

RADIO TEST REPORT FCC ID: QRP-SP-027

Product: Mobile Phone Trade Mark: AZUMI Model No.: V65+ Family Model: V65 Report No.: S22012500601001 Issue Date: Feb 23. 2022

Prepared for

Azumi S.A

Avenida Aquilino de la Guardia con Calle 47, PH Ocean Plaza, Piso 16 of. 16-01, Marbella, Ciudad de Panama, Panama

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

I

TABLE OF CONTENTS

1	1 TEST RESULT CERTIFICATION					
2	2 SUMMARY OF TEST RESULTS4					
3	FACILITIES AND ACCREDITATIONS					
	3.1	FACILITIES	5			
	3.2	LABORATORY ACCREDITATIONS AND LISTINGS	5			
	3.3	MEASUREMENT UNCERTAINTY				
4	GE	NERAL DESCRIPTION OF EUT	6			
5	DES	SCRIPTION OF TEST MODES	8			
6	SET	UP OF EQUIPMENT UNDER TEST	9			
	6.1	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	9			
	6.2	SUPPORT EQUIPMENT	10			
	6.3	EQUIPMENTS LIST FOR ALL TEST ITEMS				
7	TES	T REQUIREMENTS	13			
	7.1	CONDUCTED EMISSIONS TEST				
	7.2	RADIATED SPURIOUS EMISSION				
	7.3	NUMBER OF HOPPING CHANNEL				
	7.4	HOPPING CHANNEL SEPARATION MEASUREMENT				
	7.5	AVERAGE TIME OF OCCUPANCY (DWELL TIME)				
	7.6	20DB BANDWIDTH TEST				
	7.7	PEAK OUTPUT POWER CONDUCTED BAND EDGE MEASUREMENT				
	7.8 7.9	SPURIOUS RF CONDUCTED EMISSION				
	7.9	ANTENNA APPLICATION				
		REQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS				
		ST RESULTS				
8	IES					
	8.1	DWELL TIME				
	8.2	MAXIMUM CONDUCTED OUTPUT POWER				
	8.3	OCCUPIED CHANNEL BANDWIDTH.				
	8.4	CARRIER FREQUENCIES SEPARATION				
	8.5	NUMBER OF HOPPING CHANNEL				
	8.6	BAND EDGE CONDUCTED RF SPURIOUS EMISSION				
	8.7		74			

1 TEST RESULT CERTIFICATION

Azumi S.A	
Avenida Aquilino de la Guardia con Calle 47, PH Ocean Plaza, Piso 1 of. 16-01, Marbella, Ciudad de Panama, Panama	
AZUMI HK LTD	
FLAT/RM 18 BLK 1 14/F GOLDEN INDUSTRIAL BUILDING 16-26 KWAI TAK STREET KWAI CHUNG, HK	
Mobile Phone	
V65+	
V65	

Measurement Procedure Used:

APPLICABLE STANDARDS STANDARD/ TEST PROCEDURE TEST RESULT FCC 47 CFR Part 2, Subpart J Complied FCC 47 CFR Part 15, Subpart C Complied ANSI C63.10-2013 Complied

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test

Jan 26. 2022 ~ Feb 21, 2022

Ven bin

(Allen Liu)

Testing Engineer

Authorized Signatory

(Alex Li)

SUMMARY OF TEST RESULTS FCC Part15 (15.247), Subpart C					
Standard Section Test Item Verdict Re					
15.207	Conducted Emission	PASS			
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS			
15.247(a)(1)	Hopping Channel Separation	PASS			
15.247(b)(1)	Peak Output Power	PASS			
15.247(a)(iii)	Number of Hopping Frequency	PASS			
15.247(a)(iii)	Dwell Time	PASS			
15.247(a)(1)	Bandwidth	PASS			
15.247 (d)	Band Edge Emission	PASS			
15.247 (d)	Spurious RF Conducted Emission	PASS			
15.203	Antenna Requirement	PASS			

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

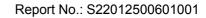
3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.


3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification				
Equipment	Mobile Phone			
Trade Mark	AZUMI			
FCC ID	QRP-SP-027			
Model No.	V65+			
Family Model	V65			
Model Difference	All the model are the same circuit and RF module, except the memory.			
Operating Frequency	2402MHz~2480MHz			
Modulation	GFSK, π/4-DQPSK, 8-DPSK			
Number of Channels	79 Channels			
Antenna Type	PIFA Antenna			
Antenna Gain	1.1 dBi			
Adapter	INPUT: AC 110-240V~50-60Hz 0.3A OUTPUT: DC 5.0V1.5A			
Battery	DC 3.8V, 3950mAh			
Power supply	DC 3.8V from battery or DC 5V from Adapter.			
HW Version	AZUMI_V65+_CLARO_V001			
SW Version	AZUMI_V65+_CLARO_V001_20220223			

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Certificate #4298.01				
Report No.	Version	Description	Issued Date	
S22012500601001	Rev.01	Initial issue of report	Feb 21, 2022	

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement –X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

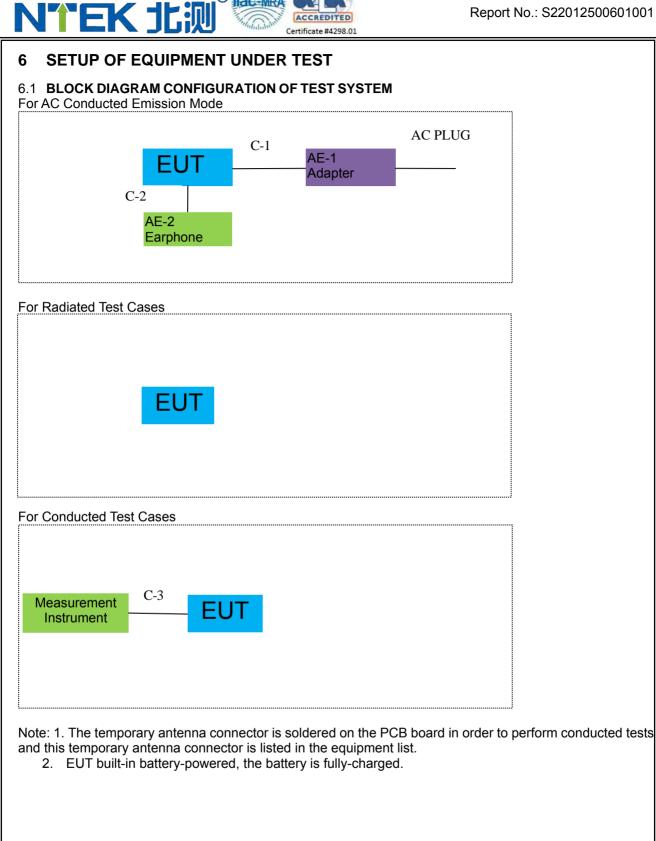
Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission					
Final Test Mode	Final Test Mode Description				
Mode 1 normal link mode					
Note AQ as a line Quark stad Excission as to take down down as income as the taken as					


Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases			
Final Test Mode	Description		
Mode 1	normal link mode		
Mode 2	CH00(2402MHz)		
Mode 3	CH39(2441MHz)		
Mode 4	CH78(2480MHz)		

Note: For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases			
Final Test Mode Description			
Mode 2	CH00(2402MHz)		
Mode 3	CH39(2441MHz)		
Mode 4	CH78(2480MHz)		
Mode 5	Hopping mode		

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	N/A	N/A	Peripherals
AE-2	Earphone	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	NO	NO	0.9m
C-2	Earphone Cable	NO	NO	1.2m
C-3	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

		estequipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2021.04.27	2022.04.26	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2021.07.01	2022.06.30	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2021.07.01	2022.06.30	1 year
4	Test Receiver	R&S	ESPI7	101318	2021.04.27	2022.04.26	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2021.03.29	2022.03.28	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2021.03.29	2022.03.28	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2021.11.07	2022.11.06	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2021.07.01	2022.06.30	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2021.11.07	2022.11.06	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2021.07.01	2022.06.30	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2019.08.06	2022.08.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2019.08.06	2022.08.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2019.06.28	2022.06.27	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2019.08.06	2022.08.05	3 year
16	Filter	TRILTHIC	2400MHz	29	2021.07.01	2022.06.30	1 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2021.04.27	2022.04.26	1 year
2	LISN	R&S	ENV216	101313	2021.04.27	2022.04.26	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2021.04.27	2022.04.26	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

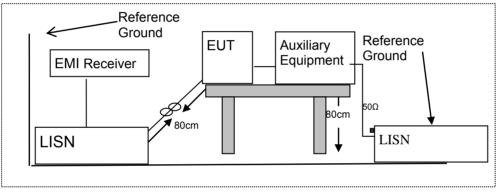
Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)


7.1.2 Conformance Limit

	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

7.1.4 Test Procedure

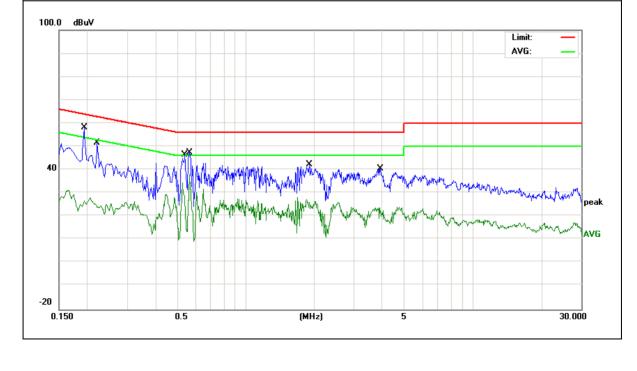
According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable
 may be terminated, if required, using the correct terminating impedance. The overall length shall not
 exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.5 Test Results

Pass

7.1.6 Test Results

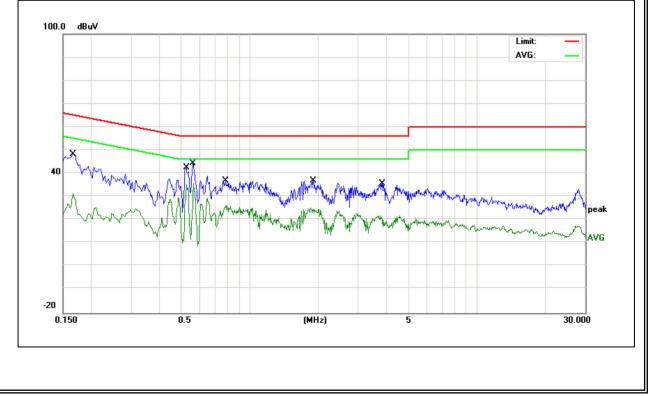

EUT:	Mobile Phone	Model Name :	V65+
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1940	48.55	9.64	58.19	63.86	-5.67	QP
0.1940	21.46	9.64	31.10	53.86	-22.76	AVG
0.2220	41.78	9.63	51.41	62.74	-11.33	QP
0.2220	31.62	9.63	41.25	52.74	-11.49	AVG
0.5380	36.94	9.66	46.60	56.00	-9.40	QP
0.5380	26.99	9.66	36.65	46.00	-9.35	AVG
0.5660	37.76	9.67	47.43	56.00	-8.57	QP
0.5660	28.34	9.67	38.01	46.00	-7.99	AVG
1.9060	32.63	9.76	42.39	56.00	-13.61	QP
1.9060	18.25	9.76	28.01	46.00	-17.99	AVG
3.9060	30.64	9.67	40.31	56.00	-15.69	QP
3.9060	21.35	9.67	31.02	46.00	-14.98	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.


EUT:	Mobile Phone	Model Name :	V65+
Temperature:	25 °C	Relative Humidity:	62%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

			1	1		
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	INCIDAIN
0.1660	38.59	9.63	48.22	65.15	-16.93	QP
0.1660	21.73	9.63	31.36	55.15	-23.79	AVG
0.5260	32.74	9.73	42.47	56.00	-13.53	QP
0.5260	22.92	9.73	32.65	46.00	-13.35	AVG
0.5620	34.57	9.71	44.28	56.00	-11.72	QP
0.5660	26.08	9.71	35.79	46.00	-10.21	AVG
0.7820	27.30	9.67	36.97	56.00	-19.03	QP
0.7820	15.46	9.67	25.13	46.00	-20.87	AVG
1.9060	27.21	9.67	36.88	56.00	-19.12	QP
1.9060	16.91	9.67	26.58	46.00	-19.42	AVG
3.8300	25.86	9.76	35.62	56.00	-20.38	QP
3.8300	15.82	9.76	25.58	46.00	-20.42	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 00 1 art 13.200, Restricted bands			
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Froguopov(MHz)	Class B (dBuV/m) (at 3M)		
Frequency(MHz)	PEAK	AVERAGE	
Above 1000 74		54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

Measurement was performed at an antenna to the closed point of EUT distance of meters.
 For Frequency 9kHz~30MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

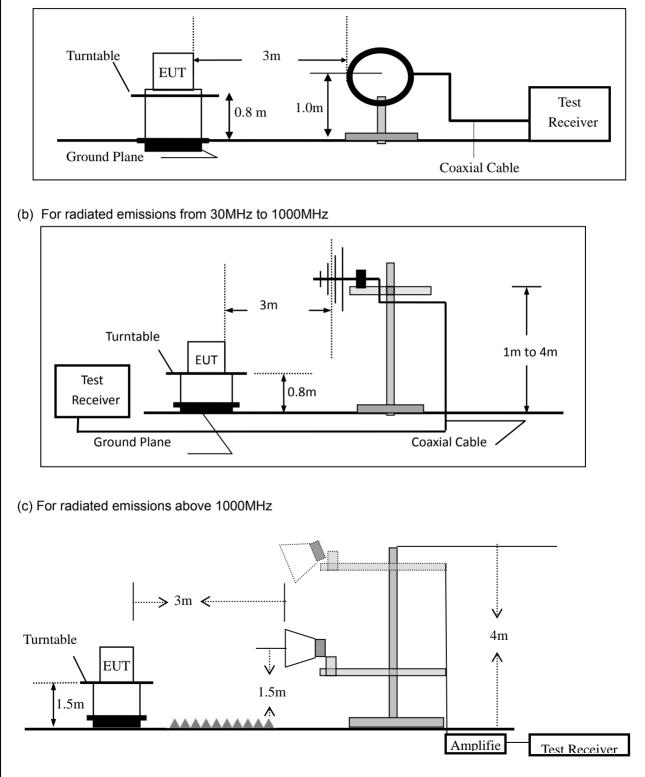
Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

