henzhen LCS Compliance Testing Laboratory Ltd.

SATIMO

SAR REFERENCE DIPOLE CALIBRATION REPORT

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

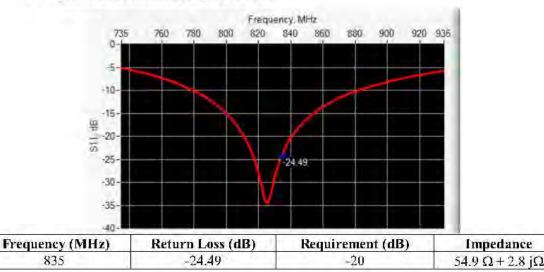
Expanded Uncertainty on Length
0.05 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty	
1 g	20.3 %	
10 g	20.1 %	

Page: 5/11



REF ACR.287.4.14.SATU.A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE

6.2 MECHANICAL DIMENSIONS

Frequency MHz	Ln	nm	h m	m	d r	nm
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	1
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.	I	100.0 ±1 %.		6.35 ±1 %.	1
835	161.0 ±1 %.	PASS	89.8 ±1 %.	PASS	3.6 ±1 %.	PASS
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.	11.1.1.1.1.1.1.1.1	45.7 ±1 %.	1	3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.	P	39.5 ±1 %.		3.6 ±1 %.	1
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.	· · · · · · · · · · · ·	32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.	1	3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	1
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	1
3700	34.7±1 %.		26.4 ±1 %.		3.6±1%.	

Page: 6/11

REE ACR 287.4.14.SATU A

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

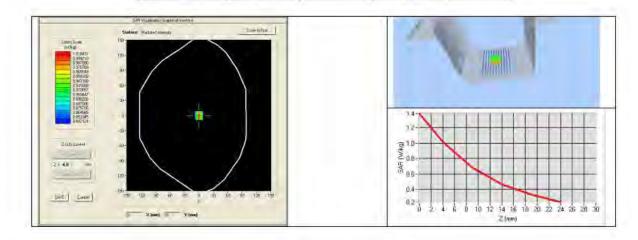
HEAD LIQUID MEASUREMENT 7.1

Frequency MHz	Relative per	mittivity (ɛ,')	Conductiv	ity (ơ) S/m
	required	measured	required	measured
300	45.3 ±5 %		0.87±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %	PASS	0.90 ±5 %	PASS
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	
1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	
2100	39.8 ±5 %	-	1.49 ±5 %	1
2300	39.5 ±5 %		1.67 ±5 %	
2450	39.2 ±5 %		1.80 ±5 %	1
2600	39.0 ±5 %		1.96 ±5 %	
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: cps ² : 42.3 sigma : 0.92
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm


Page: 7/11

Ref: ACR.287.4.14.SATU.A

Zoon Sean Resolution	dx=8mm/dy=8m/dz=5mm	
Frequency	835 MHz	
Input power	20 dBm	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	F
450	4.58		3.06	
750	8.49		5,55	1 · · · · · · · · · · · · · · · · · · ·
835	9.56	9.60 (0.96)	6.22	6.20 (0.62
900	10.9	-	6.99	1.
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19,3	1:
1800	38.4		20.1	1
1900	39.7		20.5	1
1950	40,5		20.9	1
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4		24	
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	

Page: 8/11

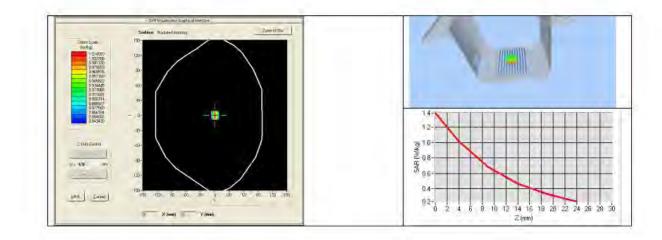
REF ACR 287.4.14.SATU.A

BODY LIQUID MEASUREMENT 7.3

Frequency MHz	Relative per	Relative permittivity (ϵ_r')		ity (σ) S/m
an and	required	measured	required	measured
150	61.9 ±5 %	100-00-00-00-00-00-00-00-00-00-00-00-00-	0.80 ±5 %	1
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	1.2
750	55.5 ±5 %		0.96 ±5 %	-
835	55.2 ±5 %	PASS	0.97 ±5 %	PASS
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %		1.95 ±5 %	
2600	52.5 ±5 %		2.16 ±5 %	
3000	52.0 ±5 %		2.73±5%	
3500	51.3 ±5 %		3.31 ±5 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	
5500	48.6 ±10 %		5.65 ±10 %	
5600	48.5 ±10 %		5.77 ±10 %	
5800	48.2 ±10 %		6.00 ±10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

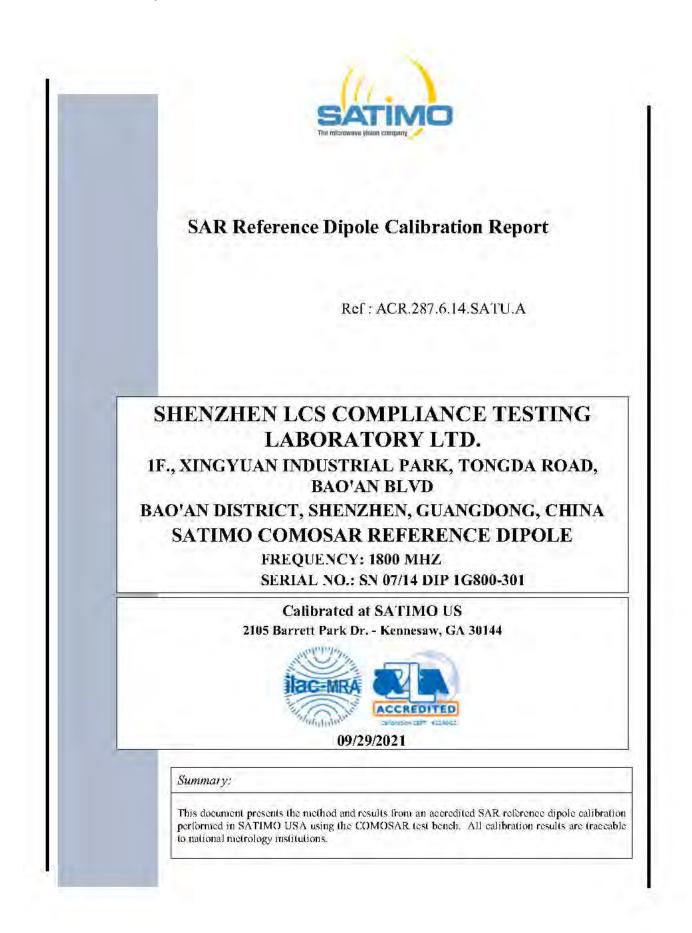
Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps*: 54.1 sigma: 0.97
Distance between dipole center and liquid	15.0 mm
Area sean resolution	dx=8mm/dy=8mm
Zoon Sean Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	835 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %


Page: 9/11

Ref: ACR.287.4.14.SATU.A

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)	
	measured	measured	
835	9.90 (0.99)	6.39 (0.64)	

Page: 10/11


REF ACR 287.4.14.SATU A

8 LIST OF EQUIPMENT

		pment Summary S		
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2021	02/2024
Calipers	Carrera	CALIPER-01	12/2018	12/2021
Reference Probe	Satimo	EPG122 SN 18/11	10/2021	10/2022
Multimeter	Keithley 2000	1188656	12/2018	12/2021
Signal Generator	Agilent E4438C	MY49070581	12/2018	12/2021
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	12/2018	12/2021
Power Sensor	HP ECP-E26A	US37181460	12/2018	12/2021
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature and Humidity Sensor	Control Company	11-661-9	8/2021	8/2024

Page: 11/11

5.4 SID1800 Dipole Calibration Certificate

REF ACR 287.6.14.SATU A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/12/2021	73
Checked by :	Jérôme LUC	Product Manager	10/12/2021	Jy
Approved by :	Kim RUTKOWSKI	Quality Manager	10/12/2021	na Auctionsch

	Customer Name
Distribution ;	Shenzhen LCS Compliance Testing Laboratory Ltd.

