rx	NO	NO	-
802.11n(HT20)	1Tx/1Rx	NO	NO	-

Total Quality. Assured. TEST REPORT

1.4 Description of Test Facility

Name:	Intertek Testing Services Shanghai
Address:	Building 86, No. 1198 Qinzhou Road(North), Shanghai 200233, P.R. China
Telephone:	86 21 61278200
Telefax:	86 21 54262353

The test facility is recognized,	CNAS Accreditation Lab Registration No. CNAS L0139
certified, or accredited by these	FCC Accredited Lab Designation Number: CN1175
organizations:	IC Registration Lab CAB identifier.: CN0051
	VCCI Registration Lab Registration No.: R-14243, G-10845, C-14723, T-12252
	A2LA Accreditation Lab Certificate Number: 3309.02

2 TEST SPECIFICATIONS

2.1 Standards or specification

47CFR Part 15 (2019) ANSI C63.10 (2013) KDB 558074 (v05r02) RSS-247 Issue 2 (February 2017) RSS-Gen Issue 5 (March 2019) Amendment 1

2.2 Mode of operation during the test

While testing transmitting mode of EUT, the internal modulation and continuously transmission was applied.

Software name	Manufacturer	Version	Supplied by
UI_mptool	-	-	Client

The lowest, middle and highest channel were tested as representatives.

Frequency Band (MHz)	Mode	Lowest (MHz)	Middle (MHz)	Highest (MHz)
2400-2483.5	802.11b	2412	2437	2462
	802.11g	2412	2437	2462
	802.11n(HT20)	2412	2437	2462

Data rate and Power setting:

The pre-scan for the conducted power with all rates in each modulation and bands was used, and the worst case was found and used in all test cases. After this pre-scan, we choose the following table of the data rata as the worst case.

Frequency Band (MHz)	Mode	Worst case data rate	Power Setting
	802.11b	1Mbps	Default
2400-2483.5	802.11g	6Mbps	Default
	802.11n(HT20)	MCS0	Default

Intertek Total Quality. Assured. TEST REPORT

2.3 Test software list

Test Items	Software	Manufacturer	Version
Conducted emission	ESxS-K1	R&S	V2.1.0
Radiated emission	ES-K1	R&S	V1.71

2.4 Test peripherals list

Item No.	Name	Band and Model	Description
1	Laptop computer	DELL 5480	-

2.5 Test environment condition:

Test items	Temperature	Humidity
Minimum 6dB Bandwidth		
Maximum conducted output power and e.i.r.p.		
Power spectrum density	21°C	53%RH
Emission outside the frequency band		
Occupied bandwidth		
Radiated Emissions in restricted frequency bands	24°C	56%RH
Power line conducted emission	23°C	54%RH

TEST REPORT

2.6 Instrument list

Conducted	Emission							
Used	Equipment	Manufacturer	Туре	Internal no.	Due date			
\square	Test Receiver	R&S	ESCS 30	EC 2107	2022-07-14			
\square	A.M.N.	R&S	ESH2-Z5	EC 3119	2021-11-10			
	A.M.N.	R&S	ENV 216	EC 3393	2022-07-14			
	A.M.N.	R&S	ENV4200	EC 3558	2022-06-11			
Radiated Emission								
Used	Equipment	Manufacturer	Туре	Internal no.	Due date			
	Test Receiver	R&S	ESIB 26	EC 3045	2021-09-16			
\square	Bilog Antenna	TESEQ	CBL 6112D	EC 4206	2021-09-24			
	Pre-amplifier	R&S	AFS42- 00101800-25-S- 42	EC5262	2022-06-11			
	Horn antenna	R&S	HF 906	EC 3049	2022-01-17			
	Horn antenna	ETS	3117	EC 4792-1	2022-02-25			
\square	Horn antenna	ΤΟΥΟ	HAP18-26W	EC 4792-3	2022-07-09			
\square	Active loop antenna	Schwarzbeck	FMZB1519	EC 5345	2022-03-14			
RF test								
Used	Equipment	Manufacturer	Туре	Internal no.	Due date			
\square	PXA Signal Analyzer	Keysight	N9030A	EC 5338	2022-03-16			
	Power sensor	Agilent	U2021XA	EC 5338-1	2022-03-16			
	Vector Signal Generator	Agilent	N5182B	EC 5175	2022-03-16			
	Universal Radio Communication Tester	R&S	CMW500	EC5944	2021-12-09			
	MXG Analog Signal Generator	Agilent	N5181A	EC 5338-2	2022-03-16			
	Mobile Test System	Litepoint	lqxel	EC 5176	2022-01-16			
	Test Receiver	R&S	ESCI 7	EC 4501	2021-09-16			
	Climate chamber	GWS	MT3065	EC 6021	2022-07-04			
\square	Spectrum Analyzer	Keysight	N9030B	EC 6078	2022-06-11			
Tet Site								
Used	Equipment	Manufacturer	Туре	Internal no.	Due date			
\square	Shielded room	Zhongyu	-	EC 2838	2022-01-12			

TEST REPORT

	Shielded room	Zhongyu	-	EC 2839	2022-01-12
\square	Semi-anechoic chamber	Albatross project	-	EC 3048	2022-07-14
	Fully-anechoic chamber	Albatross project	-	EC 3047	2022-07-14
Additional	instrument				
Used	Equipment	Manufacturer	Туре	Internal no.	Due date
\square	Therom- Hygrograph	ZJ1-2A	S.M.I.F.	EC 3783	2022-03-03
	Therom- Hygrograph	ZJ1-2A	S.M.I.F.	EC 3481	2022-01-05
\square	Therom- Hygrograph	ZJ1-2A	S.M.I.F.	EC 3442	2022-01-05
\square	Therom- Hygrograph	ZJ1-2A	S.M.I.F.	EC 3324	2021-09-05
	Pressure meter	YM3	Shanghai Mengde	EC 3320	2022-07-14

Total Quality. Assured.