NTEK 北测


7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

ACCREDITED Certificate #4298.01

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission te	est, the Spectrum An	alyzer was set with the follow	ving configurations:
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 1000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	1 MHz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

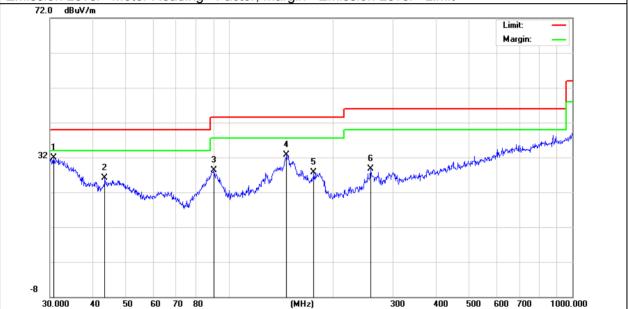
Spurious Emission below 30MHz (9KHz to 30M	/Hz)
--	------

EUT:	Mobile Phone	Model No.:	V65+
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB) PK AV		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Spurious Emission below 1GHz (30MHz to 1GHz)


All the modulation	on modes have been tested	, and the worst result w	as report as below:

EUT:	Mobile Phone	Model Name :	V65+
Temperature:	25 ℃	Relative Humidity:	55%
Pressure:	1010hPa	Test Mode:	Mode 1
Test Voltage :	DC 3.8V		

Polar	Frequency	Meter Reading	Factor	Emission Level	2 timits		Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	30.7454	7.42	24.50	31.92	40.00	-8.08	QP
V	43.3534	8.97	17.17	26.14	40.00	-13.86	QP
V	90.2205	12.63	15.76	28.39	43.50	-15.11	QP
V	146.8877	14.79	17.93	32.72	43.50	-10.78	QP
V	176.2684	11.53	16.15	27.68	43.50	-15.82	QP
V	258.3264	8.57	20.22	28.79	46.00	-17.21	QP QP QP QP QP QP

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remarl
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	39.8541	6.92	19.02	25.94	40.00	-14.06	QP
Н	96.0986	9.90	9.90 16.06 25.96		43.50	-17.54	QP
Н	147.9214	11.93	17.95	29.88	43.50	-13.62	QP
Н	173.8135	11.44	16.20	27.64	43.50	-15.86	QP
Н	305.6800	11.98	20.19	32.17	46.00	-13.83	QP
Н	670.4891	8.03	28.08	36.11	46.00	-9.89	QP
						Limit: Margin:	_
	on Level= Meter	Reading+ Fa	ctor, Margi	n= Emission L	evel - Limit		
						ь Х.,,,,,,,,,,,,	Jrishlym
32			3		5	and and a start of the start of	Jyladdur.
32	1	2	3	4	5	whether the strategy of the st	Jerio Montr
32	1	2	3 WWWWANAMW	with show where	5	and when the second second	Strandform
32	and a start of the	www.tudio.or. 10 and 10	3 www.hub.a.walaya	A show on the	5	B and the second	Junally.
32	and the second s	and the second s	3 WWW.WWA.NAY	with all all and a second	5 ************************************	and and the second second	JANAN MARKAN
32		and the second sec	3 Martin Martin Martin	WALL MANNAN	5 Marken Markan Markan	and and a strange of the strange of	Strandour
32		and the second s	3 WWWWWWWWW	A Alexandre Andrew	5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Jey wald for the
-8		and the second s	3 1970-1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1971 - 1 1971 -		5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		JAN AND T

Spurious	Emission	Above 1	GHz (1GH	z to 25GH	z)					
EUT:	Мо	bile Phor	e	Mode	l No.:	V6	5+			
Temperature	: 20	°C		Relati	ve Humidity	/: 48	%			
Test Mode:	Test Mode: Mode2/Mode3/Mode4 Test By: Allen Liu									
All the modul					,			/:		
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	s Margin	Remark	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/	m) (dB)			
			Low Char	nel (2402 M	/Hz)(GFSK)-	Above ´	IG			
4804.214	62.75	5.21	35.59	44.30	59.25	74.00	-14.75	Pk	Vertical	
4804.214	40.80	5.21	35.59	44.30	37.30	54.00	-16.70	AV	Vertical	
7206.265	60.61	6.48	36.27	44.60	58.76	74.00	-15.24	Pk	Vertical	
7206.265	45.27	6.48	36.27	44.60	43.42	54.00	-10.58	AV	Vertical	
4804.109	61.03	5.21	35.55	44.30	57.49	74.00	-16.51	Pk	Horizontal	
4804.109	43.96	5.21	35.55	44.30	40.42	54.00	-13.58	AV	Horizontal	
7206.224	62.36	6.48	36.27	44.52	60.59	74.00	-13.41	Pk	Horizontal	
7206.224	47.71	71 6.48 36.27 44.52 45.94 54.00 -8.06					AV	Horizontal		
		1	Mid Chan	nel (2441 N	/Hz)(GFSK)-	-Above 1	G	1		
4882.396	62.60	5.21	35.66	44.20	59.27	74.00) -14.73	Pk	Vertical	
4882.396	42.30	5.21	35.66	44.20	38.97	54.00	-15.03	AV	Vertical	
7323.241	60.01	7.10	36.50	44.43	59.18	74.00	-14.82	Pk	Vertical	
7323.241	46.98	7.10	36.50	44.43	46.15	54.00	-7.85	AV	Vertical	
4882.108	61.51	5.21	35.66	44.20	58.18	74.00	-15.82	Pk	Horizontal	
4882.108	49.54	5.21	35.66	44.20	46.21	54.00) -7.79	AV	Horizontal	
7323.132	61.19	7.10	36.50	44.43	60.36	74.00	-13.64	Pk	Horizontal	
7323.132	42.31	7.10	36.50	44.43	41.48	54.00		AV	Horizontal	
			High Chan	nel (2480 N	/Hz)(GFSK)-	- Above	1G	I		
4960.397	67.35	5.21	35.52	44.21	63.87	74.00	-10.13	Pk	Vertical	
4960.397	43.93	5.21	35.52	44.21	40.45	54.00	-13.55	AV	Vertical	
7440.201	60.67	7.10	36.53	44.60	59.70	74.00	-14.30	Pk	Vertical	
7440.201	44.79	7.10	36.53	44.60	43.82	54.00	-10.18	AV	Vertical	
4960.225	67.87	5.21	35.52	44.21	64.39	74.00	-9.61	Pk	Horizontal	
4960.225	48.03	5.21	35.52	44.21	44.55	54.00	-9.45	AV	Horizontal	
7440.298	62.49	7.10	36.53	44.60	61.52	74.00	-12.48	Pk	Horizontal	
7440.298	45.69	7.10	36.53	44.60	44.72	54.00	-9.28	AV	Horizontal	

