Shenzhen Most Technology Service Co., Ltd. No.5, 2nd Langshan Road, North District, Hi-tech Industrial Park, Nanshan, Shenzhen, Guangdong, China. Sunny Deng Unatter ### TEST REPORT FCC Rules Part 15.225 Compiled by Supervised by (position+printed name+signature)..: Test Engineer Sunny Deng Approved by (position+printed name+signature)..: Manager Yvette Zhou Date of issue...... April 17,2024 Representative Laboratory Name.: Shenzhen Most Technology Service Co., Ltd. Nanshan, Shenzhen, Guangdong, China. Applicant's name...... COOPER WIRING DEVICES INC. America(Excluding The States Of Alaska) Test specification/ Standard.....: FCC Rules Part 15.225 TRF Originator...... Shenzhen Most Technology Service Co., Ltd. ### Shenzhen Most Technology Service Co., Ltd. All rights reserved. This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Most Technology Service Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Most Technology Service Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context. Test item description.....: Electric Vehicle AC Charger Trade Mark..... Joint Model/Type reference...... GMEV40CIE1B-WC Listed Models : N/A Modulation Type : ASK Operation Frequency.....: 13.56MHz operation requestoy...... Hardware Version..... N1-3P1 Software Version......N1-3P1_C_1 Rating AC 240V/60Hz Result..... PASS Page 2 of 25 # TEST REPORT Equipment under Test : Electric Vehicle AC Charger Model /Type : GMEV40CIE1B-WC Listed Models N/A Remark N/A Applicant : COOPER WIRING DEVICES INC. Address : 203 Cooper Circle Peachtree City GA 30269 United States Of America(Excluding The States Of Alaska) Manufacturer : Xiamen Joint Tech. Co., Ltd Address : 98 Dongfu South Road, Haicang District, Xiamen City | Test Result: | PASS | |--------------|------| |--------------|------| The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory. Report No.: MTEB24040214-R Page 3 of 25 # **Contents** | 1. REVISION HISTORY | 4 | |--|----| | 2. TEST STANDARDS | 5 | | 3. SUMMARY | 6 | | 3.1. General Remarks | | | 3.2. Product Description | | | 3.3. Equipment Under Test | | | 3.4. Short description of the Equipment under Test (EUT) | | | 3.5. EUT operation mode | | | 3.6. Block Diagram of Test Setup | | | 3.7. Test Item (Equipment Under Test) Description* | | | 3.8. Auxiliary Equipment (AE) Description | | | 3.9 Antenna Information* | | | 3.10. EUT configuration | | | 3.11. Modifications | | | 4. TEST ENVIRONMENT | 8 | | 4.1. Address of the test laboratory | 8 | | 4.2. Environmental conditions | | | 4.3. Test Description | | | 4.4. Statement of the measurement uncertainty | | | 4.5. Equipments Used during the Test | | | 5. TEST CONDITIONS AND RESULTS | 11 | | 5.1. AC Power Conducted Emission | 11 | | 5.2. Radiated Emission | | | 5.3. 20dB Bandwidth | | | 5.4. FREQUENCY TOLERANCE | | | 5.5. Antenna Requirement | | | 6. TEST SETUP PHOTOS OF THE EUT | 24 | | 7. EXTERNAL AND INTERNAL PHOTOS OF THE EUT | 25 | Report No.: MTEB24040214-R Page 4 of 25 # 1. Revision History | Revision | Issue Date | Revisions | Revised By | |----------|------------|---------------|------------| | 00 | 2024-04-17 | Initial Issue | Alisa Luo | | | | | | | | | | | Page 5 of 25 # 2. TEST STANDARDS The tests were performed according to following standards: The tests were performed according to following standards: FCC Rules Part 15.225: Operation within the band 13.110-14.010 MHz. ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices ANSI C63.4: 2014: —American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz Range of 9 kHz to 40GHz Page 6 of 25 # 3. SUMMARY ### 3.1. General Remarks | Date of receipt of test sample | : | 2024.04.07 | |--------------------------------|---|------------| | | | | | Testing commenced on | : | 2024.04.07 | | - | | | | Testing concluded on | : | 2024.04.16 | # 3.2. Product Description | Product Name: | Electric Vehicle AC Charger | | |-----------------------|-----------------------------|--| | Model/Type reference: | GMEV40CIE1B-WC | | | Power Supply: | AC 240V/60Hz | | | Testing sample ID: | MTYP04876 | | | Modulation: | ASK | | | Operation frequency: | 13.56MHZ | | | Channel number: | 1 (declared by the client) | | # 3.3. Equipment Under Test # Power supply system utilised | Power supply voltage | : | 0 | 230V / 50 Hz | 0 | 120V / 60Hz | |----------------------|---|---|----------------------------------|---|-------------| | | | 0 | 12 V DC | 0 | 24 V DC | | | | • | Other (specified in blank below) | |) | ### AC 240V/60Hz # 3.4. Short description of the Equipment under Test (EUT) This is a Electric Vehicle AC Charger For more details, refer to the user's manual of the EUT. # 3.5. EUT operation mode | Channel | Freq.(MHz) | Note(Modulation Type) | |---------|------------|-----------------------| | 1 | 13.56MHz | ASK | # 3.6. Block Diagram of Test Setup Page 7 of 25 # 3.7. Test Item (Equipment Under Test) Description* | Short designation | EUT Name | EUT Description | Serial number | Hardware
status | Software status | |-------------------|----------|-----------------|---------------|--------------------|-----------------| | EUT A | 1 | / | / | 1 | / | | EUT B | 1 | 1 | 1 | 1 | 1 | | EUT C | 1 | 1 | 1 | 1 | 1 | ^{*:} declared by the applicant. According to customers information EUTs A and B are the same devices. Only the secondary screen size is different # 3.8. Auxiliary Equipment (AE) Description | AE short designation | EUT Name
(if available) | EUT Description | Serial number (if available) | Software (if used) | |----------------------|----------------------------|-----------------|------------------------------|--------------------| | AE 1 | 1 | 1 | 1 | 1 | | AE 2 | 1 | 1 | 1 | 1 | ### 3.9 Antenna Information* | Short designation | Antenna Name | Antenna Type | Frequency
Range | Serial number | Antenna Peak
Gain | |-------------------|--------------|--------------|--------------------|---------------|----------------------| | Antenna 1 | | 1 | PCB Antenna | 13.56MHZ | 3dBi | | Antenna 2 | / | 1 | 1 | 1 | 1 | | | | | | | | ^{*:} declared by the applicant. # 3.10. EUT configuration The following peripheral devices and interface cables were connected during the measurement: supplied by the manufacturer O- Supplied by the lab | ADAPTER 1 | M/N: | I | |-----------|---------------|---| | | Manufacturer: | 1 | ### 3.11. Modifications No modifications were implemented to meet testing criteria. Page 8 of 25 # 4. TEST ENVIRONMENT # 4.1. Address of the test laboratory ### Shenzhen Most Technology Service Co., Ltd. No.5, 2nd Langshan Road, North District, Hi-tech Industrial Park, Nanshan, Shenzhen, Guangdong, China. The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz. ### **Test Facility** The test facility is recognized, certified, or accredited by the following organizations: ### FCC-Registration No.: 0031192610 Shenzhen Most Technology