

# **FCC** Radio Test Report

FCC ID: 2AOHHTURBOXC7230C

### **According to**

# 47 CFR FCC Part 15, Subpart C(Section 15.247) ANSI C63.10:2013

Product description : Smart Module

Model No. : C7230C Trade Mark : TurboX

Product No. : POC230731014-S001

Applicant : Thundercomm Technology Co., Ltd

No. 107, Middle Datagu Road, Xiantao Street, Yubei District,

Chongqing, China, 401122

Receipt date : 2023.08.02

Test date : 2023.08.03~2023.08.16

Issued Date : 2023.08.31

| Prepared By: | Checked By: | Approved By: | Standard           |
|--------------|-------------|--------------|--------------------|
| Jason huang  | Tim zhang   | Misue Su     | E CHIE             |
| Jason huang  | 7 im. zhong | Misul Su     | HAIYUN APPORT Seal |

**Note:** This report shall not be reproduced except in full, without the written approval of Shenzhen Haiyun Standard Technical Co., Ltd. This document may be altered or revised by Shenzhen Haiyun Standard Technical Co., Ltd. Personnel only, and shall be noted in the revision section of the document. The test results of this report relate only to the tested sample identified in this report.



# **Table of Contents**

| REPORT ISSUED HISTORY                                        | 4  |
|--------------------------------------------------------------|----|
| 1 . SUMMARY OF TEST RESULTS                                  | 5  |
| 1.1 TEST FACILITY                                            | 6  |
| 1.2 MEASUREMENT UNCERTAINTY                                  | 6  |
| 1.3 TEST ENVIRONMENT CONDITIONS                              | 6  |
| 2. GENERAL INFORMATION                                       | 7  |
| 2.1 GENERAL DESCRIPTION OF EUT                               | 7  |
| 2.2 DESCRIPTION OF TEST MODES                                | 8  |
| 2.3 PARAMETERS OF TEST SOFTWARE                              | 8  |
| 2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED | 8  |
| 2.5 SUPPORT UNITS                                            | 8  |
| 3 . AC POWER LINE CONDUCTED EMISSIONS                        | 9  |
| 3.1 LIMIT                                                    | 9  |
| 3.2 TEST PROCEDURE                                           | 9  |
| 3.3 DEVIATION FROM TEST STANDARD                             | 9  |
| 3.4 TEST SETUP                                               | 10 |
| 3.5 EUT OPERATING CONDITIONS                                 | 10 |
| 3.6 TEST RESULTS                                             | 10 |
| 4 . RADIATED EMISSIONS                                       | 11 |
| 4.1 LIMIT                                                    | 11 |
| 4.2 TEST PROCEDURE                                           | 12 |
| 4.3 DEVIATION FROM TEST STANDARD                             | 13 |
| 4.4 TEST SETUP                                               | 13 |
| 4.5 EUT OPERATING CONDITIONS                                 | 14 |
| 4.6 TEST RESULTS - 9 KHZ TO 30 MHZ                           | 14 |
| 4.7 TEST RESULTS - 30 MHZ TO 1000 MHZ                        | 14 |
| 4.8 TEST RESULTS - ABOVE 1000 MHZ                            | 14 |
| 5 . MAXIMUM OUTPUT POWER                                     | 15 |
| 5.1 LIMIT                                                    | 15 |
| 5.2 TEST PROCEDURE                                           | 15 |
| 5.3 DEVIATION FROM STANDARD                                  | 15 |
| 5 4 TEST SETUP                                               | 15 |



| 5.5 EUT OPERATION CONDITIONS                        | 15 |  |
|-----------------------------------------------------|----|--|
| 5.6 TEST RESULTS                                    | 15 |  |
| 6. MEASUREMENT INSTRUMENTS LIST                     | 17 |  |
| 7. ANTENNA REQUIREMENT                              | 18 |  |
| APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS      | 19 |  |
| APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ    | 21 |  |
| APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ | 22 |  |
| APPENDIX D - RADIATED EMISSION - ABOVE 1000 MHZ     | 24 |  |
| APPENDIX E - MAXIMUM OUTPUT POWER                   | 39 |  |



### REPORT ISSUED HISTORY

| Report No.         | Issue Date | Description                                                                                                                                                                                                                                                                           |
|--------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RF230731014-01-003 | 2023.08.31 | Replaced the antenna, CPU, model, and IC of the product compared to the original report (SZ22110114W02), see below for details. After the evaluation, we retested the conducted and radiated emissions, power of the AC power line. Other test data is subject to the original report |

### Content of change:

- 1. The new antenna is changed, and the antenna gain is different. 2.4G and Bluetooth are the gain becomes larger, and 5G is the gain becomes smaller
- 2. QCS8250 replaced by QCS7230, both CPUs have the same PIN, which is pin-for-pin with the original CPU, and the RF performance is basically the same.
- 3. Modify the product name, model and FCC ID, original FCC ID: 2AOHHTURBOXC865C Change to 2AOHHTURBOXC7230C



### 1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

|                                     | FCC CFR Title 47, Part 15, Subpart C |                                        |          |         |  |
|-------------------------------------|--------------------------------------|----------------------------------------|----------|---------|--|
| Standard(s) Section                 | Test Item                            | Test Result                            | Judgment | Remark  |  |
| 15.207                              | AC Power Line Conducted<br>Emissions | APPENDIX A                             | PASS     |         |  |
| 15.247(d)<br>15.205(a)<br>15.209(a) | Radiated Emission                    | APPENDIX B<br>APPENDIX C<br>APPENDIX D | PASS     |         |  |
| 15.247<br>(a)(1)(iii)               | Number of Hopping Frequency          |                                        | PASS     | Note(3) |  |
| 15.247<br>(a)(1)(iii)               | Average Time of Occupancy            |                                        | PASS     | Note(3) |  |
| 15.247(a)(1)                        | Hopping Channel Separation           |                                        | PASS     | Note(3) |  |
| 15.247(a)(1)                        | Bandwidth                            |                                        | PASS     | Note(3) |  |
| 15.247(a)(1)                        | Maximum Output Power                 | APPENDIX E                             | PASS     |         |  |
| 15.247(d)                           | Conducted Spurious Emission          |                                        | PASS     | Note(3) |  |
| 15.203                              | Antenna Requirement                  |                                        | PASS     | Note(2) |  |