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

Spurious	s Emission	in Restr	icted Band	2310-239	0MHz and	2483.	5-250	0MHz		
EUT:	Mobile F	hone		Mode	el No.:		V65+			
Temperature	e: 20 ℃			Relat	ive Humidit	y:	48%			
Test Mode:	Mode2/	Mode4		Test	By:		Allen	Liu		
All the mode	ulation mo	des have	e been test	ed, and th	e worst res	ult wa	s repo	ort as belo	ow:	
Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lin	nits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	V/m)	(dB)	Туре	
				1Mbps(GFS	K)-Non-hoppi	ng				
2310.00	58.95	2.97	27.80	43.80	45.92	7	4	-28.08	Pk	Horizontal
2310.00	44.34	2.97	27.80	43.80	31.31	5	4	-22.69	AV	Horizontal
2310.00	58.53	2.97	27.80	43.80	45.50	7	4	-28.50	Pk	Vertical
2310.00	42.61	2.97	27.80	43.80	29.58	5	4	-24.42	AV	Vertical
2390.00	58.53	3.14	27.21	43.80	45.08	7	4	-28.92	Pk	Vertical
2390.00	43.15	3.14	27.21	43.80	29.70	5	4	-24.30	AV	Vertical
2390.00	57.88	3.14	27.21	43.80	44.43	7	4	-29.57	Pk	Horizontal
2390.00	42.71	3.14	27.21	43.80	29.26	5	4	-24.74	AV	Horizontal
2483.50	57.87	3.58	27.70	44.00	45.15	7	4	-28.85	Pk	Vertical
2483.50	42.18	3.58	27.70	44.00	29.46	5	4	-24.54	AV	Vertical
2483.50	60.28	3.58	27.70	44.00	47.56	7	4	-26.44	Pk	Horizontal
2483.50	42.62	3.58	27.70	44.00	29.90	5	4	-24.10	AV	Horizontal
				1Mbps(G	FSK)-hopping					
2310.00	50.43	2.97	27.80	43.80	37.40	74.	.00	-36.60	Pk	Vertical
2310.00	44.32	2.97	27.80	43.80	31.29	54.	.00	-22.71	AV	Vertical
2310.00	53.53	2.97	27.80	43.80	40.50	74.	.00	-33.50	Pk	Horizontal
2310.00	41.61	2.97	27.80	43.80	28.58	54.	.00	-25.42	AV	Horizontal
2390.00	54.30	3.14	27.21	43.80	40.85	74.	.00	-33.15	Pk	Vertical
2390.00	45.00	3.14	27.21	43.80	31.55	54.	.00	-22.45	AV	Vertical
2390.00	51.22	3.14	27.21	43.80	37.77	74.	.00	-36.23	Pk	Horizontal
2390.00	41.54	3.14	27.21	43.80	28.09	54.	.00	-25.91	AV	Horizontal
2483.50	52.64	3.58	27.70	44.00	39.92	74.	.00	-34.08	Pk	Vertical
2483.50	44.71	3.58	27.70	44.00	31.99	54.	.00	-22.01	AV	Vertical
2483.50	51.33	3.58	27.70	44.00	38.61	74.	.00	-35.39	Pk	Horizontal
2483.50	43.16	3.58	27.70	44.00	30.44	54.	.00	-23.56	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

EUT:	N	lobile Phor	ne Model No.: N			V65+						
Femperature	e: 2	0 °C			Relat	ive Humidit	y:	48%	48%			
Fest Mode:	N	lode2/ Moc	le4		Test I	Зу:		Allen	Allen Liu			
All the mod	ulation n	nodes have	been test	ed, a	and the	e worst resi	ult wa	is repo	ort as belo	W:	-	
Frequency	Reading Level	g Cable Loss	Antenna Factor		amp ctor	Emission Level	Lir	nits	Margin	Detector	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(0	dB)	(dBµV/m)	(dBµ	uV/m)	(dB)	Туре		
3260	61.03	4.04	29.57	44	1.70	49.94	7	74	-24.06	Pk	Vertical	
3260	56.58	4.04	29.57	44	1.70	45.49	Ę	54	-8.51	AV	Vertical	
3260	61.77	4.04	29.57	44	1.70	50.68	7	74	-23.32	Pk	Horizonta	
3260	57.17	4.04	29.57	44	1.70	46.08	Ę	54	-7.92	AV	Horizonta	
3332	64.91	4.26	29.87	44	1.40	54.64	7	74	-19.36	Pk	Vertical	
3332	53.63	4.26	29.87	44	1.40	43.36	Ę	54	-10.64	AV	Vertical	
3332	62.52	4.26	29.87	44	1.40	52.25	7	74	-21.75	Pk	Horizontal	
3332	53.31	4.26	29.87	44	1.40	43.04	Ę	54	-10.96	AV	Horizonta	
17797	44.82	10.99	43.95	43	8.50	56.26	1	74	-17.74	Pk	Vertical	
17797	33.38	10.99	43.95	43	8.50	44.82	Ę	54	-9.18	AV	Vertical	
17788	44.04	11.81	43.69	44	.60	54.94	7	74	-19.06	Pk	Horizonta	
17788	31.75	11.81	43.69	44	.60	42.65	Ę	54	-11.35	AV	Horizonta	

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	Mobile Phone	Model No.:	V65+
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Allen Liu

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW Sweep = auto

Detector function = peak Trace = max hold

7.4.6 Test Results

EUT:	Mobile Phone	Model No.:	V65+
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 Test Results

EUT:	Mobile Phone	Model No.:	V65+
Temperature:	20 ℃	Relative Humidity:	V65+ 48% Allen Liu
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4

DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	Mobile Phone	Model No.:	V65+
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.7 **PEAK OUTPUT POWER**

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $RBW \ge$ the 20 dB bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	Mobile Phone	Model No.:	V65+
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	Mobile Phone	Model No.:	V65+
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	V65+ 48% Allen Liu

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached PIFA antenna (Gain: 1.1dBi). It comply with the standard requirement.