Service Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. ### A2LA-Lab Cert. No.: 6343.01 Shenzhen Most Technology Service Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. #### 4.2. Environmental conditions #### Radiated Emission: | Temperature: | 23 ° C | |-----------------------|--------------| | | | | Humidity: | 48 % | | | | | Atmospheric pressure: | 950-1050mbar | #### Conducted testing: | Temperature: | 24 ° C | |-----------------------|--------------| | | | | Humidity: | 45 % | | | | | Atmospheric pressure: | 950-1050mbar | Page 9 of 25 ### 4.3. Test Description | FCC and IC Requirements | | | | |---|-----------------------------|------|--| | FCC Part 15.203 | Antenna Requirement | PASS | | | FCC Part 15.207 | AC Power Conducted Emission | PASS | | | FCC Part 15.209&15.205 (a) &15.225(a,b,c,d) | Spurious Emissions | PASS | | | FCC Part 15.215 (c) &15.225 | 20dB Occupied Bandwidth | PASS | | | FCC Part 15.225(e) | Frequency Tolerance | PASS | | #### Remark: - 1. The measurement uncertainty is not included in the test result. - 2. NA = Not Applicable; NP = Not Performed # 4.4. Statement of the measurement uncertainty The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Most Technology Service Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen Most Technology Service Co., Ltd. is reported: | Test | Range | Measurement
Uncertainty | Notes | |-------------------------|------------|----------------------------|-------| | Radiated Emission | 30~1000MHz | 4.10 dB | (1) | | Radiated Emission | 1~18GHz | 4.32 dB | (1) | | Radiated Emission | 18-40GHz | 5.54 dB | (1) | | Conducted Disturbance | 0.15~30MHz | 3.12 dB | (1) | | 20dB Occupied Bandwidth | 1 | 5% | (1) | (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2. Report No.: MTEB24040214-R Page 10 of 25 #### **Equipments Used during the Test** 4.5. 5. | 5. | | | | | | | |---------------------------------------|---|---|---|---|--|--| | Equipment | Manufacturer | Model No. | Serial No. | Firmware versions | Last Cal. | Cal. Interval | | L.I.S.N. | R&S | ENV216 | 100093 | 1 | 2024/03/15 | 1 Year | | Three-phase artificial power network | Schwarzback Mess | NNLK8129 | 8129178 | 1 | 2024/03/15 | 1 Year | | Receiver | R&S | ESCI | 100492 | V3.0-10-2 | 2024/03/15 | 1 Year | | Receiver | R&S | ESPI | 101202 | V3.0-10-2 | 2024/03/15 | 1 Year | | Spectrum analyzer | Agilent | 9020A | MT-E306 | A14.16 | 2024/03/15 | 1 Year | | Bilong Antenna | Sunol Sciences | JB3 | A121206 | 1 | 2023/08/15 | 1 Year | | Horn antenna | HF Antenna | HF Antenna | MT-E158 | 1 | 2024/03/15 | 1 Year | | Loop antenna | Beijing Daze | ZN30900B | 1 | 1 | 2024/03/15 | 1 Year | | Horn antenna | R&S | OBH100400 | 26999002 | 1 | 2024/03/15 | 1 Year | | Wireless
Communication Test
Set | R&S | CMW500 | 1 | CMW-BASE-
3.7.21 | 2024/03/15 | 1 Year | | Spectrum analyzer | R&S | FSP | 100019 | V4.40 SP2 | 2024/03/15 | 1 Year | | High gain antenna | Schwarzbeck | LB-180400KF | MT-E389 | 1 | 2024/03/15 | 1 Year | | Preamplifier | Schwarzbeck | BBV 9743 | MT-E390 | 1 | 2024/03/15 | 1 Year | | Pre-amplifier | EMCI | EMC051845S
E | MT-E391 | 1 | 2024/03/15 | 1 Year | | Pre-amplifier | Agilent | 83051A | MT-E392 | 1 | 2024/03/15 | 1 Year | | High pass filter unit | Tonscend | JS0806-F | MT-E393 | / | 2024/03/15 | 1 Year | | RF Cable(below1GHz) | Times | 9kHz-1GHz | MT-E394 | 1 | 2024/03/15 | 1 Year | | RF Cable(above
1GHz) | Times | 1-40G | MT-E395 | / | 2024/03/15 | 1 Year | | RF Cable