### Note:

- (1) "N/A" denotes test is not applicable in this test report
- (2) The device what use a permanently attached antenna were considered sufficient to comply with the provisions of 15.203.
- (3) For test item: Average Time of Occupancy, Average Time of Occupancy and Hopping Channel Separation and Bandwidth and Conducted Spurious Emission and Conducted Spurious Emission, Please refer to original report(SZ22110114W02)



### 1.1 TEST FACILITY

| Company:                  | Shenzhen Haiyun Standard Technical CO., Ltd.                                                                                                                           |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Address:                  | Room 110, 111, 112, 113, 115, 116, Block B, Jinyuan Business<br>Building, No. 302, Xixiang Avenue, Labor Community, Xixiang<br>Street, Baoan District, Shenzhen, China |
| CNAS Registration Number: | CNAS L18252                                                                                                                                                            |
| CAB identifier:           | CN0145                                                                                                                                                                 |
| A2LA Certificate Number:  | 6823.01                                                                                                                                                                |
| Telephone:                | 0755-26024411                                                                                                                                                          |

### 1.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2))

| Uncerta                                | ainty       |
|----------------------------------------|-------------|
| Parameter                              | Uncertainty |
| Occupied Channel Bandwidth             | ±143.88 kHz |
| Power Spectral Density                 | ±0.743dB    |
| Conducted Spurious Emission            | ±1.328dB    |
| RF power conducted                     | ±0.384 dB   |
| Conducted emission(9kHz~30MHz) AC main | ±2.72dB     |
| Radiated emission(9kHz~30MHz)          | ±2.66dB     |
| Radiated emission (30MHz~1GHz)         | ±4.62dB     |
| Radiated emission (1GHz~18GHz)         | ±4.86dB     |
| Radiated emission (18GHz~40GHz)        | ±3.80dB     |

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

### 1.3 TEST ENVIRONMENT CONDITIONS

| Test Item                             | Temperature | Humidity | Test Voltage | Tested By  |
|---------------------------------------|-------------|----------|--------------|------------|
| AC Power Line Conducted Emissions     | 25°C        | 53%      | AC 120V/60Hz | Albert Fan |
| Radiated Emissions-9 kHz to 30 MHz    | 24°C        | 51%      | AC 120V/60Hz | Albert Fan |
| Radiated Emissions-30 MHz to 1000 MHz | 24°C        | 51%      | AC 120V/60Hz | Albert Fan |
| Radiated Emissions-Above 1000 MHz     | 24°C        | 51%      | AC 120V/60Hz | Albert Fan |

HY-FCC part 15C Ver.1.0 Page 6 of 39 Report No.: RF230731014-01-003



### 2. GENERAL INFORMATION

### 2.1 GENERAL DESCRIPTION OF EUT

| Equipment               | Smart Module                                            |
|-------------------------|---------------------------------------------------------|
| Brand Name              | TURBOX                                                  |
| Test Model              | C7230C                                                  |
| Software Version        | FlatBuild_Turbox-QCS8250_xx.xx_la1.0.D.userdebug.202210 |
| Software version        | 24.1345                                                 |
| Hardware Version        | DT865_DEq_LA-IOB V03                                    |
|                         | INPUT: 100-240V~ 50/60Hz 1.5A                           |
| Power Source            | OUTPUT:5.0V==3.0A15.0W;9.0V==3.0A27W;15.0V==3.0A45.0W;  |
|                         | 20V===2.25A 45.0W                                       |
| Operation Frequency     | 2402 MHz ~ 2480 MHz                                     |
| Modulation Type         | GFSK, π/4-DQPSK, 8-DPSK                                 |
| Bit Rate of Transmitter | 1Mbps, 2Mbps, 3Mbps                                     |
| Max. Output Power       | 1Mbps: 7.23 dBm                                         |
| Antenna gain            | Ant1: 3.35dBi                                           |
| Antenna type            | PIFA antenna                                            |

### Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

### 2. Channel List:

| nnei List: | F                  |         | F                  |         | F                  |
|------------|--------------------|---------|--------------------|---------|--------------------|
| Channel    | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
| 00         | 2402               | 27      | 2429               | 54      | 2456               |
| 01         | 2403               | 28      | 2430               | 55      | 2457               |
| 02         | 2404               | 29      | 2431               | 56      | 2458               |
| 03         | 2405               | 30      | 2432               | 57      | 2459               |
| 04         | 2406               | 31      | 2433               | 58      | 2460               |
| 05         | 2407               | 32      | 2434               | 59      | 2461               |
| 06         | 2408               | 33      | 2435               | 60      | 2462               |
| 07         | 2409               | 34      | 2436               | 61      | 2463               |
| 08         | 2410               | 35      | 2437               | 62      | 2464               |
| 09         | 2411               | 36      | 2438               | 63      | 2465               |
| 10         | 2412               | 37      | 2439               | 64      | 2466               |
| 11         | 2413               | 38      | 2440               | 65      | 2467               |
| 12         | 2414               | 39      | 2441               | 66      | 2468               |
| 13         | 2415               | 40      | 2442               | 67      | 2469               |
| 14         | 2416               | 41      | 2443               | 68      | 2470               |
| 15         | 2417               | 42      | 2444               | 69      | 2471               |
| 16         | 2418               | 43      | 2445               | 70      | 2472               |
| 17         | 2419               | 44      | 2446               | 71      | 2473               |
| 18         | 2420               | 45      | 2447               | 72      | 2474               |
| 19         | 2421               | 46      | 2448               | 73      | 2475               |
| 20         | 2422               | 47      | 2449               | 74      | 2476               |
| 21         | 2423               | 48      | 2450               | 75      | 2477               |
| 22         | 2424               | 49      | 2451               | 76      | 2478               |
| 23         | 2425               | 50      | 2452               | 77      | 2479               |
| 24         | 2426               | 51      | 2453               | 78      | 2480               |
| 25         | 2427               | 52      | 2454               |         |                    |
| 26         | 2428               | 53      | 2455               |         |                    |



