APPENDIX C CALIBRATION DOCUMENTS

- 1. SN: ЛЛСО ВЕРЕТЕРИ И НЕРЕССИНИИ On Certificate Berender Berender
- 2. SN: 司毗尼州《科公Calibration Certificate 的中心和自己已经
- 3. SN: 442 DAE3 Data Acquisition Electronics Calibration Certificate

This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports. This document shall only be reproduced in full, with the exception of the certificate on p3

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

S

С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client EMC Technologies

Certificate No: D5GHzV2-1008_Dec13

Object	D5GHzV2 - SN: 1	1008	
Calibration procedure(s)	QA CAL-22.v2 Calibration proce	dure for dipole validation kits betw	ween 3-6 GHz
Calibration date:	December 16, 20	113	
The measurements and the uncer	rtainties with confidence p	onal standards, which realize the physical uni robability are given on the following pages an ry facility: environment temperature $(22 \pm 3)^{\circ}$	d are part of the certificate.
Calibration Equipment used (M&T	E critical for calibration)		
	1	Cal Date (Certificate No)	Scheduled Calibration
Primary Standards	ID #	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827)	Scheduled Calibration
Primary Standards Power meter EPM-442A	ID # GB37480704	09-Oct-13 (No. 217-01827)	Oct-14
Primary Standards Power meter EPM-442A Power sensor HP 8481A	ID # GB37480704 US37292783	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827)	Oct-14 Oct-14
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	ID # GB37480704 US37292783 MY41092317	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828)	Oct-14 Oct-14 Oct-14
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k)	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736)	Oct-14 Oct-14 Oct-14 Apr-14
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Fype-N mismatch combination	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739)	Oct-14 Oct-14 Oct-14 Apr-14 Apr-14
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k)	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736)	Oct-14 Oct-14 Oct-14 Apr-14
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12)	Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-13
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13)	Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-13 Apr-14
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID #	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house)	Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 04-Aug-99 (in house check Oct-13)	Oct-14 Oct-14 Oct-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-15 In house check: Oct-14
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # 100005	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Oct-14 Oct-14 Oct-14 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-15
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206 Name	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Oct-14 Oct-14 Oct-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-15 In house check: Oct-14

This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"
- c) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1008_Dec13

Page 2 of 13

This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5500 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.5 ± 6 %	4.43 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.92 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.9 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSI	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.26 W/kg

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.1 ± 6 %	4.75 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.66 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	86.2 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.45 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.4 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1008_Dec13

Page 3 of 13

This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports.

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.7 ± 6 %	5.05 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.12 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.29 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.8 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1008_Dec13

Page 4 of 13

This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports. This document shall only be reproduced in full, with the exception of the certificate on p3

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.2 ± 6 %	5.38 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.57 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.11 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.9 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.7 ± 6 %	5.80 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		· · · · ·

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.28 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	82.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.29 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.7 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1008_Dec13

Page 5 of 13

This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports.

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.2 ± 6 %	6.20 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR for nominal Body TSL parameters

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.73 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.7 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.13 W/kg

normalized to 1W

21.1 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1008_Dec13

Page 6 of 13

This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports.

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	51.6 Ω - 14.3 jΩ	
Return Loss	- 17.1 dB	

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	46.7 Ω - 6.4 jΩ
Return Loss	- 22.5 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	55.8 Ω + 1.6 jΩ
Return Loss	- 24.9 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	52.9 Ω - 13.8 jΩ	
Return Loss	- 17.4 dB	

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	46.1 Ω - 4.4 jΩ
Return Loss	- 24.2 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	55.1 Ω + 6.4 jΩ	
Return Loss	- 22.2 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.200 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 28, 2003

Certificate No: D5GHzV2-1008_Dec13

Page 7 of 13

This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports.

DASY5 Validation Report for Head TSL

Date: 12.12.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1008

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.43$ S/m; $\varepsilon_r = 35.5$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 4.75$ S/m; $\varepsilon_r = 35.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.05$ S/m; $\varepsilon_r = 34.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

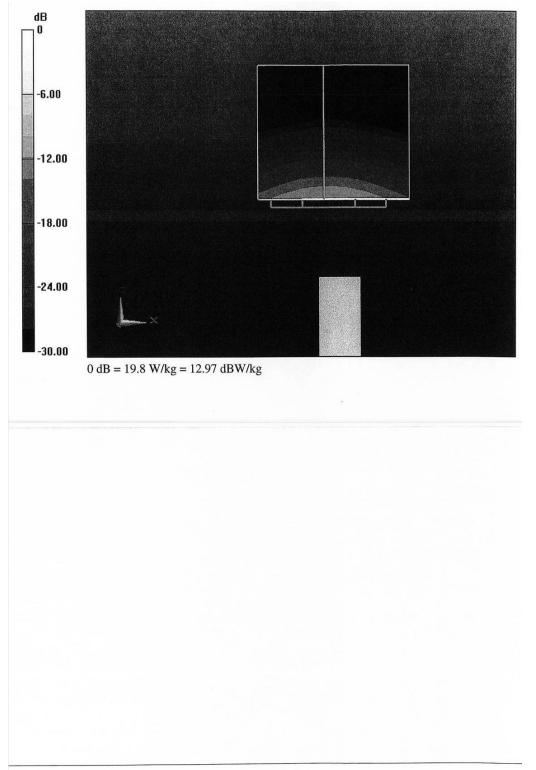
DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41); Calibrated: 28.12.2012, ConvF(4.91, 4.91, 4.91); Calibrated: 28.12.2012, ConvF(4.81, 4.81, 4.81); Calibrated: 28.12.2012;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.030 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 29.2 W/kg SAR(1 g) = 7.92 W/kg; SAR(10 g) = 2.26 W/kg Maximum value of SAR (measured) = 18.2 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.946 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 33.8 W/kg SAR(1 g) = 8.66 W/kg; SAR(10 g) = 2.45 W/kg Maximum value of SAR (measured) = 20.5 W/kg