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmission sover the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

7.11.2 Frequency Hopping System

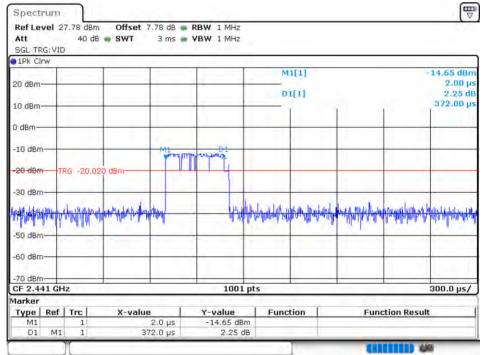
This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each: centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

7.11.3 EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

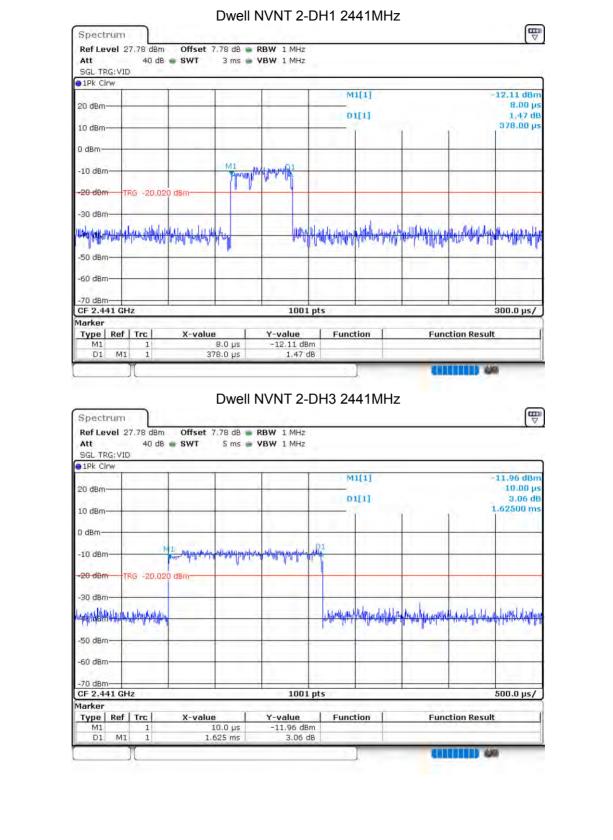

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

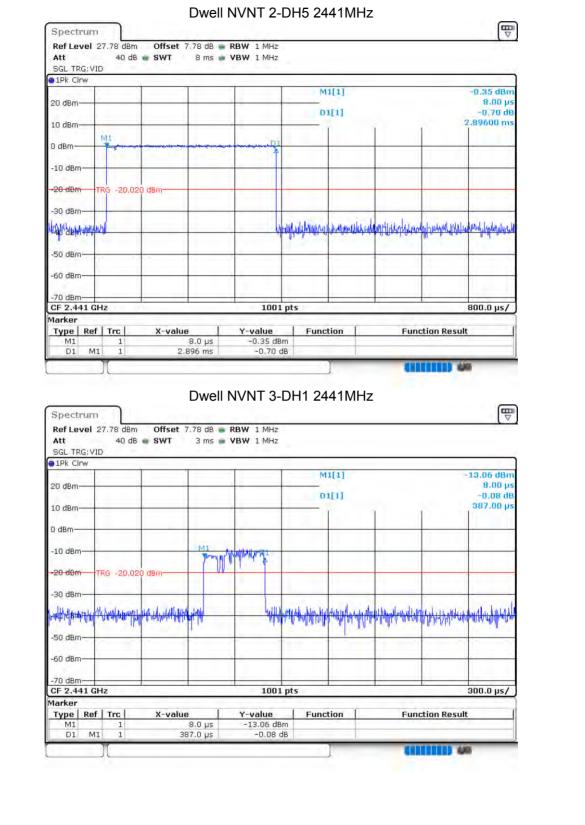


8 TEST RESULTS

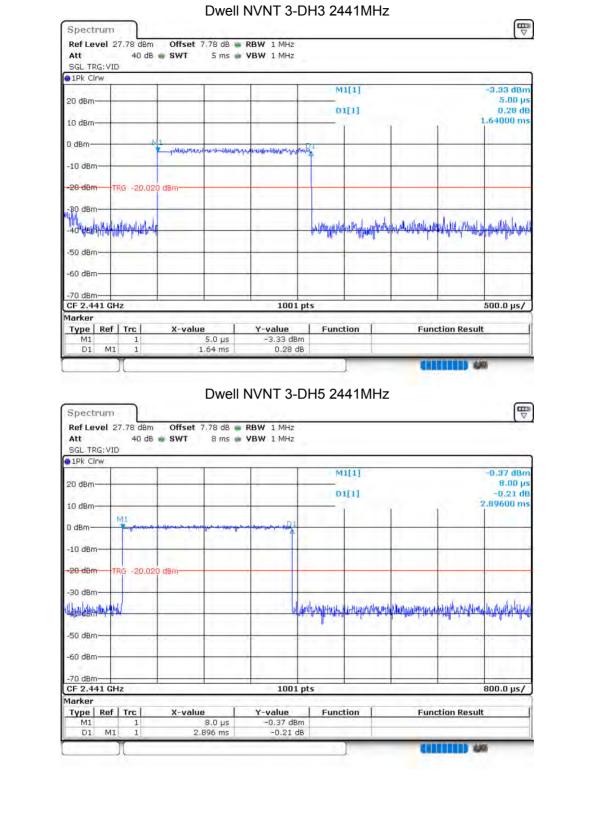
8.1 DWELL TIME

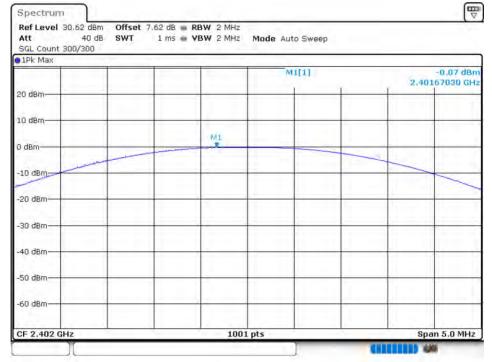
Time (ms) 119.04 265.6	Period Time (ms) 31600 31600	Limit (ms) 400 400	Verdict Pass Pass
119.04 265.6	31600 31600	400	
265.6	31600		
		400	Pass
200.76			. 400
309.76	31600	400	Pass
120.96	31600	400	Pass
260	31600	400	Pass
308.907	31600	400	Pass
123.84	31600	400	Pass
262.4	31600	400	Pass
308.907	31600	400	Pass
	120.96 260 308.907 123.84 262.4	120.96 31600 260 31600 308.907 31600 123.84 31600 262.4 31600	120.96 31600 400 260 31600 400 308.907 31600 400 123.84 31600 400 262.4 31600 400