### 2.2 DESCRIPTION OF TEST MODES

Following mode(s) was (were) found to be the worst case(s) and selected for the final test.

| AC power line conducted emissions test |                          |  |
|----------------------------------------|--------------------------|--|
| Final Test Mode                        | Description              |  |
| Mode 1                                 | TX Mode_1Mbps Channel 39 |  |

|                 | Radiated emissions test - Below 1GHz |
|-----------------|--------------------------------------|
| Final Test Mode | Description                          |
| Mode 1          | TX Mode_1Mbps Channel 39             |

| Radiated emissions test - Above 1GHz |                                            |  |
|--------------------------------------|--------------------------------------------|--|
| Final Test Mode                      | Description                                |  |
| Mode 1                               | TX Mode_1Mbps 2Mbps 3Mbps Channel 00/39/78 |  |

Note:

(1) For AC power line conducted emissions and radiated spurious emissions below 1 GHz test, the 1Mbps Channel 39 are found to be the worst case and recorded.

### 2.3 PARAMETERS OF TEST SOFTWARE

During testing, channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

| Test Software Version | WCN_Combo_Tool |         |         |
|-----------------------|----------------|---------|---------|
| Frequency (MHz)       | 2402           | 2441    | 2480    |
| 1Mbps                 | default        | default | default |
| 2Mbps                 | default        | default | default |
| 3Mbps                 | default        | default | default |

### 2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

| mini PC | EUT |  | Adapter |  |
|---------|-----|--|---------|--|
|---------|-----|--|---------|--|

### 2.5 SUPPORT UNITS

|     | Support Equipment |                                   |            |                                                                                                                     |  |
|-----|-------------------|-----------------------------------|------------|---------------------------------------------------------------------------------------------------------------------|--|
| No. | Equipment         | Brand Name                        | Model Name | Remarks                                                                                                             |  |
| 1   | Mini PC           | /                                 | S10        | DC 12V/4A                                                                                                           |  |
| 2   | Adapter           | CHANNEL<br>WELL<br>TECHNOLOG<br>Y | S1C045DC   | INPUT: 100-240V~ 50/60Hz 1.5A<br>OUTPUT:5.0V==3.0A15.0W;<br>9.0V==3.0A27W;<br>15.0V==3.0A45.0W;<br>20V==2.25A 45.0W |  |



### 3. AC POWER LINE CONDUCTED EMISSIONS

### **3.1 LIMIT**

| Frequency of Emission (MHz) | Limit (dBμV) |           |  |
|-----------------------------|--------------|-----------|--|
| Frequency or Emission (WHZ) | Quasi-peak   | Average   |  |
| 0.15 - 0.5                  | 66 to 56*    | 56 to 46* |  |
| 0.5 - 5.0                   | 56           | 46        |  |
| 5.0 - 30.0                  | 60           | 50        |  |

### Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " \* " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

### 3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

The following table is the setting of the receiver:

| Receiver Parameters | Setting  |
|---------------------|----------|
| Start Frequency     | 0.15 MHz |
| Stop Frequency      | 30 MHz   |
| IF Bandwidth        | 9 kHz    |

### 3.3 DEVIATION FROM TEST STANDARD

No deviation.



### 3.4 TEST SETUP



### 3.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical function (as a customer would normally use it), EUT was programmed to be in continuously transmitting data or hopping on mode.

### 3.6 TEST RESULTS

Please refer to the APPENDIX A.

### Remark:

- (1) All readings are QP Mode value unless otherwise stated AVG in column of <code>Note</code>. If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform in this case, a "\*" marked in AVG Mode column of Interference Voltage Measured.
- (2) Measuring frequency range from 150 kHz to 30 MHz.



### 4. RADIATED EMISSIONS

### **4.1 LIMIT**

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

### LIMITS OF RADIATED EMISSION MEASUREMENT (9 kHz-1000 MHz)

| Frequency   | Field Strength     | Measurement Distance |
|-------------|--------------------|----------------------|
| (MHz)       | (microvolts/meter) | (meters)             |
| 0.009-0.490 | 2400/F(kHz)        | 300                  |
| 0.490-1.705 | 24000/F(kHz)       | 30                   |
| 1.705-30.0  | 30                 | 30                   |
| 30-88       | 100                | 3                    |
| 88-216      | 150                | 3                    |
| 216-960     | 200                | 3                    |
| Above 960   | 500                | 3                    |

### LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000 MHz)

| Frequency  | (dBuV/m at 3 m) |         |
|------------|-----------------|---------|
| (MHz)      | Peak            | Average |
| Above 1000 | 74              | 54      |

### Note:

- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).



### **4.2 TEST PROCEDURE**

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1 GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1 GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz)
- i. For the actual test configuration, please refer to the related Item -EUT Test Photos.