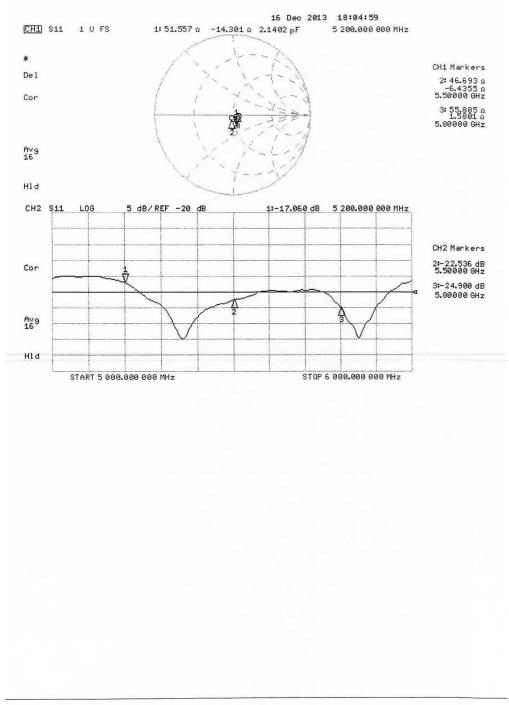
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 62.644 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 33.5 W/kg SAR(1 g) = 8.12 W/kg; SAR(10 g) = 2.29 W/kg Maximum value of SAR (measured) = 19.8 W/kg


Certificate No: D5GHzV2-1008_Dec13

Page 8 of 13

This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports.

Report No. M141024_FCC_7265NGW_SAR


ertificate No: D5GHzV2-1008_Dec13

Page 9 of 13

This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports.

dance Measurement Plot for Head TSL

cate No: D5GHzV2-1008_Dec13

Page 10 of 13

This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports.

DASY5 Validation Report for Body TSL

Date: 12.12.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1008

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; σ = 5.38 S/m; ε_r = 47.2; ρ = 1000 kg/m³, Medium parameters used: f = 5500 MHz; σ = 5.8 S/m; ε_r = 46.7; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 6.2 S/m; ε_r = 46.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

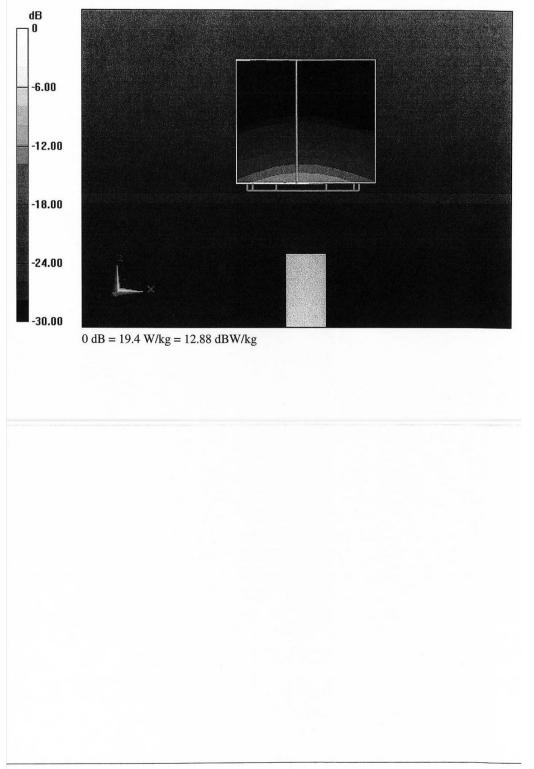
DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91); Calibrated: 28.12.2012, ConvF(4.43, 4.43, 4.43); Calibrated: 28.12.2012, ConvF(4.38, 4.38, 4.38); Calibrated: 28.12.2012;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 59.780 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 30.3 W/kg SAR(1 g) = 7.57 W/kg; SAR(10 g) = 2.11 W/kg Maximum value of SAR (measured) = 18.0 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 59.831 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 35.9 W/kg SAR(1 g) = 8.28 W/kg; SAR(10 g) = 2.29 W/kg Maximum value of SAR (measured) = 20.1 W/kg

