

RADIO TEST REPORT FCC ID: 2A7DX-TAB60WIFI

Certificate #4298 0

Product: Tablet PC Trade Mark: Blackview Model No.: Tab 60 WiFi Family Model: Tab A6 Kids Report No.: S24060401605002 Issue Date: Jun 26. 2024

Prepared for

DOKE COMMUNICATION (HK) LIMITED

19H MAXGRAND PLAZANO 3 TAI YAU STREETSAN PO KONG KL

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park Sanwei, Xixiang, Bao'an District, Shenzhen, Guangdong, China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

1 TEST	RESULT CERTIFICATION	4
2 SUMN	AARY OF TEST RESULTS	5
3 FACI	LITIES AND ACCREDITATIONS	6
	ACILITIES ABORATORY ACCREDITATIONS AND LISTINGS	
	1EASUREMENT UNCERTAINTY	
	CRAL DESCRIPTION OF EUT	
	RIPTION OF TEST MODES	
	P OF EQUIPMENT UNDER TEST	
	LOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	
6.2 S	UPPORT EQUIPMENT	
	QUIPMENTS LIST FOR ALL TEST ITEMS	
7 TEST	REQUIREMENTS	14
7.1 C	ONDUCTED EMISSIONS TEST	14
7.1.1	Applicable Standard	
7.1.2	Conformance Limit	
7.1.3	Measuring Instruments	
7.1.4 7.1.5	Test Configuration Test Procedure	
7.1.5	Test Results	
	ADIATED SPURIOUS EMISSION	
7.2.1	Applicable Standard	
7.2.2	Conformance Limit	
7.2.3	Measuring Instruments	
7.2.4	Test Configuration	
7.2.5	Test Procedure	
7.2.6 7.3 6	Test Results DB BANDWIDTH	
7.3 0 7.3.1	Applicable Standard	
7.3.2	Conformance Limit	
7.3.3	Measuring Instruments	
7.3.4	Test Setup	
7.3.5	Test Procedure	
7.3.6	Test Results	
	DUTY CYCLE	
7.4.1	Applicable Standard	
7.4.2 7.4.3	Conformance Limit Measuring Instruments	
7.4.4	Test Setup	
7.4.5	Test Procedure	
7.4.6	Test Results	
7.5 P	EAK OUTPUT POWER	
7.5.1	Applicable Standard	
7.5.2	Conformance Limit	
7.5.3	Measuring Instruments	
7.5.4 7.5.5	Test Setup Test Procedure	
7.5.6	Test Results	

NTEK 北测[®]

7.6	5 P	OWER SPECTRAL DENSITY	30
	7.6.1	Applicable Standard	
	7.6.2	Conformance Limit	
	7.6.3	Measuring Instruments	
	7.6.4	Test Setup	
	7.6.5	Test Procedure	
	7.6.6	Test Results	
7.7	7 C	ONDUCTED BAND EDGE MEASUREMENT	
	7.7.1	Applicable Standard	
	7.7.2	Conformance Limit	
	7.7.3	Measuring Instruments	32
	7.7.4	Test Setup	32
	7.7.5	Test Procedure	32
	7.7.6	Test Results	32
7.8	8 S	PURIOUS RF CONDUCTED EMISSIONS	33
	7.8.1	Conformance Limit	33
	7.8.2	Measuring Instruments	33
	7.8.3	Test Setup	
	7.8.4	Test Procedure	33
	7.8.5	Test Results	
7.9	9 A	NTENNA APPLICATION	
	7.9.1	Antenna Requirement	
	7.9.2	Result	34
8	TEST	RESULTS	35
11	٨·		35
	8.1.1	Duty Cycle	
	8.1.2	Maximum Conducted Output Power	
	8.1.3	-6dB Bandwidth	
	8.1.4	Occupied Channel Bandwidth	
	8.1.5	Maximum Power Spectral Density Level	
	8.1.6	Band Edge	
	8.1.7	Conducted RF Spurious Emission	
2N	A:	*	
	8.1.8	Duty Cycle	57
	8.1.9	Maximum Conducted Output Power	60
	8.1.10	-6dB Bandwidth	63
	8.1.11	Occupied Channel Bandwidth	
	8.1.12	Maximum Power Spectral Density Level	
	8.1.13	Band Edge	
	8.1.14	Conducted RF Spurious Emission	75

NTEK 北测

1 TEST RESULT CERTIFICATION

Applicant's name:	DOKE COMMUNICATION (HK) LIMITED.
Address	19H MAXGRAND PLAZANO 3 TAI YAU STREETSAN PO KONG KL
Manufacturer's Name	Shenzhen DOKE Electronic Co., Ltd
Address	801, Building3, 7th Industrial Zone, Yulv Community, Yutang Road, Guangming District, Shenzhen, China.
Product description	
Product name:	Tablet PC
Model and/or type reference:	Tab 60 WiFi
Family Model	Tab A6 Kids
Sample number	S240604016005
Date of Test	Jun 05. 2024 ~ Jun 25. 2024

Measurement Procedure Used:

APPLICABLE STANDARDS

APPLICABLE STANDARD/ TEST PROCEDURE	TEST RESULT
FCC 47 CFR Part 2, Subpart J	
FCC 47 CFR Part 15, Subpart C	Complied
ANSI C63.10-2013	
KDB 558074 D01 15.247 Meas Guidance v05r02	

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Prepared By: Joe Yan By: Aavon Cheng Approved Alex Li (Supervisor) (Project Engineer) (Manager)

NTEK 北测

SUMMARY OF TEST RESULTS 2

R

ilac-M

FCC Part15 (15.247), Subpart C						
Standard Section Test Item Verdict Remar						
15.207	Conducted Emission	PASS				
15.247 (a)(2)	6dB Bandwidth	PASS				
15.247 (b)	Peak Output Power	PASS				
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS				
15.247 (e)	Power Spectral Density	PASS				
15.247 (d)	Band Edge Emission	PASS				
15.247 (d)	Spurious RF Conducted Emission	PASS				
15.203	Antenna Requirement	PASS				

ACCREDITED

Certificate #4298.01

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at 1/F, Building E, Fenda Science Park Sanwei, Xixiang, Bao'an District, Shenzhen, Guangdong, China. The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab. :	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
-	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communique dated 8 January 2009).
Name of Firm :	Shenzhen NTEK Testing Technology Co., Ltd.
Site Location :	1/F, Building E, Fenda Science Park Sanwei, Xixiang, Bao'an
	District, Shenzhen, Guangdong, China.
	District, Chonzilon, Cuangaong, China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB
10	Occupied bandwidth	±3.7dB

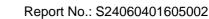
NTEK 北测

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification				
Equipment	Tablet PC			
Trade Mark	Blackview			
FCC ID	2A7DX-TAB60WIFI			
Model No.	Tab 60 WiFi			
Family Model	Tab A6 Kids			
Model Difference	N/A			
Operating Frequency	2402MHz~2480MHz			
Modulation	GFSK			
Number of Channels	40 Channels			
Antenna Type	FPC Antenna			
Antenna Gain	1.9dBi			
Adapter	Model: QZ-01004AA00 Input: 100-240V~50/60Hz 0.3A Output: 5.0V2.0A(10.0W)			
Battery	DC 3.8V, 5100mAh, 19.38Wh			
Power supply	DC 3.8V from Battery or DC 5V from USB Port			
Hardware version:	BND-C863-D V1.0			
Firmware version:	N/A			
Software version:	Tab_60_WiFi_NEU_C863-D_V1.1			

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.



Revision History

		Revision mistory					
Report No.	Version	Description	Issued Date				
S24060401605002	Rev.01	Initial issue of report	Jun 26. 2024				

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Certificate #4298.01

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps/2Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

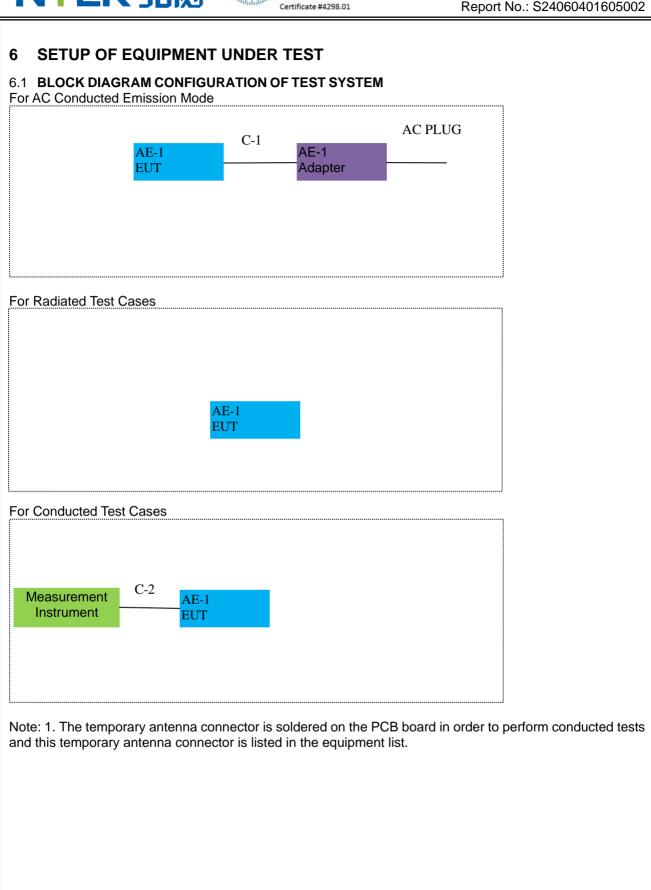
Channel	Frequency(MHz)
0	2402
1	2404
19	2440
20	2442
38	2478
39	2480