2.7 Measurement uncertainty

The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test item	Measurement uncertainty
Maximum peak output power	± 0.74 dB
Radiated Emissions in restricted frequency bands below 1GHz	\pm 4.90dB
Radiated Emissions in restricted frequency bands above 1GHz	± 5.02dB
Emission outside the frequency band	± 2.89dB
Power line conducted emission	± 3.19dB

intertek Total Quality. Assured. TEST REPORT

3 Minimum 6dB bandwidth

Test result: Pass

3.1 Limit

For systems using digital modulation techniques that may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz and 5725 - 5850 MHz bands, the minimum 6 dB bandwidth shall be at least 500 kHz.

3.2 Measurement Procedure

The EUT was tested according to Subclause 11.8 of ANSI C63.10.

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \ge 3 × RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

3.3 Test Configuration

3.4 Test Results of Minimum 6dB bandwidth

Please refer to Appendix A

Total Quality. Assured.

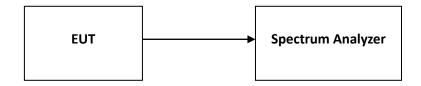
4 Maximum conducted output power and e.i.r.p.

Test result: Pass

4.1 Limit

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 W. (The e.i.r.p. shall not exceed 4 W)

If the transmitting antenna of directional gain greater than 6dBi is used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. If there have a beam forming type, the limit should be the minimum of 30dBm and 30+ (6 –antenna gain-beam forming gain).


4.2 Measurement Procedure

The EUT was tested according to Subclause 11.9.2.2 of ANSI C63.10.

- a) Measure the duty cycle, x, of the transmitter output signal as described in Section 6.0.
- b) Set span to at least 1.5 x OBW.
- c) Set RBW = 1 % to 5 % of the OBW, not to exceed 1 MHz.
- d) Set VBW \geq 3 x RBW.
- e) Number of points in sweep $\ge 2 \times \text{span} / \text{RBW}$. (This gives bin-to-bin spacing $\le \text{RBW}/2$, so that narrowband signals are not lost between frequency bins.)
- f) Sweep time = auto.
- g) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- h) Do not use sweep triggering. Allow the sweep to "free run".
- i) Trace average at least 100 traces in power averaging (i.e., RMS) mode; however, the number of traces to be averaged shall be increased above 100 as needed such that the average accurately represents the true average over the on and off periods of the transmitter.
- j) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.
- k) Add 10 log (1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times (because the measurement represents an average over both the on- and off-times of the transmission). For example, add 10 log (1/0.25) = 6 dB if the duty cycle is 25 %.

4.3 Test Configuration

4.4 Test Results of Maximum conducted output power

Please refer to Appendix A

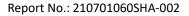
Total Quality. Assured.

5 Power spectrum density

Test result: Pass

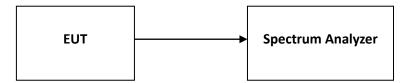
5.1 Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.


If the transmitting antenna of directional gain greater than 6dBi is used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. If there have a beam forming type, the limit should be the minimum of 8dBm/MHz and 8+ (6 –antenna gain-beam forming gain).

5.2 Measurement Procedure

The EUT was tested according to Subclause 11.10 of ANSI C63.10.


This procedure is applicable when the EUT cannot be configured to transmit continuously (i.e., duty cycle < 98 %), and when sweep triggering/signal gating cannot be used to measure only when the EUT is transmitting at its maximum power control level, and when the transmission duty cycle is constant (i.e., duty cycle variations are less than ± 2 %):

- a) Measure the duty cycle (x) of the transmitter output signal as described in Section 6.0.
- b) Set instrument center frequency to DTS channel center frequency.
- c) Set span to at least 1.5 x OBW.
- d) Set RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.
- e) Set VBW ≥3 x RBW.
- f) Detector = power averaging (RMS) or sample detector (when RMS not available).
- g) Ensure that the number of measurement points in the sweep $\ge 2 \times \text{span/RBW}$.
- h) Sweep time = auto couple.
- i) Do not use sweep triggering. Allow sweep to "free run".
- j) Employ trace averaging (RMS) mode over a minimum of 100 traces.
- k) Use the peak marker function to determine the maximum amplitude level.
- I) Add 10 log (1/x), where x is the duty cycle measured in step (a, to the measured PSD to compute the average PSD during the actual transmission time.
- m) If resultant value exceeds the limit, then reduce RBW (no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span in order to meet the minimum measurement point requirement as the RBW is reduced).

Total Quality. Assured. TEST REPORT

5.3 Test Configuration

5.4 Test Results of Power spectrum density

Please refer to Appendix A

Intertek Total Quality. Assured. TEST REPORT

6 Emission outside the frequency band

Test result: Pass

6.1 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

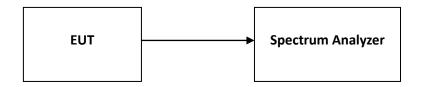
6.2 Measurement Procedure

The EUT was tested according to Subclause 11.11 of ANSI C63.10.

Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to \geq 1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW \geq 3 x RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.


Emission level measurement

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq 3 x RBW.
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements specified in 11.1 a) or 11.1 b). Report the three highest emissions relative to the limit.

6.3 Test Configuration

6.4 The results of Emission outside the frequency band

Please refer to Appendix A

7 Radiated Emissions in restricted frequency bands

Test result: Pass

7.1 Limit

The radiated emissions which fall in the restricted bands, must also comply with the radiated emission limits specified showed as below:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88~216	150	3
216 ~ 960	200	3
Above 960	500	3

7.2 Measurement Procedure

The EUT was tested according to Subclause 11.12 of ANSI C63.10.

For Radiated emission below 30MHz:

- a) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meters chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) Both X and Y axes of the antenna are set to make the measurement.
- d) For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e) The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

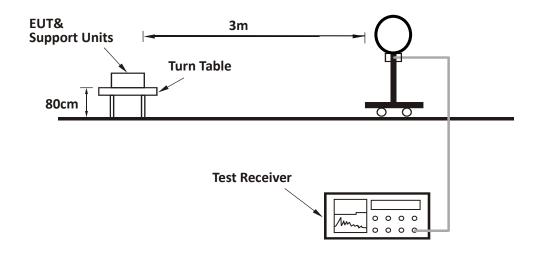
NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

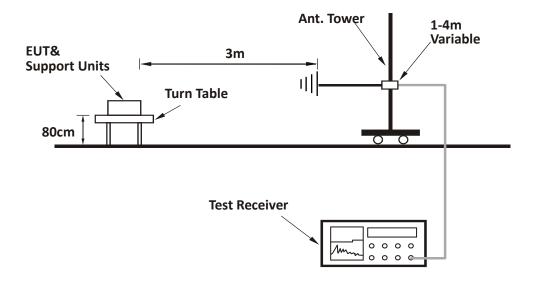
For Radiated emission above 30MHz:

- a) The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meters chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e) The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f) The test-receiver system was set to peak and average detector function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

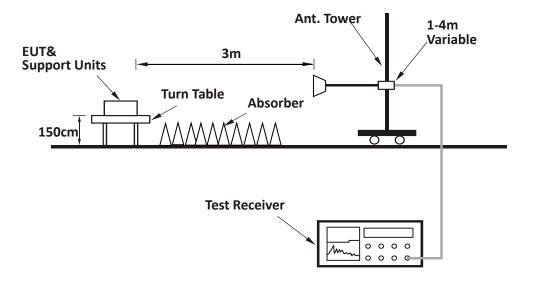

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 3 x RBW (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions were reported.

Report No.: 210701060SHA-002

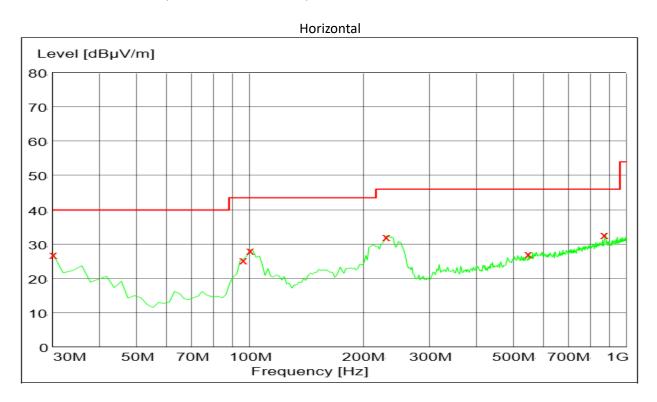

intertek Total Quality. Assured. TEST REPORT

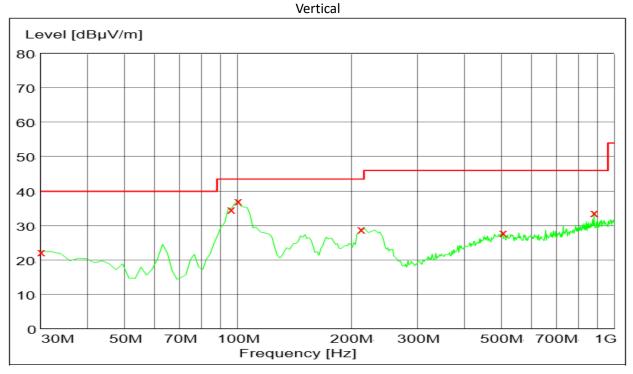
7.3 Test Configuration

For Radiated emission below 30MHz:



For Radiated emission 30MHz to 1GHz:


For Radiated emission above 1GHz:



Intertek Total Quality. Assured. TEST REPORT

7.4 Test Results of Radiated Emissions

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

intertek Total Quality. Assured.