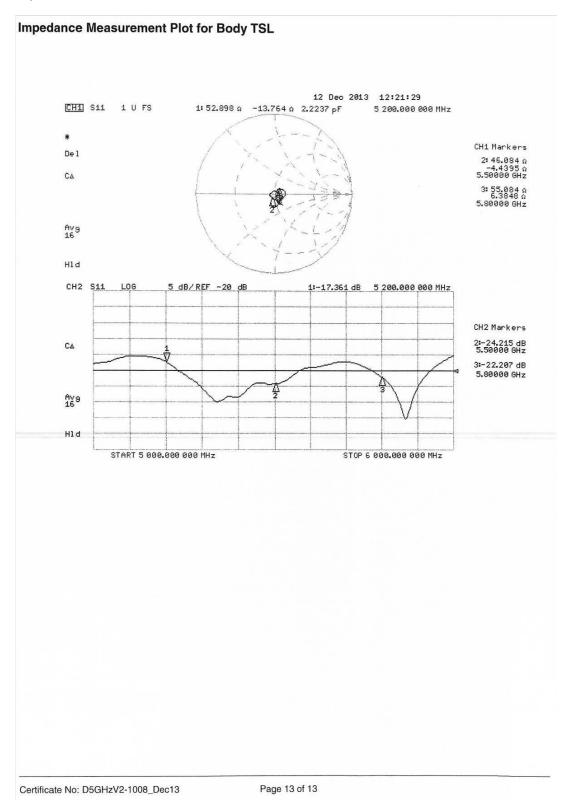
Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 56.651 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 36.5 W/kg SAR(1 g) = 7.73 W/kg; SAR(10 g) = 2.13 W/kg Maximum value of SAR (measured) = 19.4 W/kg


Certificate No: D5GHzV2-1008_Dec13

Page 11 of 13

This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports.

Report No. M141024_FCC_7265NGW_SAR



rtificate No: D5GHzV2-1008_Dec13

Page 12 of 13

This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports.

NATA

This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports.

ne of the signatories nition of calibration of s RTIFICATE	ertificates Certificate No:	EX3-3657 Dec13
		EX3-3657 Dec13
RTIFICATE		LV0-2021 DCC12
RTIFICATE		
The second statement of the second statement of the		
X3DV4 - SN:365	7	
A CAL-01.v9, Q/	A CAL-12.v9, QA CAL-14.v4, QA	CAL-23.v5,
A CAL-25.v6		
alibration proced	ure for dosimetric E-field probes	
	0	
ecember 17, 20	3	
	1	· · · · · · · · · · · · · · · · · · ·
ies with confidence pro	bability are given on the following pages and a	are part of the certificate.
n the closed laboratory	facility: environment temperature (22 ± 3)°C a	nd humidity < 70%.
The closed laboratory	racinty. environment temperature (22 ± 0) 0 a	na namaly 4 70%.
iliaal far calibration)		
lical for calibration)		
	-	1
	Cal Date (Certificate No.)	Scheduled Calibration
		Apr-14
		Apr-14
		Apr. 14
: S5054 (3c)	04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735)	Apr-14 Apr-14
: S5277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
: S5277 (20x) : S5129 (30b)	04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738)	Apr-14 Apr-14
: S5277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
: S5277 (20x) : S5129 (30b) :: 3013	04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013_Dec12)	Apr-14 Apr-14 Dec-13
: S5277 (20x) : S5129 (30b) : 3013 : 660	04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013_Dec12) 13-Dec-13 (No. DAE4-660_Dec13) Check Date (in house)	Apr-14 Apr-14 Dec-13 Dec-14 Scheduled Check
: S5277 (20x) : S5129 (30b) : 3013 : 660 :3642U01700	04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013_Dec12) 13-Dec-13 (No. DAE4-660_Dec13) Check Date (in house) 4-Aug-99 (in house check Apr-13)	Apr-14 Apr-14 Dec-13 Dec-14 Scheduled Check In house check: Apr-15
: S5277 (20x) : S5129 (30b) : 3013 : 660	04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013_Dec12) 13-Dec-13 (No. DAE4-660_Dec13) Check Date (in house)	Apr-14 Apr-14 Dec-13 Dec-14 Scheduled Check
: S5277 (20x) : S5129 (30b) : 3013 : 660 :3642U01700	04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013_Dec12) 13-Dec-13 (No. DAE4-660_Dec13) Check Date (in house) 4-Aug-99 (in house check Apr-13)	Apr-14 Apr-14 Dec-13 Dec-14 Scheduled Check In house check: Apr-15
