

TEST REPORT

FCC/ISED LTE Test for WW23B

Certification

APPLICANT

Panasonic Connect Co.,Ltd.

REPORT NO.

HCT-RF-2408-FI002

DATE OF ISSUE

August 9, 2024

Tested by Jae Ryang Do

Technical Manager Jong Seok Lee

> HCT CO., LTD. BongJai Huh

HCT CO.,LTD.

2-6, 73, 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 645 6300 Fax. +82 31 645 6401

TEST REPORT

REPORT NO. HCT-RF-2408-FI002

DATE OF ISSUE August 09, 2024

Applicant	Panasonic Connect Co.,Ltd. ytv Kyobashi Building, 2-2-33 Shiromi, Chuo-ku, Osaka 540-8553 Japan
Product Name Model Name	Wirelss Module WW23B
Date of Test	June 12, 2024 ~ August 09, 2024
Location of Test	■ Permanent Testing Lab □ On Site Testing (Address: 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggido, 17383 Republic of Korea)
FCC ID	ACJ9TGWW23B
IC	216H-CFWW23B
FCC Classification	PCS Licensed Transmitter (PCB)
Test Standard Used	FCC Rule Part(s): § 22, § 24, § 27, § 90 ISED Rule Part(s): RSS-Gen Issue5, RSS-130 Issue2, RSS-132 Issue 4, RSS-133 Issue 7, RSS-139 Issue 4, RSS-140 issue 1, RSS-199 Issue 4
Test Results	PASS

F-TP22-03 (Rev. 06) Page 2 of 21

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description		
0	August 09, 2024	Initial Release		

Notice

Content

The measurements shown in this report were made in accordance with the procedures specified in CFR47 section § 2.947. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

The results shown in this test report only apply to the sample(s), as received, provided by the applicant, unless otherwise stated.

The test results have only been applied with the test methods required by the standard(s).

The laboratory is not accredited for the test results marked *.

Information provided by the applicant is marked **.

Test results provided by external providers are marked ***.

When confirmation of authenticity of this test report is required, please contact www.hct.co.kr

The test results in this test report are not associated with the ((KS Q) ISO/IEC 17025) accreditation by KOLAS (Korea Laboratory Accreditation Scheme) / A2LA (American Association for Laboratory Accreditation) that are under the ILAC (International Laboratory Accreditation Cooperation) Mutual Recognition Agreement (MRA).

F-TP22-03 (Rev. 06) Page 3 of 21

CONTENTS

1. GENERAL INFORMATION	5
2. INTRODUCTION	7
2.1. DESCRIPTION OF EUT	7
2.2. MEASURING INSTRUMENT CALIBRATION	7
2.3. TEST FACILITY	7
3. DESCRIPTION OF TESTS	8
3.1 TEST PROCEDURE	8
3.2 CONDUCTED OUTPUT POWER	9
3.3 RADIATED SPURIOUS EMISSIONS	10
3.4 RECEIVER SPURIOUS EMISSIONS	11
4. LIST OF TEST EQUIPMENT	13
5. MEASUREMENT UNCERTAINTY	14
6. SUMMARY OF TEST RESULTS	15
7. SAMPLE CALCULATION	17
8. TEST DATA	
8.1 Conducted Power	19
8.2 RADIATED SPURIOUS EMISSIONS	20
8 3 RECEIVER SPURIOUS EMISSIONS	21