Issue	Date	Mod.fications	
A	10/12/2021	Initial release	
- 12.1			

Page: 2/11

REF ACR 287.6.14.SATU A

TABLE OF CONTENTS

Ţ	Intr	oduction	
2	Der	vice Under Test	
3	Pro	duct Description	
	3.1	General Information	4
4	Mc	asurement Method	
	4.1	Return Loss Requirements	j.
	4.2	Mcchanical Requirements	5
5	Mc	asurement Uncertainty	
	5.1	Return Loss	5
	5.2		5
	5.3	Validation Measurement	5
6	Ca	ibration Measurement Results	
	6.1	Return Loss and Impedance	
	6.2	Mechanical Dimensions	6
7	Val	lidation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	7
	7.3	Body Liquid Measurement	
	7.4	SAR Measurement Result With Body Liquid	9
8	Lis	t of Equipment	

Page: 3/11

Ref: ACR 287.6.14.SATU A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test				
Device Type	COMOSAR 1800 MHz REFERENCE DIPOLE			
Manufacturer	Satimo			
Model	SID1800			
Serial Number	SN 07/14 DIP 1G800-301			
Product Condition (new / used)	New			

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – Satimo COMOSAR Validation Dipole

Page: 4/11

SATIMO

SAR REFERENCE DIPOLE CALIBRATION REPORT

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k⁻², traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

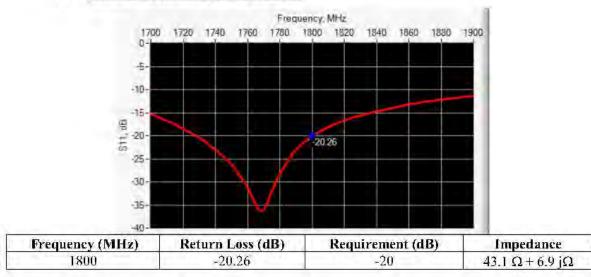
The following uncertainties apply to the dimension measurements:

Expanded Uncertainty on Leng	
0.05 mm	

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20.3 %
10 g	20.1 %


Page: 5/11

ATIMO

Ref: ACR 287.6.14.SATU A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE

6.2 MECHANICAL DIMENSIONS

Frequency MHz	Lmm		h m	h mm		d mm	
	required	measured	required	measured	required	measured	
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	1	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.		
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	· · · · · · · ·	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	1	
900	149.0 ±1 %.		83.3±1%.		3.6 ±1 %.		
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	1	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.		
1640	79.0 ±1 %.		45.7 ±1 %.	1	3.6 ±1 %.		
1750	75.2 ±1 %.	· · · · · · · · · · · · · · · · · · ·	42.9 ±1 %.		3.6 ±1 %.	1.	
1800	72.0 ±1 %.	PASS	41.7 ±1 %.	PASS	3.6 ±1 %.	PASS	
1900	68.0 ±1 %.	· · · · · · · · · · · · · · · · · · ·	39.5 ±1 %.		3.6 ±1 %.	1-	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.		
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	1	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	1	
2300	55.5 ±1 %.	· · · · · · · · · · · · · · · · · · ·	32.6 ±1 %.	- ±1	3.6 ±1 %.		
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.		
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	1	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	÷	
3500	37.0±1 %.	-	26.4 ±1 %.		3.6 ±1 %.	1	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.		

Page: 6/11

SATING

SAR REFERENCE DIPOLE CALIBRATION REPORT

REF ACR 287.6.14.SATU A

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

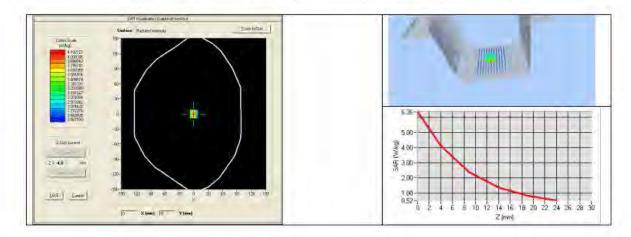
Frequency MHz	Relative per	mittivity (ɛ,')	Conductivity (o) S/m	
	required	measured	required	measured
300	45.3 ±5 %		0.87±5%	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	·
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	1
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	
1800	40.0 ±5 %	PASS	1.40 ±5 %	PASS
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	
2100	39.8 ±5 %		1.49 ±5 %	
2300	39.5 ±5 %		1.67 ±5 %	
2450	39.2 ±5 %		1.80 ±5 %	
2600	39.0 ±5 %		1.96 ±5 %	
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps': 41,3 sigma : 1.38
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8nm/dy=8mm

Page: 7/11



Ref: ACR.287.6.14.SATU: A

Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm	
Frequency	1800 MHz	
Input power	20 dBm	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

Frequency MHz	1 g SAR	(W/kg/W)	10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49	1	5,55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19,3	1
1800	38.4	38.13 (3.81)	20.1	20.20 (2.02
1900	39.7	4	20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4		24	
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	

Page: 8/11

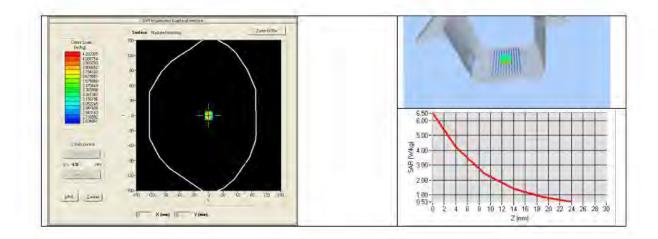
REF ACR 287.6.14.SATU.A

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (ɛ,ˈ)	Conductivi	ity (σ) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	1
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %	PASS	1.52 ±5 %	PASS
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %		1.95 ±5 %	
2600	52.5 ±5 %		2.16 ±5 %	
3000	52.0 ±5 %		2.73±5%	
3500	51.3 ±5 %		3.31±5 %	
5200	49.0 ±10 %		5,30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	
5500	48.6 ±10 %		5,65 ±10 %	
5600	48.5 ±10 %		5.77 ±10 %	
5800	48.2 ±10 %		6.00 ±10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps [*] : 53.3 sigma; 1.51
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Sean Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	1800 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %i

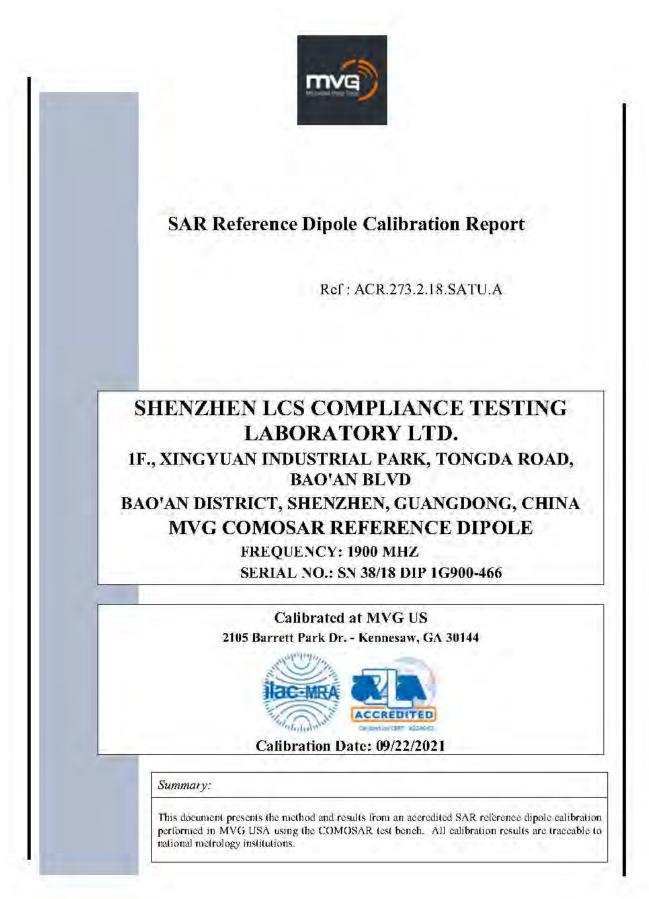

Page: 9/11

Ref: ACR.287.6.14.SATU.A

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
1800	39.03 (3.90)	20.65 (2.07)