: S5277 (20x) : S5129 (30b) : 3013 : 660 :3642U01700 :37390585	04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013_Dec12) 13-Dec-13 (No. DAE4-660_Dec13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-13)	Apr-14 Apr-14 Dec-13 Dec-14 Scheduled Check In house check: Apr-15 In house check: Oct-14
: S5277 (20x) : S5129 (30b) : 3013 : 660 : 3642U01700 : 37390585 Name	04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013_Dec12) 13-Dec-13 (No. DAE4-660_Dec13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-13) Function	Apr-14 Apr-14 Dec-13 Dec-14 Scheduled Check In house check: Apr-15 In house check: Oct-14
: S5277 (20x) : S5129 (30b) : 3013 : 660 : 3642U01700 : 37390585 Name	04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013_Dec12) 13-Dec-13 (No. DAE4-660_Dec13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-13) Function	Apr-14 Apr-14 Dec-13 Dec-14 Scheduled Check In house check: Apr-15 In house check: Oct-14
: S5277 (20x) : S5129 (30b) : 3013 : 660 : 3642U01700 : 37390585 Name	04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013_Dec12) 13-Dec-13 (No. DAE4-660_Dec13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-13) Function	Apr-14 Apr-14 Dec-13 Dec-14 Scheduled Check In house check: Apr-15 In house check: Oct-14
: S5277 (20x) : S5129 (30b) : 3013 : 660 :3642U01700 :37390585 Name Jeton Kastrati	04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01735) 28-Dec-12 (No. ES3-3013_Dec12) 13-Dec-13 (No. DAE4-660_Dec13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Apr-13) T8-Oct-01 (in house check Oct-13)	Apr-14 Apr-14 Dec-13 Dec-14 Scheduled Check In house check: Apr-15 In house check: Oct-14
: S5277 (20x) : S5129 (30b) : 3013 : 660 :3642U01700 :37390585 Name Jeton Kastrati	04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01735) 28-Dec-12 (No. ES3-3013_Dec12) 13-Dec-13 (No. DAE4-660_Dec13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Apr-13) T8-Oct-01 (in house check Oct-13)	Apr-14 Apr-14 Dec-13 Dec-14 Scheduled Check In house check: Apr-15 In house check: Oct-14 Signature
: S5277 (20x) : S5129 (30b) : 3013 : 660 :3642U01700 :37390585 Name Jeton Kastrati Katja Pokovic	04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01735) 28-Dec-12 (No. ES3-3013_Dec12) 13-Dec-13 (No. DAE4-660_Dec13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Apr-13) T8-Oct-01 (in house check Oct-13)	Apr-14 Apr-14 Dec-13 Dec-14 Scheduled Check In house check: Apr-15 In house check: Oct-14
	A CAL-25.v6 alibration proced ecember 17, 201 he traceability to nation ies with confidence pro- n the closed laboratory itical for calibration) 41293874 41498087	allbration procedure for dosimetric E-field probes ecember 17, 2013 he traceability to national standards, which realize the physical units is with confidence probability are given on the following pages and a n the closed laboratory facility: environment temperature (22 ± 3)°C a titical for calibration) Cal Date (Certificate No.) 41293874 04-Apr-13 (No. 217-01733)

