

# Test Report 19-1-0097801T04a



Number of pages: 16 Date of Report: 2020-May-12

Testing company: CETECOM GmbH Applicant: Robert Bosch GmbH

Im Teelbruch 116 45219 Essen Germany Tel. + 49 (0) 20 54 / 95 19-0 Fax: + 49 (0) 20 54 / 95 19-150

Test Object / BUI350
Tested Device(s):

Listing FCC ID: 2AUXS-NYON350 ISED: 25847-NYON350

Testing has been FCC Regulations carried out in Part 15.107 accordance with: Part 15.109

ISED Regulations
ICES-003, Issue 6

Deviations, modifications or clarifications (if any) to above mentioned documents are written

in each section under "Test method and limit".

Test Results: 

The EUT complies with the requirements in respect of selected parameters subject to

the test.

The test results relate only to devices specified in this document

Signatures:

Dipl.-Ing. Christian Lorenz Senior Test Manager Authorization of test report B.Sc. Hicham Laayouni Test manager Responsible of test report



| 1 | G    | ieneral ir          | formation                                                                 | 5   |  |  |
|---|------|---------------------|---------------------------------------------------------------------------|-----|--|--|
|   | 1.1  | Discla              | mer and Notes                                                             | 5   |  |  |
|   | 1.1. | Summ                | ary of Test Results                                                       | 6   |  |  |
|   | 1.2. | Summ                | ary of Test Methods                                                       | 6   |  |  |
| 2 | Α    | dministr            | ative Data                                                                | 7   |  |  |
|   | 2.1  | Identi <sup>.</sup> | fication of the Testing Laboratory                                        | 7   |  |  |
|   | 2.2  | Gener               | al limits for environmental conditions                                    | 7   |  |  |
|   | 2.3  | Test L              | aboratories sub-contracted                                                | 7   |  |  |
|   | 2.4  | Organ               | izational Items                                                           | 7   |  |  |
|   | 2.5  | Applic              | ant's details                                                             | 7   |  |  |
|   | 2.6  | Manu                | facturer's details                                                        | 7   |  |  |
|   | 2.7  | EUT: T              | ype, S/N etc. and short descriptions used in this test report             | 8   |  |  |
|   | 2.8  | Auxilia             | ary Equipment (AE): Type, S/N etc. and short descriptions                 | 8   |  |  |
|   | 2.9  | Conne               | cted cables                                                               | 8   |  |  |
|   | 2.10 | EU                  | T set-ups                                                                 | 8   |  |  |
|   | 2.11 | . EU                | T operation modes                                                         | 8   |  |  |
| 3 | Е    | quipmen             | t under test (EUT)                                                        | 9   |  |  |
|   | 3.1  | Gener               | al Data of Main EUT as Declared by Applicant                              | 9   |  |  |
|   | 3.2  | Modif               | ications on Test sample                                                   | 9   |  |  |
| 4 | Ν    | /leasuren           | nents                                                                     | .10 |  |  |
|   | 4.1  | Radiat              | ed field strength emissions 30 MHz – 1 GHz                                | .10 |  |  |
|   | 4    | .1.1                | Description of the general test setup and methodology, see below example: | .10 |  |  |
|   | S    | chematio            | ·                                                                         | .10 |  |  |
|   | Т    | Testing method:     |                                                                           |     |  |  |
|   | F    | ormula:             |                                                                           | .11 |  |  |
|   | 4    | .1.2                | Limit                                                                     | .11 |  |  |
|   | 4    | .1.3                | Result                                                                    | .11 |  |  |
|   | 4.2  | Radiat              | ed field strength emissions above 1 GHz                                   | .12 |  |  |
|   | 4    | .2.1                | Description of the general test setup and methodology, see below example: | .12 |  |  |
|   | S    | chematio            | :                                                                         | .12 |  |  |
|   | Т    | esting m            | ethod:                                                                    | .12 |  |  |
|   | F    | ormula:             |                                                                           | .13 |  |  |
|   | 4    | .2.2                | Limit                                                                     | .13 |  |  |
|   | 4    | .2.3                | Result                                                                    | .13 |  |  |
|   | 4.3  | Result              | s from external laboratory                                                | .14 |  |  |
|   | 4.4  | Opinio              | ons and interpretations                                                   | .14 |  |  |
| 5 | Е    | quipmen             | t lists                                                                   | .14 |  |  |
| 6 | N    | /leasuren           | nent Uncertainty valid for conducted/radiated measurements                | .16 |  |  |
|   |      |                     |                                                                           |     |  |  |

# Test Report 19-1-0097801T04a



| 7 | Versions of test reports | (change history | ) | .16 |
|---|--------------------------|-----------------|---|-----|
|---|--------------------------|-----------------|---|-----|



|                                 | Table of Annex                                 |                               |             |  |  |
|---------------------------------|------------------------------------------------|-------------------------------|-------------|--|--|
| Annex No.                       | Contents                                       | Reference Description         | Total Pages |  |  |
| Annex 1                         | Test result diagrams                           | CETECOM_TR19_1_0097801T04a_A1 | 6           |  |  |
| Annex 2                         | Internal photographs of EUT                    | To be provided by customer    |             |  |  |
| Annex 3                         | External photographs of EUT                    | CETECOM_TR19_1_0097801T04a_A3 | 5           |  |  |
| Annex 4 Test set-up photographs |                                                | CETECOM_TR19_1_0097801T04a_A4 | 4           |  |  |
| •                               | The listed attachments are separate documents. |                               |             |  |  |

CETECOM\_TR19\_1\_0097801T04a 4 / 16



#### 1 General information

#### 1.1 Disclaimer and Notes

The test results of this test report relate exclusively to the test item specified in this test report as specified in chapter 2.7. CETECOM does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM.

The testing service provided by CETECOM has been rendered under the current "General Terms and Conditions for CETECOM". CETECOM will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM test report include or imply any product or service warranties from CETECOM, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM.

All rights and remedies regarding vendor's products and services for which CETECOM has prepared this test report shall be provided by the party offering such products or services and not by CETECOM.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

The test report must always be reproduced in full; reproduction of an excerpt only is subject to written approval of the testing laboratory. The documentation of the testing performed on the tested devices is archived for 10 years at CETECOM.

Also we refer on special conditions which the applicant should fulfill according §2.927 to §2.948, special focus regarding modification of the equipment and availability of sample equipment for market surveillance tests.



# 1.1. Summary of Test Results

| Test case                                        | Reference | Reference | Reference         | Remark | Result |
|--------------------------------------------------|-----------|-----------|-------------------|--------|--------|
|                                                  | in FCC 🛛  | in ISED 🛚 | in RSS-GEN □      |        |        |
| Radiated field strength emissions 30 MHz – 1 GHz | §15.109   | ICES-003, | RSS-Gen., Issue 5 |        | PASSED |
|                                                  | §15.33    | Issue 6   | Chapter 8.9,      |        |        |
|                                                  | §15.35    |           | Chapter 7.3       |        |        |
| Radiated field strength emissions above 1 GHz    | §15.109   | ICES-003, | RSS-Gen., Issue 5 |        | PASSED |
|                                                  | §15.33    | Issue 6   | Chapter 8.9,      |        |        |
|                                                  | §15.35    |           | Chapter 7.3       |        |        |

PASSED The EUT complies with the essential requirements in the standard.

FAILED The EUT does not comply with the essential requirements in the standard.

NP The test was not performed by the CETECOM Laboratory.

# 1.2. Summary of Test Methods

| Test case                                        | Test method                   |
|--------------------------------------------------|-------------------------------|
| Radiated field strength emissions 30 MHz – 1 GHz | ANSI C63.4-2014 chapter 8.2.3 |
| Radiated field strength emissions above 1 GHz    | ANSI C63.4-2014 chapter 8.3   |

CETECOM\_TR19\_1\_0097801T04a 6/16



#### 2 Administrative Data

# 2.1 Identification of the Testing Laboratory

Company name: CETECOM GmbH
Address: Im Teelbruch 116

45219 Essen - Kettwig

Germany

Responsible for testing laboratory: Volker Wittmann

Accreditation scope: DAkkS Webpage

Test location: CETECOM GmbH; Im Teelbruch 116; 45219 Essen - Kettwig

#### 2.2 General limits for environmental conditions

| Temperature:        | 22±2 °C   |
|---------------------|-----------|
| Relative. humidity: | 45±15% rH |

#### 2.3 Test Laboratories sub-contracted

Company name: --

## 2.4 Organizational Items

Order No.:

Responsible test manager: B.Sc. Hicham Laayouni

Receipt of EUT: 2019-Sep-16

Date(s) of test: 2019-Sep-16 – 2020-Apr-14

Version of template: 13.02

## 2.5 Applicant's details

Applicant's name: Robert Bosch GmbH

Address: Robert-Bosch-Platz 1

70839 Gerlingen-Schillerhöhe

Germany

Contact Person: Uwe Feuchter (CM-CI2/EEB)
Contact Person's Email: uwe.feuchter@de.bosch.com

#### 2.6 Manufacturer's details

| Manufacturer's name: | Robert Bosch GmbH    |
|----------------------|----------------------|
| Address:             | Robert-Bosch-Platz 1 |
|                      | 70839 Gerlingen      |
|                      | Germany              |

CETECOM\_TR19\_1\_0097801T04a 7/16



## 2.7 EUT: Type, S/N etc. and short descriptions used in this test report

| Short descrip tion*) | PMT Sample<br>No. | EUT    | Туре | S/N | HW<br>status | SW<br>status |
|----------------------|-------------------|--------|------|-----|--------------|--------------|
| EUT 1                | 19-1-00978S01     | BUI350 |      |     | 0.8.2.0      | 0.197.5.0    |

<sup>\*)</sup> EUT short description is used to simplify the identification of the EUT in this test report.

## 2.8 Auxiliary Equipment (AE): Type, S/N etc. and short descriptions

| Short<br>descrip<br>tion*) | PMT Sample<br>No. | Auxiliary Equipment       | Туре   | S/N        | HW<br>status | SW<br>status |
|----------------------------|-------------------|---------------------------|--------|------------|--------------|--------------|
| AE 1                       | 19-1-00978S14     | Bracket with power supply |        |            |              |              |
| AE 2                       | 19-1-00978S13     | vector CAN Interface      | VN1610 |            |              |              |
| AE 3                       | 19-1-00978S11     | HP ZBook 15 G3            | XS05EC | CND62592S9 |              |              |
| AE 4                       | 19-1-02039S03     | Bicycle Handlebar         | V7161  |            |              |              |
| AE 5                       | Micro USB cable   | Type B cable              |        |            |              |              |

<sup>\*)</sup> AE short description is used to simplify the identification of the auxiliary equipment in this test report.

#### 2.9 Connected cables

| Cable short descripttion *) | Cable type | Connectors | Length |
|-----------------------------|------------|------------|--------|
| CAB 1                       | USB cable  |            |        |

<sup>\*)</sup> AE short description is used to simplify the identification of the auxiliary equipment in this test report.

## 2.10 EUT set-ups

| set-up<br>no.*) | Combination of EUT and AE                | Description |
|-----------------|------------------------------------------|-------------|
| 1               | EUT 1 + AE 1 + AE 2 + AE 3 + AE 4 + AE 5 | -           |

<sup>\*)</sup> EUT set-up no. is used to simplify the identification of the EUT set-up in this test report.

## 2.11 EUT operation modes

| EUT operating mode no.*) | Operating modes              | Additional information                                                                                                                                                                                                                                   |
|--------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                        | USB Traffic + CAN Simulation | USB Trafic was generated via Iperf connected to the USB port of the EUT, which is an ethernet port with a static IP. CANoe was installed on AE 3. CAN simulation was executed from laptop to monitor bus statistics like error frame rates and bus-load. |

<sup>\*)</sup> EUT operating mode no. is used to simplify the test report.

CETECOM\_TR19\_1\_0097801T04a 8 / 16



# 3 Equipment under test (EUT)

# 3.1 General Data of Main EUT as Declared by Applicant

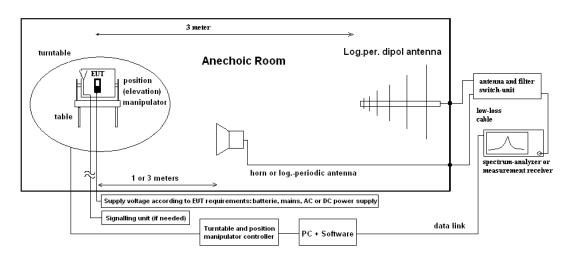
| Product name                               | BUI350                   |                                 |               |                           |  |  |  |
|--------------------------------------------|--------------------------|---------------------------------|---------------|---------------------------|--|--|--|
| Kind of product                            | E-Bike computer v        | E-Bike computer with Navigation |               |                           |  |  |  |
| Firmware                                   | $\square$ for normal use |                                 | Special v     | ersion for test execution |  |  |  |
| Comments on firmware                       | For USB traffic an       | iperf ser                       | ver was runr  | ning on the EUT.          |  |  |  |
| Comments on minware                        | For CAN simulatio        | n no spe                        | cial firmware | e is needed on the EUT.   |  |  |  |
|                                            | ☐ AC Mains               |                                 |               |                           |  |  |  |
|                                            | ☑ DC Mains               | <b>12</b> V DC                  |               |                           |  |  |  |
|                                            | ☑ Battery                | Lithiun                         | n Ion battery |                           |  |  |  |
| Operational conditions                     | T <sub>nom</sub> =20 °C  | T <sub>min</sub> =-10 °C        |               |                           |  |  |  |
| EUT sample type                            | Pre-Production           |                                 |               |                           |  |  |  |
| Weight                                     |                          |                                 |               |                           |  |  |  |
| Size                                       |                          |                                 |               |                           |  |  |  |
| Interfaces/Ports                           | -                        |                                 |               |                           |  |  |  |
| For further details refer Applicants Decla | ration & following       | technica                        | al documents  | s                         |  |  |  |

# 3.2 Modifications on Test sample



CETECOM\_TR19\_1\_0097801T04a 9 / 16




#### 4 Measurements

#### 4.1 Radiated field strength emissions 30 MHz - 1 GHz

#### 4.1.1 Description of the general test setup and methodology, see below example:

Evaluating the field emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a NSA-compliant semi anechoic room (SAR) recognized by the regulatory commissions.

#### **Schematic:**



#### **Testing method:**

The measurement is made according to relevant reference clauses: (See Tables Summary of Test Results and Summary of Test Methods on page 5)

#### **Exploratory, preliminary measurements**

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 90°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and its characteristics was recorded with an EMI-receiver, broadband antenna and software.

Measurement antenna: horizontal and vertical, heights: 1,0 m and 1,82 m as worst-case determined by an exploratory emission measurements. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

#### Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by main-taining the EUT's worst-case operation mode, cable position, etc. either on 10m OATS or 3m semi-anechoic room.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

CETECOM\_TR19\_1\_0097801T04a 10 / 16



Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position). The measurement antenna height between 1 m and 4 m.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out

#### Formula:

 $E_C = E_R + AF + C_L + D_F - G_A \quad \mbox{(1)} \label{eq:eccentric}$   $AF = \mbox{Antenna factor}$   $C_L = \mbox{Cable loss}$ 

 $M = L_T - E_C$  (2)  $D_F = Distance correction factor (if used)$ 

E<sub>C</sub> = Electrical field – corrected value

 $E_R$  = Receiver reading

G<sub>A</sub> = Gain of pre-amplifier (if used)

 $L_T$  = Limit M = Margin

All units are dB-units, positive margin means value is below limit.

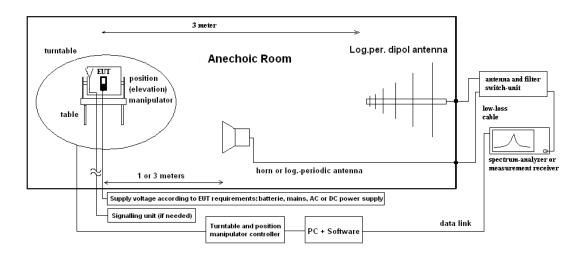
#### 4.1.2 Limit

| Frequency Range | Class B         | ☑ (3 meters)      | Class A ☐ (10 meters) |                   |            |                    |
|-----------------|-----------------|-------------------|-----------------------|-------------------|------------|--------------------|
| [MHz]           | Limit<br>[μV/m] | Limit<br>[dBμV/m] | Limit<br>[μV/m]       | Limit<br>[dBμV/m] | Detector   | RBW / VBW<br>[kHz] |
| 30 - 88         | 100             | 40.0              | 90                    | 39.0              | Quasi peak | 100 / 300          |
| 88 - 216        | 150             | 43.5              | 150                   | 43.5              | Quasi peak | 100 / 300          |
| 216 - 960       | 200             | 46.0              | 210                   | 46.4              | Quasi peak | 100 / 300          |
| 960 - 1000      | 500             | 54.0              | 300                   | 49.5              | Quasi peak | 100 / 300          |

#### **4.1.3** Result

| Diagram     | Set up | Op. Mode | Maximum Level [dBμV/m]<br>Frequency Range 30 – 1000 MHz | Result |
|-------------|--------|----------|---------------------------------------------------------|--------|
| <u>3.01</u> | 1      | 1        | No peaks found                                          | Passed |
| 3.02        | 1      | 1        | No peaks found                                          | Passed |

Remark: for more informations and graphical plot see annex A1 CETECOM\_TR19\_1\_0097801T04a\_A1




#### 4.2 Radiated field strength emissions above 1 GHz

#### 4.2.1 Description of the general test setup and methodology, see below example:

Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 18-1-4:2010 compliant fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

#### Schematic:



#### **Testing method:**

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

#### **Exploratory, preliminary measurements**

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 1.55 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 15°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and its characteristics was recorded with an EMI-receiver, broadband antenna and software.

The measurements are performed in horizontal and vertical polarization of the measurement antennas. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

#### Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by main-taining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

CETECOM\_TR19\_1\_0097801T04a 12 / 16



Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself over 3-orthogonal axis and the height for EUT with large dimensions or three axis scan for portable/small equipment.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

#### Formula:

 $E_C = E_R + A_F + C_L + D_F - G_A \quad \text{(1)} \\ E_C = \text{Electrical field} - \text{corrected value} \\ E_R = \text{Receiver reading} \\ M = L_T - E_C \quad \text{(2)} \\ M = \text{Margin} \\ L_T = \text{Limit} \\ A_F = \text{Antenna factor} \\ \\ \text{(3)}$ 

C<sub>L</sub> = Cable loss

 $D_F$  = Distance correction factor (if used)  $G_A$  = Gain of pre-amplifier (if used)

All units are dB-units, positive margin means value is below limit.

#### 4.2.2 Limit

|                          | Radiated emissions limits (3 meters) |                   |          |                    |  |  |  |  |
|--------------------------|--------------------------------------|-------------------|----------|--------------------|--|--|--|--|
| Frequency Range<br>[MHz] | Limit<br>[μV/m]                      | Limit<br>[dBµV/m] | Detector | RBW / VBW<br>[kHz] |  |  |  |  |
| Above 1000               | 500                                  | 54                | Average  | 1000 / 3000        |  |  |  |  |
| Above 1000               | 5000                                 | 74                | Peak     | 1000 / 3000        |  |  |  |  |

#### **4.2.3** Result

| Diagram | Set up | Op. Mode | Maximum Level [dBμV/m]<br>Frequency Range 1 – 18 GHz | Result |
|---------|--------|----------|------------------------------------------------------|--------|
| 4.01    | 1      | 1        | 53.63                                                | Passed |

Remark: for more informations and graphical plot see annex A1 CETECOM\_TR19\_1\_0097801T04a\_A1



# 4.3 Results from external laboratory

| None | - |
|------|---|

# 4.4 Opinions and interpretations

| None | - |
|------|---|

# 5 Equipment lists

| ID     | Description                                            | Manufacturer                          | SerNo       | Cal Date   |
|--------|--------------------------------------------------------|---------------------------------------|-------------|------------|
| 120904 | FAC1 - Radiated Emissions                              |                                       |             |            |
| 20720  | EMC32 [FAC]                                            | Rohde & Schwarz<br>Messgerätebau GmbH | V10.50      |            |
| 20020  | Horn Antenna 3115 (Subst 1)                            | EMCO Elektronik GmbH                  | 9107-3699   | 19.07.2021 |
| 20549  | Log.Per-Antenna HL025                                  | Rohde & Schwarz<br>Messgerätebau GmbH | 1000060     | 31.07.2021 |
| 20700  | PC ctc662012 [FAC]                                     | Dell Inc.                             |             |            |
| 20262  | Power Meter NRV-S                                      | Rohde & Schwarz<br>Messgerätebau GmbH | 825770/0010 | 15.05.2020 |
| 20357  | power sensor NRV-Z1                                    | Rohde & Schwarz<br>Messgerätebau GmbH | 861761/002  | 21.05.2021 |
| 20338  | Pre-Amplifier 100MHz - 26GHz JS4-00102600-38-5P        | Miteq Inc.                            | 838697      |            |
| 20484  | Pre-Amplifier 2,5GHz - 18GHz<br>AMF-5D-02501800-25-10P | Miteq Inc.                            | 1244554     |            |
| 20287  | Pre-Amplifier 25MHz - 4GHz<br>AMF-2D-100M4G-35-10P     | Miteq Inc.                            | 379418      |            |
| 20690  | Spectrum Analyzer FSU                                  | Rohde & Schwarz<br>Messgerätebau GmbH | 100302/026  | 23.05.2021 |
| 120901 | SAC - Radiated Emission<br><1GHz                       |                                       |             |            |
| 25038  | Loop Antenna (H-Field) HFH2-<br>Z2                     | Rohde & Schwarz                       | 879824/13   | 31.03.2020 |
| 20574  | Biconilog Hybrid Antenna BTA-L                         | Frankonia                             | 980026L     | 03.05.2022 |
| 20620  | ESU 26                                                 | Rohde & Schwarz                       | 100362      | 30.05.2020 |

CETECOM\_TR19\_1\_0097801T04a 14 / 16



| ID    | Description                    | Manufacturer           | SerNo | Cal Date |
|-------|--------------------------------|------------------------|-------|----------|
| 20556 | Thermo-/Hygrometer WS-<br>9400 | Conrad Electronic GmbH | -     |          |

Tools used in 'P1M1'



# 6 Measurement Uncertainty valid for conducted/radiated measurements

The reported uncertainties are calculated based on the standard uncertainty multiplied with the appropriate coverage factor **k**, such that a confidence level of approximately 95% is achieved. For uncertainty determination, each component used in the concrete measurement set-up was taken in account and it contribution to the overall uncertainty according its statistical distribution calculated.

| RF-Measurement               | Reference | Frequency range     | C          | Calculated uncertainty based on a confidence level of 95% |         | Remarks |                     |  |                         |
|------------------------------|-----------|---------------------|------------|-----------------------------------------------------------|---------|---------|---------------------|--|-------------------------|
| Conducted emissions          | _         | 9 kHz - 150 kHz     | 4.0 dB     | 4.0 dB                                                    |         | _       |                     |  |                         |
| (U CISPR)                    |           | 150 kHz - 30 MHz    | 3.6 dB     |                                                           |         |         |                     |  |                         |
| Power Output radiated        | -         | 30 MHz - 4 GHz      | 3.17 di    | 3.17 dB                                                   |         |         | Substitution method |  |                         |
| Dower Output conducted       |           | Set-up No.          | Cel-<br>C1 | Cel-<br>C2                                                | BT1     | W1      | W2                  |  |                         |
| Power Output conducted       | -         | 9 kHz - 12.75 GHz   | N/A        | 0.60                                                      | 0.7     | 0.25    | N/A                 |  |                         |
|                              |           | 12.75 - 26.5 GHz    | N/A        | 0.82                                                      |         | N/A     | N/A                 |  |                         |
| Conducted emissions          | -         | 9 kHz - 2.8 GHz     | 0.70       | N/A                                                       | 0.70    | N/A     | 0.69                |  |                         |
| on RF-port                   |           | 2.8 GHz - 12.75 GHz | 1.48       | N/A                                                       | 1.51    | N/A     | 1.43                |  | N/A - not<br>applicable |
|                              |           | 12.75 GHz – 18 GHz  | 1.81       | N/A                                                       | 1.83    | N/A     | 1.77                |  |                         |
|                              |           | 18 GHz - 26.5 GHz   | 1.83       | N/A                                                       | 1.85    | N/A     | 1.79                |  |                         |
| Occupied bandwidth           | -         | 9 kHz - 4 GHz       | 0.1272     | ppm (C                                                    | elta Ma | rker)   |                     |  | Frequency<br>error      |
|                              |           |                     | 1.0 dB     |                                                           |         |         |                     |  | Power                   |
| Emission bandwidth           | -         | 9 kHz - 4 GHz       | 0.1272     | 0.1272 ppm (Delta Marker)                                 |         |         | Frequency<br>error  |  |                         |
|                              | -         |                     | See ab     | See above: 0.70 dB                                        |         |         |                     |  |                         |
| Frequency stability          | -         | 9 kHz - 20 GHz      | 0.0636     | 0.0636 ppm                                                |         |         |                     |  | -                       |
| Dadiated emissions           |           | 150 kHz - 30 MHz    | 5.01dB     |                                                           |         |         |                     |  | Magnetic field strength |
| Radiated emissions Enclosure | -         | 30 MHz - 1 GHz      | 5.83 d     | В                                                         |         |         |                     |  | Electrical              |
| Enclosure                    |           | 1 GHz - 18 GHz      | 4.91 d     | _                                                         |         |         |                     |  | Field                   |
|                              |           | 18-26.5 GHz         | 5.06 d     | В                                                         |         |         |                     |  | strength                |

# 7 Versions of test reports (change history)

| Version | Applied changes | Date of release |
|---------|-----------------|-----------------|
|         | Initial release | 2020-May-12     |
|         |                 |                 |
|         |                 |                 |

## **End Of Test Report**

CETECOM\_TR19\_1\_0097801T04a 16 / 16