TEST REPORT

Test data below 1GHz

Antenna	Frequency (MHz)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
Н	30.00	27.20	40.00	12.80	РК
н	96.09	25.70	43.50	17.80	РК
Н	99.98	28.40	43.50	15.10	РК
н	230.22	32.40	46.00	13.60	РК
Н	549.02	27.30	46.00	18.70	РК
н	873.65	33.00	46.00	13.00	РК
V	30.00	22.50	40.00	17.50	РК
V	96.09	35.00	43.50	8.50	РК
V	99.98	37.30	43.50	6.20	РК
V	212.73	29.10	43.50	14.40	РК
V	504.31	28.10	46.00	17.90	РК
V	881.42	33.90	46.00	12.10	РК

Test result above 1GHz:

The emission was conducted from 1GHz to 25GHz

802.11b

СН	Antenna	Frequency (MHz)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	Н	2390	51.70	74.00	22.30	РК
L	V	2390	50.30	74.00	23.70	РК
	н	4824	46.50	74.00	27.50	РК
М	Н	4874	46.66	74.00	27.34	РК
	н	2483.5	51.30	74.00	22.70	РК
н	V	2483.5	50.50	74.00	23.50	РК
	Н	4924	46.10	74.00	27.90	РК

intertek Total Quality. Assured.

TEST REPORT

802.11g

CH	Antenna	Frequency (MHz)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	Н	2390	56.50	74.00	17.50	РК
	н	2390	48.70	54.00	5.30	AV
L	V	2390	55.30	74.00	18.70	РК
	V	2390	48.50	54.00	5.50	AV
	н	4824	46.80	74.00	27.20	РК
М	н	4874	47.10	74.00	26.90	РК
	н	2483.5	57.70	74.00	16.30	РК
	н	2483.5	49.20	54.00	4.80	AV
н	V	2483.5	56.10	74.00	17.90	РК
	V	2483.5	48.80	54.00	5.20	AV
	Н	4924	47.40	74.00	26.60	РК

802.11n(HT20)

СН	Antenna	Frequency (MHz)	Corrected Reading (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	Н	2390	60.60	74.00	13.40	РК
	Н	2390	50.90	54.00	3.10	AV
L	V	2390	58.80	74.00	15.20	РК
	V	2390	49.50	54.00	4.50	AV
	н	4824	47.80	74.00	26.20	РК
М	Н	4874	48.20	74.00	25.80	РК
	н	2483.5	61.70	74.00	12.30	РК
	н	2483.5	51.30	54.00	2.70	AV
н	V	2483.5	60.10	74.00	13.90	РК
	V	2483.5	50.40	54.00	3.60	AV
	Н	4924	48.70	74.00	25.30	РК

intertek

Total Quality. Assured.

TEST REPORT

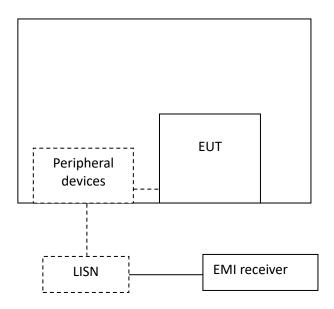
- Remark: 1. Correct Factor = Antenna Factor + Cable Loss (+ Amplifier, for higher than 1GHz), the value was added to Original Receiver Reading by the software automatically.
 - 2. Corrected Reading = Original Receiver Reading + Correct Factor
 - 3. Margin = Limit Corrected Reading
 - 4. If the PK Corrected Reading is lower than AV limit, the AV test can be elided.

Example: Assuming Antenna Factor = 30.20dB/m, Cable Loss = 2.00dB,

Gain of Preamplifier = 32.00dB, Original Receiver Reading = 10.00dBuV, Limit = 40.00dBuV/m. Then Correct Factor = 30.20 + 2.00 - 32.00 = 0.20dB/m; Corrected Reading = 10dBuV + 0.20dB/m = 10.20dBuV/m;

Margin = 40.00dBuV/m - 10.20dBuV/m = 29.80dB.

Total Quality. Assured. TEST REPORT

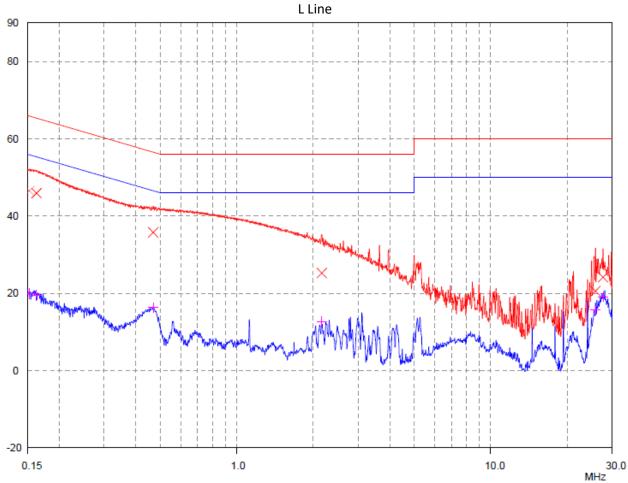

8 Power line conducted emission

Test result: Pass

8.1 Limit

Frequency of Emission (MHz)	Conducted Limit (dBuV)		
	QP	AV	
0.15-0.5	66 to 56*	56 to 46 *	
0.5-5	56	46	
5-30	60	50	