This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports. This document shall only be reproduced in full, with the exception of the certificate on p3

Schmi	ration Labo id & Partner ineering AG		Hac-MRA		S Schweizerischer Kalibrierdiens C Service suisse d'étalonnage Servizio svizzero di taratura
		4 Zurich, Switzerland	The Columbia	FIBRATIO	S Servizio svizzero di taratura Swiss Calibration Service
		ccreditation Service (SAS) Service is one of the signa	atories to the EA		Accreditation No.: SCS 108
		or the recognition of calibra			
Gloss	sarv:				
TSL		tissue simulating liqu	uid		
NORM	x,y,z	sensitivity in free spa			
ConvF		sensitivity in TSL / N			
DCP		diode compression			
CF A, B, C	D	crest factor (1/duty_ modulation depende			
	ation φ	φ rotation around pr		ameters	
	ation 9	and the second se		lane normal to prot	pe axis (at measurement center).
UIdHZ		i.e., $\vartheta = 0$ is normal		name normal to prot	oe ans (at measurement center),
Conne	ctor Angle			an probe sensor X	to the robot coordinate system
	0			5	
Calib	ration is Pe	rformed According	g to the Followi	ing Standards:	
					eak Spatial-Averaged Specific
					Devices: Measurement
	Techniques"				
b)					or hand-held devices used in clos
	proximity to t	he ear (frequency range			
		, , , , ,		(12), February 200	
Metho •	NORMx,y,z: NORMx,y,z a	d and Interpretation Assessed for E-field po are only intermediate va	n of Parameter larization $\vartheta = 0$ (f \leq lues, i.e., the uncer	s: 900 MHz in TEM-ce	ell; f > 1800 MHz: R22 waveguide y,z does not affect the E ² -field
Metho •	NORMx,y,z: NORMx,y,z a uncertainty in	d and Interpretation Assessed for E-field po are only intermediate va hside TSL (see below C	n of Parameters larization $\vartheta = 0$ (f \le lues, i.e., the uncer <i>convF</i>).	s: 900 MHz in TEM-ce tainties of NORMx,	ell; f > 1800 MHz: R22 waveguide y,z does not affect the E^2 -field
Metho •	NORMx,y,z: NORMx,y,z a uncertainty in NORM(f)x,y, implemented	d and Interpretation Assessed for E-field po are only intermediate va hside TSL (see below C z = NORMx,y,z * freque	n of Parameters larization $\vartheta = 0$ (f \le luces, i.e., the uncer convF). ency_response (see	s: 900 MHz in TEM-ce tainties of NORMx, Frequency Respor	ell; f > 1800 MHz: R22 waveguide
•	NORMx,y,z: NORMx,y,z a uncertainty in NORM(f)x,y, implemented in the stated DCPx,y,z: D	and Interpretation Assessed for E-field po are only intermediate va hside TSL (see below C z = NORMx,y,z * freque in DASY4 software ver uncertainty of ConvF.	n of Parameters larization $\vartheta = 0$ (f \le lues, i.e., the uncer convF). ency_response (see rsions later than 4.2 ization parameters	s: 900 MHz in TEM-ce tainties of NORMx, Frequency Respor . The uncertainty of assessed based on	ell; f > 1800 MHz: R22 waveguide y,z does not affect the E ² -field nse Chart). This linearization is the frequency response is includ the data of power sweep with CN
•	NORMx, y, z: NORMx, y, z a uncertainty in NORM(f)x, y, implemented in the stated DCPx, y, z: D signal (no un	and Interpretation Assessed for E-field po are only intermediate va hside TSL (see below C z = NORMx,y,z * freque in DASY4 software ver uncertainty of ConvF. CP are numerical linear certainty required). DCI the Peak to Average R	n of Parameters larization $\vartheta = 0$ (f \leq lues, i.e., the uncer convF). ency_response (see rsions later than 4.2 ization parameters P does not depend	s: 900 MHz in TEM-ce tainties of NORMx, Frequency Respor . The uncertainty of assessed based on on frequency nor m	ell; f > 1800 MHz: R22 waveguide y,z does not affect the E ² -field nse Chart). This linearization is the frequency response is includ the data of power sweep with CM redia.
•	NORM, y, z: NORM, y, z: uncertainty in NORM(f)x, y, implemented in the stated DCPx, y, z: D signal (no un PAR: PAR is characteristii Ax, y, z; Bx, y, the data of p	d and Interpretatio Assessed for E-field po are only intermediate va hside TSL (see below C z = NORMx,y,z * freque in DASY4 software ver uncertainty of ConvF. CP are numerical linear certainty required). DCl the Peak to Average R s z; Cx,y,z; Dx,y,z; VRx,y	n of Parameters larization $\vartheta = 0$ (f \le lues, i.e., the uncer onvF). ancy_response (see rsions later than 4.2 ization parameters P does not depend tatio that is not calib r,z: A, B, C, D are no modulation signal.	s: 900 MHz in TEM-ca tainties of NORMX, Frequency Respor . The uncertainty of assessed based on on frequency nor m irated but determine umerical linearizatio The parameters do	ell; f > 1800 MHz: R22 waveguide y,z does not affect the E ² -field rse Chart). This linearization is the frequency response is includ the data of power sweep with CV redia. ad based on the signal on parameters assessed based or not depend on frequency nor
•	NORM, y, z: NORM, y, z: uncertainty in NORM(f)x, y, implemented in the stated DCPx, y, z: D signal (no un PAR: PAR is characteristif Ax, y, z; Bx, y, the data of p media. VR is ConvF and B	d and Interpretatio Assessed for E-field po are only intermediate va side TSL (see below C z = NORMx,y,z * freque in DASY4 software ver uncertainty of ConvF. CP are numerical linear certainty required). DCI the Peak to Average R 25 z; Cx,y,z; Dx,y,z; VRx,y ower sweep for specific the maximum calibratio Boundary Effect Parame	n of Parameters larization $\vartheta = 0$ (f \le lues, i.e., the uncer onvF). ancy_response (see rsions later than 4.2 ization parameters P does not depend tatio that is not calib r,z: A, B, C, D are no modulation signal. on range expressed aters: Assessed in fil	s: 900 MHz in TEM-ca tainties of NORMX, Frequency Respor . The uncertainty of assessed based on on frequency nor m rated but determine umerical linearizatio The parameters do in RMS voltage act at phantom using E	ell; f > 1800 MHz: R22 waveguide y,z does not affect the E ² -field rse Chart). This linearization is the frequency response is includ the data of power sweep with CV redia. ad based on the signal on parameters assessed based or not depend on frequency nor