Page: 10/11

REF ACR 287.6.14.SATU:A


8 LIST OF EQUIPMENT

	Equipment Summary Sheet			
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2021	02/2024
Calipers	Carrera	CALIPER-01	12/2018	12/2021
Reference Probe	Satimo	EPG122 SN 18/11	10/2021	10/2022
Multimeter	Keithley 2000	1188656	12/2018	12/2021
Signal Generator	Agilent E4438C	MY49070581	12/2018	12/2021
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	12/2018	12/2021
Power Sensor	HP ECP-E26A	US37181460	12/2018	12/2021
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature and Humidity Sensor	Control Company	11-661-9	8/2021	8/2024

Page: 11/11

nzhen LCS Compliance Testing Laboratory Ltd. FCC ID: 2ACHBR60

5.5 SID1900 Dipole Calibration Certificate

Ref: ACR.273.2.18.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	09/28/2021	25
Checked by :	Jérôme LUC	Product Manager	09/28/2021	Jz
Approved by :	Kim RUTKOWSKI	Quality Manager	09/28/2021	Sec. 1. Lang. As

	Customer Name
Distribution :	Shenzhen LCS Compliance Testing Laboratory Ltd.

Issue	Date	Mod.fications
A	09/28/2021	Initial release
*		

Page: 2/11

REE ACR 273.2.18.SATU A

TABLE OF CONTENTS

I.	Intr	oduction	
2	Dev	vice Under Test	
3	Pro	duct Description4	
	3.1	General Information	4
4	Mc	asurement Method	
4	4.1	Return Loss Requirements	5
3	4.2	Mechanical Requirements	5
S	Mc	asurement Uncertainty	
3	5.1	Return Loss	_5
3	5.2	Dimension Measurement	5
-	5.3	Validation Measurement	
6	Cal	ibration Measurement Results	
1	6.1	Return Loss and Impedance In Head Liquid	6
нġ	6.2	Return Loss and Impedance In Body Liquid	6
19	6.3	Mechanical Dimensions	
7	Val	idation measurement	
9	7.1	Head Liquid Measurement	7
1	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
3	7.4	SAR Measurement Result With Body Liquid	
8	Lis	t of Equipment11	

Page: 3/11

2

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.273.2.18.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR 1900 MHz REFERENCE DIPOLE	
Manufacturer	MVG	
Model	SID1900	
Serial Number	SN 38/18 DIP 1G900-466	
Product Condition (new/used)	Used	

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Page: 4/11

mvg

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 273.2.18.SATU:A

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

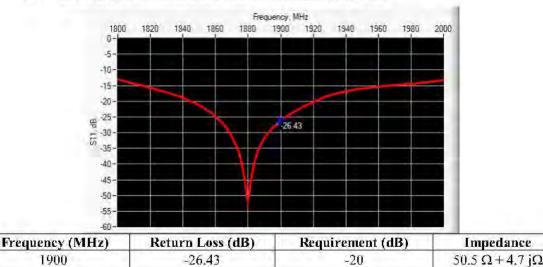
Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm

5.3 VALIDATION MEASUREMENT

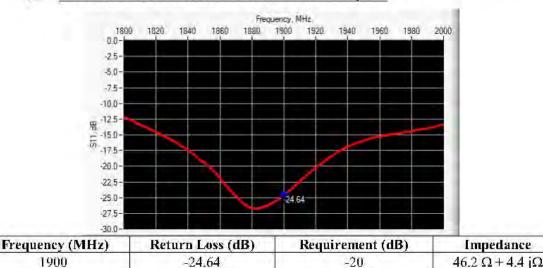
The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
lg	20.3 %

Page: 5/11



Ref: ACR.273.2.18.SATU A


10 g 20.1 %

CALIBRATION MEASUREMENT RESULTS 6

RETURN LOSS AND IMPEDANCE IN HEAD LIQUID 6.1

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

6.3 MECHANICAL DIMENSIONS

1900

Frequency MHz	Ln	าฑ	hm	m	dir	nm
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	

Page: 6/11

Ref: ACR.273.2.18.SATU.A

450	290.0 ±1 %.	-	166.7 ±1 %.		6.35 ±1 %.	
750	176.0±1%.		100.0 ±1 %.		6.35 ±1 %.	
835	161.D ±1 %.		89.8±1%.		3.6 ±1 %.	1
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.	_	42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6±1%.	12.14
1900	68.0 ±1 %.	PASS	39.5 ±1 %.	PASS	3.6±1%.	PAS
1950	66.3 ±1 %.		38.5 ±1 %.		3.6±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6±1%.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6±1%.	
2300	55.5 ±1 %.	_	32.6 ±1 %.		3.6±1%.	
2450	51.5 ±1 %.	-	30.4 ±1 %.		3.6±1%.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.D ±1 %.		3.6±1%.	
3500	37.0±1 %.		26.4 ±1 %.		3.6±1%.) ·····
3700	34.7±1 %.		26.4 ±1 %.		3.6±1%.	_

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (s [,] ')		Conductivity (o) S/m	
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	1
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	1
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %	· · · · · · · · ·	1.20 ±5 %	
1500	40.4 ±5 %	1	1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	1

Page: 7/11

Ref ACR 273.2.18 SATU A

1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %	PASS	1.40 ±5 %	PASS
1950	40.0 ±5 %		1.40 ±5 %	-
2000	40.0 ±5 %	_	1.40 ±5 %	
2100	39.8 ±5 %		1.49 ±5 %	
2300	39.5 ±5 %		1.67 ±5 %	
2450	39.2 ±5 %	_	1.80±5 %	
2600	39.0 ±5 %		1.96±5%	
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91±5 %	

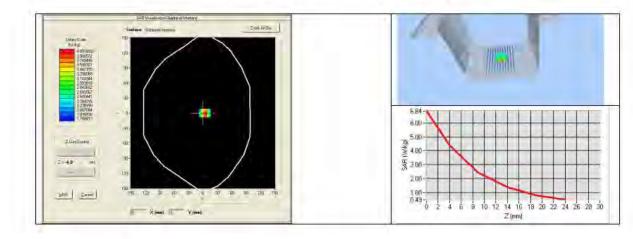
7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps': 38.5 sigma: 1.45
Distance between dipole center and liquid	10.0 mm
Area sean resolution	dx=8mm/dy=8mm
Zoon Sean Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	1900 MHz
Input power 20 dBm	
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR (W/kg/W)	
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5,55	
835	9.56		6.22	
900	10.9		6.99	4
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19,3	
1800	38.4		20.1	

Page: 8/11



mvG

SAR REFERENCE DIPOLE CALIBRATION REPORT

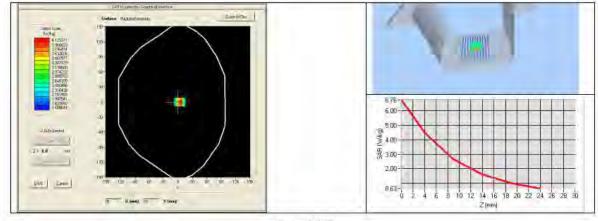
Ref: ACR.273.2.18.SATU.A

1900	39.7	40.03 (4.00)	20.5	20.55 (2.06)
1950	40.5		20.9	1
2000	41,1		21.1	1
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4		24	
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	
3700	67.4		24.2	1 5

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (ɛ,')	Conductiv	ity (ơ) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	1
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	·
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	1
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %	PASS	1.52 ±5 %	PASS
2000	53.3 ±5 %		1.52 ±5 %	1
2100	53.2 ±5 %		1.62 ±5 %	

Page: 9/11


Ref: ACR.273.2.18.SATU.A

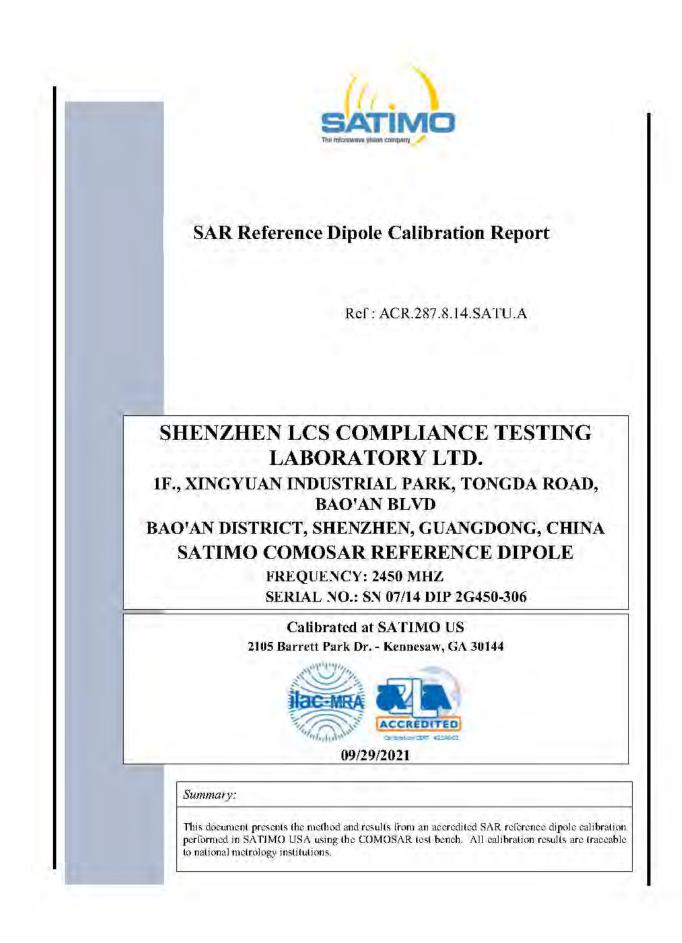
2300	52.9 ±5 %	1.81 ±5 %
2450	52.7 ±5 %	1.95 ±5 %
2600	52.5 ±5 %	2.16 ±5 %
3000	52.0 ±5 %	2.73 ±5 %
3500	51.3 ±5 %	3.31 ±5 %
3700	51.0 ±5 %	3.55 ±5 %
5200	49.0 ±10 %	5.30 ±10 %
5300	48.9 ±10 %	5.42 ±10 %
5400	48.7 ±10 %	5.53 ±10 %
5500	48.6±10%	5.65 ±10 %
5600	48.5 ±10 %	5.77 ±10 %
5800	48.2 ±10 %	6.00 ±10 %

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4	
Phantom	SN 20/09 SAM71	
Probe	SN 18/11 EPG122	
Liquid	Body Liquid Values: eps': 53.3 sigma: 1.56	
Distance between dipole center and liquid	10.0 mm	
Area sean resolution	dx=8mm/dy=8mm	
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm	
Frequency	1900 MHz	
Input power	20 dBm	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %i	

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
1900	40.91 (4.09)	21.40 (2.14)

Page: 10/11


Ref: ACR.273.2.18.SATU.A

8 LIST OF EQUIPMENT

Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	06/2021	06/2024
Calipers	Carrera	CALIPER-01	01/2020	01/2023
Reference Probe	M∀G	EPG122 SN 18/11	08/2021	08/2022
Multimeter	Keithley 2000	1188656	01/2020	01/2023
Signal Generator	Agilent E4438C	MY49070581	01/2020	01/2023
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required
Power Meter	HP E4418A	US38261498	11/2020	11/2023
Power Sensor	HP ECP-E26A	US37181460	01/2020	01/2023
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required
Temperature and Humidity Sensor	Control Company	150798832	11/2020	11/2023

Page: 11/11

5.6 SID2450 Dipole Calibration Ceriticate

REF ACR 287.8.14.SATU A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	10/12/2021	73
Checked by :	Jérôme LUC	Product Manager	10/12/2021	Jy
Approved by :	Kim RUTKOWSKI	Quality Manager	10/12/2021	an Auchimuch

	Customer Name
Distribution ;	Shenzhen LCS
	Compliance Testing Laboratory Ltd.

Issue	Date	Mod.fications	
A	10/12/2021	Initial release	
1			
	1		

Page: 2/11

REF ACR 287.8.14.SATU.A

TABLE OF CONTENTS

T.	Intro	oduction	
2	Dev	iee Under Test	
3	Proc	duct Description	
3	.1	General Information	4
4	Mca	isurement Method	
4	1.1	Return Loss Requirements	5
4	.2	Meehanical Requirements	5
5	Mca	asurement Uncertainty	
5	.1	Return Loss	5
5	.2	Dimension Measurement	5
5	.3	Validation Measurement	5
6	Cali	bration Measurement Results	
6	i.1	Return Loss and Impedance	6
6	i.2	Mechanical Dimensions	6
7	Vali	idation measurement	
7	.1	Head Liquid Measurement	7
7	.2	SAR Measurement Result With Head Liquid	7
7	1.3	Body Liquid Measurement	9
7	.4	SAR Measurement Result With Body Liquid	9
8	List	of Equipment	

Page: 3/11

REF ACR 287.8.14.SATU A

INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR 2450 MHz REFERENCE DIPOLE		
Manufacturer	Satimo		
Model	SID2450		
Serial Number	SN 07/14 DIP 2G450-306		
Product Condition (new / used)	New		

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – Satimo COMOSAR Validation Dipole

Page: 4/11

henzhen LCS Compliance Testing Laboratory Ltd.

SATIMO

SAR REFERENCE DIPOLE CALIBRATION REPORT

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

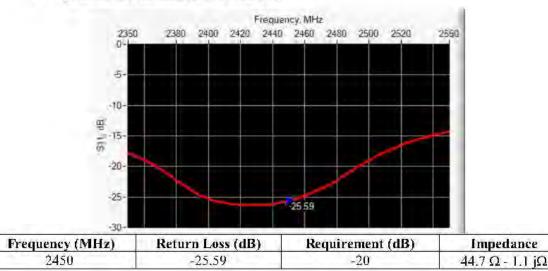
Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
) g	20.3 %
10 g	20.1 %

Page: 5/11



REF ACR.287.8.14.SATU.A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE

6.2 MECHANICAL DIMENSIONS

Frequency MHz	Lmm hmm	h mm		d r	nm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	· · · · · ·
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
164D	79.0 ±1 %.		45.7 ±1 %.	1	3.6 ±1 %.	
1750	75.2 ±1 %.	· · · · · · · · · · · · · · · · · · ·	42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3.±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	1
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	1.
2450	51.5 ±1 %.	PASS	30.4 ±1 %.	PASS	3.6 ±1 %.	PASS
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	÷
3500	37.0±1 %.	-	26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

Page: 6/11

REF ACR 287.8.14.SATU A

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

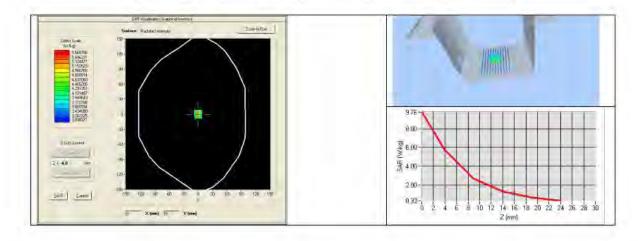
Frequency MHz	Relative per	mittivity (ɛ,')	Conductiv	ity (σ) S/m
	required	measured	required	measured
300	45.3 ±5 %		0.87±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	1
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	
1800	40.0 ±5 %		1.40 ±5 %	-
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	
2100	39.8 ±5 %		1.49 ±5 %	1
2300	39.5 ±5 %		1.67 ±5 %	
2450	39.2 ±5 %	PASS	1.80 ±5 %	PASS
2600	39.0 ±5 %		1.96 ±5 %	
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4		
Phantom)	SN 20/09 SAM71		
Probe	SN 18/11 EPG122		
Liquid	Head Liquid Values: cps': 39.0 sigma : 1.77		
Distance between dipole center and liquid	10.0 mm		
Area scan resolution	dx=8mm/dy=8mm		

Page: 7/11



REF. ACR. 287.8.14.SATU.A

Zoon Sean Resolution	dx=8mm/dy=8m/dz=5mm	
Frequency	2450 MHz	
Input power	20 dBm	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR	R (W/kg/W)	
	required	measured	required	measured	
300	2.85		1.94		
450	4.58		3.06		
750	8.49		5,55		
835	9.56		6.22		
900	10.9		6.99		
1450	29		16		
1500	30.5		16.8		
1640	34.2		18.4		
1750	36.4		19,3		
1800	38.4		20.1		
1900	39.7		20.5		
1950	40.5		20.9		
2000	41.1		21.1		
2100	43.6		21.9		
2300	48.7		23.3		
2450	52.4	53.89 (5.39)	24	24.15 (2.42	
2600	55.3	1	24.6		
3000	63.8		25.7		
3500	67.1		25		

Page: 8/11

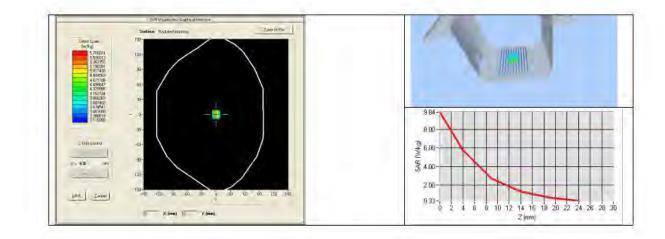
REE ACR 287.8.14.SATU.A

BODY LIQUID MEASUREMENT 7.3

Frequency MHz	Relative permittivity (\mathbf{s}_{r} ')		Conductiv	ity (ơ) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	1
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %	· · · · · · · · · · · · · · · · · · ·	1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %	PASS	1.95 ±5 %	PASS
2600	52.5 ±5 %		2.16 ±5 %	
3000	52.0 ±5 %		2.73±5%	
3500	51.3 ±5 %		3.31±5 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	
5500	48.6 ±10 %		5,65 ±10 %	
5600	48.5 ±10 %		5.77 ±10 %	
5800	48.2 ±10 %		6.00 ±10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps*: 53.0 sigma; 1.93
Distance between dipole center and liquid	10.0 mm
Area sean resolution	dx=8mm/dy=8mm
Zoon Sean Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

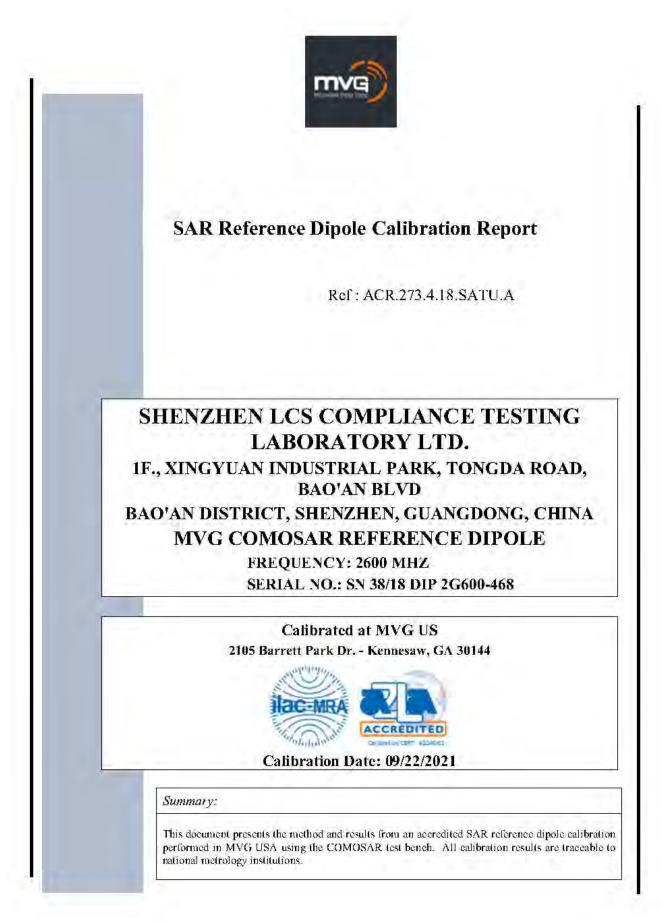

Page: 9/11

REF ACR.287.8.14.SATU.A

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
2450	54.65 (5.46)	24.58 (2.46)

Page: 10/11

REF ACR 287.8.14.SATU A


8 LIST OF EQUIPMENT

Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2021	02/2024
Calipers	Carrera	CALIPER-01	12/2018	12/2021
Reference Probe	Satimo	EPG122 SN 18/11	10/2021	10/2022
Multimeter	Keithley 2000	1188656	12/2018	12/2021
Signal Generator	Agilent E4438C	MY49070581	12/2018	12/2021
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required
Power Meter	HP E4418A	US38261498	12/2018	12/2021
Power Sensor	HP ECP-E26A	US37181460	12/2018	12/2021
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required
Temperature and Humidity Sensor	Control Company	11-661-9	8/2021	8/2024

Page: 11/11

hen LCS Compliance Testing Laboratory Ltd. FCC ID: 2ACHBR60 Report No.: LCS220223047AEB

5.7 SID2600 Dipole Calibration Ceriticate

REE ACR 273.4.18.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	09/28/2021	Jes
Checked by :	Jérôme LUC	Product Manager	09/28/2021	Ja
Approved by :	Kim RUTKOWSKI	Quality Manager	09/28/2021	and the march

	Customer Name
Distribution :	Shenzhen LCS Compliance Testing Laboratory Ltd.

Issue	Date	Mod.fications
A	09/28/2021	Initial release

Page: 2/11

Report No.: LCS220223047AEB

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.273.4.18.SATU.A

TABLE OF CONTENTS

Ţ	Intr	oduction	
2	Der	vice Under Test	
3	Pro	duct Description4	
	3.1	General Information	4
4	Mc	asurement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mc	asurement Uncertainty5	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	_5
6	Cal	ibration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	
7	Val	idation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	Lis	t of Equipment11	

Page: 3/11

2

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.273.4.18.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR 2600 MHz REFERENCE DIPOLE	
Manufacturer	MVG	
Model	SID2600	
Serial Number	SN 38/18 DIP 2G600-468	
Product Condition (new/used)	Used	

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Page: 4/11

REE ACR 273.4.18.SATU A

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

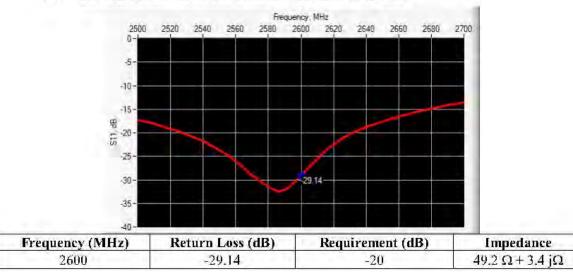
Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 tnm

5.3 VALIDATION MEASUREMENT

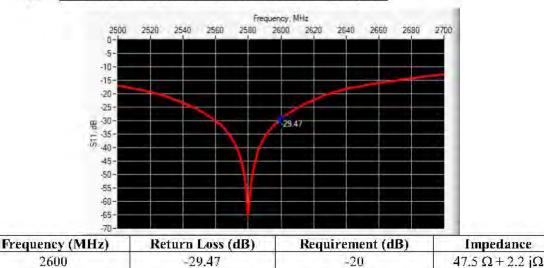
The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
lg	20.3 %

Page: 5/11



Ref: ACR.273.4.18.SATU A


10 g 20.1 %

CALIBRATION MEASUREMENT RESULTS 6

RETURN LOSS AND IMPEDANCE IN HEAD LIQUID 6.1

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

6.3 MECHANICAL DIMENSIONS

2600

Frequency MHz	Ln	ากา	har	nn	d r	nm
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	1.5

Page: 6/11

mvg

SAR REFERENCE DIPOLE CALIBRATION REPORT

REFACE 273.4.18 SATUA

450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	-
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	-
835	161,D ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6±1%.	-
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.	_	38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6±1%.	-
2100	61.0 ±1 %.		35.7 ±1 %.		3.6±1%.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6±1%.	12
2600	48.5 ±1 %.	PASS	28.8 ±1 %.	PASS	3.6±1%.	PAS
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6±1%.	1
3700	34.7±1 %.	-	26.4 ±1 %.		3.6±1%.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (ɛɾ')	Conductiv	ity (o) S/m
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %	1	1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	1

Page: 7/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

REE ACR 273.4.18.SATU.A

1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	
2100	39.8 ±5 %		1.49 ±5 %	
2300	39.5 ±5 %		1.67 ±5 %	-
2450	39.2 ±5 %		1.80 ±5 %	
2600	39.0 ±5 %	PASS	1.96 ±5 %	PASS
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	

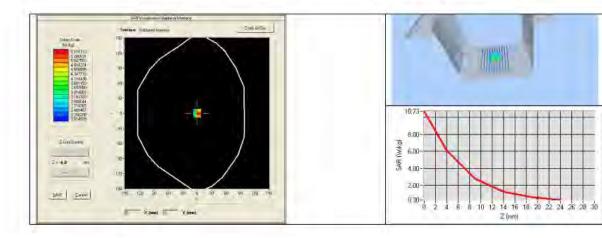
7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4		
Phantom	SN 20/09 SAM71		
Probe	SN 18/11 EPG122		
Liquid	Head Liquid Values: eps': 39.8 sigma : 1.99		
Distance between dipole center and liquid	10.0 mm		
Area sean resolution	dx=8mm/dy=8mm		
Zoon Scan Resolution	dx=5nm/dy=5mm/dz=5nm		
Frequency	2600 MHz		
Input power	20 dBm		
Liquid Temperature	21 °C		
Lab Temperature	21 °C		
Lab Humidity	45 %		

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5,55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19,3	
1800	38.4		20.1	

Page: 8/11



mνg

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.273.4.18.SATU.A

1900	39.7	1	20.5	1
1950	40.5		20.9	
2000	41,1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4	1.000	24	the sea
2600	55.3	56.91 (5.69)	24.6	24.69 (2.47)
3000	63.8		25.7	1
3500	67.1		25	
3700	67,4		24.2	15

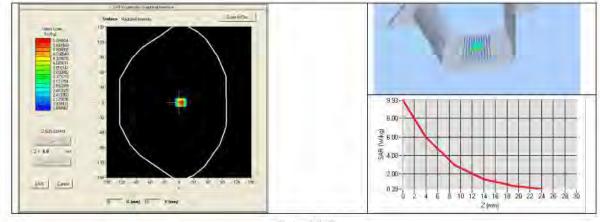
7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (e,')	Conductiv	ity (o) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	1
450	56.7 ±5 %	1 C	0.94 ±5 %	1
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	1
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	1
1610	53.8 ±5 %		1.40 ±5 %	h
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	

Page: 9/11

mvg

SAR REFERENCE DIPOLE CALIBRATION REPORT


Ref: ACR.273.4.18.SATU A

2300	52.9 ±5 %		1.81 ±5 %	
2450	52.7 ±5 %		1.95 ±5 %	
2600	52.5 ±5 %	PASS	2.16 ±5 %	PASS
3000	52.0 ±5 %		2.73 ±5 %	
3500	51.3 ±5 %		3.31 ±5 %	
3700	51.0 ±5 %		3.55 ±5 %	-
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %	-	5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	
5500	48.6 ±10 %		5.65 ±10 %	
5600	48.5 ±10 %		5.77 ±10 %	
5800	48.2 ±10 %		6.00 ±10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4		
Phantom	SN 20/09 SAM71		
Probe	SN 18/11 EPG122		
Liquid	Body Liquid Values: eps': 52.5 sigma: 2.23		
Distance between dipole center and liquid	10.0 mm		
Area sean resolution	dx=8mm/dy=8mm		
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm		
Frequency	2600 MHz		
Input power	20 dBm		
Liquid Temperature	21 °C		
Lab Temperature	21 °C		
Lab Humidity	45 %		

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
2600	54.14 (5.41)	24.13 (2.41)

Page: 10/11

Refi ACR.273.4.18.SATU.A

8 LIST OF EQUIPMENT

Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	M∀G	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	06/2021	06/2024
Calipers	Carrera	CALIPER-01	01/2020	01/2023
Reference Probe	M∀G	EPG122 SN 18/11	08/2021	08/2022
Multimeter	Keithley 2000	1188656	01/2020	01/2023
Signal Generator	Agilent E4438C	MY49070581	01/2020	01/2023
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required
Power Meter	HP E4418A	US38261498	11/2020	11/2023
Power Sensor	HP ECP-E26A	US37181460	01/2020	01/2023
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required
Temperature and Humidity Sensor	Control Company	150798832	11/2020	11/2023

Page: 11/11

5.8 SID5G-6G Dipole Calibration Ceriticate

REF ACR 273.5.18 SATU A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	09/28/2021	J.S.
Checked by :	Jérôme LUC	Product Manager	09/28/2021	35
Approved by :	Kim RUTKOWSKI	Quality Manager	09/28/2021	- Addrest

	Customer Name
Distribution ;	Shenzhen LCS Compliance Testing Laboratory Ltd.

Issue	Date	Modifications
A	09/28/2021	Initial release
		and the second sec

Page: 2/13

Report No.: LCS220223047AEB

SAR REFERENCE WAVEGUIDE CALIBRATION REPORT

Ref: ACR 273.5.18.SATU A

TABLE OF CONTENTS

1	Intr	oduction4	
2	Dev	vice Under Test	
3	Pro	duct Description4	
	3.1	General Information	4
4	Mc	asurement Method	
	4.1	Return Loss Requirements	4
	4.2	Mechanical Requirements	4
S	Mc	asurement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cal	ibration Measurement Results	
	6.1	Return Loss	5
	6.2	Mechanical Dimensions	6
7	Val	idation measurement	
	7.1	Head Liquid Measurement	7
	7,2	Measurement Result	7
	7.3	Body Measurement Result	10
8	List	of Equipment	

Page: 3/13

Report No.: LCS220223047AEB

SAR REFERENCE WAVEGUIDE CALIBRATION REPORT

REF ACR 273 5 18 SATU A

INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528 and CEI/IEC 62209 standards for reference waveguides used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

DEVICE UNDER TEST 2

	Device Under Test	
Device Type	COMOSAR 5000-6000 MHz REFERENCE WAVEGUIDE	
Manufacturer	MVG	
Model	SWG5500	
Serial Number	SN 49/16 WGA 43	
Product Condition (new / used)	Used	

A yearly calibration interval is recommended.

PRODUCT DESCRIPTION 3

GENERAL INFORMATION 3.1

MVG's COMOSAR Validation Waveguides are built in accordance to the IEEE 1528 and CEI/IEC 62209 standards.

MEASUREMENT METHOD

The IEEE 1528 and CEL/IEC 62209 standards provide requirements for reference waveguides used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

RETURN LOSS REQUIREMENTS 4.1

The waveguide used for SAR system validation measurements and cheeks must have a return loss of -8 dB or better. The return loss measurement shall be performed with matching layer placed in the open end of the waveguide, with the waveguide and matching laver in direct contact with the phantom shell as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE 1528 and CEI/IEC 62209 standards specify the mechanical dimensions of the validation waveguide, the specified dimensions are as shown in Section 6.2. Figure I shows how the dimensions relate to the physical construction of the waveguide.

Page: 4/13

REE ACR 273.5.18.SATU:A

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k-2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

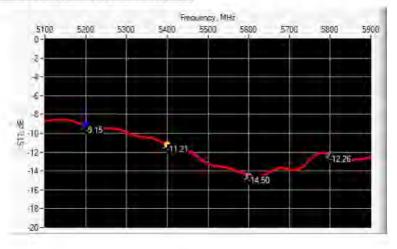
The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Los	
400-6000MHz	0.1 dB	

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length	
3 - 300	0.05 mm	

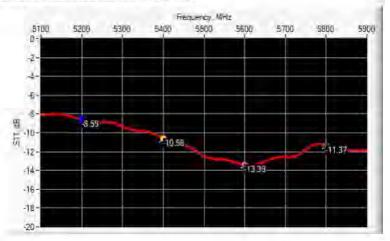

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty	
1 g	20.3 %	
10 g	20.1 %	

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS IN HEAD LIQUID



REE ACR 273.5.18.SATU A

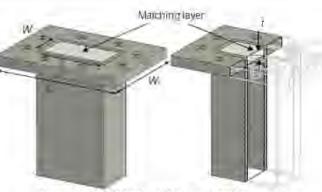
Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
5200	-9.15	-8	20.57 Ω + 11.55 jΩ
5400	-11.21	-8	$75.27 \Omega + 4.08 j\Omega$
5600	-14.50	-8	33.91 Ω - 8.72 jΩ
5800	-12.26	-8	53.07 Ω + 23.41 jΩ

6.2 RETURN LOSS IN BODY LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
5200	-8.59	-8	19.38 Ω + 13.50 jΩ
5400	-10.58	-8	$77.13 \Omega + 1.81 j\Omega$
5600	-13.39	-8	30.95 Ω - 7.75 jΩ
5800	-11.37	-8	54.79 Ω + 25.47 jΩ

6.3 MECHANICAL DIMENSIONS

Passan	L (mm)		W (mm)		L _f (mm)		W _f (mm)		T (mm)	
Frequenc y (MIIz)	Require d	Measure d	Require d	Measure d	Require d	Measure d	Require d	Measure d	Require d	Measure
5200	40.39 - 0.13	PASS	20.19 - 0.13	PASS	81.03 - 0.13	PASS	61.98 - 0.13	PASS	5.3*	PASS
5800	40.39 - 0.13	PASS	20.19 - 0.13	PASS	81.03 - 0.13	PASS	61.98 - 0.13	PASS	4.3*	PASS


* The tolerance for the matching layer is included in the return loss measurement.

Page: 6/13

Ref: ACR 273.5.18.SATU A

Figure 1: Validation Waveguide Dimensions

7 VALIDATION MEASUREMENT

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference waveguide meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed with the matching layer placed in the open end of the waveguide, with the waveguide and matching layer in direct contact with the phantom shell.

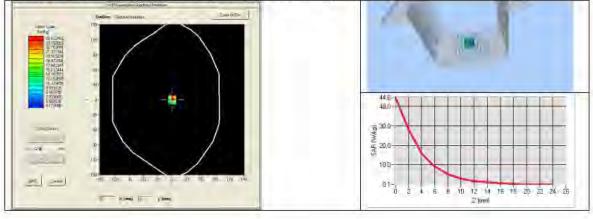
7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative peri	nittivity (ɛː')	Conductivity (ơ) S/m		
	required	measured	required	measured	
5000	36.2 ±10 %		4.45 ±10 %		
5100	36.1 ±10 %		4.56 ±10 %		
5200	36.0 ±10 %	PASS	4.66 ±10 %	PASS	
5300	35.9 ±10 %		4.76 ±10 %		
5400	35.8 ±10 %	PASS	4.86 ±10 %	PASS	
5500	35.6 ±10 %		4.97 ±10 %		
5600	35.5 ±10 %	PASS	5.07 ±10 %	PASS	
5700	35.4 ±10 %		5.17 ±10 %	1.1	
5800	35.3 ±10 %	PASS	5.27 ±10 %	PASS	
5900	35.2 ±10 %		5.38 ±10 %		
6000	35.1 ±10 %		5.48 ±10 %		

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

At those frequencies, the target SAR value can not be generic. Hereunder is the target SAR value defined by MVG, within the uncertainty for the system validation. All SAR values are normalized to 1 W net power. In bracket, the measured SAR is given with the used input power.

Page: 7/13

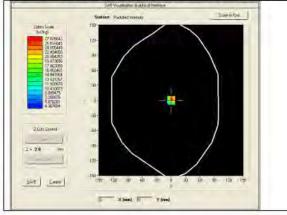


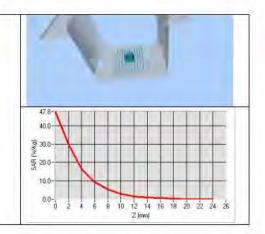
Ref: ACR.273.5.18.SATU.A

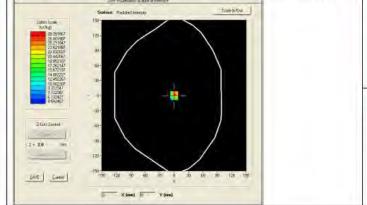
Software	OPENSAR V4		
Phantom	SN 20/09 SAM71		
Probe	SN 18/11 EPG122		
Liquìd	Head Liquid Values 5200 MHz: eps':35.64 sigma: 4.67 Head Liquid Values 5400 MHz: eps':36.44 sigma: 4.87 Head Liquid Values 5600 MHz: eps':36.66 sigma: 5.17 Head Liquid Values 5800 MHz: eps':35.31 sigma: 5.31		
Distance between dipole waveguide and liquid	0 mm		
Area sean resolution	dx=8mm/dy=8mm		
Zoon Scan Resolution	dx=4mm/dy=4m/dz=2mm		
Frequency	5200 MHz 5400 MHz 5600 MHz 5800 MHz		
Input power	20 dBm		
Liquid Temperature	21 °C		
Lab Temperature	21 °C		
Lab Humidity	45 %		

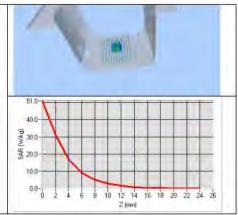
Frequency (MHz)	l g SA	.R (W/kg)	10 g SAR (W/kg)		
-	required	measured	required	measured	
5200	159.00	165.77 (16.58)	56.90	57.20 (5.72)	
5400	166.40	173.20 (17.32)	58.43	59.22 (5.92)	
5600	173.80	179.61 (17.96)	59.97	60.98 (6.10)	
5800	181.20	186.77 (18.68)	61.50	62.84 (6.28)	

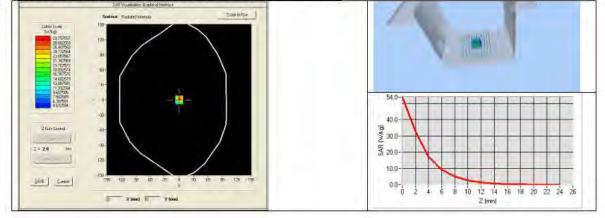
SAR MEASUREMENT PLOTS @ 5200 MHz


Page: 8/13




Ref: ACR.273.5.18.SATU.A


SAR MEASUREMENT PLOTS @ 5400 MHz



SAR MEASUREMENT PLOTS @ 5600 MHz

SAR MEASUREMENT PLOTS @ 5800 MHz

Page: 9/13

REE ACR 273.5.18.SATU A

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (ɛɾ')	Conductivity (o) S/m		
	required	measured	required	measured	
5200	49.0 ±10 %	PASS	5.30 ±10 %	PASS	
5300	48.9 ±10 %		5,42 ±10 %		
5400	48.7 ±10 %	PASS	5.53 ±10 %	PASS	
5500	48.6±10%		5.65 ±10 %		
5600	48.5 ±10 %	PASS	5.77 ±10 %	PASS	
5800	48.2 ±10 %	PASS	6.00 ±10 %	PASS	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values 5200 MHz: eps':48.64 sigma : 5.51 Body Liquid Values 5400 MHz: eps':46.52 sigma : 5.77 Body Liquid Values 5600 MHz: eps':46.79 sigma : 5.77 Body Liquid Values 5800 MHz: eps':47.04 sigma : 6.10
Distance between dipole waveguide and liquid	0 mm
Area sean resolution	dx=8mm/dy=8mm
Zoon Sean Resolution	dx=4mm/dy=4m/dz=2mm
Frequency	5200 MHz 5400 MHz 5600 MHz 5800 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency (MHz)	l g SAR (W/kg)	10 g SAR (W/kg)	
and a second of the second sec	measured	measured	
5200	159.09 (15.91)	56.13 (5.61)	
5400	164.56 (16.46)	57.31 (5.73)	
5600	172.25 (17.23)	59.72 (5.97)	
5800	177.77 (17.78)	61.06 (6.11)	

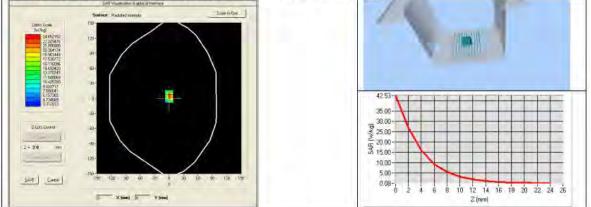
Page: 10/13

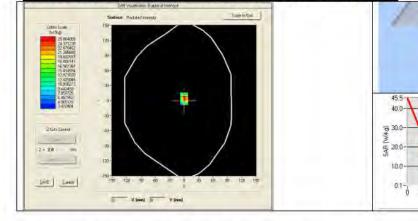
12 14 16

Zimm

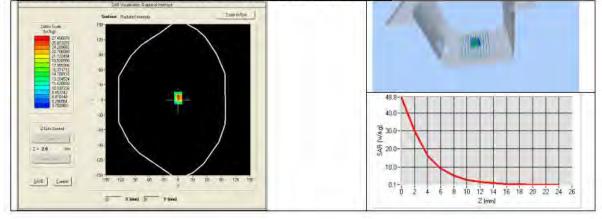
10

20 22 24 25


18

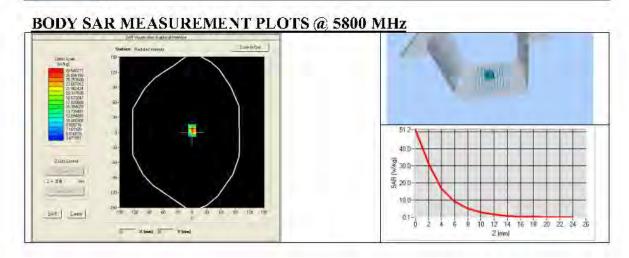

SAR REFERENCE WAVEGUIDE CALIBRATION REPORT

Ref: ACR.273.5.18.SATU.A


BODY SAR MEASUREMENT PLOTS @ 5200 MHz

BODY SAR MEASUREMENT PLOTS @ 5400 MHz

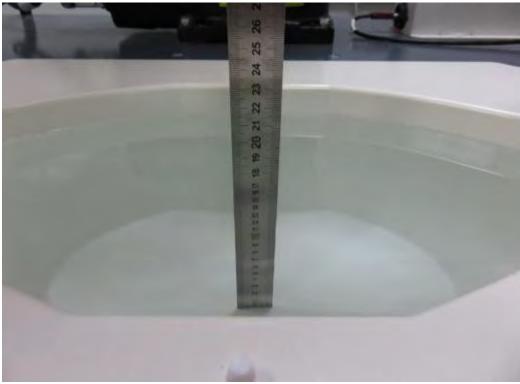
BODY SAR MEASUREMENT PLOTS @ 5600 MHz



Page: 11/13

REF. ACR. 273.5.18.SATU.A

Page: 12/13

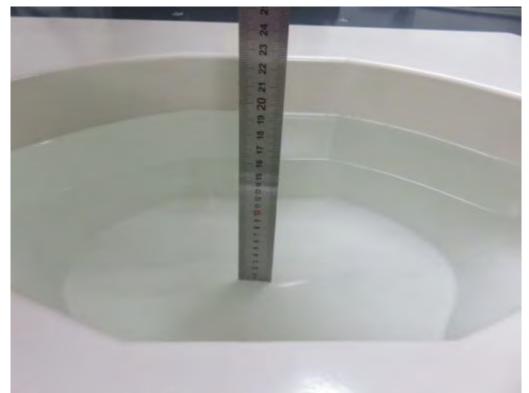

REE ACR 273.5.18.SATU:A

8 LIST OF EQUIPMENT

Equipment	Manufacturer /	Identification No.	Current	Next Calibration Date	
Description	Model		Calibration Date		
Flat Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	06/2021	06/2024	
Calipers	Carrera	CALIPER-01	01/2020	01/2023	
Reference Probe	M∀G	EPG122 SN 18/11	08/2021	08/2022	
Multimeter	Keithley 2000	1188656	01/2020	01/2023	
Signal Generator	Agilent E4438C	MY49070581	01/2020	01/2023	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	HP E4418A	US38261498	11/2020	11/2023	
Power Sensor	HP ECP-E26A	US37181460	01/2020	01/2023	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Temperature and Humidity Sensor	Control Company	150798832	11/2020	11/2023	

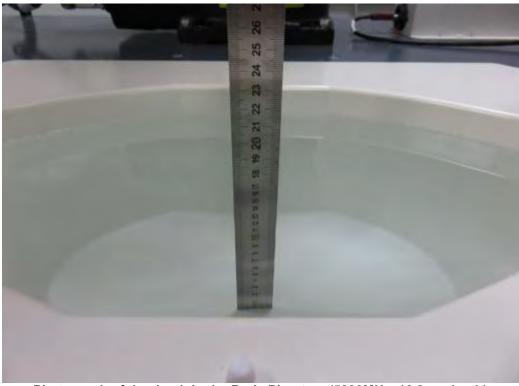
Page: 13/13

6. PHOTOGRAPHS OF THE LIQUID


Photograph of the depth in the Body Phantom (750MHz, 16.2cm depth)

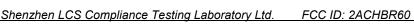

Photograph of the depth in the Body Phantom (835MHz, 16.1cm depth)

Photograph of the depth in the Body Phantom (1800MHz, 16.1cm depth)


Photograph of the depth in the Body Phantom (1900MHz, 16.0cm depth)

Photograph of the depth in the Body Phantom (2450MHz, 15.6cm depth)

Photograph of the depth in the Body Phantom (2600MHz, 15.5cm depth)


Photograph of the depth in the Body Phantom (5200MHz, 16.2cm depth)

Photograph of the depth in the Body Phantom (5800MHz, 16.1cm depth)

7. PHOTOGRAPHS OF THE TEST

Please refer to separated files for Test Setup Photos of SAR.

8. EUT PHOTOGRAPHS

Please refer to separated files for Test Setup Photos of SAR.

.....The End of Test Report.....