8.2 Test Configuration

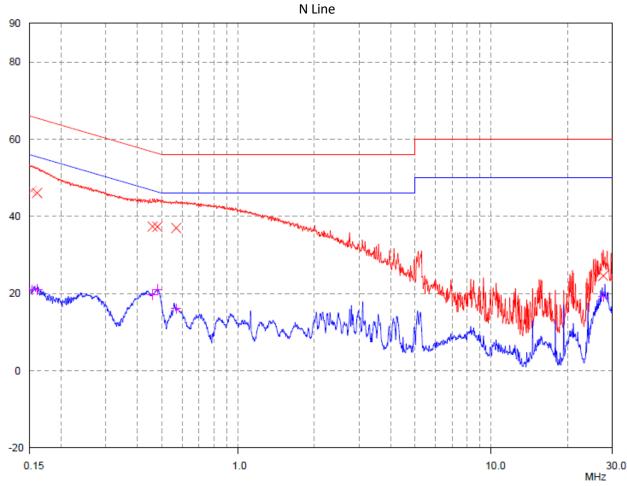

8.3 Measurement Procedure

Measured levels of ac power-line conducted emission shall be the emission voltages from the voltage probe, where permitted, or across the 50 Ω LISN port (to which the EUT is connected), where permitted, terminated into a 50 Ω measuring instrument. All emission voltage and current measurements shall be made on each current-carrying conductor at the plug end of the EUT power cord by the use of mating plugs and receptacles on the LISN, if used. Equipment shall be tested with power cords that are normally supplied or recommended by the manufacturer and that have electrical and shielding characteristics that are the same as those cords normally supplied or recommended by the manufacturer. For those measurements using a LISN, the 50 Ω measuring port is terminated by a measuring instrument having 50 Ω input impedance. All other ports are terminated in 50 Ω loads.

Tabletop devices shall be placed on a platform of nominal size 1 m by 1.5 m, raised 80 cm above the reference ground plane. The vertical conducting plane or wall of an RF-shielded (screened) room shall be located 40 cm to the rear of the EUT. Floor-standing devices shall be placed either directly on the reference ground-plane or on insulating material as described in ANSI C63.4. All other surfaces of tabletop or floor-standing EUTs shall be at least 80 cm from any other grounded conducting surface, including the case or cases of one or more LISNs.

The bandwidth of the test receiver is set at 9 kHz.

Intertek Total Quality. Assured. TEST REPORT


8.4 Test Results of Power line conducted emission

Test Data:

Frequency (MHz)	Quasi-peak			Average		
	level dB(μV)	Limit dB(µV)	Margin (dB)	level dB(μV)	limit dB(μV)	Margin (dB)
0.15	46.56	65.87	19.31	19.95	55.87	35.92
0.16	45.94	65.34	19.40	19.46	55.34	35.88
0.47	35.78	56.55	20.77	16.33	46.55	30.22
2.16	25.26	56.00	30.74	12.68	46.00	33.32
25.86	20.59	60.00	39.41	15.62	50.00	34.38
27.67	24.17	60.00	35.83	19.11	50.00	30.89

intertek Total Quality. Assured.

TEST REPORT

Test Data:

Fromuonou	Quasi-peak			Average		
Frequency (MHz)	level dB(μV)	Limit dB(µV)	Margin (dB)	level dB(μV)	limit dB(μV)	Margin (dB)
0.15	46.66	65.83	19.17	20.94	55.83	34.89
0.16	46.08	65.44	19.36	20.99	55.44	34.45
0.46	37.38	56.72	19.34	19.73	46.72	26.99
0.48	37.32	56.35	19.03	21.11	46.35	25.24
0.57	36.99	56.00	19.01	16.08	46.00	29.92
27.67	24.59	60.00	35.41	19.19	50.00	30.81

Remark: 1. Correct Factor = LISN Factor + Cable Loss, the value was added to Original Receiver Reading by the software automatically.

2. Corrected Reading = Original Receiver Reading + Correct Factor

3. Margin = Limit - Corrected Reading

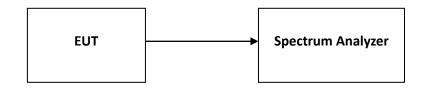
4. If the PK Corrected Reading is lower than AV limit, the AV test can be elided.

9 Occupied Bandwidth

Test result: Tested

9.1 Limit

None


9.2 Measurement Procedure

The occupied bandwidth per RSS-Gen Issue 4 Clause 6.6 was measured using the Spectrum Analyzer.

The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.

The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately 3x RBW.

9.3 Test Configuration

9.4 The results of Occupied Bandwidth

Please refer to Appendix A

10 Antenna requirement

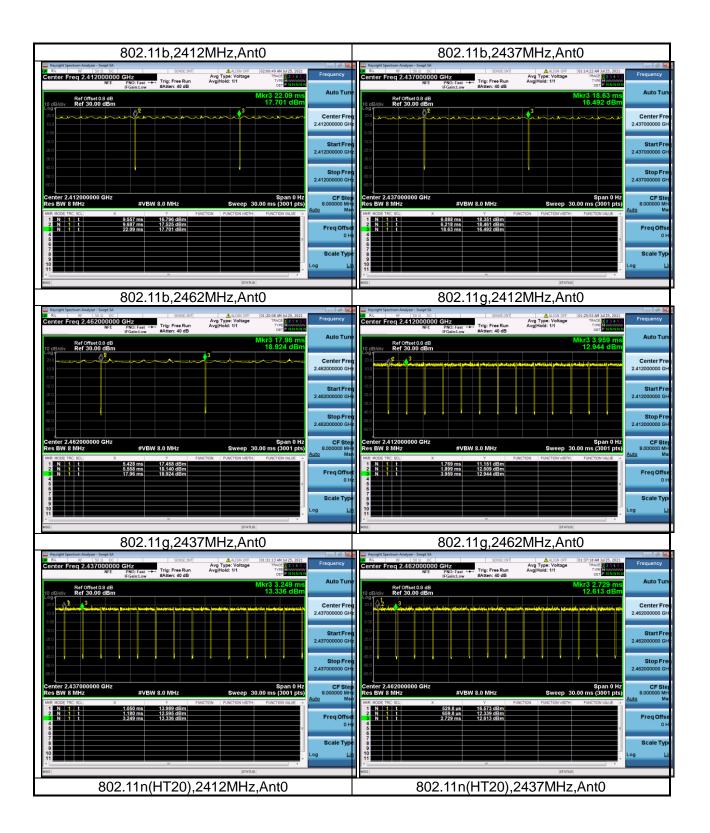
Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Result:

EUT uses permanently attached antenna to the intentional radiator, so it can comply with the provisions of this section.

Total Quality. Assured. TEST REPORT


Appendix A: Test results

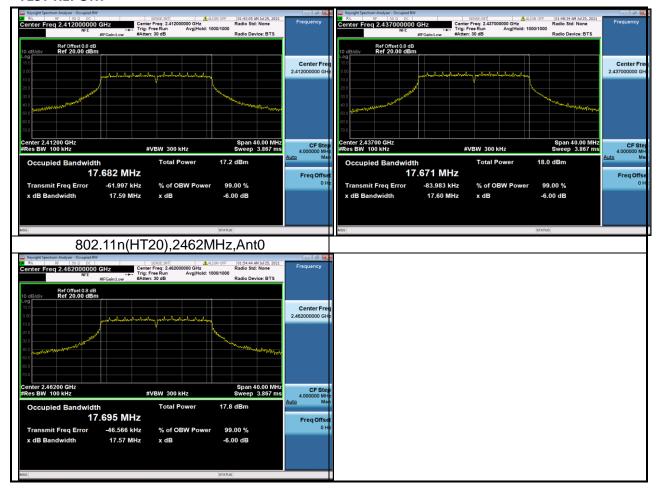
- 1. Duty Cycle
 - 1.1 Test Data


WLAN Duty Cycle					
Mode	Test Frequency (MHz)	Ant	Duty Cycle (%)	Duty Cycle Factor (dB)	
802.11b	2412	Ant0	98.96	0.00	
802.11b	2437	Ant0	98.96	0.00	
802.11b	2462	Ant0	98.96	0.00	
802.11g	2412	Ant0	94.06	0.27	
802.11g	2437	Ant0	94.09	0.26	
802.11g	2462	Ant0	94.09	0.26	
802.11n (HT20)	2412	Ant0	93.66	0.28	
802.11n (HT20)	2437	Ant0	93.66	0.28	
802.11n (HT20)	2462	Ant0	93.66	0.28	

1.2 Test Plots

Total Quality. Assured.

intertek Total Quality. Assured.



2. Minimum 6dB bandwidth

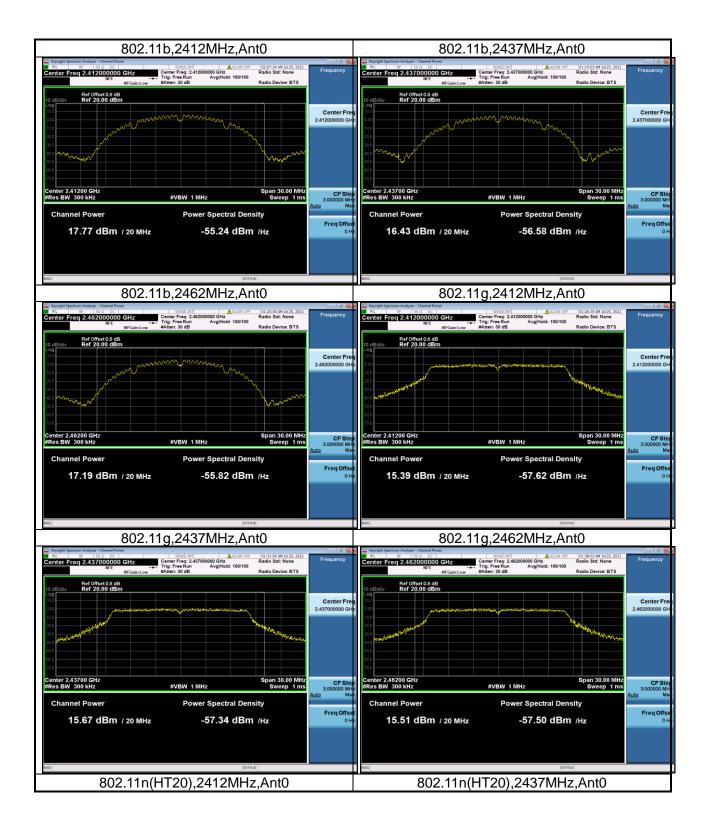
2.1 Test Data

WLAN Occupied 6dB Bandwidth							
Mode	Test Frequency (MHz)	Ant	Occupied Bandwidth (MHz)	Result			
802.11b	2412	Ant0	9.08	Pass			
802.11b	2437	Ant0	9.08	Pass			
802.11b	2462	Ant0	9.03	Pass			
802.11g	2412	Ant0	16.37	Pass			
802.11g	2437	Ant0	16.36	Pass			
802.11g	2462	Ant0	16.35	Pass			
802.11n (HT20)	2412	Ant0	17.59	Pass			
802.11n (HT20)	2437	Ant0	17.60	Pass			
802.11n (HT20)	2462	Ant0	17.57	Pass			

3. Occupied Bandwidth

3.1 Test Data

WLAN 99% Occupied Bandwidth							
Mode	Test Frequency (MHz)	Ant	99% Occupied Bandwidth (MHz)	Result			
802.11b	2412	Ant0	14.010	Pass			
802.11b	2437	Ant0	13.894	Pass			
802.11b	2462	Ant0	13.927	Pass			
802.11g	2412	Ant0	16.934	Pass			
802.11g	2437	Ant0	17.051	Pass			
802.11g	2462	Ant0	17.045	Pass			
802.11n (HT20)	2412	Ant0	18.081	Pass			
802.11n (HT20)	2437	Ant0	18.033	Pass			
802.11n (HT20)	2462	Ant0	18.129	Pass			

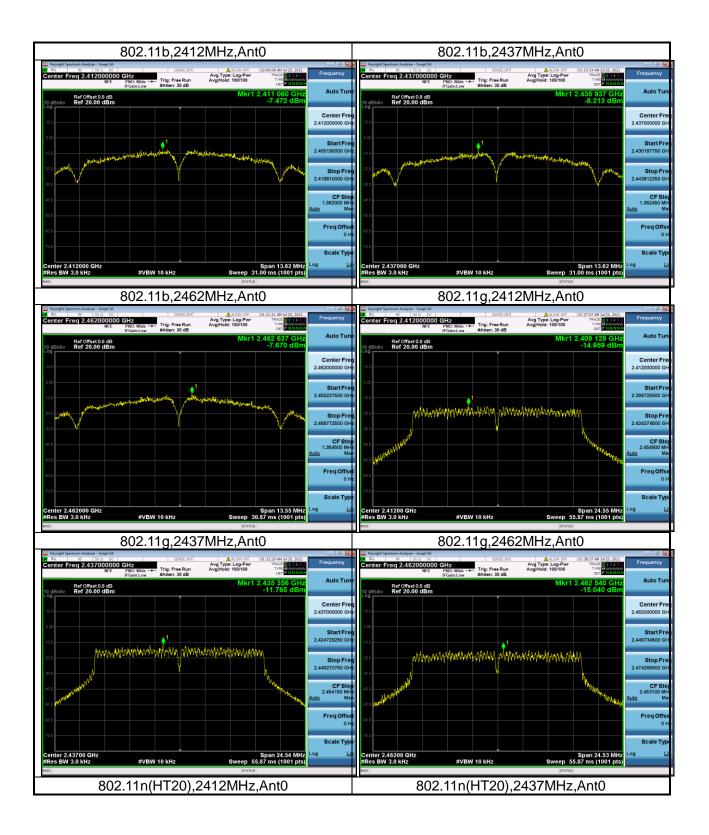

Keysight Spectrum Analyzer - Occupied BW				Keysight Spectrum Analyzer - Occupied BW			6
RF S0 20 DC Center Freq 2.412000000 GHz NFE #FGain:Low NFE #FGain:Low Ref Offset 0.8 dB 10 dB/div Ref 20.00 dBm	Trig: Free Run Avg Hold: 100 #Atten: 30 dB	Radio Std: None	Frequency	No. RL RF Stop Dc Center Freq 2.4370000000 GHz NFE #FGaint.c NFE Ref Offset 0.8 dB 10 dB/div Ref 20.00 dBm	Center Freq: 2.437000000 GHz Trig: Free Run Avg Hold:	ALIGN OFF 01:49:16 AM Jul 25, 2021 Radio Std: None 1000/1000 Radio Device: BTS	Frequency
			Center Freq 2.412000000 GHz				Center F 2.437000000
Center 2.41200 GHz #Res BW 300 kHz	#VBW 1 MHz	Span 40.00 MHz Sweep 1 ms	4.000000 MHz	Center 2.43700 GHz #Res BW 300 kHz	#VBW 1 MHz	Span 40.00 MHz Sweep 1 ms	CF \$ 4.000000
Occupied Bandwidth	Total Power	17.6 dBm	<u>Auto</u> Man	Occupied Bandwidth	Total Power	18.1 dBm	Auto
18.081 N	IHz		Freq Offset	18.033	MHz		FreqO
Transmit Freq Error -44.309		99.00 %	0 Hz		52 kHz % of OBW Powe		
x dB Bandwidth 23.32	MHz x dB	-26.00 dB		x dB Bandwidth 23.	01 MHz x dB	-26.00 dB	
SG		STATUS		MSG		STATUS	
802.11n	(HT20),2462M	Hz.Ant0					
Rey Big Spectrum Analyzer - Occupied BW RL BK RL BK Center Freq 2.462000000 GHz NFE #FGain.low Ref 0ffset0.8 dB 10 dB/div Ref 20.00 dBm	Center Freq: 2.45200000 GHz → Trig: Free Run Avg Hold: 100 #Atten: 30 dB	Radio Std: None	Frequency				
		And	Center Freq 2.462000000 GHz				
40 0 40 0 40 0 40 0 40 0 40 0 40 0 40							
Center 2.46200 GHz #Res BW 300 kHz	#VBW 1 MHz	Span 40.00 MHz Sweep 1 ms	4.000000 MHz				
Occupied Bandwidth	Total Power	17.6 dBm	<u>Auto</u> Mah				
18.129 N			Freq Offset				
Transmit Freq Error -50.428		99.00 %	0 Hz				
x dB Bandwidth 23.43	MHz x dB	-26.00 dB					
De		STATUS					