•	NORMx, y, z: NORMx, y, z: NORMx, y, z: uncertainty in NORM(f)x, y, implemented in the stated DCPx, y, z: D signal (no ur PAR: PAR is characteristii Ax, y, z; Bx, y, the data of p media. VR is ConvF and B Standard for measurement boundary co used in DAS to NORMx, y	d and Interpretatio Assessed for E-field po are only intermediate va hside TSL (see below C z = NORMx,y,z * freque in DASY4 software ver uncertainty of ConvF. CP are numerical linear certainty required). DCl the Peak to Average R z; Cx,y,z; Dx,y,z; VRx,y ower sweep for specific the maximum calibratic Boundary Effect Parame $f \le 800$ MHz) and inside the for f > 800 MHz. The mpensation (alpha, dep Y4 software to improve ,z * ConvF whereby the	n of Parameters larization $\vartheta = 0$ (f \le lues, i.e., the uncer convF). ency_response (see rsions later than 4.2 ization parameters P does not depend tatio that is not calib r,z: A, B, C, D are nu modulation signal. on range expressed eters: Assessed in fl e waveguide using a e same setups are u th) of which typical probe accuracy clo uncertainty corresp	S: 900 MHz in TEM-ca tainties of NORMx, Frequency Respor . The uncertainty of assessed based on on frequency nor m rated but determine umerical linearizatio The parameters do in RMS voltage aci at phantom using E analytical field distri ised for assessmen uncertainty values a se to the boundary, bonds to that given f	ell; f > 1800 MHz: R22 waveguide y,z does not affect the E ² -field rse Chart). This linearization is the frequency response is includ the data of power sweep with CV redia. ad based on the signal on parameters assessed based or not depend on frequency nor ross the diode. E-field (or Temperature Transfer
•	NORMX, y, z: NORMX, y, z: NORMX, y, z a uncertainty in NORM(f)x, y, implemented DCPx, y, z: D signal (no un PAR: PAR is characteristic Ax, y, z; Bx, y, the data of p media. VR is ConvF and B Standard for measurement boundary coo used in DAS to NORMX, y ConvF is use MHz. Spherical iso	d and Interpretatio Assessed for E-field po are only intermediate values in the transitional state of the transition in DASY4 software very uncertainty of <i>ConvF</i> . CP are numerical linear certainty required). DCI the Peak to Average R cs <i>z</i> ; <i>Cx</i> , <i>y</i> , <i>z</i> ; <i>Dx</i> , <i>y</i> , <i>z</i> ; <i>VRx</i> , <i>y</i> ower sweep for specific the maximum calibration <i>Boundary Effect Parame</i> $f \le 800 \text{ MHz}$ and inside this for f > 800 MHz. The impensation (alpha, dep Y4 software to improve <i>z</i> * <i>ConvF</i> whereby the ed in DASY version 4.4	n of Parameters larization $\vartheta = 0$ (f \le lues, i.e., the uncer onvF). ency_response (see rsions later than 4.2 ization parameters P does not depend tatio that is not calib r,z: A, B, C, D are no modulation signal. on range expressed eters: Assessed in fl e waveguide using a same setups are u oth) of which typical probe accuracy clo uncertainty corresp and higher which al	s: 900 MHz in TEM-ca tainties of NORMX, Frequency Respor . The uncertainty of assessed based on on frequency nor m rated but determine umerical linearizatio The parameters do in RMS voltage act at phantom using E analytical field distri sed for assessmen uncertainty values a se to the boundary. ponds to that given f lows extending the	ell; f > 1800 MHz: R22 waveguide y,z does not affect the E ² -field hase Chart). This linearization is the frequency response is includ the data of power sweep with CV redia. ad based on the signal on parameters assessed based or not depend on frequency nor ross the diode. E-field (or Temperature Transfer ibutions based on power t of the parameters applied for are given. These parameters are The sensitivity in TSL correspon- for <i>ConvF</i> . A frequency depender
•	NORMx, y, z: NORMx, y, z: NORMx, y, z: uncertainty in NORM(f)x, y, implemented in the stated DCPx, y, z: D signal (no ur PAR: PAR is characteristic Ax, y, z; Bx, y, the data of p media. VR is ConvF and B Standard for measurement boundary coo used in DAS to NORMx, y ConvF is use MHz. Spherical iso exposed by Sensor Offse	d and Interpretatio Assessed for E-field po are only intermediate values in the transition of the transition of the in DASY4 software very uncertainty of <i>ConvF</i> . CP are numerical linear certainty required). DCI the Peak to Average R cs <i>z</i> ; <i>Cx</i> , <i>y</i> , <i>z</i> ; <i>Dx</i> , <i>y</i> , <i>z</i> ; <i>VRx</i> , <i>y</i> ower sweep for specific the maximum calibratic Boundary Effect Parameters $f \le 800$ MHz) and insidents for f > 800 MHz. The impensation (alpha, dep Y4 software to improve <i>z</i> , <i>* ConvF</i> whereby the ed in DASY version 4.4 <i>the topy (3D deviation fror</i> a patch antenna.	n of Parameters larization $\vartheta = 0$ (f \le lues, i.e., the uncer- convF). ency_response (see rsions later than 4.2 ization parameters P does not depend tatio that is not calib r,z: A, B, C, D are no modulation signal. on range expressed eters: Assessed in fl e waveguide using a same setups are u th) of which typical probe accuracy clo uncertainty corresp and higher which al m isotropy): in a field rresponds to the off	s: 900 MHz in TEM-ca tainties of NORMX, Frequency Respor . The uncertainty of assessed based on on frequency nor m rated but determine umerical linearizatio The parameters do in RMS voltage act at phantom using E analytical field distri sed for assessmen uncertainty values a se to the boundary. jonds to that given f lows extending the d of low gradients re	ell; f > 1800 MHz: R22 waveguide y,z does not affect the E ² -field see Chart). This linearization is the frequency response is includ the data of power sweep with CV redia. ed based on the signal on parameters assessed based or not depend on frequency nor ross the diode. E-field (or Temperature Transfer ibutions based on power t of the parameters applied for are given. These parameters are The sensitivity in TSL correspon for <i>ConvF</i> . A frequency depender validity from ± 50 MHz to ± 100