(9KHz-40GHz) | Tonscend | 170660 | N/A | / | 2024/03/15 | 1 Year | | | Equipment L.I.S.N. Three-phase artificial power network Receiver Receiver Spectrum analyzer Bilong Antenna Horn antenna Loop antenna Horn antenna Wireless Communication Test Set Spectrum analyzer High gain antenna Preamplifier Pre-amplifier Pre-amplifier RF Cable(below1GHz) RF Cable(above 1GHz) RF Cable | Equipment L.I.S.N. R&S Three-phase artificial power network Receiver R&S Receiver R&S Spectrum analyzer Agilent Bilong Antenna Bilong Antenna HF Antenna Loop antenna Loop antenna R&S Wireless Communication Test Set Spectrum analyzer R&S High gain antenna Schwarzbeck Pre-amplifier Pre-amplifier Agilent Tonscend RF Cable(above 1GHz) RF Cable Tonscend Schwarzbeck Tonscend Tonscend Tonscend Tonscend | EquipmentManufacturerModel No.L.I.S.N.R&SENV216Three-phase artificial power networkSchwarzback MessNNLK8129ReceiverR&SESCIReceiverR&SESPISpectrum analyzerAgilent9020ABilong AntennaSunol SciencesJB3Horn antennaHF AntennaHF AntennaLoop antennaBeijing DazeZN30900BHorn antennaR&SOBH100400Wireless
Communication Test SetR&SCMW500Spectrum analyzerR&SFSPHigh gain antennaSchwarzbeckLB-180400KFPre-amplifierSchwarzbeckBBV 9743Pre-amplifierEMCIEMC051845S
EPre-amplifierAgilent83051AHigh pass filter unitTonscendJS0806-FRF Cable(below1GHz)Times9kHz-1GHzRF Cable(above 1GHz)Times1-40GRF CableTonscend1-70660 | Equipment Manufacturer Model No. Serial No. L.I.S.N. R&S ENV216 100093 Three-phase artificial power network Schwarzback Mess NNLK8129 8129178 Receiver R&S ESCI 100492 Receiver R&S ESPI 101202 Spectrum analyzer Agilent 9020A MT-E306 Bilong Antenna Sunol Sciences JB3 A121206 Horn antenna HF Antenna HF Antenna MT-E158 Loop antenna Beijing Daze ZN30900B / Horn antenna R&S OBH100400 26999002 Wireless CMW500 / / Communication Test Set R&S CMW500 / Spectrum analyzer R&S FSP 100019 High gain antenna Schwarzbeck BBV 9743 MT-E389 Pre-amplifier Schwarzbeck BBV 9743 MT-E391 Pre-amplifier Agilent 83051A MT-E392 High pass filter unit <td>Equipment Manufacturer Model No. Serial No. Firmware versions L.I.S.N. R&S ENV216 100093 / Three-phase artificial power network Schwarzback Mess NNLK8129 8129178 / Receiver R&S ESCI 100492 V3.0-10-2 Receiver R&S ESPI 101202 V3.0-10-2 Receiver R&S ESPI 101202 V3.0-10-2 Receiver R&S ESPI 101202 V3.0-10-2 Spectrum analyzer Agilent 9020A MT-E306 A14.16 Bilong Antenna Sunol Sciences JB3 A121206 / Horn antenna HF Antenna HF Antenna MT-E158 / Loop antenna Beijing Daze ZN30900B / / Wireless Communication Test Set R&S CMW500 / CMW-BASE-3.7.21 Spectrum analyzer R&S FSP 100019 V4.40 SP2 High gain antenna Schwarzbeck BBV 974</td> <td>Equipment Manufacturer Model No. Serial No. Firmware versions Last Cal. L.I.S.N. R&S ENV216 100093 / 2024/03/15 Three-phase artificial power network Schwarzback Mess NNLK8129 8129178 / 2024/03/15 Receiver R&S ESCI 100492 V3.0-10-2 2024/03/15 Receiver R&S ESPI 101202 V3.0-10-2 2024/03/15 Spectrum analyzer Agilent 9020A MT-E306 A14.16 2024/03/15 Spectrum analyzer Agilent 9020A MT-E306 A14.16 2024/03/15 Bilong Antenna Sunol Sciences JB3 A121206 / 2024/03/15 Horn antenna HF Antenna MT-E306 / 2024/03/15 Loop antenna Beijing Daze ZN30900B / / 2024/03/15 Wireless Communication Test Set R&S CMW500 / 2024/03/15 Spectrum analyzer R&S FSP 100019 <t< td=""></t<></td> | Equipment Manufacturer Model No. Serial No. Firmware versions L.I.S.N. R&S ENV216 100093 / Three-phase artificial power network Schwarzback Mess NNLK8129 8129178 / Receiver R&S ESCI 100492 V3.0-10-2 Receiver R&S ESPI 101202 V3.0-10-2 Receiver R&S ESPI 101202 V3.0-10-2 Receiver R&S ESPI 101202 V3.0-10-2 Spectrum analyzer Agilent 9020A MT-E306 A14.16 Bilong Antenna Sunol Sciences JB3 A121206 / Horn antenna HF Antenna HF Antenna MT-E158 / Loop antenna Beijing Daze ZN30900B / / Wireless Communication Test Set R&S CMW500 / CMW-BASE-3.7.21 Spectrum analyzer R&S FSP 100019 V4.40 SP2 High gain antenna Schwarzbeck BBV 974 | Equipment Manufacturer Model No. Serial No. Firmware versions Last Cal. L.I.S.N. R&S ENV216 100093 / 2024/03/15 Three-phase artificial power network Schwarzback Mess NNLK8129 8129178 / 2024/03/15 Receiver R&S ESCI 100492 V3.0-10-2 2024/03/15 Receiver R&S ESPI 101202 V3.0-10-2 2024/03/15 Spectrum analyzer Agilent 9020A MT-E306 A14.16 2024/03/15 Spectrum analyzer Agilent 9020A MT-E306 A14.16 2024/03/15 Bilong Antenna Sunol Sciences JB3 A121206 / 2024/03/15 Horn antenna HF Antenna MT-E306 / 2024/03/15 Loop antenna Beijing Daze ZN30900B / / 2024/03/15 Wireless Communication Test Set R&S CMW500 / 2024/03/15 Spectrum analyzer R&S FSP 100019 <t< td=""></t<> | ^{6.} Note: The Cal.Interval was one year. Page 11 of 25 # 5. <u>TEST CONDITIONS AND RESULTS</u> ### 5.1. AC Power Conducted Emission #### **TEST CONFIGURATION** #### **TEST PROCEDURE** - 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013. - 2 Support equipment, if needed, was placed as per ANSI C63.10-2013 - 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013 - 4 The EUT received DC5V power, the adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane. - 5 All support equipments received AC power from a second LISN, if any. - 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver. - 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes. - 8 During the above scans, the emissions were maximized by cable manipulation. ### **AC Power Conducted Emission Limit** For unintentional device, according to RSS Gen 8.8 and § 15.207(a) Line Conducted Emission Limits is as following: | Frequency
(MHz) | Maximum RF Line Voltage | | | |--------------------|-------------------------|---------------|--| | | Quasi-Peak Level | Average Level | | | | dB(μV) | dB(μV) | | | 0.15 ~ 0.50 | 66 ~ 56* | 56 ~ 46* | | | 0.50 ~ 5.00 | 56 | 46 | | | 5.00 ~ 30.00 | 60 | 50 | | #### **TEST RESULTS** ⊃ass Remark: only the worst test data is shown Page 12 of 25 Page 13 of 25 Page 14 of 25 # 5.2. Radiated Emission # **TEST CONFIGURATION** Frequency range 9 KHz – 30MHz Frequency range 30MHz – 1000MHz Frequency range above 1GHz-25GHz Page 15 of 25 #### **TEST PROCEDURE** - 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz 25GHz. - 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° C to acquire the highest emissions from EUT. - 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. - 4. Repeat above procedures until all frequency measurements have been completed. - 5. The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz. - 6. The distance between test antenna and EUT as following table states: | Test Frequency range | Test Antenna Type | Test Distance | |----------------------|----------------------------|---------------| | 9KHz-30MHz | Active Loop Antenna | 3 | | 30MHz-1GHz | Ultra-Broadband Antenna | 3 | | 1GHz-18GHz | Double Ridged Horn Antenna | 3 | | 18GHz-25GHz | Horn Anternna | 1 | 7. Setting