Total Quality. Assured. TEST REPORT

4. Maximum conducted output power and e.i.r.p

4.1 Test Data

WLAN AVGSA Output Power									
Mode	Test Frequency (MHz)	Ant	Duty Cycle Factor (dB)	Max Power (dBm)	Limit (dBm)	EIRP (dBm)	Result		
802.11b	2412	Ant0	0.00	17.77	30	20.77	Pass		
802.11b	2437	Ant0	0.00	16.43	30	19.43	Pass		
802.11b	2462	Ant0	0.00	17.19	30	20.19	Pass		
802.11g	2412	Ant0	0.27	15.66	30	18.66	Pass		
802.11g	2437	Ant0	0.26	15.93	30	18.93	Pass		
802.11g	2462	Ant0	0.26	15.77	30	18.77	Pass		
802.11n (HT20)	2412	Ant0	0.28	15.82	30	18.82	Pass		
802.11n (HT20)	2437	Ant0	0.28	16.03	30	19.03	Pass		
802.11n (HT20)	2462	Ant0	0.28	15.87	30	18.87	Pass		


Keysight Spectrum Analyzer - Channel Power				Keysight Spectrum Analyzer - Channel Power			
RL RF 50 0 DC Center Freq 2.412000000 GHz NFE #FGain:Lo	SENSE:INT Center Freq: 2.41200000 GHz Trig: Free Run Avg Hold: 100/100 ## #Atten: 30 dB	Radio Std: None	Frequency	Center Freq 2.437000000 GHz	Center Freq: 2.437000000 GHz Trig: Free Run Avg Hold:	ALIGN OFF 01:50:23 AM Jul 25, 2021 Radio Std: None 100/100 Radio Device: BTS	Frequency
Ref Offset 0.8 dB 10 dB/div Ref 20.00 dBm				Ref Offset 0.8 dB 10 dB/div Ref 20.00 dBm			
0.00 10.0	and provide the second		Center Free 2.412000000 GH	10.0 0.00 	al and a second and a second	n martine to	Center 2.437000000
20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0		And a start of the		20 0 30 0 40 0 50 0		Net Merry Contract of the	
enter 2.41200 GHz Res BW 300 KHz	#VBW 1 MHz	Span 30.00 MHz Sweep 1 ms	CF Step	20 0 70 0 Center 2.43700 GHz #Res BW 300 kHz	#VBW 1 MHz	Span 30.00 MHz Sweep 1 ms	CF
Channel Power	Power Spectral Der		3.000000 MHz <u>Auto</u> Man	Channel Power	Power Spectra		3.00000 Auto
15.54 dBm / 20 мн		-	Freq Offse 0 Ha	15.75 dBm / 20 M		dBm /Hz	FreqC
ia	STA			MSG		STATUS	
802.11r	n(HT20),2462MH	z,Ant0					
Exploit Spectrum Analyzer - Channel Prover RL BP IS0 0, DC IS0 Center Freq 2.462000000 GHz WFE #IFGain:Lo Ref Offset0.8 dB Ref 20.00 dBm IS0	Center Freq: 2.48200000 GHz - Trig: Freq: 2.48200000 GHz - Trig: Freq: Run Avg Hold: 100/100 #Atten: 30 dB	F 01:56:36 AM Jul 25, 2021 Radio Std: None Radio Device: BTS	Frequency				
0 dB/div Ref 20.00 dBm	an a	\sim	Center Free 2.462000000 GH				
0.0							
center 2.46200 GHz Res BW 300 kHz	#VBW 1 MHz	Span 30.00 MHz Sweep 1 ms	CF Step 3.000000 MH Auto Man				
Channel Power	Power Spectral Der	nsity	FreqOffse				
15.59 dBm / 20 Мн	tz -57.42 dBn	n /Hz	0 H				
sg	STA	itus					

Total Quality. Assured. TEST REPORT

5. Power spectrum density

5.1 Test Data

WLAN AVGSA Power Spectral Density									
Mode	Test Frequency (MHz)	Ant	Duty Cycle Factor (dB)	PSD (dBm)	RBW (kHz)	Limit (dBm)	Result		
802.11b	2412	Ant0	0.00	-7.472	3	8	Pass		
802.11b	2437	Ant0	0.00	-8.213	3	8	Pass		
802.11b	2462	Ant0	0.00	-7.670	3	8	Pass		
802.11g	2412	Ant0	0.27	-14.689	3	8	Pass		
802.11g	2437	Ant0	0.26	-11.505	3	8	Pass		
802.11g	2462	Ant0	0.26	-14.780	3	8	Pass		
802.11n (HT20)	2412	Ant0	0.28	-14.370	3	8	Pass		
802.11n (HT20)	2437	Ant0	0.28	-14.344	3	8	Pass		
802.11n (HT20)	2462	Ant0	0.28	-13.903	3	8	Pass		