NATA

This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports.

December 17, 2013

Probe EX3DV4 SN:3657 Manufactured: April 29, 2008 Calibrated: December 17, 2013 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3657_Dec13

Page 3 of 11

This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3657

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.51 0.44		0.50	± 10.1 %
DCP (mV) ^B	99.1	96.4	96.5	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	C	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	159.8	±2.7 %
		Y	0.0	0.0	1.0		137.9	
		Z	0.0	0.0	1.0		153.3	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

⁸ Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX3-3657_Dec13

Page 4 of 11

This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3657

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
150	52.3	0.76	10.28	10.28	10.28	0.00	1.00	± 13.3 %
2300	39.5	1.67	6.58	6.58	6.58	0.22	1.16	± 12.0 %
2600	39.0	1.96	6.06	6.06	6.06	0.34	0.97	± 12.0 %
5200	36.0	4.66	4.57	4.57	4.57	0.40	1.80	± 13.1 %
5600	35.5	5.07	3.95	3.95	3.95	0.50	1.80	± 13.1 %
5800	35.3	5.27	4.02	4.02	4.02	0.50	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

 ^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
 ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
 ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. diameter from the boundary.

Certificate No: EX3-3657_Dec13

Page 5 of 11

This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports.

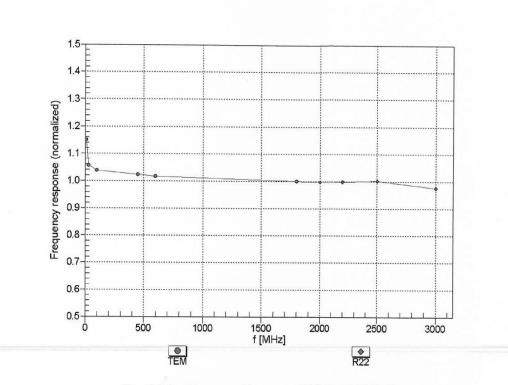
DASY/EASY - Parameters of Probe: EX3DV4 - SN:3657

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
5200	49.0	5.30	3.75	3.75	3.75	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.06	3.06	3.06	0.60	1.90	± 13.1 %
5800	48.2	6.00	3.31	3.31	3.31	0.60	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^FAt frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if figure compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

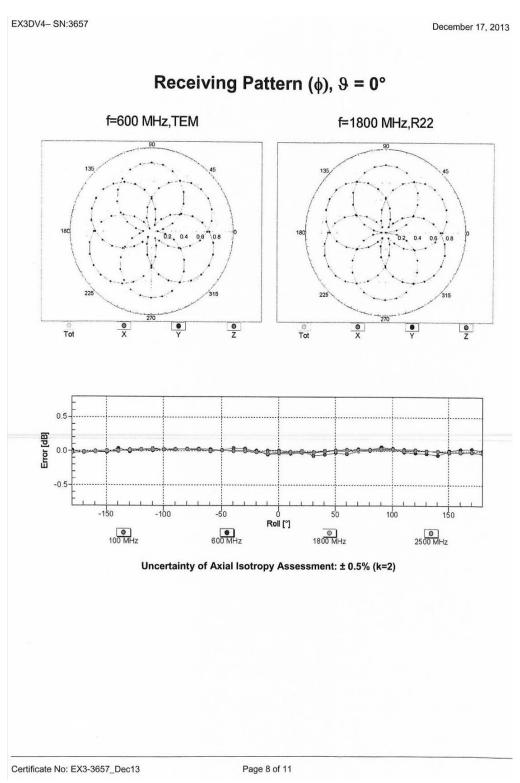

Certificate No: EX3-3657_Dec13

Page 6 of 11

This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports.

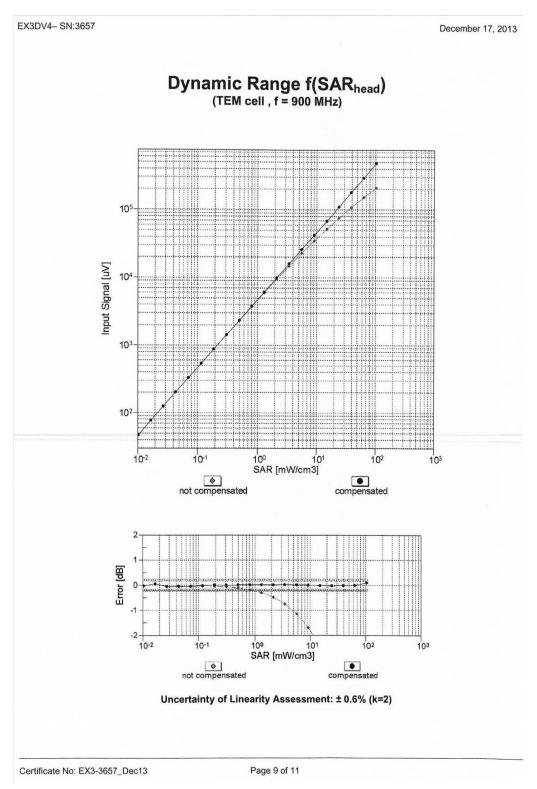
December 17, 2013

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

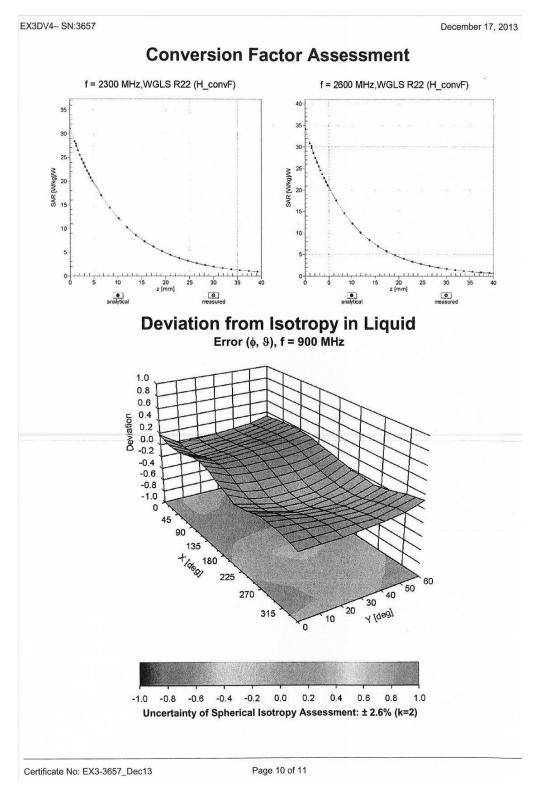

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3657_Dec13

Page 7 of 11



This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports.



This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports. This document shall only be reproduced in full, with the exception of the certificate on p3

This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports.

This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports.