The following table is the setting of the receiver:

| Spectrum Parameters    | Setting                         |  |
|------------------------|---------------------------------|--|
| Start ~ Stop Frequency | 9 kHz~150 kHz for RBW 200 Hz    |  |
| Start ~ Stop Frequency | 0.15 MHz~30 MHz for RBW 9 kHz   |  |
| Start ~ Stop Frequency | 30 MHz~1000 MHz for RBW 100 kHz |  |

| Spectrum Parameters           | Setting                      |
|-------------------------------|------------------------------|
| Start Frequency               | 1000 MHz                     |
| Stop Frequency                | 10th carrier harmonic        |
| RBW / VBW                     | 1 MHz / 3 MHz for PK value   |
| (Emission in restricted band) | 1 MHz / 1/T Hz for AVG value |

| Spectrum Parameters    | Setting                             |  |
|------------------------|-------------------------------------|--|
| Start ~ Stop Frequency | 9 kHz~90 kHz for PK/AVG detector    |  |
| Start ~ Stop Frequency | 90 kHz~110 kHz for QP detector      |  |
| Start ~ Stop Frequency | 110 kHz~490 kHz for PK/AVG detector |  |
| Start ~ Stop Frequency | 490 kHz~30 MHz for QP detector      |  |
| Start ~ Stop Frequency | 30 MHz~1000 MHz for QP detector     |  |
| Start ~ Stop Frequency | 1 GHz~26.5 GHz for PK/AVG detector  |  |



### 4.3 DEVIATION FROM TEST STANDARD

No deviation.

### 4.4 TEST SETUP

9 kHz to 30 MHz



30 MHz to 1 GHz





### **Above 1 GHz**



### 4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

### 4.6 TEST RESULTS - 9 kHz TO 30 MHz

Please refer to the APPENDIX B.

### Remark:

- (1) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
- (2) Limit line = specific limits (dBuV) + distance extrapolation factor.

### 4.7 TEST RESULTS - 30 MHz TO 1000 MHz

Please refer to the APPENDIX C.

### 4.8 TEST RESULTS - ABOVE 1000 MHz

Please refer to the APPENDIX D.

### Remark:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.



### **5. MAXIMUM OUTPUT POWER**

### **5.1 LIMIT**

| Section          | Test Item            | Limit                    |
|------------------|----------------------|--------------------------|
| FCC 15.247(a)(1) | Maximum Output Power | 0.1250 Watt or 20.97 dBm |

Note: Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

### **5.2 TEST PROCEDURE**

- a. The EUT was directly connected to the tonscend test system and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

| Spectrum Parameters | Setting                                                                      |
|---------------------|------------------------------------------------------------------------------|
| Span Frequency      | Approximately five times the 20 dB bandwidth, centered on a hopping channel. |
| RBW                 | 3 MHz                                                                        |
| VBW                 | 3 MHz                                                                        |
| Detector            | Peak                                                                         |
| Trace               | Max Hold                                                                     |
| Sweep Time          | Auto                                                                         |

### 5.3 DEVIATION FROM STANDARD

No deviation.

### 5.4 TEST SETUP



### 5.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

### **5.6 TEST RESULTS**

Please refer to the APPENDIX E.





## **6. MEASUREMENT INSTRUMENTS LIST**

| 0.1 | WILAGOINLINILINI I                      | NSTRUMENTS LIST<br>R         | adiated Emissi  | ons            |                           |                               |
|-----|-----------------------------------------|------------------------------|-----------------|----------------|---------------------------|-------------------------------|
| No. | Equipment                               | Manufacturer                 | Type No.        | Serial No.     | Cal. date<br>(yyyy/mm/dd) | Cal. Due date<br>(yyyy/mm/dd) |
| 1   | Test receiver                           | Rohde&Schwarz                | ESU             | 100184         | 2023/5/3                  | 2024/5/2                      |
| 2   | Horn Antenna                            | Schwarzbeck                  | BBHA 9120<br>D  | 9120D-1273     | 2023/4/23                 | 2024/4/22                     |
| 3   | Low frequency amplifier                 | Unknown                      | LNA 0920N       | 2014           | 2023/5/3                  | 2024/5/2                      |
| 4   | High frequency amplifier                | Schwarzbeck                  | BBV 9718        | 284            | 2023/5/3                  | 2024/5/2                      |
| 5   | Loop Antenna                            | Schwarzbeck                  | FMZB1519<br>B   | 00029          | 2022/7/4                  | 2025/7/3                      |
| 6   | Log periodic antenna                    | Schwarzbeck                  | VULB 9168       | 1151           | 2023/4/23                 | 2024/4/22                     |
| 7   | Horn Antenna                            | Schwarzbeck                  | BBHA 9120<br>D  | 9120D-1273     | 2022/5/5                  | 2025/5/4                      |
| 8   | Horn Antenna                            | Schwarzbeck                  | BBHA 9170       | 9170#685       | 2022/7/4                  | 2025/7/3                      |
| 9   | Temp&Humidity<br>Recorder               | Meideshi                     | JR900           | /              | 2023/5/3                  | 2024/5/2                      |
| 10  | RF cable(966<br>chamber)9kHz-1<br>GHz   | Unknown                      | Unknown         | Unknown        | 2023/5/3                  | 2024/5/2                      |
| 11  | RF cable(966<br>chamber)1GHz-1<br>8GHz  | Unknown                      | Unknown         | Unknown        | 2023/5/3                  | 2024/5/2                      |
| 12  | RF cable(966<br>chamber)18GHz-<br>40GHz | Unknown                      | Unknown         | Unknown        | 2023/5/3                  | 2024/5/2                      |
| 13  | Test software                           | Farad Technology<br>Co., Ltd | EZ-EMC          | /              | /                         | /                             |
|     |                                         |                              | nducted Emis    |                |                           |                               |
| 1   | Test receiver                           | Rohde&Schwarz                | ESCI            | 100718         | 2023/5/3                  | 2024/5/2                      |
| 2   | LISN                                    | Rohde&Schwarz                | ENV216          | 100075         | 2023/5/3                  | 2024/5/2                      |
| 3   | Pulse limiter                           | Rohde&Schwarz                | ESH3-Z2         | 102299         | 2023/5/3                  | 2024/5/2                      |
| 4   | RF cable<br>(9kHz-30MHz)                | Unknown                      | Unknown         | Unknown        | 2023/5/3                  | 2024/5/2                      |
| 5   | Test software                           | Farad Technology<br>Co., Ltd | EZ-EMC          | 1              | /                         | 1                             |
|     |                                         | RF o                         | conducted Emis  |                |                           |                               |
| 1   | MXA Signal<br>Analyzer                  | Keysight                     | N9021B          | MY6008016<br>9 | 2023/4/23                 | 2024/4/22                     |
| 2   | RF Control Unit                         | dsusoft                      | JS0806-2        | 21G806044<br>9 | 2023/4/23                 | 2024/4/22                     |
| 3   | power supply unit                       | dsusoft                      | JS0806-4A<br>DC | N/A            | 2023/4/23                 | 2024/4/22                     |
| 4   | VXG Signal<br>Generator                 | Keysight                     | M9384B          | MY6127078<br>7 | 2023/4/23                 | 2024/4/22                     |
| 5   | EXG Analog<br>Signal Generator          | Keysight                     | N5173B          | MY5910128<br>2 | 2023/4/23                 | 2024/4/22                     |
| 6   | Test software                           | dsusoft                      | JS1120-3        | /              | /                         | /                             |
|     |                                         |                              |                 |                |                           |                               |



### 7. ANTENNA REQUIREMENT

Test standard: FCC part 15.203

According to the manufacturer, BT is a PIFA antenna, with a gain of 3.35dBi, and the antenna connector is designed to be permanently connected without thinking about replacement.

Therefore the EUT is considered sufficient to comply with the provision.

Refer to EUT Photo for further details.



# **APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS**





| No. | Mk. | Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |         |
|-----|-----|---------|------------------|-------------------|------------------|-------|--------|----------|---------|
|     |     | MHz     | dBuV             | dB                | dBuV             | dBuV  | dB     | Detector | Comment |
| 1   |     | 0.1740  | 12.69            | 19.88             | 32.57            | 64.77 | -32.20 | QP       |         |
| 2   |     | 0.1740  | 1.44             | 19.88             | 21.32            | 54.77 | -33.45 | AVG      |         |
| 3   |     | 0.3940  | 10.72            | 19.88             | 30.60            | 57.98 | -27.38 | QP       |         |
| 4   |     | 0.3940  | 5.23             | 19.88             | 25.11            | 47.98 | -22.87 | AVG      |         |
| 5   |     | 1.1740  | 8.72             | 19.89             | 28.61            | 56.00 | -27.39 | QP       |         |
| 6   | *   | 1.1740  | 5.84             | 19.89             | 25.73            | 46.00 | -20.27 | AVG      |         |
| 7   |     | 2.1140  | 8.84             | 19.91             | 28.75            | 56.00 | -27.25 | QP       |         |
| 8   |     | 2.1140  | 3.78             | 19.91             | 23.69            | 46.00 | -22.31 | AVG      |         |
| 9   |     | 8.7460  | 4.04             | 19.95             | 23.99            | 60.00 | -36.01 | QP       |         |
| 10  |     | 8.7460  | -0.05            | 19.95             | 19.90            | 50.00 | -30.10 | AVG      |         |
| 11  |     | 21.5060 | 3.48             | 20.07             | 23.55            | 60.00 | -36.45 | QP       |         |
| 12  |     | 21.5060 | -0.84            | 20.07             | 19.23            | 50.00 | -30.77 | AVG      |         |

### **REMARKS**:

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



| Test Mode | TX Mode_1Mbps Channel 39 | Phase | Neutral |  |
|-----------|--------------------------|-------|---------|--|
|-----------|--------------------------|-------|---------|--|



| Mk. | Freq.  | Reading<br>Level                                                            | Correct<br>Factor                                                                                                                                                             | Measure-<br>ment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Over                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----|--------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | MHz    | dBuV                                                                        | dB                                                                                                                                                                            | dBuV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dBuV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | 0.1620 | 14.37                                                                       | 19.88                                                                                                                                                                         | 34.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 65.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -31.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | 0.1620 | 1.74                                                                        | 19.88                                                                                                                                                                         | 21.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 55.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -33.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | 0.3860 | 12.09                                                                       | 19.88                                                                                                                                                                         | 31.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 58.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -26.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ×   | 0.3860 | 8.94                                                                        | 19.88                                                                                                                                                                         | 28.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 48.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -19.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | 1.1540 | 7.12                                                                        | 19.89                                                                                                                                                                         | 27.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 56.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -28.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | 1.1540 | 4.17                                                                        | 19.89                                                                                                                                                                         | 24.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 46.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -21.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | 1.7860 | 8.56                                                                        | 19.90                                                                                                                                                                         | 28.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 56.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -27.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | 1.7860 | 3.71                                                                        | 19.90                                                                                                                                                                         | 23.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 46.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -22.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | 4.2940 | 2.65                                                                        | 19.91                                                                                                                                                                         | 22.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 56.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -33.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | 4.2940 | -1.92                                                                       | 19.91                                                                                                                                                                         | 17.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 46.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -28.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | 9.0500 | 4.82                                                                        | 19.95                                                                                                                                                                         | 24.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -35.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | 9.0500 | 0.77                                                                        | 19.95                                                                                                                                                                         | 20.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -29.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     |        | MHz 0.1620 0.1620 0.3860 * 0.3880 1.1540 1.7860 1.7860 4.2940 4.2940 9.0500 | Mk. Freq. Level  MHz dBuV  0.1620 14.37  0.1620 1.74  0.3860 12.09  * 0.3860 8.94  1.1540 7.12  1.1540 4.17  1.7860 8.56  1.7860 3.71  4.2940 2.65  4.2940 -1.92  9.0500 4.82 | Mk.         Freq.         Level         Factor           MHz         dBuV         dB           0.1620         14.37         19.88           0.1620         1.74         19.88           0.3860         12.09         19.88           *         0.3860         8.94         19.88           1.1540         7.12         19.89           1.7860         8.56         19.90           1.7860         3.71         19.90           4.2940         2.85         19.91           4.2940         -1.92         19.91           9.0500         4.82         19.95 | Mk.         Freq.         Level         Factor         ment           MHz         dBuV         dB         dBuV           0.1620         14.37         19.88         34.25           0.1620         1.74         19.88         21.62           0.3860         12.09         19.88         31.97           *         0.3860         8.94         19.88         28.82           1.1540         7.12         19.89         27.01           1.1540         4.17         19.89         24.06           1.7860         8.56         19.90         28.46           1.7860         3.71         19.90         23.61           4.2940         2.65         19.91         22.56           4.2940         -1.92         19.91         17.99           9.0500         4.82         19.95         24.77 | Mk.         Freq.         Level         Factor         ment         Limit           MHz         dBuV         dB         dBuV         dBuV           0.1620         14.37         19.88         34.25         65.36           0.1620         1.74         19.88         21.62         55.36           0.3860         12.09         19.88         31.97         58.15           *         0.3860         8.94         19.88         28.82         48.15           1.1540         7.12         19.89         27.01         56.00           1.7860         8.56         19.90         28.46         56.00           1.7860         3.71         19.90         23.61         46.00           4.2940         2.85         19.91         22.56         56.00           4.2940         -1.92         19.91         17.99         46.00           9.0500         4.82         19.95         24.77         60.00 | Mk.         Freq.         Level         Factor         ment         Limit         Over           MHz         dBuV         dB         dBuV         dBuV         dB         dB <td< td=""><td>Mk.         Freq.         Level         Factor         ment         Limit         Over           MHz         dBuV         dB         dBuV         dBuV         dB         Detector           0.1620         14.37         19.88         34.25         65.36         -31.11         QP           0.1620         1.74         19.88         21.62         55.36         -33.74         AVG           0.3860         12.09         19.88         31.97         58.15         -26.18         QP           *         0.3860         8.94         19.88         28.82         48.15         -19.33         AVG           1.1540         7.12         19.89         27.01         56.00         -28.99         QP           1.1540         4.17         19.89         24.06         48.00         -21.94         AVG           1.7860         8.56         19.90         28.46         56.00         -27.54         QP           1.7860         3.71         19.90         23.61         46.00         -22.39         AVG           4.2940         2.85         19.91         22.56         56.00         -33.44         QP           4.2940         -1.92</td></td<> | Mk.         Freq.         Level         Factor         ment         Limit         Over           MHz         dBuV         dB         dBuV         dBuV         dB         Detector           0.1620         14.37         19.88         34.25         65.36         -31.11         QP           0.1620         1.74         19.88         21.62         55.36         -33.74         AVG           0.3860         12.09         19.88         31.97         58.15         -26.18         QP           *         0.3860         8.94         19.88         28.82         48.15         -19.33         AVG           1.1540         7.12         19.89         27.01         56.00         -28.99         QP           1.1540         4.17         19.89         24.06         48.00         -21.94         AVG           1.7860         8.56         19.90         28.46         56.00         -27.54         QP           1.7860         3.71         19.90         23.61         46.00         -22.39         AVG           4.2940         2.85         19.91         22.56         56.00         -33.44         QP           4.2940         -1.92 |

### **REMARKS**:

- (1) Measurement Value = Reading Level + Correct Factor.
  (2) Margin Level = Measurement Value Limit Value.



## **APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ**

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.



# **APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ**





| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          | Antenna<br>Height | Table<br>Degree |         |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------|
|     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector | cm                | degree          | Comment |
| 1   | *   | 42.7495  | 42.90            | -10.71            | 32.19            | 40.00  | -7.81  | peak     |                   |                 |         |
| 2   |     | 60.7043  | 41.19            | -12.19            | 29.00            | 40.00  | -11.00 | peak     |                   |                 |         |
| 3   |     | 113.7143 | 44.20            | -11.72            | 32.48            | 43.50  | -11.02 | peak     |                   |                 |         |
| 4   |     | 167.2366 | 37.08            | -9.84             | 27.24            | 43.50  | -16.26 | peak     |                   |                 |         |
| 5   |     | 232.5318 | 34.68            | -10.17            | 24.51            | 46.00  | -21.49 | peak     |                   |                 |         |
| 6   |     | 440.1962 | 31.06            | -4.85             | 26.21            | 46.00  | -19.79 | peak     |                   |                 |         |

### **REMARKS**:

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



| Test Mode TX Mode_1Mbps Channel 39 | Polarization Horizontal |
|------------------------------------|-------------------------|
|------------------------------------|-------------------------|



### **REMARKS:**

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



# **APPENDIX D - RADIATED EMISSION - ABOVE 1000 MHZ**

| Test Mode | TX Mode 1Mbps Channel 00 | Polarization | Vertical |
|-----------|--------------------------|--------------|----------|
|           |                          |              |          |



# Radiated Emission 120.0 dBuV/m FEC PK 70 20.0 2310.000 2320.00 2330.00 2340.00 2350.00 2360.00 2370.00 2380.00 2380.00 2390.00 MHz



| Test Mode TX Mode_1Mbps Channel 00 | Polarization | Horizontal |
|------------------------------------|--------------|------------|
|------------------------------------|--------------|------------|



| N | lo. | Mk. |          |       |       | Measure-<br>ment | Limit  | Over   |          | Antenna<br>Height | Table<br>Degree |         |
|---|-----|-----|----------|-------|-------|------------------|--------|--------|----------|-------------------|-----------------|---------|
|   |     |     | MHz      | dBu∀  | dB/m  | dBuV/m           | dBu∀/m | dB     | Detector | cm                | degree          | Comment |
|   | 1   | *   | 4804.000 | 52.88 | -1.99 | 50.89            | 74.00  | -23.11 | peak     |                   |                 |         |



| No. I | Иk. | Freq.    | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          | Antenna<br>Height | Table<br>Degree |         |
|-------|-----|----------|------------------|-------|------------------|--------|--------|----------|-------------------|-----------------|---------|
|       |     | MHz      | dBu∨             | dB/m  | dBu∀/m           | dBu∀/m | dB     | Detector | cm                | degree          | Comment |
| 1 *   |     | 2310.000 | 35.79            | 10.19 | 45.98            | 74.00  | -28.02 | peak     |                   |                 |         |
| 2     |     | 2390.000 | 35.02            | 10.41 | 45.43            | 74.00  | -28.57 | peak     |                   |                 |         |





| Test Mode | TX Mode_1Mbps Channel 39 | Polarization | Horizontal |
|-----------|--------------------------|--------------|------------|
|-----------|--------------------------|--------------|------------|





| Test Mode | TX Mode_1Mbps Channel78 | Polarization | Vertical |
|-----------|-------------------------|--------------|----------|
|           |                         |              |          |



### **Radiated Emission** 120.0 dBuV/m FEE PK FEE AV 2475.000 2482.50 2490.00 2497.50 2505.00 2512.50 2520.00 2527.50 2535.00 2550.00 MHz Reading Correct Antenna Table Measure-No. Mk. Freq. Limit Over Height Degree Factor Level ment dBuV/m MHz dBuV dB/m dBuV/m dB Detector degree Comment

74.00

54.00

74.00

-17.57

-10.78

-29.19

peak

AVG

peak

2483.500

2483.500

2500.000

2

3

45.34

32.13

33.59

11.09

11.09

11.22

56.43

43.22

44.81



| Trest wode Try wode_rivibps Charillet 70   Folarization   Folariza | Test Mode | TX Mode_1Mbps Channel 78 | Polarization | Horizontal |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------|--------------|------------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------|--------------|------------|





| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          | Antenna<br>Height | Table<br>Degree |         |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------|
|     |     | MHz      | dBu∀             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector | cm                | degree          | Comment |
| 1   |     | 2483.500 | 51.19            | 11.09             | 62.28            | 74.00  | -11.72 | peak     |                   |                 |         |
| 2   | *   | 2483.500 | 37.86            | 11.09             | 48.95            | 54.00  | -5.05  | AVG      |                   |                 |         |
| 3   |     | 2500.000 | 33.70            | 11.22             | 44.92            | 74.00  | -29.08 | peak     |                   |                 |         |



| Test Mode | TX Mode_2Mbps Channel 00 | Polarization | Vertical |
|-----------|--------------------------|--------------|----------|
|           | _ '                      |              |          |



| No. M | c. Freq. | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          | Antenna<br>Height | Table<br>Degree |         |
|-------|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------|
|       | MHz      | dBu∨             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector | cm                | degree          | Comment |
| 1 *   | 4804.000 | 48.87            | -1.99             | 46.88            | 74.00  | -27.12 | peak     |                   |                 |         |



| No. | Mk. |          |       | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          | Antenna<br>Height | Table<br>Degree |         |
|-----|-----|----------|-------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------|
|     |     | MHz      | dBu∀  | dB/m              | dBu∀/m           | dBuV/m | dB     | Detector | cm                | degree          | Comment |
| 1   |     | 2310.000 | 36.05 | 10.19             | 46.24            | 74.00  | -27.76 | peak     |                   |                 |         |
| 2   | *   | 2390.000 | 35.91 | 10.41             | 46.32            | 74.00  | -27.68 | peak     |                   |                 |         |



| Test Mode TX Mode_2Mbps Channel 00 | Polarization | Horizontal |  |
|------------------------------------|--------------|------------|--|
|------------------------------------|--------------|------------|--|





| No. | Mk. | Freq.    |       | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          | Antenna<br>Height | Table<br>Degree |         |
|-----|-----|----------|-------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------|
|     |     | MHz      | dBuV  | dB/m              | dBuV/m           | dBu∀/m | dB     | Detector | cm                | degree          | Comment |
| 1   |     | 2310.000 | 34.78 | 10.19             | 44.97            | 74.00  | -29.03 | peak     |                   |                 |         |
| 2   | *   | 2390.000 | 35.58 | 10.41             | 45.99            | 74.00  | -28.01 | peak     |                   |                 |         |





| Test Mode TX Mode_2Mbps Channel 39 | Polarization Horizontal |
|------------------------------------|-------------------------|
|------------------------------------|-------------------------|









| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          | Antenna<br>Height | Table<br>Degree |         |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------|
|     |     | MHz      | dBu∨             | dB/m              | dBuV/m           | dBu∀/m | dB     | Detector | cm                | degree          | Comment |
| 1   |     | 2483.500 | 47.30            | 11.09             | 58.39            | 74.00  | -15.61 | peak     |                   |                 |         |
| 2   | *   | 2483.500 | 34.07            | 11.09             | 45.16            | 54.00  | -8.84  | AVG      |                   |                 |         |
| 3   |     | 2500.000 | 34.63            | 11.22             | 45.85            | 74.00  | -28.15 | peak     |                   |                 |         |



Test Mode TX Mode\_2Mbps Channel 78 Polarization Horizontal

# Radiated Emission 80.0 dBuV/in FCC PK FCC AV 30 -20 1000.000 2000 3000 (NHz) 5000 6000 7000 8000 9000 18000.000

| No. Mk. |          |       | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          | Antenna<br>Height | Table<br>Degree |         |
|---------|----------|-------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------|
|         | MHz      | dBu∀  | dB/m              | dBuV/m           | dBuV/m | dB     | Detector | cm                | degree          | Comment |
| 1 *     | 4960.000 | 50.32 | -1.08             | 49.24            | 74.00  | -24.76 | peak     |                   |                 |         |



| No. | Mk. | Freq.    | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          | Antenna<br>Height | Table<br>Degree |         |
|-----|-----|----------|------------------|-------|------------------|--------|--------|----------|-------------------|-----------------|---------|
|     |     | MHz      | dBu∀             | dB/m  | dBuV/m           | dBu∀/m | dB     | Detector | cm                | degree          | Comment |
| 1   |     | 2483.500 | 52.47            | 11.09 | 63.56            | 74.00  | -10.44 | peak     |                   |                 |         |
| 2   | *   | 2483.500 | 38.14            | 11.09 | 49.23            | 54.00  | -4.77  | AVG      |                   |                 |         |
| 3   |     | 2500.000 | 34.20            | 11.22 | 45.42            | 74.00  | -28.58 | peak     |                   |                 |         |



| Test Mode | TX Mode_3Mbps Channel 00 | Polarization | Vertical |
|-----------|--------------------------|--------------|----------|
|           |                          |              |          |



| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          | Antenna<br>Height | Table<br>Degree |         |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------|
|     |     | MHz      | dBu∀             | dB/m              | dBuV/m           | dBu∀/m | dB     | Detector | cm                | degree          | Comment |
| 1 ' | *   | 4804.000 | 48.22            | -1.99             | 46.23            | 74.00  | -27.77 | peak     |                   |                 |         |



| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          | Antenna<br>Height | Table<br>Degree |         |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------|
|     |     | MHz      | dBu∀             | dB/m              | dBuV/m           | dBu∀/m | dB     | Detector | cm                | degree          | Comment |
| 1   |     | 2310.000 | 35.23            | 10.19             | 45.42            | 74.00  | -28.58 | peak     |                   |                 |         |
| 2   | *   | 2390.000 | 36.20            | 10.41             | 46.61            | 74.00  | -27.39 | peak     |                   |                 |         |



| Test Mode | TX Mode 3Mbps Channel 00 | Polarization | Horizontal |
|-----------|--------------------------|--------------|------------|
|           |                          |              |            |



| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          | Antenna<br>Height | Table<br>Degree |         |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------|
|     |     | MHz      | dBu∀             | dB/m              | dBuV/m           | dBu∀/m | dB     | Detector | cm                | degree          | Comment |
| 1   | *   | 4804.000 | 51.91            | -1.99             | 49.92            | 74.00  | -24.08 | peak     |                   |                 |         |



| No. | Mk. | Freq.    |       | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          | Antenna<br>Height | Table<br>Degree |         |
|-----|-----|----------|-------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------|
|     |     | MHz      | dBu∨  | dB/m              | dBuV/m           | dBu∀/m | dB     | Detector | cm                | degree          | Comment |
| 1   | *   | 2310.000 | 36.23 | 10.19             | 46.42            | 74.00  | -27.58 | peak     |                   |                 | _       |
| 2   |     | 2390.000 | 35.50 | 10.41             | 45.91            | 74.00  | -28.09 | peak     |                   |                 |         |













| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          | Antenna<br>Height | Table<br>Degree |         |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------|
|     |     | MHz      | dBu∀             | dB/m              | dBuV/m           | dBu∀/m | dB     | Detector | cm                | degree          | Comment |
| 1   |     | 2483.500 | 51.12            | 11.09             | 62.21            | 74.00  | -11.79 | peak     |                   |                 |         |
| 2   | *   | 2483.500 | 38.46            | 11.09             | 49.55            | 54.00  | -4.45  | AVG      |                   |                 |         |
| 3   |     | 2500.000 | 34.21            | 11.22             | 45.43            | 74.00  | -28.57 | peak     |                   |                 |         |









| No. | Mk. | Freq.    |       | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          | Antenna<br>Height | Table<br>Degree |         |
|-----|-----|----------|-------|-------------------|------------------|--------|--------|----------|-------------------|-----------------|---------|
|     |     | MHz      | dBu∀  | dB/m              | dBuV/m           | dBu∀/m | dB     | Detector | cm                | degree          | Comment |
| 1   |     | 2483.500 | 54.39 | 11.09             | 65.48            | 74.00  | -8.52  | peak     |                   |                 | _       |
| 2   | *   | 2483.500 | 40.77 | 11.09             | 51.86            | 54.00  | -2.14  | AVG      |                   |                 |         |
| 3   |     | 2500.000 | 34.07 | 11.22             | 45.29            | 74.00  | -28.71 | peak     |                   |                 |         |

### **REMARKS:**

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



# **APPENDIX E - MAXIMUM OUTPUT POWER**

| Test<br>Mode | Antenna | Channel | Conducted Peak Powert[dBm] | Conducted Limit[dBm] | Verdict |
|--------------|---------|---------|----------------------------|----------------------|---------|
|              | Ant1    | 2402    | 6.74                       | ≤30                  | PASS    |
| DH5          |         | 2441    | 7.23                       | ≤30                  | PASS    |
|              |         | 2480    | 5.46                       | ≤30                  | PASS    |
|              | Ant1    | 2402    | 6.34                       | ≤30                  | PASS    |
| 2DH5         |         | 2441    | 6.83                       | ≤30                  | PASS    |
|              |         | 2480    | 5.06                       | ≤30                  | PASS    |
|              | Ant1    | 2402    | 6.49                       | ≤30                  | PASS    |
| 3DH5         |         | 2441    | 7.00                       | ≤30                  | PASS    |
|              |         | 2480    | 5.13                       | ≤30                  | PASS    |

**End of Test Report**