Note: fc=2402MHz+k×2MHz k=0 to 39

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Test Cases		
Test Item	Data Rate/ Modulation	
AC Conducted Emission	Mode 1: normal link mode	
	Mode 1: normal link mode	
Radiated Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps/2Mbps	
Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps/2Mbps	
	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps/2Mbps	
Conducted Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps/2Mbps	
Conducted Test	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps/2Mbps	
Cases	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps/2Mbps	

Note:


1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode

2. AC power line Conducted Emission was tested under maximum output power.

3. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

NTEK 北测

ACCRED

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Tablet PC	Tab 60 WiFi	N/A	EUT
AE-2	Adapter	QZ-01004AA00	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	YES	NO	0.8m
C-2	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

NTEK 北测

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

adiatic		cor equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2024.03.12	2025.03.11	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2024.04.26	2025.04.25	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2024.03.12	2025.03.11	1 year
4	Test Receiver	R&S	ESPI7	101318	2024.03.12	2025.03.11	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2024.03.11	2025.03.10	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2023.05.06	2026.05.05	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2024.03.12	2025.03.11	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2024.05.12	2027.05.11	3 year
9	Amplifier	EMC	EMC051835 SE	980246	2024.01.23	2025.01.22	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2023.11.03	2026.11.02	3 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2024.04.25	2025.04.24	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2023.05.06	2026.05.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2023.05.06	2026.05.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2024.04.26	2027.04.25	3 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	C Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2024.03.12	2025.03.11	1 year
2	LISN	R&S	ENV216	101313	2024.03.12	2025.03.11	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2024.03.12	2025.03.11	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2023.05.06	2026.05.05	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2023.05.06	2026.05.05	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2023.05.06	2026.05.05	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2023.05.06	2026.05.05	3 year

ACCRED

Certificate #4298.01

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

NTEK 北测[®]

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

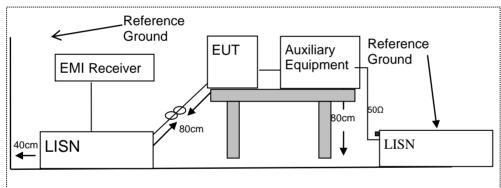
7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

	Conducted	Emission Limit
Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56*	56-46*
0.5-5.0	56	46
5.0-30.0	60	50

Note: 1. *Decreases with the logarithm of the frequency


2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

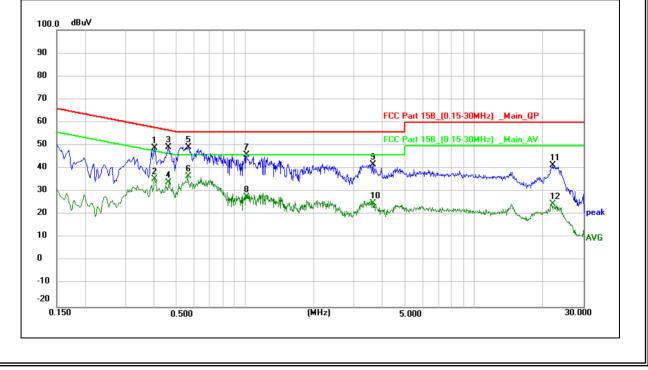
7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support
 equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the
 measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.6 Test Results


EUT:	Tablet PC	Model Name :	Tab 60 WiFi
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.4020	38.48	10.45	48.93	57.81	-8.88	QP
0.4020	25.02	10.45	35.47	47.81	-12.34	AVG
0.4620	38.71	10.57	49.28	56.66	-7.38	QP
0.4620	23.43	10.57	34.00	46.66	-12.66	AVG
0.5660	38.37	10.79	49.16	56.00	-6.84	QP
0.5660	25.78	10.79	36.57	46.00	-9.43	AVG
1.0140	34.37	11.68	46.05	56.00	-9.95	QP
1.0140	15.99	11.68	27.67	46.00	-18.33	AVG
3.6180	32.10	9.67	41.77	56.00	-14.23	QP
3.6180	15.24	9.67	24.91	46.00	-21.09	AVG
22.0980	31.73	9.69	41.42	60.00	-18.58	QP
22.0980	14.97	9.69	24.66	50.00	-25.34	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

EUT:	Tablet PC	Model Name :	Tab 60 WiFi
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demorile
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1980	35.16	10.03	45.19	63.69	-18.50	QP
0.1980	16.85	10.03	26.88	53.69	-26.81	AVG
0.4660	32.43	10.59	43.02	56.58	-13.56	QP
0.4660	21.39	10.59	31.98	46.58	-14.60	AVG
0.5420	34.81	10.73	45.54	56.00	-10.46	QP
0.5420	25.27	10.73	36.00	46.00	-10.00	AVG
0.6260	29.45	10.91	40.36	56.00	-15.64	QP
0.6260	19.54	10.91	30.46	46.00	-15.55	AVG
1.1700	27.66	12.00	39.66	56.00	-16.34	QP
1.1700	16.05	12.00	28.05	46.00	-17.95	AVG
22.6220	29.74	9.68	39.42	60.00	-20.58	QP
22.6220	12.33	9.68	22.01	50.00	-27.99	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

MHz	MHz	GHz	
16.42-16.423	399.9-410	4.5-5.15	
16.69475-16.69525	608-614	5.35-5.46	
16.80425-16.80475	960-1240	7.25-7.75	
25.5-25.67	1300-1427	8.025-8.5	
37.5-38.25	1435-1626.5	9.0-9.2	
73-74.6	1645.5-1646.5	9.3-9.5	
74.8-75.2	1660-1710	10.6-12.7	
123-138	2200-2300	14.47-14.5	
149.9-150.05	2310-2390	15.35-16.2	
156.52475-156.52525	2483.5-2500	17.7-21.4	
156.7-156.9	2690-2900	22.01-23.12	
162.0125-167.17	3260-3267	23.6-24.0	
167.72-173.2	3332-3339	31.2-31.8	
240-285	3345.8-3358	36.43-36.5	
322-335.4	3600-4400	(2)	
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHzMHz16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358	

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Eroguopov(MHz)	Class B (dBuV/m) (at 3M)		
Frequency(MHz)	PEAK	AVERAGE	
Above 1000	74	54	

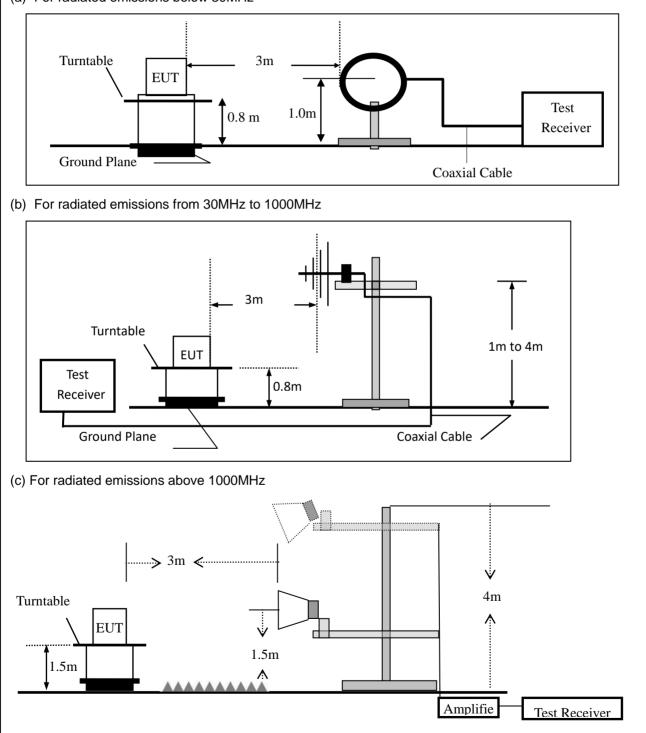
Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

NTEK 北测



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average

Receiver Parameter	Setting				
Attenuation	Auto				
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP				
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP				
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP				

a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.

- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Certificate #4298.01

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 4000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	1 MHz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

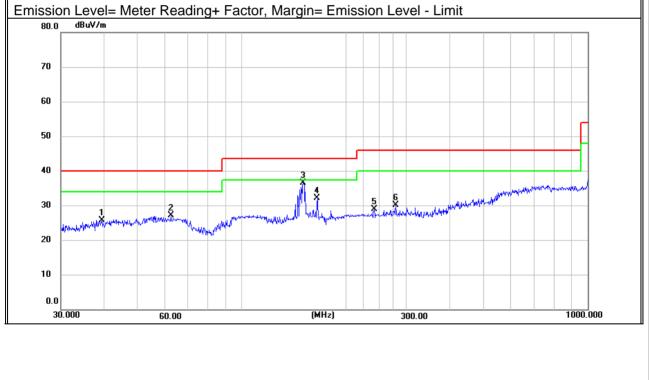
	Spurious	Emission	below	30MHz	(9KHz to 30MHz)
--	----------	----------	-------	-------	-----------------

EUT:	Tablet PC	Model No.:	Tab 60 WiFi
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode1/Mode2/Mode3/ Mode4	Test By:	Joe Yan

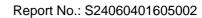
Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:


EUT:	Tablet PC	Model Name :	Tab 60 WiFi
Temperature:	25 ℃	Relative Humidity:	55%
Pressure:	1010hPa	Test Mode:	Mode 4 1Mbps
Test Voltage :	DC 3.8V		

ACCREDITED


Certificate #4298.01

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	39.4371	6.39	19.53	25.92	40.00	-14.08	QP
V	62.4313	8.31	18.95	27.26	40.00	-12.74	QP
V	150.5377	21.35	15.28	36.63	36.63 43.50 -6.		QP
V	165.4866	16.52	15.61	32.13	43.50	-11.37	QP
V	241.6762	10.03	19.04	29.07	46.00	-16.93	QP
V	279.0436	10.31	19.89	30.20	46.00 -15.80		QP

Remark:

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	48.5015	6.61	20.53	27.14	40.00	-12.86	QP
Н	87.7246	7.06	16.28	23.34	40.00	-16.66	QP
Н	140.3420	17.12	14.65	31.77	43.50	-11.73	QP
Н	152.6640	23.15	15.41	38.56	43.50	-4.94	QP
Н	285.9777	15.04	20.01	35.05	46.00	-10.95	QP
Н	345.5951	13.20	21.13	34.33	46.00	-11.67	QP
Remark Emission 80.0	n Level= Meter dBuV/m	Reading+ Fac	ctor, Margin	= Emission Le	evel - Limit		
70 -							
60 -							
50							
40			3	5	6 X		MUMM
30 - M	Western Anton Marine and	Humany Snor	Marine Charles and Charles	which was marked	"Marte husheld	wanted the harris	
20			OTOTI E				
10 0.0							
L	000 F	.		(MHz)	300.00		1000.000

ACCREDITED

Certificate #4298.01

UT:	Tab	let PC		N	lodel No.:		Tab	60 WiFi			
Femperature:	20 °	С		R	elative Humidi	ity:	48%)			
Fest Mode:	Мос	le2/Mod	e3/Mode4	Т	Test By: Joe Yan			Yan			
		-								-	
Frequency	Read Level	Cable loss	Antenna Factor	Pream Facto	•	Limi	its	Margin	Remark	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ∖	//m)	(dB)			
	-	-	Low Cha	nnel (24	402 MHz)(GFSk	()Abo	ve 10	3		-	
4804	71.55	5.21	35.59	44.30	0 68.05	74.0	00	-5.95	Pk	Vertical	
4804	52.17	5.21	35.59	44.30	0 48.67	54.0	00	-5.33	AV	Vertical	
7206	70.73	6.48	36.27	44.60	0 68.88	74.0	00	-5.12	Pk	Vertical	
7206	50.29	6.48	36.27	44.60	0 48.44	54.0	00	-5.56	AV	Vertical	
4804	71.89	5.21	35.55	44.30	0 68.35	74.0	00	-5.65	Pk	Horizontal	
4804	51.93	5.21	35.55	44.30	0 48.39	54.0	00	-5.61	AV	Horizontal	
7206	69.43	6.48	36.27	44.52	2 67.66	74.00		-6.34	Pk	Horizontal	
7206	47.68	6.48	36.27	44.52	2 45.91	54.0	00	-8.09	AV	Horizontal	
Mid Channel (2440 MHz)(GFSK)Above 1G											
4880	71.33	5.21	35.66	44.20	0 68.00	74.0	00	-6.00	Pk	Vertical	
4880	49.53	5.21	35.66	44.20	0 46.20	54.0	00	-7.80	AV	Vertical	
7320	70.16	7.10	36.50	44.43	3 69.33	74.0	00	-4.67	Pk	Vertical	
7320	46.96	7.10	36.50	44.43	3 46.13	54.0	00	-7.87	AV	Vertical	
4880	71.33	5.21	35.66	44.20	0 68.00	74.0	00	-6.00	Pk	Horizontal	
4880	50.07	5.21	35.66	44.20	0 46.74	54.0	00	-7.26	AV	Horizontal	
7320	71.93	7.10	36.50	44.43	3 71.10	74.0	00	-2.90	Pk	Horizontal	
7320	47.55	7.10	36.50	44.43	3 46.72	54.0	00	-7.28	AV	Horizontal	
	1	1	High Chai	nnel (24	480 MHz)(GFSk	K) Abc	ove 10	G		1	
4960	70.40	5.21	35.52	44.2 ⁻	1 66.92	74.0	00	-7.08	Pk	Vertical	
4960	50.75	5.21	35.52	44.2 ⁻	1 47.27	54.0	00	-6.73	AV	Vertical	
7440	72.01	7.10	36.53	44.60	0 71.04	74.0	00	-2.96	Pk	Vertical	
7440	48.23	7.10	36.53	44.60	0 47.26	54.0	00	-6.74	AV	Vertical	
4960	69.48	5.21	35.52	44.2 ⁻	1 66.00	74.0	00	-8.00	Pk	Horizontal	
4960	46.35	5.21	35.52	44.2 ⁻	1 42.87	54.0	00	-11.13	AV	Horizontal	
7440	70.94	7.10	36.53	44.60	0 69.97	74.0	00	-4.03	Pk	Horizontal	
7440	50.18	7.10	36.53	44.60	0 49.21	54.0	00	-4.79	AV	Horizontal	

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor

(2)All other emissions more than 20dB below the limit.

(3)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

UT	:	Tablet P0	C		Model	No.:		Tab	60 WiFi		
Tem	perature:	20 °C			Relative Humidity: 48%						
Test	Mode:	ode: Mode2/ Mode4 Test By:			y:		Joe	Yan			
					-					-	_
	Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lim	iits	Margin	Detector	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	V/m)	(dB)	Туре	
					1Mbps	s(GFSK)					
	2310.00	69.31	2.97	27.80	43.80	56.28	74	4	-17.72	Pk	Horizontal
	2310.00	47.07	2.97	27.80	43.80	34.04	54	4	-19.96	AV	Horizontal
ĺ	2310.00	71.59	2.97	27.80	43.80	58.56	74	4	-15.44	Pk	Vertical
ĺ	2310.00	48.99	2.97	27.80	43.80	35.96	54	4	-18.04	AV	Vertical
	2390.00	71.83	3.14	27.21	43.80	58.38	74	4	-15.62	Pk	Vertical
	2390.00	49.78	3.14	27.21	43.80	36.33	54	4	-17.67	AV	Vertical
	2390.00	71.46	3.14	27.21	43.80	58.01	74	4	-15.99	Pk	Horizontal
	2390.00	49.36	3.14	27.21	43.80	35.91	54	4	-18.09	AV	Horizontal
	2483.50	59.10	3.58	27.70	44.00	46.38	74	4	-27.62	Pk	Vertical
	2483.50	48.65	3.58	27.70	44.00	35.93	54	4	-18.07	AV	Vertical
	2483.50	71.06	3.58	27.70	44.00	58.34	74	4	-15.66	Pk	Horizontal
	2483.50	49.52	3.58	27.70	44.00	36.80	54	4	-17.20	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

(2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

UT:	Tablet I	PC		Model I	No.:		Tab 6	Tab 60 WiFi		
emperature:	20 ℃ Relative		e Humidity	Humidity: 48%						
est Mode: Mode2/ Mode4		Test By	Test By:			′an				
Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lir	mits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dB	uV/m)	(dB)	Туре	
3260	70.09	4.04	29.57	44.70	59.00	7	74	-15.00	Pk	Vertical
3260	49.47	4.04	29.57	44.70	38.38	Ę	54	-15.62	AV	Vertical
3260	70.41	4.04	29.57	44.70	59.32	7	74	-14.68	Pk	Horizontal
3260	49.29	4.04	29.57	44.70	38.20	Ę	54	-15.80	AV	Horizontal
3332	70.91	4.26	29.87	44.40	60.64	7	74	-13.36	Pk	Vertical
3332	46.27	4.26	29.87	44.40	36.00	Ę	54	-18.00	AV	Vertical
3332	70.55	4.26	29.87	44.40	60.28	7	74	-13.72	Pk	Horizontal
3332	49.10	4.26	29.87	44.40	38.83	Ę	54	-15.17	AV	Horizontal
17797	54.75	10.99	43.95	43.50	66.19	7	74	-7.81	Pk	Vertical
17797	39.36	10.99	43.95	43.50	50.80	Ę	54	-3.20	AV	Vertical
17788	51.81	11.81	43.69	44.60	62.71	7	74	-11.29	Pk	Horizontal
17788	34.90	11.81	43.69	44.60	45.80	Ę	54	-8.20	AV	Horizontal

ilac-M

ACCRED

Certificate #4298.01

Note: (1) All other emissions more than 20dB below the limit. (2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

Certificate #4298.01

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

EUT:	Tablet PC	Model No.:	Tab 60 WiFi
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Joe Yan

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02s Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.


The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on} / T_{total}

7.4.6 Test Results

EUT:	Tablet PC	Model No.:	Tab 60 WiFi
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Joe Yan

7.5 **PEAK OUTPUT POWER**

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

Certificate #4298.01

7.5.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

EUT:	Tablet PC	Model No.:	Tab 60 WiFi
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Joe Yan

7.6 POWER SPECTRAL DENSITY

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5*DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	Tablet PC	Model No.:	Tab 60 WiFi
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Joe Yan

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	Tablet PC	Model No.:	Tab 60 WiFi
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Joe Yan

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

Certificate #4298.01

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 26.5GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.9 ANTENNA APPLICATION

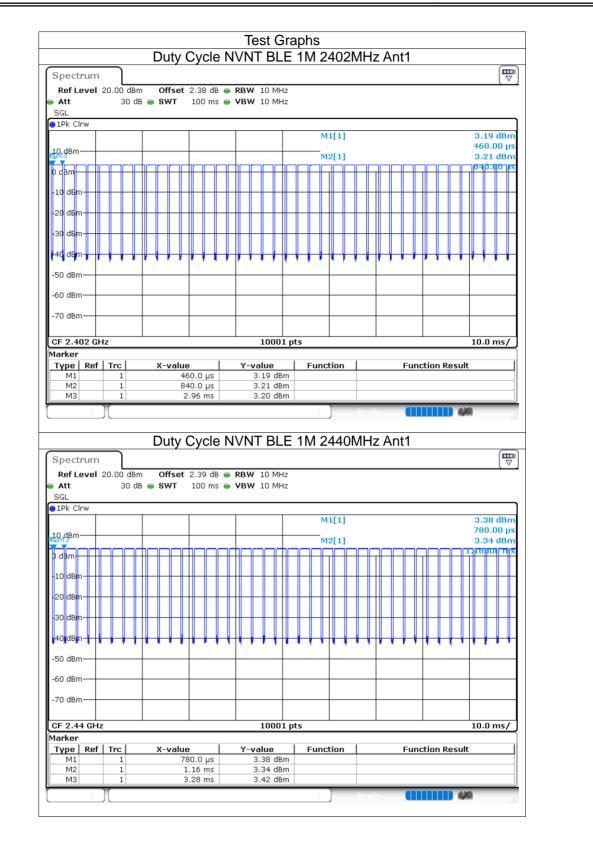
7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.9.2 Result

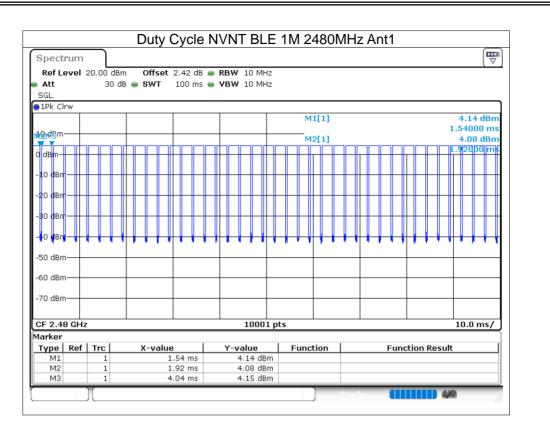
The EUT antenna is permanent attached FPC antenna (Gain: 1.9 dBi). It comply with the standard requirement.

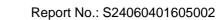
8 TEST RESULTS


1M:

8.1.1 **Duty Cycle**

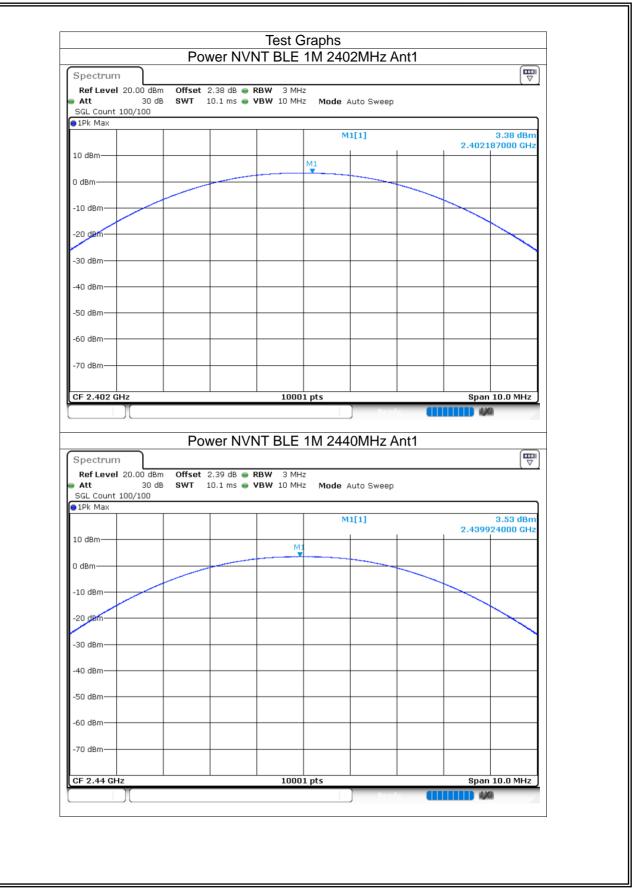
Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	BLE 1M	2402	Ant1	85.2	0.7	0.47
NVNT	BLE 1M	2440	Ant1	85.2	0.7	0.47
NVNT	BLE 1M	2480	Ant1	85.2	0.7	0.47


Report No.: S24060401605002


ACCREDITED

Certificate #4298.01

ACCREDITED



8.1.2 Maximum Conducted Output Power

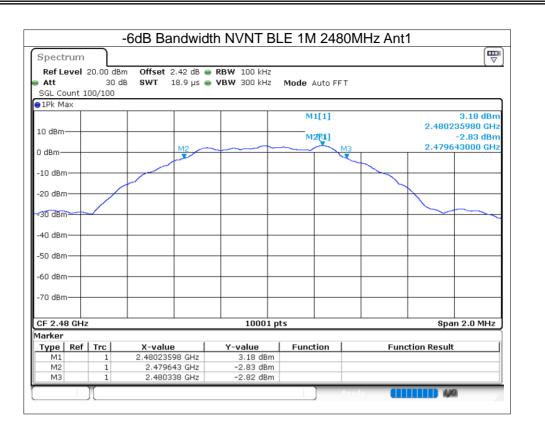
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	3.38	30	Pass
NVNT	BLE 1M	2440	Ant1	3.53	30	Pass
NVNT	BLE 1M	2480	Ant1	4.27	30	Pass

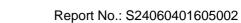
ACCREDITED

Spectrum)	wer NVN					
							(⊽
Ref Level 20.0 Att	0 dBm Offset 30 dB SWT	2.42 dB 👄 R 10.1 ms 👄 V			.		
ALL SGL Count 100/1		10.1 ms 🖶 🎙	BW IO MHZ	Mode Auto	Sweep		
1Pk Max							
				M1[1]			4.27 dBm
						2.4799	75000 GHz
10 dBm			M1				
) dBm							
						\checkmark	
-10 dBm		_					
-20 d8m		_				_	
-30 dBm							
-40 dBm							
10 ubiii							
-50 dBm							
-30 ubiii							
co do-							
-60 dBm							
-70 dBm							
CF 2.48 GHz	1	1	10001	pts	I	Span	10.0 MHz

ACCREDITED

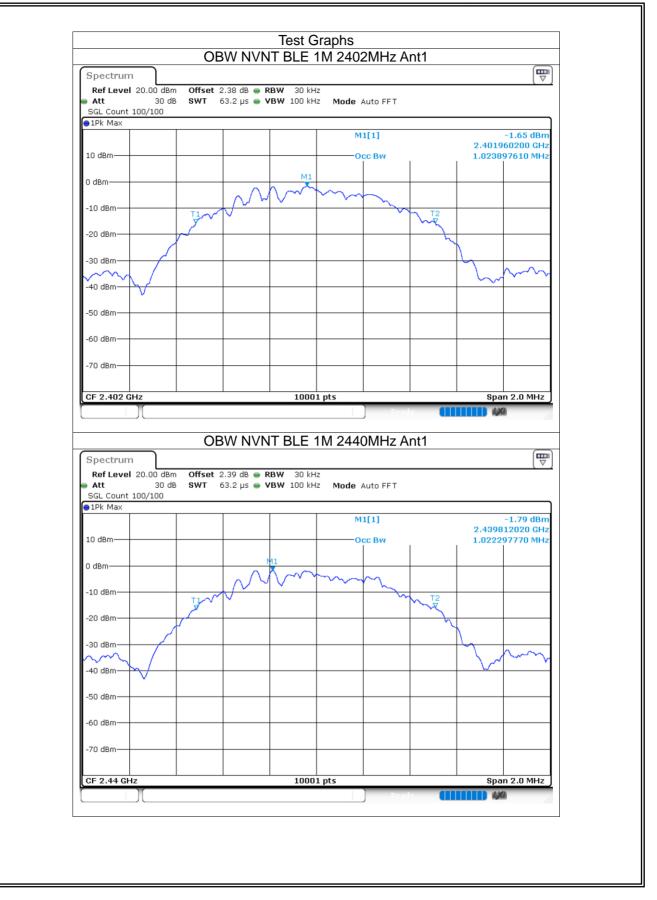
8.1.3 -6dB Bandwidth


Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 1M	2402	Ant1	0.707	0.5	Pass
NVNT	BLE 1M	2440	Ant1	0.704	0.5	Pass
NVNT	BLE 1M	2480	Ant1	0.695	0.5	Pass



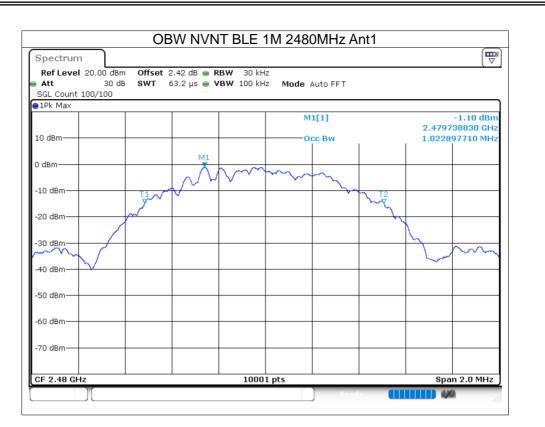
ACCREDITED

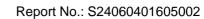
ACCREDITED


8.1.4 Occupied Channel Bandwidth

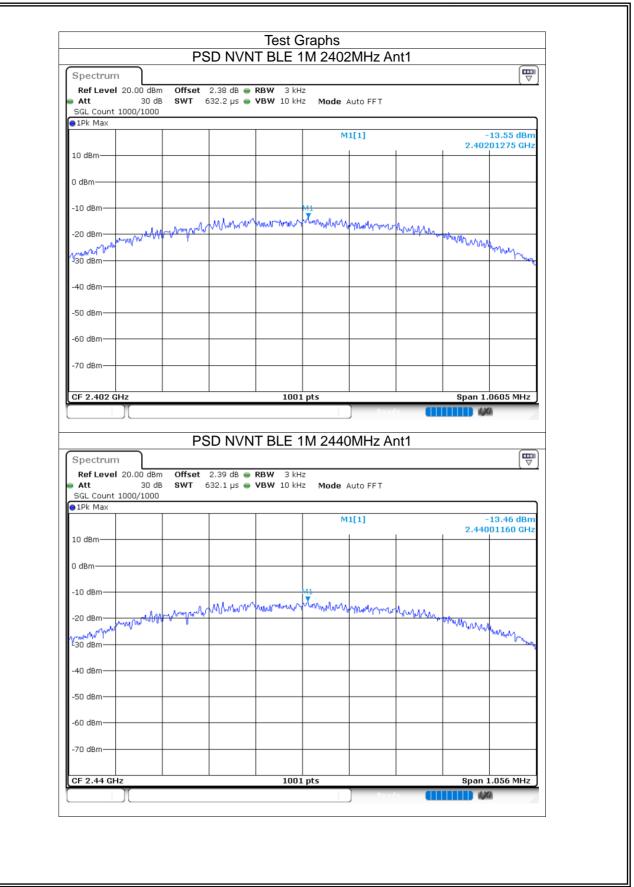
ilac-MR

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	1.024
NVNT	BLE 1M	2440	Ant1	1.022
NVNT	BLE 1M	2480	Ant1	1.023


ACCREDITED


ACCREDITED

ACCREDITED



8.1.5 Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-13.55	8	Pass
NVNT	BLE 1M	2440	Ant1	-13.46	8	Pass
NVNT	BLE 1M	2480	Ant1	-12.77	8	Pass

ACCRED

ACCREDITED

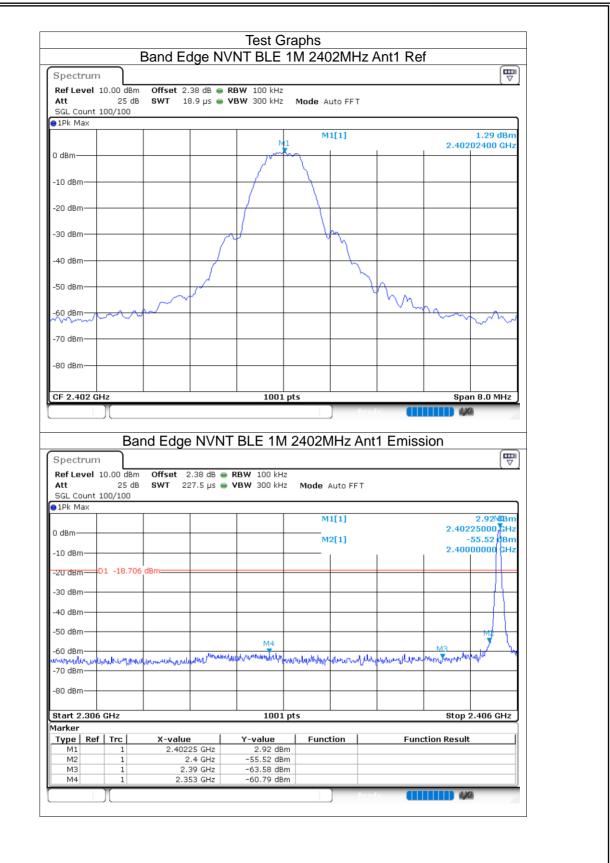
Spectrum		
SGL Count 1000/1000	dB ● RBW 3 kHz µs ● VBW 10 kHz Mode Auto FFT	(.
1Pk Max	M1[1]	-12.77 dBm
10 dBm		2.48001145 GHz
) dBm		
10 dBm	<u></u>	
20 dBm	non harmon to make and the	Monney
www.white and		" " " " " " " " " " " " " " " " " " "
40 dBm		
50 dBm		
60 dBm		
70 dBm		
CF 2.48 GHz	1001 pts	Span 1.0425 MHz

ACCREDITED

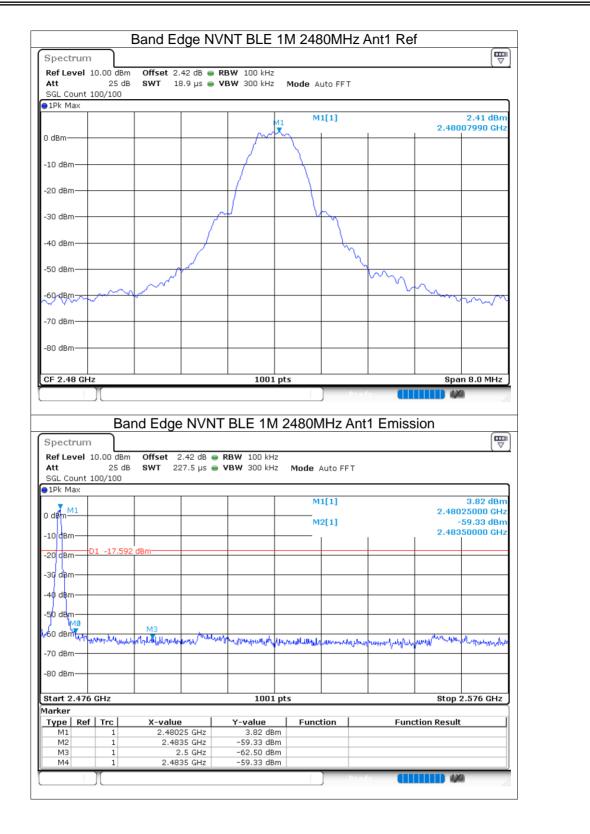
8.1.6 Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-62.07	-20	Pass
NVNT	BLE 1M	2480	Ant1	-61.74	-20	Pass

ACCREDITED

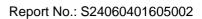


ilac-MR

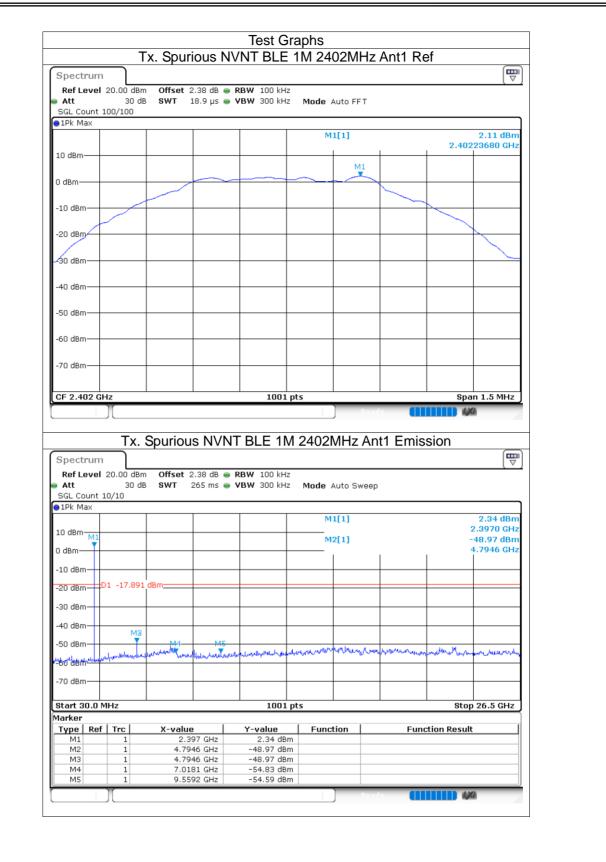

ACCREDITED

Certificate #4298.01

Report No.: S24060401605002



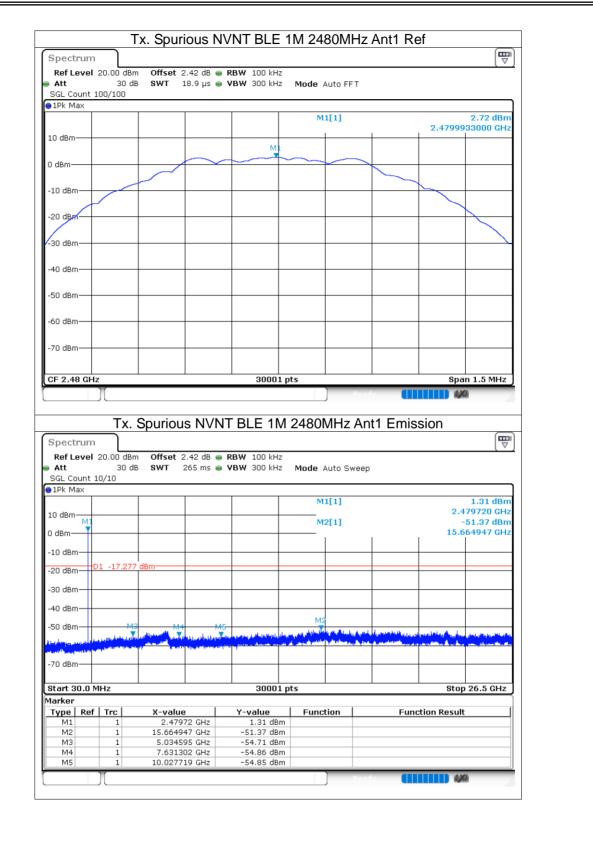
ACCREDITED



8.1.7 Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-51.08	-20	Pass
NVNT	BLE 1M	2440	Ant1	-53.64	-20	Pass
NVNT	BLE 1M	2480	Ant1	-54.08	-20	Pass

ACCRED


ACCREDITED

Spectrun	n							
Ref Leve	l 10.00 d	Bm Offset 2.3	39 dB 😑 F	RBW 100 kHz				(.)
Att 🛛	30	dB SWT 18	.9 μs 😑 🕻	VBW 300 kHz	Mode Auto FFT			
SGL Count	100/100							
⊜1Pk Max				1 1				0.05.10
				M	M1[1]		2 42000	2.36 dBm 06000 GHz
0 dBm					\rightarrow	-	2.40999	00000 0112
-10 dBm								
-20 dBm								
-30 dBm—								
-40 dBm—								
-50 dBm		+ +						
-60 dBm		+ +						1
10								
-70 dBm								
00 JF								
-80 dBm								
CF 2.44 G				00001	6		Spa	n 1.5 MHz
01 2.111 01	Hz			30001 pt			-1-	
	JL Tx	. Spurious	NVN		2440MHz A	ant1 Emis		
Spectrun Ref Leve	T×	Bm Offset 2.3	39 dB 👄 F	BLE 1M 2	2440MHz A			
Spectrun	Tx n l 10.00 d 30	Bm Offset 2.3	39 dB 👄 F	BLE 1M 2	R			
Spectrun Ref Leve Att	Tx n l 10.00 d 30	Bm Offset 2.3	39 dB 👄 F	BLE 1M 2	2440MHz A			
Spectrum Ref Leve Att SGL Count	Tx n 1 10.00 d 30 1 10/10	Bm Offset 2.3	39 dB 👄 F	BLE 1M 2	2440MHz A		sion	
Spectrum Ref Leve Att SGL Count 1Pk Max	Tx n 1 10.00 d 30 1 10/10	Bm Offset 2.3	39 dB 👄 F	BLE 1M 2	2440MHz A Mode Auto Swe		sion 2.4	
Spectrum Ref Leve Att SGL Count 1Pk Max 0 dBm	Tx n 1 10.00 d 30 1 10/10	Bm Offset 2.3	39 dB 👄 F	BLE 1M 2	2440MHz A Mode Auto Swe		sion 2.4	
Spectrum Ref Leve Att SGL Count 1Pk Max 0 dBm -10 dBm	Tx n 1 10.00 d 10/10	Bm Offset 2.3 dB SWT 26	39 dB 👄 F	BLE 1M 2	2440MHz A Mode Auto Swe		sion 2.4	1.24 dBm 40010 GHz 51.29 dBm
Spectrum Ref Leve Att SGL Count 1Pk Max 0 dBm	Tx n 1 10.00 d 10/10	Bm Offset 2.3 dB SWT 26	39 dB 👄 F	BLE 1M 2	2440MHz A Mode Auto Swe		sion 2.4	1.24 dBm 40010 GHz 51.29 dBm
Spectrum Ref Leve Att SGL Count 1Pk Max 0 dBm -10 dBm	Tx n 1 10.00 d 10/10	Bm Offset 2.3 dB SWT 26	39 dB 👄 F	BLE 1M 2	2440MHz A Mode Auto Swe		sion 2.4	1.24 dBm 40010 GHz 51.29 dBm
Spectrum Ref Leve Att SGL Count 1Pk Max M1 0 dBm -10 dBm -20 dBm -30 dBm	Tx n 1 10.00 d 10/10	Bm Offset 2.3 dB SWT 26	39 dB 👄 F	BLE 1M 2	2440MHz A Mode Auto Swe		sion 2.4	1.24 dBm 40010 GHz 51.29 dBm
Spectrum Ref Leve Att SGL Count IPk Max 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Tx n 1 10.00 d 30 1 10/10	Bm Offset 2.3 dB SWT 26	39 dB 👄 F	BLE 1M 2	2440MHz A Mode Auto Swe		sion 2.4	1.24 dBm 40010 GHz 51.29 dBm
Spectrum Ref Leve Att SGL Count 1Pk Max M1 0 dBm -10 dBm -20 dBm -30 dBm	Tx n 1 10.00 d 30 1 10/10	Bm Offset 2.3 dB SWT 26	39 dB 👄 F	TBLE 1M 2	Mode Auto Swe M1[1] M2[1] M2		2.4 16.7	
Spectrum Ref Leve Att SGL Count IPk Max 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Tx n 1 10.00 d 30 1 10/10	Bm Offset 2.3 dB SWT 26	39 dB 👄 F	BLE 1M 2 RBW 100 kHz YBW 300 kHz	Mode Auto Swe		2.4 	
Spectrum Ref Leve Att SGL Count 1Pk Max M1 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	Tx n 1 10.00 d 30 1 10/10	Bm Offset 2.3 dB SWT 26	39 dB 👄 F	BLE 1M 2 RBW 100 kHz YBW 300 kHz	Mode Auto Swe		2.4 	1.24 dBm 40010 GHz 51.29 dBm 34335 GHz
Spectrum Ref Leve Att SGL Count IPk Max 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Tx n 1 10.00 d 30 1 10/10	Bm Offset 2.3 dB SWT 26	39 dB 👄 F	BLE 1M 2 RBW 100 kHz YBW 300 kHz	Mode Auto Swe		2.4 	1.24 dBm 40010 GHz 51.29 dBm 34335 GHz
Spectrum Ref Leve Att SGL Count 1Pk Max M1 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	Tx n 1 10.00 d 30 1 10/10	Bm Offset 2.3 dB SWT 26	39 dB 👄 F	BLE 1M 2 RBW 100 kHz YBW 300 kHz	Mode Auto Swe		2.4 	1.24 dBm 40010 GHz 51.29 dBm 34335 GHz
Spectrum Ref Leve Att SGL Count 1Pk Max 1Pk Max -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm	Tx n 1 10.00 d 10/10	Bm Offset 2.3 dB SWT 26	39 dB 👄 F		Mode Auto Swe		2.4 	1.24 dBm 40010 GHz 51.29 dBm 34335 GHz
Spectrum Ref Leve Att SGL Count 1Pk Max M1 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -70 dBm -70 dBm -80 dBm Start 30.0	Tx n 1 10.00 d 10/10	Bm Offset 2.3 dB SWT 26	39 dB 👄 F	BLE 1M 2 RBW 100 kHz YBW 300 kHz	Mode Auto Swe		2.4 	1.24 dBm 40010 GHz 51.29 dBm 34335 GHz
Spectrum Ref Leve Att SGL Count 1Pk Max M1 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -80 dBm -80 dBm	Tx n 1 10.00 d 30 10/10	Bm Offset 2.3 dB SWT 26	39 dB 👄 F	BLE 1M 2 BW 100 kHz BW 300 kHz Job kHz	Ande Auto Swee		2.4 	1.24 dBm 40010 GHz 51.29 dBm 34335 GHz
Spectrum Ref Leve Att SGL Count 1Pk Max M1 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -70 dBm -70 dBm -80 dBm Start 30.0	Tx n 1 10.00 d 30 10/10	Bm Offset 2.3 dB SWT 26	39 dB • • •		Mode Auto Swe		2.4 	1.24 dBm 40010 GHz 51.29 dBm 34335 GHz
Spectrum Ref Leve Att SGL Count 1Pk Max M3 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -80 dBm Start 30.0 Marker Type Re M1	Tx n 1 10.00 d 30 10/10 	Bm Offset 2.3 dB SWT 26 37 dBm 37 dBm 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14	39 dB • • • • 55 ms • • • 	TBLE 1M 2 RBW 100 kHz yBW 300 k	Ande Auto Swee		2.4 	1.24 dBm 40010 GHz 51.29 dBm 34335 GHz
Spectrum Ref Leve Att SGL Count 1Pk Max M1 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -80 dBm Start 30.0 Marker Type M1 M2 M3	Tx n 1 10.00 d 30 10/10 10 10/10 10 10/10 10 10 10 10 10 10 10 10 10 10 10 10 1	Bm Offset 2.3 dB SWT 26 37 dBm 43 43 44 44 44 44 44 44 44 54 54 54 54 54 54	39 dB • • • • 55 ms •	BLE 1M 2 BW 100 kHz BW 300 kHz Job kHz	Ande Auto Swee		2.4 	1.24 dBm 40010 GHz 51.29 dBm 34335 GHz
Spectrum Ref Leve Att SGL Count 1Pk Max M3 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -80 dBm Start 30.0 Marker Type Re M1	Tx n 1 10.00 d 30 10/10 	Bm Offset 2.3 dB SWT 26 37 dBm 37 dBm 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14	39 dB S ms S ms N S M S M S M S M S M S M S M S M S M S	TBLE 1M 2 RBW 100 kHz yBW 300 k	Ande Auto Swee		2.4 	1.24 dBm 40010 GHz 51.29 dBm 34335 GHz
Spectrum Ref Leve SGL Count SGL Count 1Pk Max 1Pk Max -10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm -80 dBm Start 30.0 Marker Type Re M1 M2 M3 M4	Tx n 10.00 d 10/10 10/10	Bm Offset 2.3 dB SWT 26 37 dBm 43 43 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	39 dB S ms S ms N S M S M S M S M S M S M S M S M S M S	TBLE 1M 2 RBW 100 kHz VBW 300 kHz Image: State of the st	Ande Auto Swee		2.4 	1.24 dBm 40010 GHz 51.29 dBm 34335 GHz


ACCREDITED

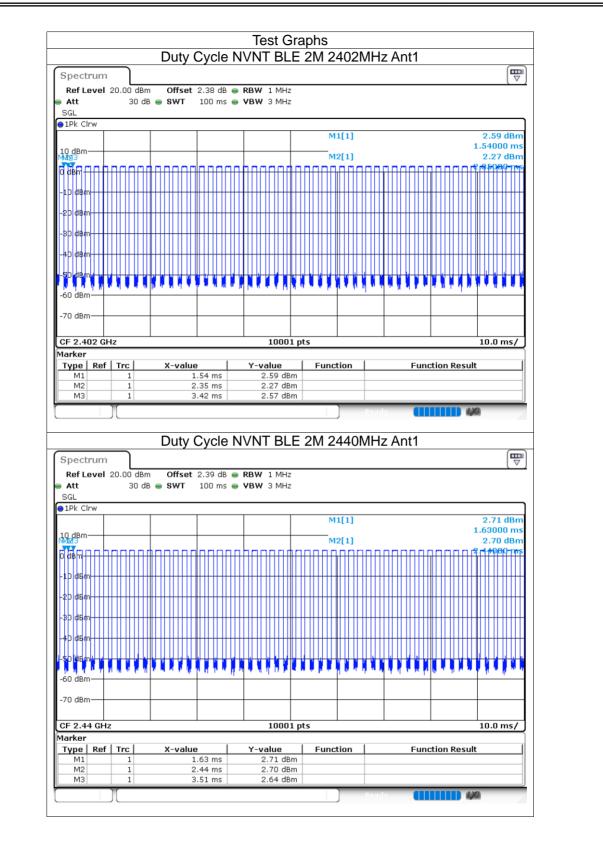
ACCREDITED

2M:

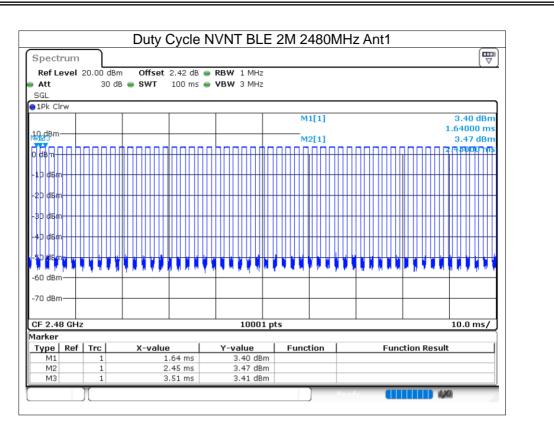
8.1.8 **Duty Cycle**

Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	BLE 2M	2402	Ant1	57.12	2.43	0.93
NVNT	BLE 2M	2440	Ant1	57.03	2.44	0.93
NVNT	BLE 2M	2480	Ant1	57.03	2.44	0.94

ACCREDITED

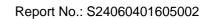


ilac-MR


ACCREDITED

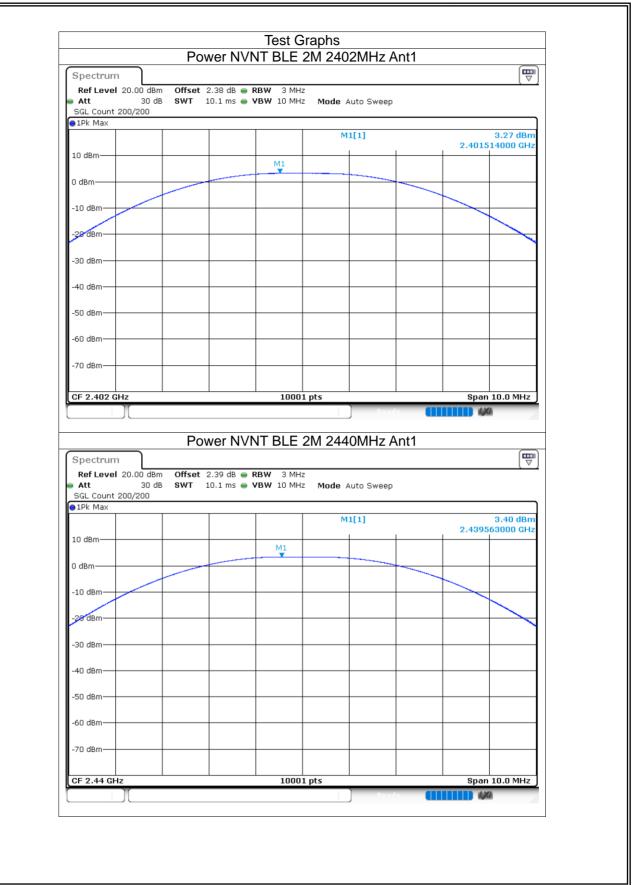
Certificate #4298.01

Report No.: S24060401605002



ACCREDITED

8.1.9 Maximum Conducted Output Power


Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 2M	2402	Ant1	3.27	30	Pass
NVNT	BLE 2M	2440	Ant1	3.4	30	Pass
NVNT	BLE 2M	2480	Ant1	4.15	30	Pass

ACCRED

Certificate #4298.01

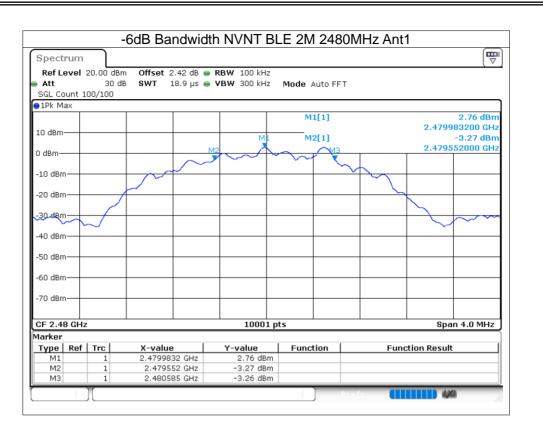
TED

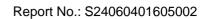
ACCREDITED

			480MHz Ant1	(_
Spectrum					₩)
Ref Level 20.00 dBm	_				
Att 30 dB	SWT 10.1 ms 👄 V	BW 10 MHz Mo	de Auto Sweep		
SGL Count 200/200 1Pk Max					\neg
			M1[1]	4.15 d	Bm
				2.480081000 (
10 dBm		111			
		· · · · · · · · · · · · · · · · · · ·			
) dBm					
10 dBm					
20 dBm					
30 dBm					
40 dBm					
40 UBIII					
50 dBm					
-60 dBm					
70 dBm					
		10001			
CF 2.48 GHz		10001 pts	\	Span 10.0 Mi	12

ACCREDITED

8.1.10 -6dB Bandwidth


Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 2M	2402	Ant1	1.356	0.5	Pass
NVNT	BLE 2M	2440	Ant1	1.025	0.5	Pass
NVNT	BLE 2M	2480	Ant1	1.033	0.5	Pass


ACCREDITED

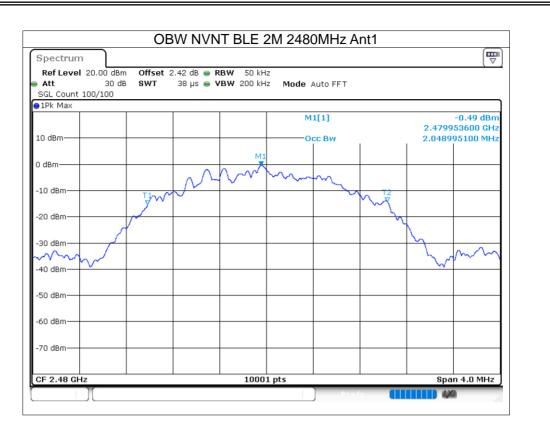
ACCREDITED

8.1.11 Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 2M	2402	Ant1	2.045
NVNT	BLE 2M	2440	Ant1	2.069
NVNT	BLE 2M	2480	Ant1	2.049

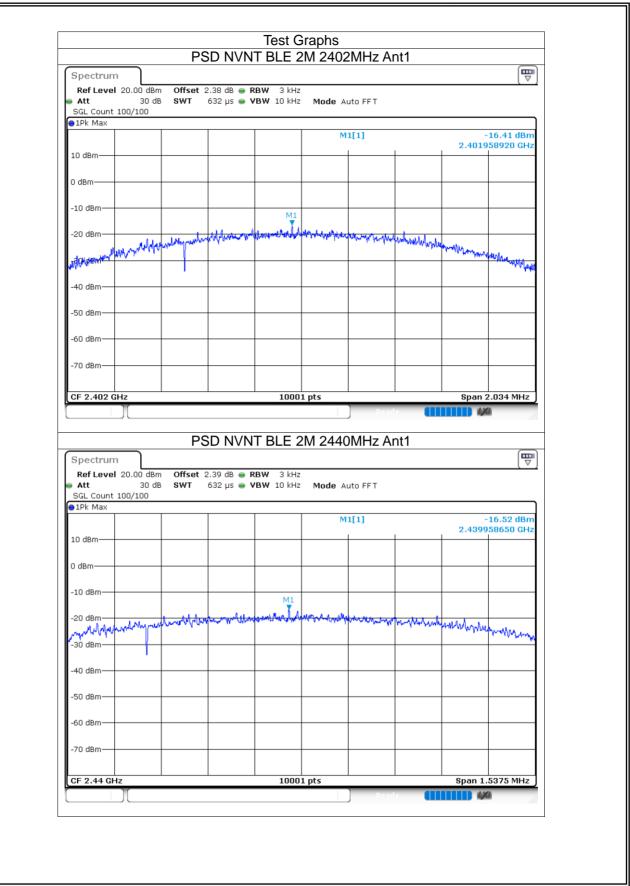
ACCRED

Certificate #4298.01


ITED


ACCREDITED

ACCREDITED



8.1.12 Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 2M	2402	Ant1	-16.41	8	Pass
NVNT	BLE 2M	2440	Ant1	-16.52	8	Pass
NVNT	BLE 2M	2480	Ant1	-15.51	8	Pass

ACCREI

ACCREDITED

Spectrum		
Ref Level 20.00 dBm Offset 2.42 dB ● RE Att 30 dB SWT 631.9 μs ● VE SGL Count 100/100		('.
1Pk Max	M1[1]	-15.51 dBm
.0 dBm		2.479958630 GHz
dBm		
10 dBm	M1	
20 dBm And Mandan Ward About And	wither and the second of the s	- Marchanter Marine
40 dBm		
50 dBm		
60 dBm		
70 dBm		
CF 2.48 GHz	10001 pts	Span 1.5495 MHz

ACCREDITED

8.1.13 Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 2M	2402	Ant1	-60.41	-20	Pass
NVNT	BLE 2M	2480	Ant1	-55.52	-20	Pass

ilac-MR

ACCREDITED

Certificate #4298.01

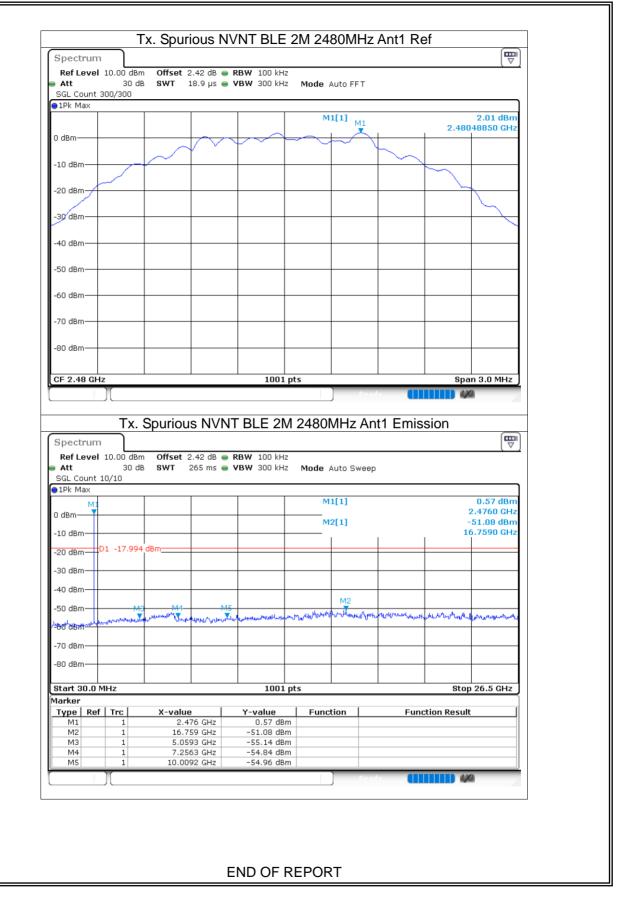
Report No.: S24060401605002

Att	35 dB			(BW 100 kHz /BW 300 kHz	Mode Auto	FFT			
SGL Count	200/200								
1Pk Max		т т		1	A41E4				0.67.40.00
					M1[1	u -		2.47	2.67 dBm 998400 GHz
10 dBm				+					
				¥					
) dBm				+	\sim				
				\mathcal{N}	2				
•10 dBm			1.	4 +		1			
20 dBm						\mathcal{L}			
-20 ubiii									
-30 dBm			\square			7			
		/~ m	~			V	~~.7		
-40 dBm		/		+			<u> </u>		
	1	r						K	
-50 dBm				+ +					
\sim	~~~ `							~	m
-60 dBm									
70.40									
-70 dBm									
								- Cn	
CF 2.48 GH	Ba	nd Edge	NVNT	BLE 2M		Read Iz Ant1	1 Emiss		an 8.0 MHz)
Spectrum Ref Level	Bai n 20.00 dBm	Offset 2	.42 dB 😑	BLE 2M) 2480MH		1 Emiss		
Spectrum Ref Level Att SGL Count	Bai n 20.00 dBm 35 dB	Offset 2	.42 dB 😑	BLE 2M) 2480MH		1 Emiss		
Spectrum Ref Level Att SGL Count	Bai n 20.00 dBm 35 dB	Offset 2	.42 dB 😑	BLE 2M	2480MH Mode Aut	O FFT	1 Emiss		
Spectrum Ref Level Att SGL Count JPk Max	Bai n 20.00 dBm 35 dB	Offset 2	.42 dB 😑	BLE 2M) 2480MH	O FFT	1 Emiss	sion	
Spectrum Ref Level Att SGL Count JPk Max	Bai n 20.00 dBm 35 dB	Offset 2	.42 dB 😑	BLE 2M	2480MH Mode Aut	O FFT	1 Emiss	sion 2.47	0.46 dBm 995000 GHz -52.86 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm M1	Bai n 20.00 dBm 35 dB	Offset 2	.42 dB 😑	BLE 2M	2480MH Mode Aut	O FFT	1 Emiss	sion 2.47	0.46 dBm 995000 GHz
Spectrum Ref Level Att SGL Count 10 dBm	Bai n 20.00 dBm 35 dB	Offset 2	.42 dB 😑	BLE 2M	2480MH Mode Aut	O FFT	1 Emiss	sion 2.47	0.46 dBm 995000 GHz -52.86 dBm
Spectrum Ref Level Att SGL Count 9 IPk Max 10 dBm	Ba 20.00 dBm 35 dB 100/100	Offset 2. SWT 22	.42 dB 😑	BLE 2M	2480MH Mode Aut	O FFT	1 Emiss	sion 2.47	0.46 dBm 995000 GHz -52.86 dBm
Spectrum Ref Level Att SGL Count 9 IPk Max 10 dBm	Bai n 20.00 dBm 35 dB	Offset 2. SWT 22	.42 dB 😑	BLE 2M	2480MH Mode Aut	O FFT	1 Emiss	sion 2.47	0.46 dBm 995000 GHz -52.86 dBm
Spectrum Ref Level Att SGL Count) IPk Max 10 dBm 10 dBm -10 dBm	Ba 20.00 dBm 35 dB 100/100	Offset 2. SWT 22	.42 dB 😑	BLE 2M	2480MH Mode Aut	O FFT	1 Emiss	sion 2.47	0.46 dBm 995000 GHz -52.86 dBm
Spectrum Ref Level Att SGL Count IPk Max 10 dBm M1 0 dBm 	Ba 20.00 dBm 35 dB 100/100	Offset 2. SWT 22	.42 dB 😑	BLE 2M	2480MH Mode Aut	O FFT	1 Emiss	sion 2.47	0.46 dBm 995000 GHz -52.86 dBm
Spectrum Ref Level Att SGL Count IPk Max IO dBm II IO dBm -10 dBm -30 dBm 40 dBm	Ba 20.00 dBm 35 dB 100/100	Offset 2. SWT 22	.42 dB 😑	BLE 2M	2480MH Mode Aut	O FFT	1 Emiss	sion 2.47	0.46 dBm 995000 GHz -52.86 dBm
Spectrum Ref Level Att SGL Count IPk Max 10 dBm M1 0 dBm 	Ba 20.00 dBm 35 dB 100/100	Offset 2 SWT 22	.42 dB ● 7.5 μs ●	BLE 2M	2480MH Mode Aut 	0 FFT		2.47 2.48	0.46 dBm 995000 GHz -52.86 dBm 530000 GHz
Spectrum Ref Level Att SGL Count IPk Max IO dBm II IO dBm -10 dBm -30 dBm 40 dBm	Ba 20.00 dBm 35 dB 100/100	Offset 2. SWT 22	.42 dB ● 7.5 μs ●	BLE 2M	2480MH Mode Aut 	0 FFT		2.47 2.48	0.46 dBm 995000 GHz -52.86 dBm 530000 GHz
Spectrum Ref Level Att SGL Count IPk Max IO dBm II dBm	Ba 20.00 dBm 35 dB 100/100	Offset 2 SWT 22	.42 dB ● 7.5 μs ●	BLE 2M	2480MH Mode Aut 	0 FFT		2.47 2.48	0.46 dBm 995000 GHz -52.86 dBm 530000 GHz
Spectrum Ref Level Att SGL Count IPk Max IO dBm II dBm	Ba 20.00 dBm 35 dB 100/100	Offset 2 SWT 22	.42 dB ● 7.5 μs ●	BLE 2M	2480MH Mode Aut 	0 FFT		2.47 2.48	0.46 dBm 995000 GHz -52.86 dBm 530000 GHz
Spectrum Ref Level Att SGL Count IPk Max IO dBm II O dBm	Ba 20.00 dBm 35 dB 100/100 	Offset 2 SWT 22	.42 dB ● 7.5 μs ●	BLE 2M	2480MH Mode Aut M1[1 M2[1	0 FFT		2.47 2.48	0.46 dBm 995000 GHz -52.86 dBm 350000 GHz
Spectrum Ref Level Att SGL Count IPk Max 10 dBm 10 dBm 10 dBm 20 dBm 30 dBm 50 dBm	Ba 20.00 dBm 35 dB 100/100 	Offset 2 SWT 22	.42 dB ● 7.5 μs ●	BLE 2M	2480MH Mode Aut M1[1 M2[1	0 FFT		2.47 2.48	0.46 dBm 995000 GHz -52.86 dBm 530000 GHz
Spectrum Ref Level Att SGL Count IPk Max IO dBm IIO dBm IIO dBm IIO dBm IIO dBm IIO dBm IIO dBm IIO dBm IIO dBm IIO dBm IIIO dBM	Bai 20.00 dBm 35 dB 100/100 	Offset 2 SWT 22	.42 dB ● 7.5 μs ●	BLE 2M	2480MH Mode Aut M1[1 	o FFT L] L]		2.47 2.48	0.46 dBm 995000 GHz -52.86 dBm 350000 GHz
Spectrum Ref Level Att SGL Count IPK Max IO dBm -10 dBm -20 dBm -30 dBm -30 dBm -0 dBm -70	Bai 20.00 dBm 35 dB 100/100 01 -17.332 01 -17.332 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Offset 2 SWT 22	.42 dB 7.5 μs 	BLE 2M	2480MH	o FFT L] L]		2.47 2.48 2.48	0.46 dBm 995000 GHz -52.86 dBm 350000 GHz
Spectrum Ref Level Att SGL Count IPk Max IO dBm IIO dBm IIO dBm IIO dBm IIO dBm IIO dBm IIO dBm IIO dBm IIO dBm IIO dBm IIIO dBM	Bai 20.00 dBm 35 dB 100/100 	Offset 2 SWT 22	.42 dB ● 7.5 μs ●	BLE 2M	2480MH	o FFT L] L]		2.47 2.48 2.48	0.46 dBm 995000 GHz -52.86 dBm 350000 GHz

ACCREDITED

8.1.14 Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 2M	2402	Ant1	-51.71	-20	Pass
NVNT	BLE 2M	2440	Ant1	-53.44	-20	Pass
NVNT	BLE 2M	2480	Ant1	-53.08	-20	Pass


ACCREDITED

ACCREDITED

ACCREDITED