December 17, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3657

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-9.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Certificate No: EX3-3657_Dec13

Page 11 of 11

This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports. This document shall only be reproduced in full, with the exception of the certificate on p3

	h, Switzerland	THORNAL S	Swiss Calibration Service
Accredited by the Swiss Accredita The Swiss Accreditation Servic Multilateral Agreement for the n	e is one of the signatories ecognition of calibration c	to the EA ertificates	o.: SCS 108
Client EMC Technolo	and the second second state of the second second		DAE3-442_Dec13
Object	DAE3 - SD 000 D		
Calibration procedure(s)	QA CAL-06.v26 Calibration proced	lure for the data acquisition electro	onics (DAE)
Calibration date:	December 10, 201	13	
The measurements and the unce All calibrations have been condu	ertainties with confidence pro	nal standards, which realize the physical units obability are given on the following pages and a γ facility: environment temperature (22 ± 3)°C a	are part of the certificate.
The measurements and the unce All calibrations have been condu Calibration Equipment used (M&	ertainties with confidence pro- cted in the closed laboratory TE critical for calibration)	obability are given on the following pages and a racility: environment temperature $(22 \pm 3)^\circ$ C a	are part of the certificate. and humidity < 70%.
The measurements and the unce All calibrations have been condu	ertainties with confidence pro	obability are given on the following pages and a	are part of the certificate.
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards	ertainties with confidence pro- cted in the closed laboratory TE critical for calibration)	obability are given on the following pages and a r facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.)	are part of the certificate. and humidity < 70%. Scheduled Calibration
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001	ertainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001	cobability are given on the following pages and a racility: environment temperature (22 ± 3)°C a <u>Cal Date (Certificate No.)</u> 01-Oct-13 (No:13976)	are part of the certificate. and humidity < 70%. Scheduled Calibration Oct-14
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ertainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001	cbability are given on the following pages and a / facility: environment temperature (22 ± 3)°C a Cal Date (Certificate No.) 01-Oct-13 (No:13976) Check Date (in house) 07-Jan-13 (in house check)	are part of the certificate. and humidity < 70%. Scheduled Calibration Oct-14 Scheduled Check In house check: Jan-14
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	ertainties with confidence pro- cted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	check Date (in house) 07-Jan-13 (in house check) 07-Jan-13 (in house check) 07-Jan-13 (in house check)	are part of the certificate. and humidity < 70%. Scheduled Calibration Oct-14 Scheduled Check In house check: Jan-14 In house check: Jan-14

This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

CR P NO

С

S

S Schweizerischer Kalibrierdienst

Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE3-442_Dec13

Page 2 of 5

This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports.

DC Voltage Measurement

A/D - Converter Reso	olution nominal			
High Range:	1LSB =	6.1µV,	full range =	-100+300 mV
Low Range:	1LSB =	61nV,	full range =	-1+3mV
DASY measurement	parameters: Au	to Zero Time: 3	sec; Measuring	time: 3 sec

Calibration Factors	X	Y	z
High Range	404.392 ± 0.02% (k=2)	405.041 ± 0.02% (k=2)	405.256 ± 0.02% (k=2)
Low Range	3.98875 ± 1.50% (k=2)	3.98112 ± 1.50% (k=2)	3.99059 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	107.5 ° ± 1 °
---	---------------

Certificate No: DAE3-442_Dec13

Page 3 of 5

This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports. This document shall only be reproduced in full, with the exception of the certificate on p3

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199993.72	-2.14	-0.00
Channel X + Input	20000.86	0.45	0.00
Channel X - Input	-19999.17	2.02	-0.01
Channel Y + Input	199996.31	0.40	0.00
Channel Y + Input	19999.51	-1.10	-0.01
Channel Y - Input	-19999.92	1.09	-0.01
Channel Z + Input	199995.50	-0.37	-0.00
Channel Z + Input	20000.62	0.18	0.00
Channel Z - Input	-20000.78	0.43	-0.00

Low Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	2000.89	0.19	0.01
Channel X	+ Input	201.15	0.18	0.09
Channel X	- Input	-197.88	0.92	-0.46
Channel Y	+ Input	2000.21	-0.38	-0.02
Channel Y	+ Input	200.77	-0.15	-0.08
Channel Y	- Input	-200.31	-1.40	0.70
Channel Z	+ Input	1999.91	-0.68	-0.03
Channel Z	+ Input	200.63	-0.29	-0.14
Channel Z	- Input	-199.19	-0.34	0.17

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-9.24	-11.23
	- 200	12.06	10.58
Channel Y	200	0.76	0.40
	- 200	-1.54	-1.84
Channel Z	200	-5.26	-5.50
	- 200	2.39	2.43

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	-0.05	-4.04
Channel Y	200	8.61	•	0.53
Channel Z	200	7.15	6.59	-

Certificate No: DAE3-442_Dec13

Page 4 of 5

This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports. This document shall only be reproduced in full, with the exception of the certificate on p3

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15799	16180
Channel Y	15773	16313
Channel Z	15591	16683

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	-0.26	-1.81	1.47	0.63
Channel Y	0.14	-1.39	1.41	0.60
Channel Z	-3.02	-4.46	-1.61	0.67

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC) +7.9	
Supply (+ Vcc)		
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE3-442_Dec13

Page 5 of 5

This document is issued in accordance with NATA's accreditation requirements. The results of tests, calibration and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports.