	BUREAU VERITAS
	FCC Test Report
Report No.:	RF191220D02-1
FCC ID:	OXM000101
Test Model:	DOCK810
Received Date:	Dec. 20, 2019
Test Date:	Mar. 6 to 31, 2020
Issued Date:	Apr. 1, 2020
Applicant:	Targus International LLC
Address:	1211 North Miller Street, Anaheim, CA 92806 USA
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories
Lab Address:	No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan
FCC Registration / Designation Number:	198487 / TW/2021
	and a second sec
	Testing Laboratory
	2021
This report is for your exclusive use. Any only with our prior written permission. Th report are not indicative or representativ unless specifically and expressly noted. provided to us. You have 60 days from however, that such notice shall be in writt shall constitute your unqualified acceptar mention, the uncertainty of measuremen	copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted is report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this re of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product Our report includes all of the tests requested by you and the results thereof based upon the information that you date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, ing and shall specifically address the issue you wish to raise. Afailure to raise such issue within the prescribed time nee of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific thas been explicitly taken into account to declare the compliance or non -compliance to the specification.
ine report must not be used by the clien	to claim product certification, approval, or endorsement by IAF or any government agencies.

Table of Contents

R	Release Control Record4			
1	Certificate of Conformity5			
2	Summary of Test Results			
	2.1 2.2	Measurement Uncertainty Modification Record	6 6	
3	G	eneral Information	7	
	3 1	General Description of FLIT	7	
	3.2	Description of Test Modes	8	
	3.2.1	Test Mode Applicability and Tested Channel Detail	9	
	3.3	Duty Cycle of Test Signal	11	
	3.4	Description of Support Units	12	
	3.4.1	Configuration of System under Test	13	
	3.5	General Description of Applied Standard and References	14	
4	Т	est Types and Results	15	
	4.1	Radiated Emission and Bandedge Measurement	15	
	4.1.1	Limits of Radiated Emission and Bandedge Measurement	15	
	4.1.2	Test Instruments	16	
	4.1.3	Test Procedure	17	
	4.1.4	Deviation from Test Standard	17	
	4.1.5	Test Setup	18	
	4.1.6	EUT Operating Condition	19	
	4.1.7		20	
	4.2	Conducted Emission Measurement	30	
	4.2.1	Limits of Conducted Emission Measurement	30	
	4.2.2	Test Procedure	30	
	424	Deviation from Test Standard	31	
	4.2.5	Test Setup	31	
	4.2.6	EUT Operating Condition	31	
	4.2.7	Test Results	32	
	4.3	Transmit Power Measurement	34	
	4.3.1	Limits of Transmit Power Measurement	34	
	4.3.2	Test Setup	34	
	4.3.3	Test Instruments	34	
	4.3.4	Test Procedure	35	
	4.3.5	ELIT Operating Condition	35 25	
	4.3.0		36	
	4.4	Occupied Bandwidth Measurement.	37	
	4.4.1	Test Setup	37	
	4.4.2	Test Instruments	37	
	4.4.3	Test Procedure	37	
	4.4.4	Test Results	38	
	4.5	Peak Power Spectral Density Measurement	41	
	4.5.1	Limits of Peak Power Spectral Density Measurement	41	
	4.5.2	lest Setup	41	
	4.5.3	Iest Instruments	41	
	4.5.4	Iest Procedure	42	
	4.3.5	ELIT Operating Condition	4Z 12	
	4.0.0 4.5.7	Test Results	4∠ ⊿२	
	4.5.7	Frequency Stability Measurement	45	

4.6.1 Limits of Frequency Stability Measurement			
4.6.2 Test Setup			
4.6.3 Test Instruments			
4.6.4 Test Procedure			
4.6.5 Deviation from Test Standard			
4.6.6 EUT Operating Condition			
4.6.7 Test Results			
5 Pictures of Test Arrangements			
Annex A- Bandedge Measurement (For U-NII-1 band)4			
Appendix – Information of the Testing Laboratories			

Release Control Record

Issue No.	Description	Date Issued
RF191220D02-1	Original release.	Apr. 1, 2020

1 Certificate of Conformity

Product:	Smart Dock, DV4K, Type-C PD 100W with 90W legacy charging
Brand:	Targus
Test Model:	DOCK810
Sample Status:	Engineering sample
Applicant:	Targus International LLC
Test Date:	Mar. 6 to 31, 2020
Standard:	47 CFR FCC Part 15, Subpart E (Section 15.407)
	ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :

Jessica Cheng / Senior Specialist

Date: Apr. 1, 2020

Approved by :

Kex. Jai

Date: Apr. 1, 2020

Rex Lai / Associate Technical Manager

2 Summary of Test Results

47 CFR FCC Part 15, Subpart E (Section 15.407)					
FCC Clause	Test Item	Result	Remarks		
15.407(b)(6)	3) AC Power Conducted Emissions		Meet the requirement of limit. Minimum passing margin is -10.14dB at 0.48203MHz.		
15.407(b) (1/2/3/4(i/ii)/6)	b) Radiated Emissions & Band Edge ii)/6) Measurement		Meet the requirement of limit. Minimum passing margin is -5.16dB at 5150.00MHz.		
15.407(a) (1/2/3)Max Average Transmit PowerOccupied Bandwidth Measurement15.407(a) (1/2/3)Peak Power Spectral Density		Pass	Meet the requirement of limit.		
		-	Reference only.		
		Pass	Meet the requirement of limit.		
15.407(e) 6dB bandwidth		N/A	Not Applicable. (U-NII-3 Band only)		
15.407(g)	Frequency Stability	Pass	Meet the requirement of limit.		
15.203 Antenna Requirement		Pass	No antenna connector is used.		

Note:

- 1. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.
- 2. For U-NII-1 band compliance with rule 15.407(b) of band-edge items, the test plots were recorded in Annex A. Test Procedures refer to report 4.1.3.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	2.94 dB
Padiated Emissions up to 1 CHz	9kHz ~ 30MHz	2.61 dB
	30MHz ~ 1GHz	5.43 dB
Radiated Emissions above 1 GHz	Above 1GHz	5.14 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Smart Dock, DV4K, Type-C PD 100W with 90W legacy charging	
Brand	Targus	
Test Model	DOCK810	
Test Software Version	artgui	
Status of EUT	Engineering sample	
Power Supply Rating	20.5Vdc from adapter	
Modulation Type	256QAM, 64QAM, 16QAM, QPSK, BPSK	
Modulation Technology	OFDM	
Transfor Poto	802.11a: up to 54Mbps	
	802.11n: up to 150Mbps	
Operating Frequency	5180 ~ 5240MHz	
Number of Channel	4 for 802.11a, 802.11n (20MHz)	
	2 for 802.11n (40MHz)	
Output Power	10.641mW	
Antenna Type	Refer to note as below	
Antenna Connector	Refer to note as below	
Accessory Device Refer to note as below		
Data Cable Supplied	Shielded USB Type C cable (1.0m)	

Note:

1. The EUT provides 1 completed transmitter and 1 receiver.

Modulation Mode	TX FUNCTION	
802.11a	1TX	
802.11n (20MHz)	1TX	
802.11n (40MHz)	1TX	

2. The following antennas were provided to the EUT.

Item	BT LE	2.4G	5G Band 1
Ant. Type	Wire monopole	Chip	Chip
Connecter Type	U.fl	NA	NA
Antenna Gain (dBi)	1.5	2.1	2.1

3. 2.4GHz and 5GHz modes cannot transmit simultaneously.

4. The EUT uses following adapters.

	ltem	Brand	Model No.	Specification
	Adapter 1	Targus	APA150205	AC I/P: 100-240Vac, 2.5A, 50-60Hz
				DC O/P: 20.5V, 7.31A
				Non-shielded AC 3 Pin cable (1.9m)
				Non-shielded DC cable (1.0m) with one ferrite core.
	Adapter 2	Targus	APA151	AC I/P: 100-240V, 2.5A, 50-60Hz
				DC O/P: 20.5V, 7.31A
				Non-shielded AC 3 Pin cable (1.8m)
				Non-shielded DC cable (1.0m) with one ferrite core.

After pre-tested, the Adapter 1 was the worse case and only its test data was recorded in this report

5. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

4 channels are provided for 802.11a, 802.11n (20MHz):

Channel	Frequency	Channel	Frequency
36	5180 MHz	44	5220 MHz
40	5200 MHz	48	5240 MHz

2 channels are provided for 802.11n (40MHz):

Channel	Frequency	Channel	Frequency
38	5190 MHz	46	5230 MHz

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT		Applic	able To			Description				
Mode	RE≥1G	RE<1G	PLC	APC	м	Description				
-		\checkmark	\checkmark		-					
Where R	E≥1G: Radiated	Emission a	bove 1GHz	RE<	1G: Radiated Emi	ssion below 1GH	z			
P	LC: Power Line	Conducted	Emission	APC	M: Antenna Port	Conducted Measu	urement			
Radiated Emission Test (Above 1GHz):										
 Pre-Scan between a architectu Following 	has been co available moo ire). channel(s) v	onducted t dulations, vas (were	to determ data rate e) selectee	ine the wo es and and d for the f	orst-case mode tenna ports (if l inal test as liste	e from all poss EUT with ante ed below.	sible combinat nna diversity	ions		
EUT Configure Mode	Mode	FRE(Q. Band MHz)	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)		
-	802.11a			36 to 48	36, 40, 48	OFDM	BPSK	6		
-	802.11n (20N	IHz) 518	80-5240	36 to 48	36, 40, 48	OFDM	BPSK	6.5		
-	802.11n (40MHz) 38 to 46 38, 46 OFDM BPSK 13.5									
- 802.11n (40MHz) 38 to 46 38, 46 OFDM BPSK 13.5 Radiated Emission Test (Below 1GHz): - - <										

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Mode	FREQ. Band (MHz)	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
-	802.11n (20MHz)	5180-5240	36 to 48	36	OFDM	BPSK	6.5

Power Line Conducted Emission Test:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Mode	FREQ. Band (MHz)	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
-	802.11n (20MHz)	5180-5240	36 to 48	36	OFDM	BPSK	6.5

Antenna Port Conducted Measurement:

This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Mode	FREQ. Band (MHz)	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
-	802.11a		36 to 48	36, 40, 48	OFDM	BPSK	6
-	802.11n (20MHz)	5180-5240	36 to 48	36, 40, 48	OFDM	BPSK	6.5
-	802.11n (40MHz)		38 to 46	38, 46	OFDM	BPSK	13.5

Test Condition:

Applicable To	Environmental Conditions	Input Power	Tested By
RE≥1G	23deg. C, 66%RH	120Vac, 60Hz	lan Chang
RE<1G	22deg. C, 75%RH	120Vac, 60Hz	lan Chang
PLC	25deg. C, 75%RH	120Vac, 60Hz	lan Chang
APCM	25deg. C, 76%RH	120Vac, 60Hz	Dalen Dai

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

3.3 Duty Cycle of Test Signal

If duty cycle of test signal is < 98%, duty factor shall be considered.

802.11a: Duty cycle = 2.064/2.155 = 0.958, Duty factor = 10 * log(1/0.958) = 0.19 802.11n (20MHz): Duty cycle = 1.906/2.034 = 0.937, Duty factor = 10 * log(1/0.937) = 0.28 802.11n (40MHz): Duty cycle = 0.935/1.04 = 0.899, Duty factor = 10 * log(1/0.899) = 0.46. 802.11a 802.11n (20MHz) Video BW 8.0 MHz Marker 3 ∆ 2.03400 m ALIGNAUTO Avg Type: Log-Pwr ALIGNAUTO Avg Type: Log-Pwr Trig: Free Rur Trig: Free Ru Res E 3.00 M Ref Offset 10 dB Ref 116.99 dBµV Ref Offset 10 dB Ref 116.99 dBµV De X Fixe Span 0 Hz Sweep 7.533 ms (1001 pts) Span 0 H Sweep 7.533 ms (1001 pts er 5.180000000 GH 3W (-6dB) 3.00 MHz 00000 GH #VBW 8.0 MH RBW Contro V 8.0 MI 3.244 ms 2.155 ms (Δ) 52.33 dBuV -0.93 dB 50.92 dBµV -0.44 dB Proper Mor 1 of: 802.11n (40MHz) Marker 3 Δ 1.04000 r ALIGNAUT Avg Type: Log-Pw rig: Free Run Ref Offset 10 dB Ref 116.99 dBµV nter 5.190000000 GH s BW (-6dB) 3.00 MHz Span 0 Hz Sweep 5.000 ms (1001 pts BW 8.0 MH: 2.105 ms 48.80 dBμV 1.040 ms (Δ) 1.35 dB 2.105 ms 48.80 dBμV Propert

3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Notebook PC	Lenovo	80WG	YD01YRC9	N/A	Provided by Lab
В.	Notebook PC	ASUS	PU401L	E9NXBC002007372	N/A	Provided by Lab
C.	USB flash	Verbatim	Type-C OTG Flash	N/A	N/A	Supplied by client
D.	USB flash *3	Verbatim	Type-C OTG Flash	N/A	N/A	Supplied by client
Ε.	USB flash	Verbatim	Type-C OTG Flash	N/A	N/A	Supplied by client
F.	Earphone/ Mic	PHILIPS	SBC HL145	N/A	N/A	Provided by Lab
G.	LCD Monitor	ASUS	MG28UQ	J1LMTF114792	N/A	Provided by Lab
Н.	LCD Monitor	ASUS	MG28UQ	J1LMTF114786	N/A	Provided by Lab
Ι.	LAN Load	N/A	N/A	N/A	N/A	Provided by Lab

Note:

1. All power cords of the above support units are non-shielded (1.8m).

2. Item A acted as communication partners to transfer data.

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	DC cable	1	1.0	Ν	1	Supplied by client
2.	USB-C cable	1	1.0	Y	0	Supplied by client
3.	Audio cable	1	1.2	Ν	0	Provided by Lab
4.	DP cable	1	1.8	Y	0	Provided by Lab
5.	HDMI cable	1	2.0	Y	0	Provided by Lab
6.	DP cable	1	1.8	Y	0	Provided by Lab
7.	HDMI cable	1	2.0	Y	0	Provided by Lab
8.	LAN cable	1	1.0	Ν	0	Provided by Lab (RJ45, Cat.5e)
9.	DC cable	1	1.0	Ν	0	Supplied by client
10.	LAN cable	1	1.0	Ν	0	Provided by Lab (RJ45, Cat.5e)
11.	AC power cable	1	1.9	Ν	0	Supplied by client

Note: The core(s) is(are) originally attached to the cable(s).

3.5 General Description of Applied Standard and References

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test standard:

FCC Part 15, Subpart E (15.407) ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

References Test Guidance: KDB 789033 D02 General UNII Test Procedure New Rules v02r01

All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Limits of unwanted emission out of the restricted bands

Applicable To			Limit			
789033 D02 General	UNII	Test Procedure	Field S	Strength at 3m		
New Rules v02r01		PK:74 (dBµV/m)	AV:54 (dBμV/m)			
Frequency Band		Applicable To	EIRP Limit	Equivalent Field Strength at 3m		
5150~5250 MHz		15.407(b)(1)				
5250~5350 MHz		15.407(b)(2)	PK:-27 (dBm/MHz)	PK:68.2(dBµV/m)		
5470~5725 MHz		15.407(b)(3)				
5725~5850 MHz		15.407(b)(4)(i)	PK:-27 (dBm/MHz) ^{*1} PK:10 (dBm/MHz) ^{*2} PK:15.6 (dBm/MHz) ^{*3} PK:27 (dBm/MHz) ^{*4}	PK: 68.2(dBµV/m) ^{*1} PK:105.2 (dBµV/m) ^{*2} PK: 110.8(dBµV/m) ^{*3} PK:122.2 (dBµV/m) ^{*4}		
		15.407(b)(4)(ii)	Emission limit	s in section 15.247(d)		
 *¹ beyond 75 MHz or more above of the band edge. *³ below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above. *⁴ from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz the band edge. 						

Note:

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

 $\mathsf{E} = \frac{1000000\sqrt{30P}}{3}$

 μ V/m, where P is the eirp (Watts).

4.1.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
HP Preamplifier	8447D	2432A03504	Feb. 19, 2020	Feb. 18, 2021
HP Preamplifier	8449B	3008A01201	Feb. 20, 2020	Feb. 19, 2021
MITEQ Preamplifier	AMF-6F-260400-33-8P	892164	Feb. 19, 2020	Feb. 18, 2021
Agilent TEST RECEIVER	N9038A	MY51210137	Jun. 6, 2019	Jun. 5, 2020
Schwarzbeck Antenna	VULB 9168	139	Nov. 7, 2019	Nov. 6, 2020
Schwarzbeck Antenna	VHBA 9123	480	Jun. 3, 2019	Jun. 2, 2021
Schwarzbeck Horn Antenna	BBHA-9170	212	Nov. 24, 2019	Nov. 23, 2020
Schwarzbeck Horn Antenna	BBHA 9120-D1	D130	Nov. 24, 2019	Nov. 23, 2020
ADT. Turn Table	TT100	0306	NA	NA
ADT. Tower	AT100	0306	NA	NA
Software	Radiated_V7.6.15.9.5	NA	NA	NA
SUHNER RF cable With 4dB PAD	SF102	Cable-CH6-01	Jul. 10, 2019	Jul. 9, 2020
SUHNER RF cable With 3/4dB PAD	SF102	Cable-CH8-3.6m	Jul. 10, 2019	Jul. 9, 2020
KEYSIGHT MIMO Powermeasurement Test set	U2021XA	U2021XA-001	Jun. 11, 2019	Jun. 10, 2020
KEYSIGHT Spectrum Analyzer	N9030A	MY54490260	Jul. 30, 2019	Jul. 29, 2020
Loop Antenna EMCI	LPA600	270	Aug. 23, 2019	Aug. 22, 2021
EMCO Horn Antenna	3115	00028257	Nov. 24, 2019	Nov. 23, 2020
Highpass filter Wainwright Instruments	WHK 3.1/18G-10SS	SN 8	NA	NA
ROHDE & SCHWARZ Spectrum Analyzer	FSV40	101042	Sep. 23, 2019	Sep. 22, 2020
Anritsu Power Sensor	MA2411B	0738404	Apr. 16, 2019	Apr. 15, 2020
Anritsu Power Meter	ML2495A	0842014	Apr. 16, 2019	Apr. 15, 2020
Temperature & Humidity Chamber	MHU-225AU	920409	May 24, 2019	May 23, 2020
DIGITAL POWER METER	CP-240	240515	Sep. 11, 2019	Sep. 10, 2020
AC Power Source ExTech	CFW-105	E000603	NA	NA

NOTE: 1. The calibration interval of the above test instruments is 12/24 months. And the calibrations are traceable to NML/ROC and NIST/USA.

2. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

3. The test was performed in Chamber No. 6.

4.1.3 Test Procedure

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasipeak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 1.8kHz for 802.11a, the video bandwidth is 1kHz for 802.11ac (80MHz) (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz. (802.11a: RBW = 1MHz, VBW = 510Hz; 802.11n (20MHz): RBW = 1MHz, VBW = 560Hz; 802.11ac (40MHz): RBW = 1MHz, VBW = 1.1kHz)</p>
- 5. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard

No deviation.

4.1.5 Test Setup

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Condition

- a. Connected the EUT with the Notebook Computer which is placed on remote site.
- b. Set the EUT under transmission condition continuously at specific channel frequency continuously.

4.1.7 Test Results

802.11a

CHANNEL	TX Channel 36	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	5150.00	62.68 PK	74.00	-11.32	1.30 H	82	53.14	9.54	
2	5150.00	48.84 AV	54.00	-5.16	1.30 H	82	39.30	9.54	
3	*5180.00	102.68 PK			1.30 H	82	93.08	9.60	
4	*5180.00	91.10 AV			1.30 H	82	81.50	9.60	
5	#10360.00	58.72 PK	68.20	-9.48	1.34 H	125	42.65	16.07	
		ANTENNA	POLARITY	' & TEST DI	STANCE: V	ERTICAL A	Т 3 М		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	5150.00	62.00 PK	74.00	-12.00	2.31 V	96	52.46	9.54	
2	5150.00	48.30 AV	54.00	-5.70	2.31 V	96	38.76	9.54	
3	*5180.00	101.86 PK			2.31 V	96	92.26	9.60	
4	*5180.00	89.79 AV			2.31 V	96	80.19	9.60	
5	#10360.00	57.49 PK	68.20	-10.71	1.48 V	254	41.42	16.07	

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

^{6. &}quot; # ": The radiated frequency is out of the restricted band.

CHANNEL	TX Channel 40	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*5200.00	100.46 PK			1.37 H	83	90.83	9.63	
2	*5200.00	88.38 AV			1.37 H	83	78.75	9.63	
3	#10400.00	58.70 PK	68.20	-9.50	1.62 H	134	42.62	16.08	
		ANTENNA	POLARITY	' & TEST DI	STANCE: V	ERTICAL A	Т 3 М		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*5200.00	99.13 PK			2.34 V	89	89.50	9.63	
2	*5200.00	87.17 AV			2.34 V	89	77.54	9.63	
3	#10400.00	57.40 PK	68.20	-10.80	1.28 V	264	41.32	16.08	

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 48	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*5240.00	101.75 PK			1.12 H	82	91.92	9.83	
2	*5240.00	90.43 AV			1.12 H	82	80.60	9.83	
3	5350.00	62.17 PK	74.00	-11.83	1.12 H	82	51.92	10.25	
4	5350.00	48.45 AV	54.00	-5.55	1.12 H	82	38.20	10.25	
5	#10480.00	58.32 PK	68.20	-9.88	1.52 H	251	42.10	16.22	
		ANTENNA	POLARITY	' & TEST DI	STANCE: V	ERTICAL A	Т 3 М		
	FREO	EMISSION						00000000000	
NO.	(MHz)	LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	HEIGHT (m)	ANGLE (Degree)	VALUE (dBuV)	FACTOR (dB/m)	
NO.	(MHz) *5240.00	LEVEL (dBuV/m) 99.89 PK	LIMIT (dBuV/m)	MARGIN (dB)	HEIGHT (m) 2.28 V	ANGLE (Degree) 95	VALUE (dBuV) 90.06	FACTOR (dB/m) 9.83	
1 2	*5240.00 *5240.00	LEVEL (dBuV/m) 99.89 PK 88.72 AV	LIMIT (dBuV/m)	MARGIN (dB)	AUTEINIA HEIGHT (m) 2.28 V 2.28 V	ANGLE (Degree) 95 95	RAW VALUE (dBuV) 90.06 78.89	FACTOR (dB/m) 9.83 9.83	
NO. 1 2 3	*5240.00 *5240.00 5350.00	LEVEL (dBuV/m) 99.89 PK 88.72 AV 61.28 PK	LIMIT (dBuV/m) 74.00	MARGIN (dB) -12.72	HEIGHT (m) 2.28 V 2.28 V 2.28 V	ANGLE ANGLE (Degree) 95 95 95	RAW VALUE (dBuV) 90.06 78.89 51.03	CORRECTION FACTOR (dB/m) 9.83 9.83 10.25	
NO. 1 2 3 4	*5240.00 *5240.00 5350.00 5350.00	LEVEL (dBuV/m) 99.89 PK 88.72 AV 61.28 PK 48.19 AV	LIMIT (dBuV/m) 74.00 54.00	MARGIN (dB) -12.72 -5.81	HEIGHT (m) 2.28 V 2.28 V 2.28 V 2.28 V	IABLE ANGLE (Degree) 95 95 95 95 95 95	RAW VALUE (dBuV) 90.06 78.89 51.03 37.94	CORRECTION FACTOR (dB/m) 9.83 9.83 10.25 10.25	

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

802.11n (20MHz)

CHANNEL	TX Channel 36	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	5150.00	61.83 PK	74.00	-12.17	1.33 H	81	52.29	9.54	
2	5150.00	48.32 AV	54.00	-5.68	1.33 H	81	38.78	9.54	
3	*5180.00	100.00 PK			1.33 H	81	90.40	9.60	
4	*5180.00	88.28 AV			1.33 H	81	78.68	9.60	
5	#10360.00	58.23 PK	68.20	-9.97	1.64 H	231	42.16	16.07	
		ANTENNA	POLARITY	' & TEST D	STANCE: V	ERTICAL A	Т 3 М		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	5150.00	61.18 PK	74.00	-12.82	2.29 V	89	51.64	9.54	
2	5150.00	47.67 AV	54.00	-6.33	2.29 V	89	38.13	9.54	
3	*5180.00	99.36 PK			2.29 V	89	89.76	9.60	
4	*5180.00	87.45 AV			2.29 V	89	77.85	9.60	
5	#10360.00	57.55 PK	68.20	-10.65	1.85 V	156	41.48	16.07	

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 40	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*5200.00	99.06 PK			1.30 H	80	89.43	9.63	
2	*5200.00	87.45 AV			1.30 H	80	77.82	9.63	
3	#10400.00	58.24 PK	68.20	-9.96	1.94 H	315	42.16	16.08	
		ANTENNA	POLARITY	' & TEST DI	STANCE: V	ERTICAL A	Т 3 М		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*5200.00	98.10 PK			2.41 V	94	88.47	9.63	
2	*5200.00	86.61 AV			2.41 V	94	76.98	9.63	
2	1140400.00		<u> </u>	10.01	0.44.14	0.4	44 04	10.00	

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 48	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*5240.00	100.12 PK			1.32 H	83	90.29	9.83	
2	*5240.00	88.46 AV			1.32 H	83	78.63	9.83	
3	5350.00	61.70 PK	74.00	-12.30	1.32 H	83	51.45	10.25	
4	5350.00	48.24 AV	54.00	-5.76	1.32 H	83	37.99	10.25	
5	#10480.00	58.38 PK	68.20	-9.82	1.45 H	241	42.16	16.22	
		ANTENNA	POLARITY	' & TEST DI	STANCE: V	ERTICAL A	Т 3 М		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*5240.00	99.30 PK			2.36 V	98	89.47	9.83	
2	*5240.00	87.68 AV			2.36 V	98	77.85	9.83	
3	5350.00	61.26 PK	74.00	-12.74	2.36 V	98	51.01	10.25	
4	5350.00	47.50 AV	54.00	-6.50	2.36 V	98	37.25	10.25	

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

802.11n (40MHz)

CHANNEL	TX Channel 38	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	5150.00	61.60 PK	74.00	-12.40	1.30 H	82	52.06	9.54
2	5150.00	48.18 AV	54.00	-5.82	1.30 H	82	38.64	9.54
3	*5190.00	96.60 PK			1.30 H	82	86.99	9.61
4	*5190.00	84.95 AV			1.30 H	82	75.34	9.61
5	#10380.00	57.30 PK	68.20	-10.90	1.52 H	124	41.23	16.07
		ANTENNA	POLARITY	' & TEST D	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	5150.00	61.43 PK	74.00	-12.57	2.39 V	96	51.89	9.54
2	5150.00	47.50 AV	54.00	-6.50	2.39 V	96	37.96	9.54
3	*5190.00	94.84 PK			2.39 V	96	85.23	9.61
4	*5190.00	84.07 AV			2.39 V	96	74.46	9.61
5	#10380.00	56.59 PK	68.20	-11.61	1.92 V	41	40.52	16.07

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 46	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 40GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*5230.00	96.54 PK			1.30 H	82	86.76	9.78	
2	*5230.00	85.31 AV			1.30 H	82	75.53	9.78	
3	5350.00	61.63 PK	74.00	-12.37	1.30 H	82	51.38	10.25	
4	5350.00	48.28 AV	54.00	-5.72	1.30 H	82	38.03	10.25	
5	#10460.00	57.27 PK	68.20	-10.93	1.69 H	258	41.09	16.18	
		ANTENNA	POLARITY	' & TEST DI	STANCE: V	ERTICAL A	Т 3 М		
NO.	FREQ.		LIMIT	MARGIN	ANTENNA	TABLE	RAW	CORRECTION	
	(MHZ)	(dBuV/m)	(dBuV/m)	(dB)	(m)	ANGLE (Degree)	VALUE (dBuV)	FACTOR (dB/m)	
1	(MHZ) *5230.00	(dBuV/m) 95.05 PK	(dBuV/m)	(dB)	(m) 2.36 V	ANGLE (Degree) 97	VALUE (dBuV) 85.27	FACTOR (dB/m) 9.78	
1	(MHz) *5230.00 *5230.00	(dBuV/m) 95.05 PK 84.41 AV	(dBuV/m)	(dB)	(m) 2.36 V 2.36 V	ANGLE (Degree) 97 97	VALUE (dBuV) 85.27 74.63	FACTOR (dB/m) 9.78 9.78	
1 2 3	(MHZ) *5230.00 *5230.00 5350.00	(dBuV/m) 95.05 PK 84.41 AV 61.28 PK	(dBuV/m) 74.00	(dB) -12.72	HEIGHT (m) 2.36 V 2.36 V 2.36 V	ANGLE (Degree) 97 97 97	VALUE (dBuV) 85.27 74.63 51.03	FACTOR (dB/m) 9.78 9.78 10.25	
1 2 3 4	(MHz) *5230.00 *5230.00 5350.00 5350.00	(dBuV/m) 95.05 PK 84.41 AV 61.28 PK 48.11 AV	(dBuV/m) 74.00 54.00	(dB) -12.72 -5.89	Height (m) 2.36 V 2.36 V 2.36 V 2.36 V	ANGLE (Degree) 97 97 97 97	VALUE (dBuV) 85.27 74.63 51.03 37.86	FACTOR (dB/m) 9.78 10.25 10.25	

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

Below 1GHz Data:

802.11n (20MHz) CH 36

CHANNEL	TX Channel 36	DETECTOR	Quasi Book (OB)
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	QUASI-FEAK (QF)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	67.44	30.38 QP	40.00	-9.62	2.14 H	55	38.82	-8.44		
2	181.76	31.59 QP	43.50	-11.91	1.95 H	55	39.80	-8.21		
3	357.42	35.41 QP	46.00	-10.59	1.88 H	88	39.19	-3.78		
4	427.21	38.41 QP	46.00	-7.59	2.09 H	235	40.39	-1.98		
5	850.67	35.34 QP	46.00	-10.66	1.35 H	155	28.83	6.51		
6	937.73	36.26 QP	46.00	-9.74	1.42 H	188	28.18	8.08		

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

CHANNEL	TX Channel 36	DETECTOR	Quasi-Peak (QP)	
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION		

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	33.73	29.41 QP	40.00	-10.59	1.03 V	133	38.06	-8.65		
2	84.85	30.72 QP	40.00	-9.28	1.52 V	228	43.00	-12.28		
3	147.56	31.98 QP	43.50	-11.52	1.42 V	78	38.75	-6.77		
4	282.83	26.88 QP	46.00	-19.12	1.20 V	206	32.10	-5.22		
5	452.77	33.19 QP	46.00	-12.81	1.74 V	163	34.38	-1.19		
6	656.57	37.71 QP	46.00	-8.29	1.53 V	259	34.76	2.95		

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.

5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Frequency (MHz)	Conducted	Limit (dBuV)		
	Quasi-peak	Average		
0.15 - 0.5	66 - 56	56 - 46		
0.50 - 5.0	56	46		
5.0 - 30.0	60	50		

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
ROHDE & SCHWARZ TEST RECEIVER	ESCS 30	100292	Aug. 20, 2019	Aug. 19, 2020
ROHDE & SCHWARZ Artificial Mains Network (for EUT)	ENV216	101197	Jun. 5, 2019	Jun. 4, 2020
LISN With Adapter (for EUT)	101197	NA	Jun. 5, 2019	Jun. 4, 2020
ROHDE & SCHWARZ Artificial Mains Network (for peripherals)	ESH3-Z5	100218	Nov. 24, 2019	Nov. 23, 2020
SCHWARZBECK Artificial Mains Network (For EUT)	NNLK8129	8129229	May 14, 2019	May 13, 2020
SCHWARZBECK Artificial Mains Network (For EUT)	NSLK 8128	8128-244	Nov. 11, 2019	Nov. 10, 2020
Software	Cond_V7.3.7.4	NA	NA	NA
RF cable (JYEBAO) With 10dB PAD	5D-FB	Cable-C10.01	Feb. 12, 2020	Feb. 11, 2021
LYNICS Terminator (For ROHDE & SCHWARZ LISN)	0900510	E1-011484	May 13, 2019	May 12, 2020
ROHDE & SCHWARZ Artificial Mains Network (For TV EUT)	ENV216	101196	Apr. 16, 2019	Apr. 15, 2020
LISN With Adapter (for TV EUT)	101196	NA	Apr. 16, 2019	Apr. 15, 2020

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in Shielded Room No. 10.

3. The VCCI Site Registration No. C-11852.

4.2.3 Test Procedure

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

NOTE: All modes of operation were investigated and the worst-case emissions are reported.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Condition

Same as 4.1.6.

4.2.7 Test Results

802.11n (20MHz) CH 36

Phase Line (L)				0	Detector Function Quasi-Peak (QP) / Average (AV)				/	
	Freq	Corr.	Readin	g Value	Emiss	ion Level	Lir	nit	Mar	gin
No	rieq.	Factor	or [dB (uV)]		[dE	8 (uV)]	[dB ([uV)]	(dl	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15391	9.64	29.62	23.25	39.26	32.89	65.79	55.79	-26.53	-22.90
2	0.24375	9.64	38.25	31.13	47.89	40.77	61.97	51.97	-14.08	-11.20
3	0.28281	9.64	35.59	27.61	45.23	37.25	60.73	50.73	-15.50	-13.48
4	0.48203	9.65	36.51	18.05	46.16	27.70	56.30	46.30	-10.14	-18.60
5	0.59531	9.65	30.94	15.57	40.59	25.22	56.00	46.00	-15.41	-20.78
6	10.48828	9.84	14.37	10.53	24.21	20.37	60.00	50.00	-35.79	-29.63
7	22.11328	10.03	16.67	8.90	26.70	18.93	60.00	50.00	-33.30	-31.07

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

Phase			Neutral (N)		C	etector Fu	inction	Quasi- Averag	Peak (QP) / je (AV)	
	Frog	Corr.	Readin	g Value	Emiss	ion Level	Lir	nit	Mar	gin
No	Fieq.	Factor	[dB	[dB (uV)]		(uV)]	[dB (uV)]		(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15391	9.66	31.68	26.73	41.34	36.39	65.79	55.79	-24.45	-19.40
2	0.28672	9.66	34.04	28.83	43.70	38.49	60.62	50.62	-16.92	-12.13
3	0.43516	9.67	34.18	18.21	43.85	27.88	57.15	47.15	-13.30	-19.27
4	0.67344	9.68	26.94	13.08	36.62	22.76	56.00	46.00	-19.38	-23.24
5	1.47266	9.71	20.29	10.06	30.00	19.77	56.00	46.00	-26.00	-26.23
6	10.66797	9.88	20.98	14.57	30.86	24.45	60.00	50.00	-29.14	-25.55
7	22.12891	10.09	13.17	5.47	23.26	15.56	60.00	50.00	-36.74	-34.44

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

4.3 Transmit Power Measurement

4.3.1 Limits of Transmit Power Measurement

Operation Band		EUT Category	Limit		
		Outdoor Access Point	1 Watt (30 dBm) (Max. e.i.r.p \leq 125mW(21 dBm) at any elevation angle above 30 degrees as measured from the horizon)		
		Fixed point-to-point Access Point	1 Watt (30 dBm)		
	Indoor Access Point		1 Watt (30 dBm)		
	\checkmark	Client device	250mW (24 dBm)		
U-NII-2A			250mW (24 dBm) or 11 dBm+10 log B*		
U-NII-2C			250mW (24 dBm) or 11 dBm+10 log B*		
U-NII-3			1 Watt (30 dBm)		

*B is the 26 dB emission bandwidth in megahertz

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

For Average Power Measurement

Method PM is used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst and set the detector to AVERAGE. Duty factor is not added to measured value.

4.3.5 Deviation from Test Standard

No deviation.

4.3.6 EUT Operating Condition

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 Test Result

Power Output:

8<mark>02.11</mark>a

Channel	Channel Frequency (MHz)	Maximum Conducted Power (mW)	Maximum Conducted Power (dBm)	Power Limit (dBm)	Pass/Fail
36	5180	10.423	10.18	24	Pass
40	5200	9.817	9.92	24	Pass
48	5240	10.233	10.10	24	Pass

802.11n (20MHz)

Channel	Channel Frequency (MHz)	Maximum Conducted Power (mW)	Maximum Conducted Power (dBm)	Power Limit (dBm)	Pass/Fail
36	5180	9.977	9.99	24	Pass
40	5200	9.817	9.92	24	Pass
48	5240	9.863	9.94	24	Pass

802.11n (40MHz)

Channel	Channel Frequency (MHz)	Maximum Conducted Power (mW)	Maximum Conducted Power (dBm)	Power Limit (dBm)	Pass/Fail	
38	5190	10.641	10.27	24	Pass	
46	5230	9.75	9.89	24	Pass	

4.4 Occupied Bandwidth Measurement

4.4.1 Test Setup

4.4.2 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.3 Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with resolution bandwidth in the range of 1% to 5% of the anticipated emission bandwidth, and a video bandwidth at least 3x the resolution bandwidth and set the detector to SAMPLE. The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the total mean power of a given emission.

4.4.4 Test Results

802.11a

Channel	Channel Frequency (MHz)	Occupied Bandwidth (MHz)		
36	5180	17.04		
40	5200	17.04		
48	5240	17.04		

802.11n (20MHz)

Channel	Channel Frequency (MHz)	Occupied Bandwidth (MHz)
36	5180	18.00
40	5200	18.00
48	5240	18.12

802.11n (40MHz)

Channel	Channel Frequency (MHz)	Occupied Bandwidth (MHz)
38	5190	36.80
46	5230	36.80

4.5 Peak Power Spectral Density Measurement

4.5.1 Limits of Peak Power Spectral Density Measurement

Operation Band		EUT Category	Limit
U-NII-1		Outdoor Access Point	
		Fixed point-to-point Access Point	17dBm/ MHz
		Indoor Access Point	
	\checkmark	Client device	11dBm/ MHz
U-NII-2A			11dBm/ MHz
U-NII-2C			11dBm/ MHz
U-NII-3			30dBm/ 500kHz

4.5.2 Test Setup

4.5.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

Using method SA-1
1) Set span to encompass the entire emission bandwidth (EBW) of the signal.
2) Set RBW = 30 kHz, Set VBW ≥ 1 MHz, Detector = RMS
3) Set Channel power measure = 1MHz
4) Sweep time = auto, trigger set to "free run".
5) Trace average at least 100 traces in power averaging mode.
6) Record the max value
Using method SA-2
1) Set span to encompass the entire emission bandwidth (EBW) of the signal.
2) Set RBW = 30 kHz, Set VBW ≥ 1 MHz, Detector = RMS

- 3) Set Channel power measure = 1MHz
- 4) Sweep time = auto, trigger set to "free run".
- 5) Trace average at least 100 traces in power averaging mode.
- 6) Record the max value and add 10 log (1/duty cycle)

4.5.5 Deviation from Test Standard

No deviation.

4.5.6 EUT Operating Condition

Same as Item 4.3.6.

4.5.7 Test Results

802.11a

Chan.	Chan. Freq. (MHz)	PSD W/O Duty Factor (dBm/MHz)	Duty Factor (dB)	PSD With Duty Factor (dBm/MHz)	MAX. Limit (dBm/MHz)	Pass / Fail
36	5180	-4.56	0.19	-4.37	11	Pass
40	5200	-5.24	0.19	-5.05	11	Pass
48	5240	-5.24	0.19	-5.05	11	Pass

Note: Refer to section 3.3 for duty cycle spectrum plot

802.11n (20MHz)

Chan.	Chan. Freq. (MHz)	PSD W/O Duty Factor (dBm/MHz)	Duty Factor (dB)	PSD With Duty Factor (dBm/MHz)	MAX. Limit (dBm/MHz)	Pass / Fail
36	5180	-5.49	0.28	-5.21	11	Pass
40	5200	-5.63	0.28	-5.35	11	Pass
48	5240	-5.49	0.28	-5.21	11	Pass

Note: Refer to section 3.3 for duty cycle spectrum plot

802.11n (40MHz)

Chan.	Chan. Freq. (MHz)	PSD W/O Duty Factor (dBm/MHz)	Duty Factor (dB)	PSD With Duty Factor (dBm/MHz)	MAX. Limit (dBm/MHz)	Pass / Fail
38	5190	-8.22	0.46	-7.76	11	Pass
46	5230	-8.63	0.46	-8.17	11	Pass

Note: Refer to section 3.3 for duty cycle spectrum plot

4.6 Frequency Stability Measurement

4.6.1 Limits of Frequency Stability Measurement

The frequency of the carrier signal shall be maintained within band of operation.

4.6.2 Test Setup

4.6.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

- a. The EUT was placed inside the environmental test chamber and powered by nominal AC voltage.
- b. Turn the EUT on and couple its output to a spectrum analyzer.
- c. Turn the EUT off and set the chamber to the highest temperature specified.
- d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT on and measure the operating frequency after 2, 5, and 10 Minutes.
- e. Repeat step (d) with the temperature chamber set to the next desired temperature until measurements down to the lowest specified temperature have been completed.
- f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 Minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.

4.6.5 Deviation from Test Standard

No deviation.

4.6.6 EUT Operating Condition

Set the EUT transmit at un-modulation mode to test frequency stability.

4.6.7 Test Results

	Frequency Stability Versus Temp.													
	Operating Frequency: 5180 MHz													
	Power	0 Mi	nute	2 Minute		5 Mi	nute	10 Minute						
TEMP. (℃)	Supply (Vac)	Measured Frequency (MHz)	Pass/Fail	Measured Frequency (MHz)	Pass/Fail	Measured Frequency (MHz)	Pass/Fail	Measured Frequency (MHz)	Pass/Fail					
50	120	5179.9907	Pass	5179.9916	Pass	5179.9906	Pass	5179.9919	Pass					
40	120	5179.977	Pass	5179.9793	Pass	5179.9767	Pass	5179.9769	Pass					
30	120	5180.0223	Pass	5180.0208	Pass	5180.0189	Pass	5180.0188	Pass					
20	120	5180.0195	Pass	5180.0171	Pass	5180.0188	Pass	5180.017	Pass					
10	120	5180.0228	Pass	5180.0246	Pass	5180.0239	Pass	5180.0258	Pass					
0	120	5180.016	Pass	5180.0139	Pass	5180.0161	Pass	5180.0167	Pass					
-10	120	5179.9892	Pass	5179.9919	Pass	5179.9901	Pass	5179.9882	Pass					
-20	120	5180.0126	Pass	5180.0118	Pass	5180.0123	Pass	5180.0138	Pass					
-30	120	5180.0182	Pass	5180.0196	Pass	5180.0147	Pass	5180.0194	Pass					

Frequency Stability Versus Voltage

Operating Frequency: 5180 MHz

	Power	0 Minute		2 Minute		5 Minute		10 Minute	
ТЕМР. (℃)	Supply (Vac)	Measured Frequency (MHz)	Pass/Fail	Measured Frequency (MHz)	Pass/Fail	Measured Frequency (MHz)	Pass/Fail	Measured Frequency (MHz) 5180.0165	Pass/Fail
	138	5180.0204	Pass	5180.0165	Pass	5180.0186	Pass	5180.0165	Pass
20	120	5180.0195	Pass	5180.0171	Pass	5180.0188	Pass	5180.017	Pass
	102	5180.0204	Pass	5180.017	Pass	5180.0191	Pass	5180.016	Pass

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Annex A- Bandedge Measurement (For U-NII-1 band)

802.11a

802.11n (20MHz)

802.11n (40MHz)

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

---- END ----