test receiver/spectrum as following table states: | Test Frequency range | Test Receiver/Spectrum Setting | Detector | |----------------------|--|----------| | 9KHz-150KHz | RBW=200Hz/VBW=3KHz,Sweep time=Auto | QP | | 150KHz-30MHz | RBW=9KHz/VBW=100KHz,Sweep time=Auto | QP | | 30MHz-1GHz | RBW=120KHz/VBW=1000KHz,Sweep time=Auto | QP | | 1GHz-40GHz | Peak Value: RBW=1MHz/VBW=3MHz, | | | | Sweep time=Auto | Peak | | | Average Value: RBW=1MHz/VBW=10Hz, | | | | Sweep time=Auto | | # Field Strength Calculation The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows: FS = RA + AF + CL - AG | Where | FS = Field Strength | CL = Cable Attenuation Factor (Cable Loss) | | |-------|------------------------|--|--| | | RA = Reading Amplitude | AG = Amplifier Gain | | | | AF = Antenna Factor | | | Page 16 of 25 #### **RADIATION LIMIT** For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in table below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission Unwanted emissions that fall into restricted bands shall comply with the limits specified in RSS-Gen; and Unwanted emissions that do not fall within the restricted frequency bands shall comply either with the limits specified in the applicable RSS or with those specified in this RSS-Gen. | Frequency (MHz) | Distance
(Meters) | Radiated (dBμV/m) | Radiated (μV/m) | |-----------------|----------------------|----------------------------------|-----------------| | 0.009-0.49 | 3 | 20log(2400/F(KHz))+40log(300/3) | 2400/F(KHz) | | 0.49-1.705 | 3 | 20log(24000/F(KHz))+ 40log(30/3) | 24000/F(KHz) | | 1.705-30 | 3 | 20log(30)+ 40log(30/3) | 30 | | 30-88 | 3 | 49.0 | 100 | | 88-216 | 3 | 53.5 | 150 | | 216-960 | 3 | 56.0 | 200 | | Above 960 | 3 | 64.0 | 500 | ### According to FCC Part 15.205, Rastricted bands | MHz | MHz | MHz | GHz | |-------------------|---------------------|---------------|-------------| | 0.090-0.110 | 16.42-16.423 | 399.9-410 | 4.5-5.15 | | 10.495-0.505 | 16.69475-16.69525 | 608-614 | 5.35-5.46 | | 2.1735-2.1905 | 16.80425-16.80475 | 960-1240 | 7.25-7.75 | | 4.125-4.128 | 25.5-25.67 | 1300-1427 | 8.025-8.5 | | 4.17725-4.17775 | 37.5-38.25 | 1435-1626.5 | 9.0-9.2 | | 4.20725-4.20775 | 73-74.6 | 1645.5-1646.5 | 9.3-9.5 | | 6.215-6.218 | 74.8-75.2 | 1660-1710 | 10.6-12.7 | | 6.26775-6.26825 | 123-138 | 2200-2300 | 14.47-14.5 | | 8.291-8.294 | 149.9-150.05 | 2310-2390 | 15.35-16.2 | | 8.362-8.366 | 156.52475-156.52525 | 2483.5-2500 | 17.7-21.4 | | 8.37625-8.38675 | 156.7-156.9 | 2690-2900 | 22.01-23.12 | | 8.41425-8.41475 | 162.0125-167.17 | 3260-3267 | 23.6-24.0 | | 12.29-12.293 | 167.72-173.2 | 3332-3339 | 31.2-31.8 | | 12.51975-12.52025 | 240-285 | 3345.8-3358 | 36.43-36.5 | | 12.57675-12.57725 | 322-335.4 | 3600-4400 | (2) | | 13.36-13.41 | | | | ### **LIMITS OF RADIATED EMISSION MEASUREMENT (FCC 15.225)** - (a)The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters, equal to 124dBuV/m at 3 meters. - (b) Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters, equal to 90.5dBuV/m at 3 meters. Page 17 of 25 - c) Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters, equal to 80.5dBuV/m at 3 meters. - (d) The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in § 15.209. # **TEST RESULTS (BELOW 30MHz)** - 1: This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position. - 2: Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report. | Frequency | Pre-scan Level MaxPeak | Final Test Level
MaxPeak | Limit MaxPeak | Margin | |-----------|------------------------|-----------------------------|---------------|--------| | MHz | dBuV/m | dBuV/m | dBuV/m | dB | | 13.56 | 78.4 | 78.4 | 124.0 | 45.8 | | F | requency | Pre-scan Level MaxPeak | Final Test Level
MaxPeak | Limit MaxPeak | Margin | | |---|----------|------------------------|-----------------------------|---------------|--------|--| |---|----------|------------------------|-----------------------------|---------------|--------|--| Report No.: MTEB24040214-R Page 18 of 25 | MHz | dBuV/m | dBuV/m | dBuV/m | dB | |-------|--------|--------|--------|------| | 13.56 | 77.5 | 77.5 | 124.0 | 46.5 | | Frequency | Pre-scan Level MaxPeak | Final Test Level
MaxPeak | Limit MaxPeak | Margin | |-----------|------------------------|-----------------------------|---------------|--------| | MHz | dBuV/m | dBuV/m | dBuV/m | dB | | 13.56 | 73.1 | 73.1 | 124.0 | 51.5 | Page 19 of 25 ### For 30MHz-1GHz ^{*:}Maximum data x:Over limit !:over margin Page 20 of 25 ^{*:}Maximum data x:Over limit !:over margin Page 21 of 25 ### 5.3. 20dB Bandwidth ### **TEST CONFIGURATION** ### **TEST PROCEDURE** The 20dB bandwidth and 99% bandwidth is measured with a spectrum analyzer connected via a receive antenna placed near the EUT while the EUT is operating in transmission mode. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB. The occupied bandwidth (OBW), that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission ### **TEST RESULTS** | Modulation | Channel
Frequency
(MHz) | 20dB bandwidth
(KHz) | Result | |------------|-------------------------------|-------------------------|--------| | ASK | 13.56 | 28.40 | Pass | Page 22 of 25 # 5.4. FREQUENCY TOLERANCE # **TEST CONFIGURATION** # **TEST PROCEDURE** The EUT was placed on a turn table which is 0.8m above ground plane. Set EUT as normal operation Set SPA Center Frequency = fundamental frequency, RBW, VBW= 10kHz, Span=100K Set SPA Max hold. Mark peak. ### **TEST RESULTS** | TEGT REGGETO | | | | | | |--------------|----------------|--------------------------------|--------------------------|-------------|----------------------| | Power Supply | Temperature(℃) | Measured
Frequency
(MHz) | Frequency
Error (MHz) | Result(ppm) | Part 15.225
Limit | | | -20 | 13.560066 | 0.000066 | 4.86 | +/- 0.01%(100ppm) | | DC 264V | 20 | 13.560038 | 0.000038 | 2.80 | +/- 0.01%(100ppm) | | | 50 | 13.560046 | 0.000046 | 3.39 | +/- 0.01%(100ppm) | | | -20 | 13.560064 | 0.000064 | 4.79 | +/- 0.01%(100ppm) | | DC 240V | 20 | 13.560059 | 0.000059 | 4.35 | +/- 0.01%(100ppm) | | | 50 | 13.560040 | 0.000040 | 2.94 | +/- 0.01%(100ppm) | | | -20 | 13.560077 | 0.000077 | 5.67 | +/- 0.01%(100ppm) | | DC 216V | 20 | 13.560036 | 0.000036 | 2.65 | +/- 0.01%(100ppm) | | | 50 | 13.560038 | 0.000038 | 2.80 | +/- 0.01%(100ppm) | Page 23 of 25 # 5.5. Antenna Requirement ## Standard Applicable ### For intentional device, according to FCC 47 CFR Section 15.203: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited ### **Test Result:** The EUT has a built in antenna which is integrated inside the enclosure, this is permanently attached antenna and meets the requirements of this section. Results: Compliance. Report No.: MTEB24040214-R Page 24 of 25 # 6. Test Setup Photos of the EUT Page 25 of 25 7. External and Internal Photos of the EUT See related photo report.End of Report..... Report No.: MTEB24040214-R