MEASUREMENT REPORT

1. GENERAL INFORMATION

Applicant Name:	Panasonic Co	Panasonic Connect Co.,Ltd.					
Address:	ytv Kyobashi	Building, 2-2-33 Shiromi, Chuo-ku, Osaka 540-8553 Japan					
FCC ID:	ACJ9TGWW23	3B					
IC	216H-CFWW2	216H-CFWW23B					
FCC Classification	PCS Licensed	PCS Licensed Transmitter (PCB)					
FCC Rule Part(s):	§ 22, § 24, §	§ 22, § 24, § 27, § 90					
ICED Dalla Daut(a)	RSS-Gen Issu	e5, RSS-130 Issue2, RSS-132 Issue 4, RSS-133 Issue 7,					
ISED Rule Part(s):	RSS-139 Issue	e 4, RSS-140 issue 1, RSS-199 Issue 4					
EUT Type:	Wirelss Modul	e					
Model(s):	WW23B						
Additional	_						
Model(s)	_						
	WCDMA	826.40 - 846.60 MHz (WCDMA850) 1 852.4 - 1 907.6 MHz (WCDMA1900)					
		1 712.4 – 1 752.6 MHz (WCDMA1700) 1850.7 MHz – 1909.3 MHz (LTE – Band2 (1.4 MHz))					
	LTE B2	1851.5 MHz – 1908.5 MHz (LTE – Band2 (3 MHz)) (1852.5 MHz – 1907.5 MHz (LTE – Band2 (5 MHz)) 1855.0 MHz – 1905.0 MHz (LTE – Band2 (10 MHz))					
		1857.5 MHz – 1902.5 MHz (LTE – Band2 (15 MHz)) 1860.0 MHz – 1900.0 MHz (LTE – Band2 (20 MHz))					
	LTE B4	1710.7 MHz – 1754.3 MHz (LTE – Band 4 (1.4 MHz)) 1711.5 MHz – 1753.5 MHz (LTE – Band 4 (3 MHz)) 1712.5 MHz – 1752.5 MHz (LTE – Band 4 (5 MHz)) 1715.0 MHz – 1750.0 MHz (LTE – Band 4 (10 MHz)) 1717.5 MHz – 1747.5 MHz (LTE – Band 4 (15 MHz)) 1720.0 MHz – 1745.0 MHz (LTE – Band 4 (20 MHz))					
Tx Frequency:	LTE B5	824.7 MHz – 848.3 MHz (LTE – Band 5 (1.4 MHz)) 825.5 MHz – 847.5 MHz (LTE – Band 5 (3 MHz)) 826.5 MHz – 846.5 MHz (LTE – Band 5 (5 MHz)) 829.0 MHz – 844.0 MHz (LTE – Band 5 (10 MHz))					
, ,	LTE B7	2502.5 – 2567.5 (LTE – Band 7 (5 MHz)) 2505.0 – 2565.0 (LTE – Band 7 (10 MHz)) 2507.5 – 2562.5 (LTE – Band 7 (15 MHz)) 2510.0 – 2560.0 (LTE – Band 7 (20 MHz))					
	LTE B12	699.7 MHz – 715.3 MHz (LTE – Band 12 (1.4 MHz)) 700.5 MHz – 714.5 MHz (LTE – Band 12 (3 MHz)) 701.5 MHz – 713.5 MHz (LTE – Band 12 (5 MHz)) 704.0 MHz – 711.0 MHz (LTE – Band 12 (10 MHz))					
	LTE B13	779.5 MHz –784.5 MHz (LTE – Band 13 (5 MHz)) 782 MHz (LTE – Band 13 (10 MHz))					
	LTE B14	790.5 MHz (LTE – BAND 14 (5MHz)) 793.0 MHz (LTE – BAND 14 (10 MHz))					
	LTE B25	1850.7 MHz – 1914.3 MHz (LTE – Band25 (1.4 MHz)) 1851.5 MHz – 1913.5 MHz (LTE – Band25 (3 MHz)) 1852.5 MHz – 1912.5 MHz (LTE – Band25 (5 MHz)) 1855.0 MHz – 1910.0 MHz (LTE – Band25 (10 MHz)) 1857.5 MHz – 1907.5 MHz (LTE – Band25 (15 MHz)) 1860.0 MHz – 1905.0 MHz (LTE – Band25 (20 MHz))					

F-TP22-03 (Rev. 06) Page 5 of 21

	LTE B26	824.7 MHz – 848.3 MHz (LTE – Band 26 (1.4 MHz)) 825.5 MHz – 847.5 MHz (LTE – Band 26 (3 MHz)) 826.5 MHz – 846.5 MHz (LTE – Band 26 (5 MHz)) 829.0 MHz – 844.0 MHz (LTE – Band 26 (10 MHz)) 831.5 MHz – 841.5 MHz (LTE – Band 26 (15 MHz))				
	LTE B26 (Part 90)	814.7 MHz – 824.0 MHz (LTE – Band 26(Part90) (1.4 MHz)) 815.5 MHz – 824.0 MHz (LTE – Band 26(Part90) (3 MHz)) 816.5 MHz – 824.0 MHz (LTE – Band 26(Part90) (5 MHz)) 819.0 MHz – 824.0 MHz (LTE – Band 26(Part90) (10 MHz)) 821.5 MHz (LTE – Band 26(Part90) (15 MHz))				
	LTE B66	1710.7 MHz – 1779.3 MHz (LTE – Band 66 (1.4 MHz)) 1711.5 MHz – 1778.5 MHz (LTE – Band 66 (3 MHz)) 1712.5 MHz – 1777.5 MHz (LTE – Band 66 (5 MHz)) 1715.0 MHz – 1775.0 MHz (LTE – Band 66 (10 MHz)) 1717.5 MHz – 1772.5 MHz (LTE – Band 66 (15 MHz)) 1720.0 MHz – 1770.0 MHz (LTE – Band 66 (20 MHz))				
Date(s) of Tests:	June 12, 2024	June 12, 2024 ~ August 09, 2024				
Serial number:	S0P-021-03645					
PMN (Product Marketing Number)	WW23B					
HVIN (Hardware Version Identification Number)	WW23B					
FVIN (Firmware Version Identification Number)	N/A					
HMN (Host Marketing Name)	CF-33					

F-TP22-03 (Rev. 06) Page 6 of 21

2. INTRODUCTION

2.1. DESCRIPTION OF EUT

The EUT was a Wirelss Module with LTE.

2.2. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.3. TEST FACILITY

The Fully-anechoic chamber and conducted measurement facility used to collect the radiated data are located at the **74**, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA.

For ISED, test facility was accepted dated March 13, 2024 (CAB identifier: KR0032).

F-TP22-03 (Rev. 06) Page 7 of 21

3. DESCRIPTION OF TESTS

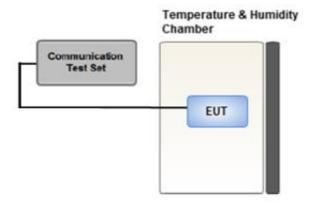
3.1 TEST PROCEDURE

Test Description	Test Procedure Used
Conducted Output Power	- KDB 971168 D01 v03r01 - Section 5.2.4 - ANSI C63.26-2015 - Section 5.2.1 & 5.2.4.2
Radiated Spurious and Harmonic Emissions	- KDB 971168 D01 v03r01 – Section 6.2 - ANSI/TIA-603-E-2016 – Section 2.2.12

F-TP22-03 (Rev. 06) Page 8 of 21

3.2 CONDUCTED OUTPUT POWER

Test Overview


According to ANSI C63.26-2015 Section 5.2.1 when measuring the maximum RF output power from such devices, control over the EUT must be provided either through special test software (provided by manufacturer specifically for compliance testing, but not accessible by an end user) or through use of a base station emulator, communications test set, call box, or similar instrumentation that is capable of establishing a communications link with the EUT to enable control over variable parameters (e.g., output power, OBW, etc.).

In some cases, these instruments also include basic digital spectrum analyzer and/or power meter capabilities that can be utilized to measure the RF output power if the specified detectors and requirements can be realized and the measurement functions have been calibrated.

Test Procedure

- 1. The RF port of the EUT was connected to the Communication Tester via an RF cable.
- 2. Conducted average power was measured using a calibrated Radio Communication Tester.

Test setup

F-TP22-03 (Rev. 06) Page 9 of 21

3.3 RADIATED SPURIOUS EMISSIONS

Test Overview

Radiated tests are performed in the Fully-anechoic chamber.

Radiated Spurious Emission Measurements at 3 meters by Substitution Method according to ANSI/TIA-603-E-2016.

Test Settings

- 1. RBW = 100 kHz for emissions below 1 GHz and 1 MHz for emissions above 1 GHz
- $2.VBW \ge 3 \times RBW$
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points > 2 x span / RBW
- 5. Detector = Peak
- 6. Trace mode = Max Hold
- 7. The trace was allowed to stabilize
- 8. Test channel: Low/ Middle/ High
- 9. Frequency range: We are performed all frequency to 10th harmonics from 9 kHz.

Test Note

- 1. Measurements value show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 2. The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
 - The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the test data
- 3. For spurious emissions above 1 GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The spurious emissions is calculated by the following formula;

Result (dBm) = Pg (dBm) - cable loss (dB) + antenna gain (dBi)

Where: Pg is the generator output power into the substitution antenna.

If the fundamental frequency is below 1 GHz, RF output power has been converted to EIRP.

EIRP (dBm) = ERP (dBm) + 2.15

F-TP22-03 (Rev. 06) Page 10 of 21

3.4 RECEIVER SPURIOUS EMISSIONS

Test Procedure of Receiver Spurious Emissions (Below 1 GHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The EUT is placed on a turntable, which is 0.8 m above ground plane.
- 3. The Hybrid antenna was placed at a location 3 m from the EUT, which is varied from 1 m to 4 m to find out the highest emissions.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 6. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range: 30 MHz 1 GHz
 - Detector = Peak
 - Trace = Maxhold
 - -RBW = 100 kHz
 - VBW ≥ $3 \times RBW$
 - (2) Measurement Type(Quasi-peak):
 - Measured Frequency Range: 30 MHz 1 GHz
 - Detector = Quasi-Peak
 - RBW = 120 kHz
- 7. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L)

F-TP22-03 (Rev. 06) Page 11 of 21

Above 1 GHz

Test Procedure of Radiated spurious emissions (Above 1 GHz)

- 1. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 4. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. The unit was tested with its standard battery.
- 8. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range: 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW ≥ $3 \times RBW$
 - (2) Measurement Type(Average):
 - We performed using a reduced video BW method was done with the analyzer in linear mode
 - Measured Frequency Range: 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW $\geq 1/\tau$ Hz, where τ = pulse width in seconds

The actual setting value of VBW = 1 kHz

- 9. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 10. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(G) + Distance Factor(D.F)

F-TP22-03 (Rev. 06) Page 12 of 21

4. LIST OF TEST EQUIPMENT

Equipment	Model	Manufacturer	Serial No.	Due to Calibration	Calibration Interval
RF Switching System	FBSR-02B(1.2G HPF+LNA)	T&M SYSTEM	F1L1	12/11/2024	Annual
RF Switching System	FBSR-02B(3.3G HPF+LNA)	T&M SYSTEM	F1L2	12/11/2024	Annual
HIGHPASS FILTER	WHNX6.0/26.5G-6SS	WAINWRIGHT INSTRUMENT	1	12/11/2024	Annual
Power Splitter(DC ~ 26.5 GHz)	11667B	Hewlett Packard	5001	04/17/2025	Annual
DC Power Supply	E3632A	Agilent	KR01009150	04/18/2025	Annual
Dipole Antenna	UHAP	Schwarzbeck	557	03/09/2025	Biennial
Dipole Antenna	UHAP	Schwarzbeck	558	03/09/2025	Biennial
Chamber	SU-642	ESPEC	93008124	02/19/2025	Annual
Horn Antenna(1 ~ 18 GHz)	BBHA 9120D	Schwarzbeck	147	08/17/2025	Biennial
Horn Antenna(1 ~ 18 GHz)	BBHA 9120D	Schwarzbeck	9120D-1298	09/11/2025	Biennial
Horn Antenna(15 ~ 40 GHz)	BBHA 9170	Schwarzbeck	BBHA9170342	09/29/2024	Biennial
Horn Antenna(15 ~ 40 GHz)	BBHA 9170	Schwarzbeck	BBHA9170124	03/28/2025	Biennial
Signal Analyzer(10 Hz ~ 26.5 GHz)	N9020A	Agilent	MY52090906	04/19/2025	Annual
ATTENUATOR(20 dB)	8493C	Hewlett Packard	17280	04/17/2025	Annual
Spectrum Analyzer(10 Hz ~ 40 GHz)	FSV40	REOHDE & SCHWARZ	100931	08/17/2024	Annual
Base Station	8960 (E5515C)	Agilent	MY48360800	08/10/2024	Annual
Loop Antenna(9 kHz ~ 30 MHz)	FMZB1513	Schwarzbeck	1513-333	03/07/2026	Biennial
Trilog Broadband Antenna	VULB9168	Schwarzbeck	895	09/16/2024	Biennial
Trilog Broadband Antenna	VULB9168	Schwarzbeck	1135	09/16/2024	Biennial
Wideband Radio Communication Tester	MT8821C	Anritsu Corp.	6262094331	11/17/2024	Annual
Wideband Radio Communication Tester	MT8820C	Anritsu Corp.	6201026545	12/11/2024	Annual
Signal Analyzer(5 Hz ~ 40.0 GHz)	N9030B	KEYSIGHT	MY55480167	05/17/2025	Annual
FCC LTE Mobile Conducted RF Automation Test Software	-	HCT CO., LTD.,	-	-	-

Note:

- 1. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.
- 2. Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

F-TP22-03 (Rev. 06) Page 13 of 21

5. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4:2014.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (±dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.98 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (9 kHz ~ 30 MHz)	4.36 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (30 MHz ~ 1 GHz)	5.70 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (1 GHz ~ 18 GHz)	5.52 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (18 GHz ~ 40 GHz)	5.66 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (Above 40 GHz)	5.58 (Confidence level about 95 %, <i>k</i> =2)

F-TP22-03 (Rev. 06) Page 14 of 21

6. SUMMARY OF TEST RESULTS

6.1 Test Condition: Conducted & Radiated Test

<u>-. FCC</u>

Test Description	FCC Part Section(s)	Test Limit	Test Result
Conducted Output Power	§ 2.1046	N/A	C ^{Note3}
Radiated Spurious and Harmonic Emissions	§ 2.1053, § 22.917(a), § 24.238(a), § 27.53(c),(g),(h), § 90.543(e)	<-13 dBm	CNote3
	§ 27.53(m)	<-25 dBm	

-. ISED

Test Description	ISED Part Section(s)	Test Limit	Test Result
Conducted Output Power	-	N/A	C ^{Note3}
	RSS 130(4.7)		
	RSS 132(5.5)		
Radiated Spurious and Harmonic	RSS 133(5.6)	< -13 dBm	
Emissions	RSS 139(5.6)		CNote3
	RSS 140(4.4)		
	RSS-199(5.6)	<-25 dBm	
Receiver Spurious Emissions	RSS Gen(7)	Section 8.3	C _{Note3}

F-TP22-03 (Rev. 06) Page 15 of 21

Note:

- 1. See SAR Report
- 2. C = Comply, NT = Not Tested, NA = Not Applicable, NC = Not Comply
- C2PC models are electrically identical to the Original models.
 The Product Equality Declaration includes detailed information about the changes between the devices.
- 4. The data from that application has been verified through appropriate spot checks to demonstrate compliance for this device as shown in the test result of section 8
- 5. Output power was verified to be within the expected tune up tolerances prior to performing the spot checks for radiated spurious emissions and Conducted power to confirm that the proposed changes to the digital circuitry had not adversely affected the previously reported values in the original filing.

F-TP22-03 (Rev. 06) Page 16 of 21

7. SAMPLE CALCULATION

7.1 ERP Sample Calculation

Ch.	/ Freq.	Measured	Substitute Level (dBm)	Substitute	Ant. Gain			EF	RP
channel	Freq.(MHz)	Level (dBm)		(dBd)	C.L	Pol.	w	dBm	
128	824.20	-21.37	38.40	-10.61	0.95	Н	0.483	26.84	

ERP = Substitute LEVEL(dBm) + Ant. Gain – CL(Cable Loss)

- 1) The EUT mounted on a non-conductive turntable is 2.5 meter above test site ground level.
- 2) During the test, the turn table is rotated until the maximum signal is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
- 6) The signal generator output level with Ant. Gain and cable loss are the rating of effective radiated power.

7.2 EIRP Sample Calculation

Ch.	/ Freq.	Measured	Substitute Level (dBm)	Substitute	tute Ant. Gain			EII	RP
channel	Freq.(MHz)	Level (dBm)		(dBi)	C.L	Pol.	w	dBm	
20175	1,732.50	-15.75	18.45	9.90	1.76	Н	0.456	26.59	

EIRP = Substitute LEVEL(dBm) + Ant. Gain – CL(Cable Loss)

- 1) The EUT mounted on a non-conductive turntable is 2.5 meter above test site ground level.
- 2) During the test, the turn table is rotated until the maximum signal is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
- 6) The signal generator output level with Ant. Gain and cable loss are the rating of equivalent isotropic radiated power.

F-TP22-03 (Rev. 06) Page 17 of 21

7.3. Emission Designator

GSM Emission Designator

Emission Designator = 249KGXW

GSM BW = 249 kHz G = Phase Modulation X = Cases not otherwise covered

W = Combination (Audio/Data)

EDGE Emission Designator

Emission Designator = 249KG7W

GSM BW = 249 kHz

G = Phase Modulation

7 = Quantized/Digital Info

W = Combination (Audio/Data)

WCDMA Emission Designator

Emission Designator = 4M17F9W

WCDMA BW = 4.17 MHz
F = Frequency Modulation
9 = Composite Digital Info

W = Combination (Audio/Data)

QPSK Modulation

Emission Designator = 4M48G7D

LTE BW = 4.48 MHz

G = Phase Modulation

7 = Quantized/Digital Info

D = Data transmission; telemetry; telecommand

QAM Modulation

Emission Designator = 4M48W7D

LTE BW = 4.48 MHz

W = Amplitude/Angle Modulated

7 = Quantized/Digital Info

D = Data transmission; telemetry; telecommand

F-TP22-03 (Rev. 06) Page 18 of 21

8. TEST DATA

8.1 Conducted Power

-. FCC & ISED

Modulation	Frequency	Frequency	Mode	Original	C2PC	Gap	
Modulation	MHz	Ch.	Mode	(dBm)	(dBm)	(dBm)	
WCDMA_B2	1880.0	9400	RMC	24.17	23.29	0.88	
WCDMA_B4	1752.6	1513	RMC	24.40	23.41	0.99	
WCDMA_B5	826.4	4132	RMC	24.28	23.83	0.45	
LTE B2 (20 MHz)	1880.0	18900	QPSK	23.33	22.70	0.63	
LTE B4 (20 MHz)	1745.0	20300	QPSK	23.56	23.01	0.55	
LTE B5 (10 MHz)	829.0	20450	QPSK	23.00	22.98	0.02	
LTE B7 (20 MHz)	2560.0	21350	QPSK	23.40	23.10	0.30	
LTE B12 (10 MHz)	707.5	23095	QPSK	23.20	23.19	0.01	
LTE B13 (10 MHz)	782.0	23230	QPSK	23.40	23.12	0.28	
LTE B14 (10 MHz)	793.0	73330	QPSK	23.22	23.15	0.07	
LTE B25 (20 MHz)	1860.0	26140	QPSK	23.34	23.12	0.22	
LTE B26_part22 (15 MHz)	831.5	26865	QPSK	23.31	23.12	0.19	
LTE B26_part90 (15 MHz)	821.5	26765	QPSK	23.09	23.04	0.05	
LTE B66 (20 MHz)	1720.0	132072	QPSK	23.56	23.18	0.38	

Note:

1. All modes of operation were investigated and the worst case configuration results are reported.

F-TP22-03 (Rev. 06) Page 19 of 21

8.2 RADIATED SPURIOUS EMISSIONS

-.FCC & ISED

Dand	Bandwidth	Freq (MHz)	RSE (dBm)		
Band	(MHz)		Original	C2PC	
WCDMA_B2	-	3760.00	-55.18	Note2	
WCDMA_B4	-	6849.60	-52.70	Note2	
WCDMA_B5	-	3305.60	-56.68	Note2	
LTE B2	20	3760.00	-54.54	Note2	
LTE B4	3	6846.00	-54.33	Note2	
LTE B5	5	3306.00	-55.85	Note2	
LTE B7	10	10260.00	-52.19	Note2	
LTE B12	5	2806.00	-56.46	Note2	
LTE B13	5	3128.00	-55.69	Note2	
LTE B14	5	3182.00	-62.74	Note2	
LTE B25	5	3765.00	-54.70	Note2	
LTE B26_part22	10	3346.00	-56.35	Note2	
LTE B26_part90	5	3266.00	-55.48	Note2	
LTE B66	10	7100.00	-56.94	Note2	

Note:

1. All modes of operation were investigated and the worst case configuration results are reported.

2. Result: No peak found

F-TP22-03 (Rev. 06) Page 20 of 21

8.3 RECEIVER SPURIOUS EMISSIONS

Frequency Range : 30 MHz \sim 1 GHz

Frequency	Reading	Ant. factor+Cable loss- Amp Gain	Ant. POL	Total	Limit	Margin
MHz	dΒμV	dB/m	(H/V)	dB μV/m	dB μV/m	dB

No Peak Found

Frequency Range : Above 1 GHz

Frequency	Reading	Ant. factor+Cable loss- Amp Gain	Ant. POL	Total	Limit	Margin
MHz	dΒμV	dB/m	(H/V)	dB μV/m	dB μV/m	dB

No Peak Found

<u>Limit</u>

Frequency	Field Strength		
(MHz)	(μv/m at 3 meters)		
30 – 88	100		
88 - 216	150		
216 – 960	200		
Above 960	500		

F-TP22-03 (Rev. 06) Page 21 of 21