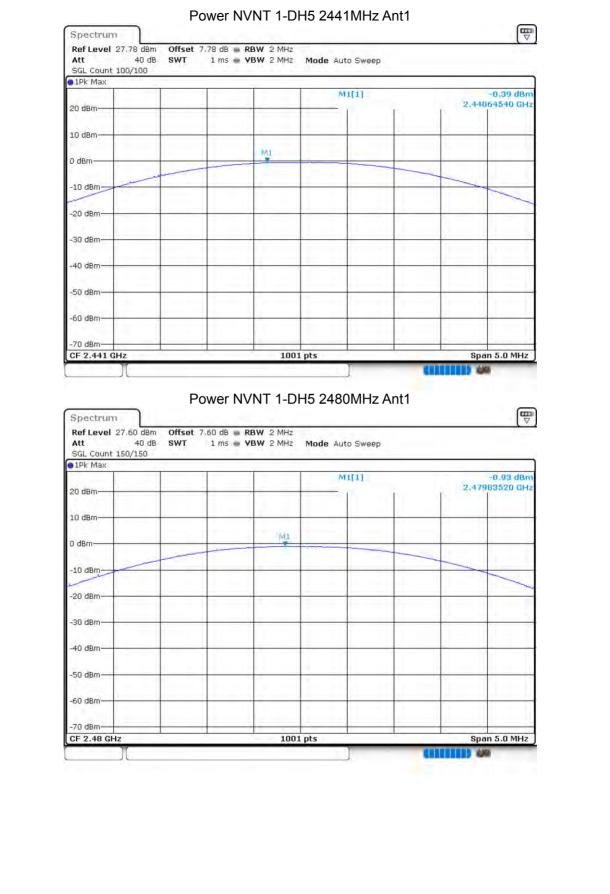




dBm M1[1] -14.79 dB, 5.00 µ dBm 01[1] -2.15 d dBm 1.66000 m
dBm 1.66000 m 1Bm 10 dBm 17RG -20,020 dBm 10 m 10
18m
0 dBm 1 <td< td=""></td<>
3 dBm TRG -20,020 dBm 4 0 dBm 0
2 dBm
All Sint survey All Sint
D dBm
D dBm 2.441 GHz 1001 pts 500.0 μs/ rker ype Ref Trc X-value Y-value Function Function Result M1 1 5.0 μs -14.79 dBm
D dBm. 1001 pts 500.0 μs/ 2.441 GHz 1001 pts 500.0 μs/ rker
D dBm. 1001 pts 500.0 μs/ 2.441 GHz 1001 pts 500.0 μs/ rker
2.441 GHz 1001 pts 500.0 μs/ rker ype Ref Trc X-value Y-value Function Function Result M1 1 5.0 μs -14.79 dBm
Pre Ref Trc X-value Y-value Function Function Result M1 1 5.0 μs -14.79 dBm
M1 1 5.0 μs -14.79 dBm
tt 40 dB •• SWT 8 ms •• VBW 1 MHz SL TRG:VID PK Clrw
M1[1] -10.63 dB
dBm01[1] -3.06 d
dBm
18m-
J dBm M1
3 dBm TRG -20,020 dBm
D d8m
Here here here here here here here here
hOP II in a side of the second s
D dBm
0 dBm
0 dBm- 0 dBm- 2 .441 GHz 1001 pts 800.0 μs/
0 dBm
0 dBm- 0 dBm- 2 .441 GHz 1001 pts 800.0 μs/

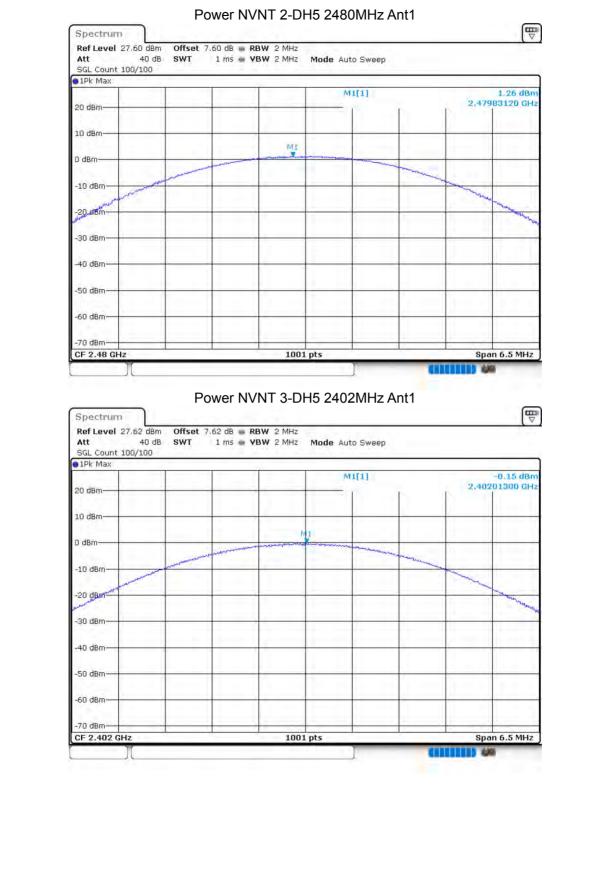


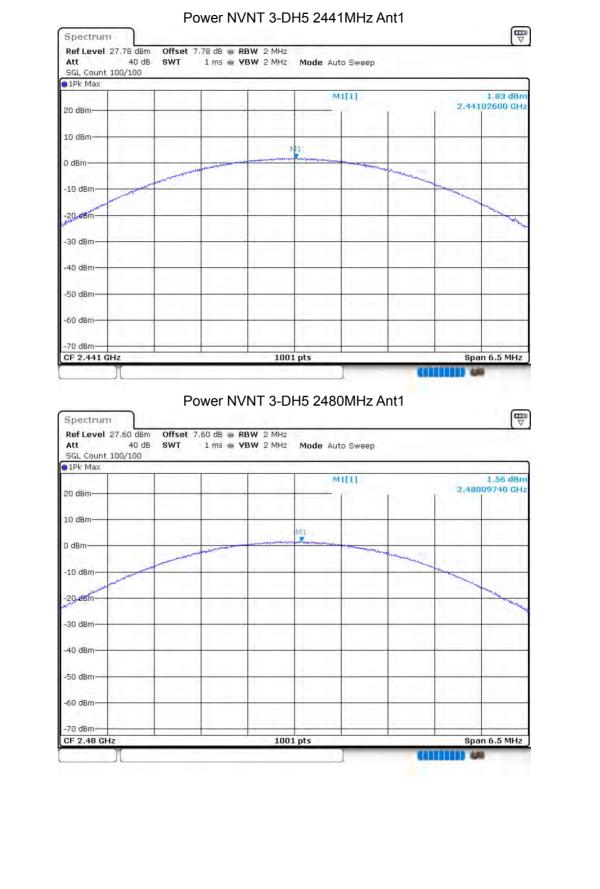


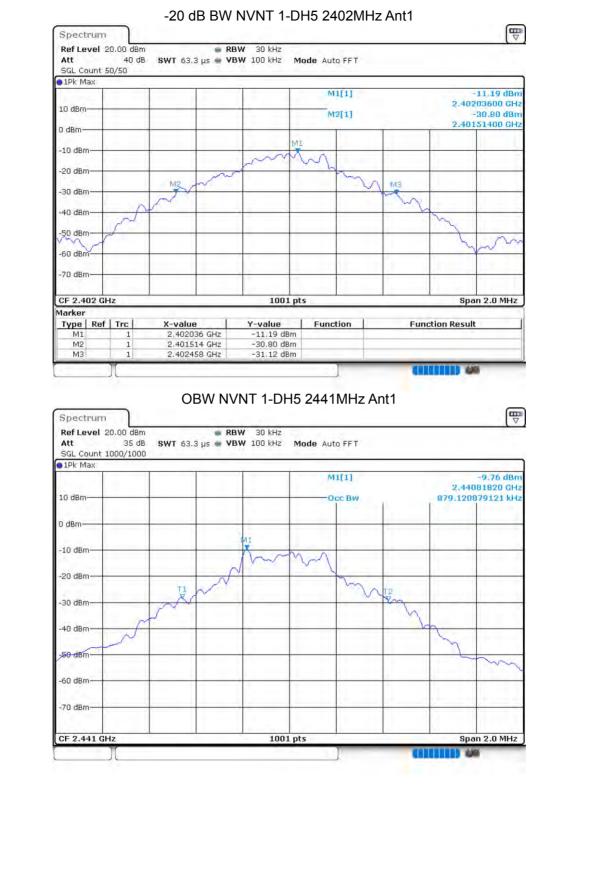

8.2 MAXIMUM CONDUCTED OUTPUT POWER

		Decile con on	OHER			
Condition	Mode	Frequency (MHz)	Antenna	Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant 1	-0.066	30	Pass
NVNT	1-DH5	2441	Ant 1	-0.394	30	Pass
NVNT	1-DH5	2480	Ant 1	-0.925	30	Pass
NVNT	2-DH5	2402	Ant 1	-0.523	21	Pass
NVNT	2-DH5	2441	Ant 1	1.564	21	Pass
NVNT	2-DH5	2480	Ant 1	1.258	21	Pass
NVNT	3-DH5	2402	Ant 1	-0.153	21	Pass
NVNT	3-DH5	2441	Ant 1	1.829	21	Pass
NVNT	3-DH5	2480	Ant 1	1.563	21	Pass

Power NVNT 1-DH5 2402MHz Ant1



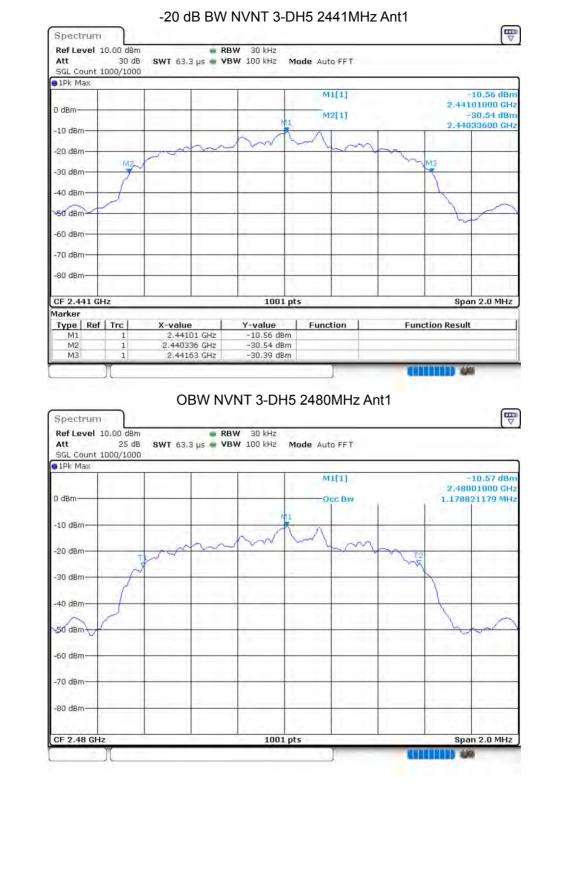


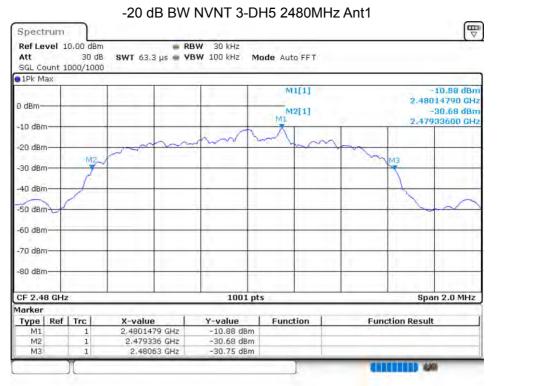

8.3 OCCUPIED CHANNEL BANDWIDTH

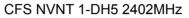
0.3 00001		NINEL DANDWID I				
Condition	Mode	Frequency	Antenna	99% OBW	-20 dB Bandwidth	Verdict
		(MHz)		(MHz)	(MHz)	
NVNT	1-DH5	2402	Ant 1	0.9031	0.944	Pass
NVNT	1-DH5	2441	Ant 1	0.8791	0.962	Pass
NVNT	1-DH5	2480	Ant 1	0.8871	0.932	Pass
NVNT	2-DH5	2402	Ant 1	1.1808	1.286	Pass
NVNT	2-DH5	2441	Ant 1	1.1828	1.284	Pass
NVNT	2-DH5	2480	Ant 1	1.1788	1.282	Pass
NVNT	3-DH5	2402	Ant 1	1.1788	1.29	Pass
NVNT	3-DH5	2441	Ant 1	1.1788	1.294	Pass
NVNT	3-DH5	2480	Ant 1	1.1788	1.294	Pass

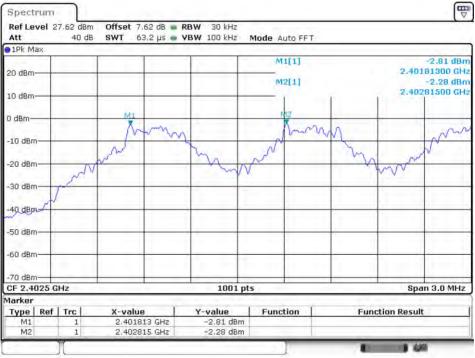
OBW NVNT 1-DH5 2402MHz Ant1

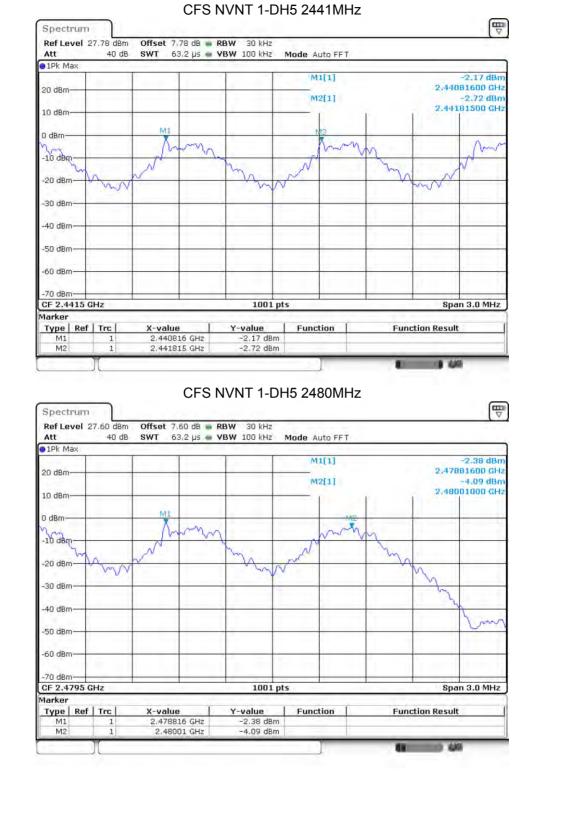




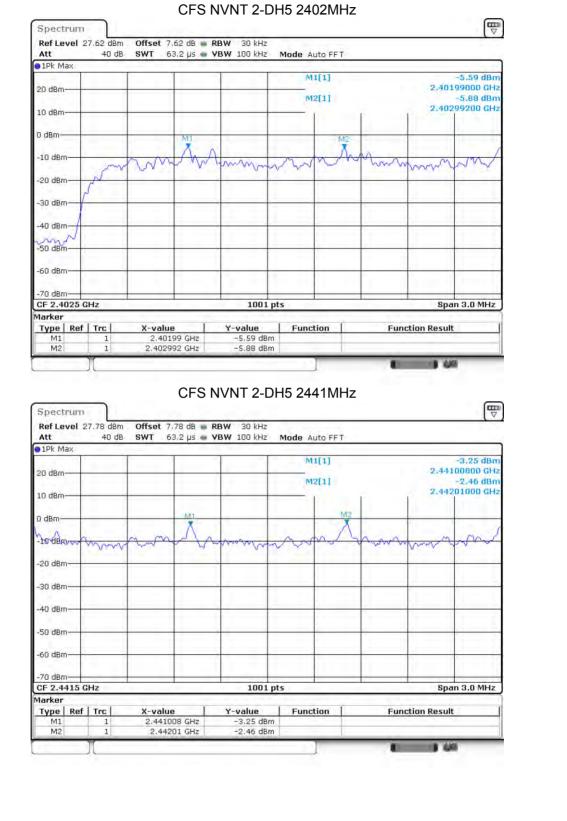


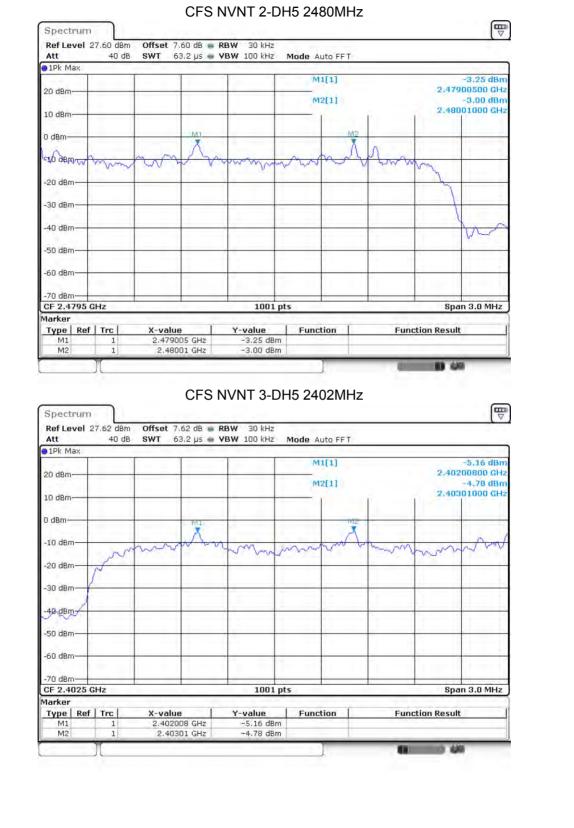


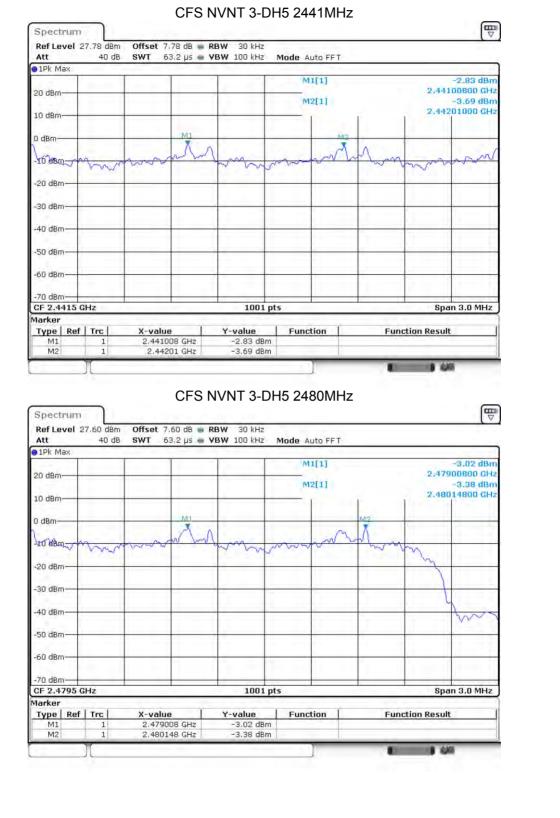


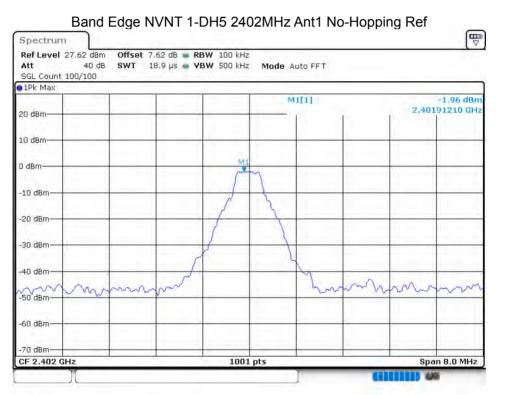

8.4 CARRIER FREQUENCIES SEPARATION

			•			
Condition	Mode	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdict
		(MHz)	(MHz)	(MHz)	(MHz)	
NVNT	1-DH5	2401.813	2402.815	1.002	0.944	Pass
NVNT	1-DH5	2440.816	2441.815	0.999	0.962	Pass
NVNT	1-DH5	2478.816	2480.01	1.194	0.932	Pass
NVNT	2-DH5	2401.99	2402.992	1.002	0.857	Pass
NVNT	2-DH5	2441.008	2442.01	1.002	0.856	Pass
NVNT	2-DH5	2479.005	2480.01	1.005	0.855	Pass
NVNT	3-DH5	2402.008	2403.01	1.002	0.86	Pass
NVNT	3-DH5	2441.008	2442.01	1.002	0.863	Pass
NVNT	3-DH5	2479.008	2480.148	1.14	0.863	Pass



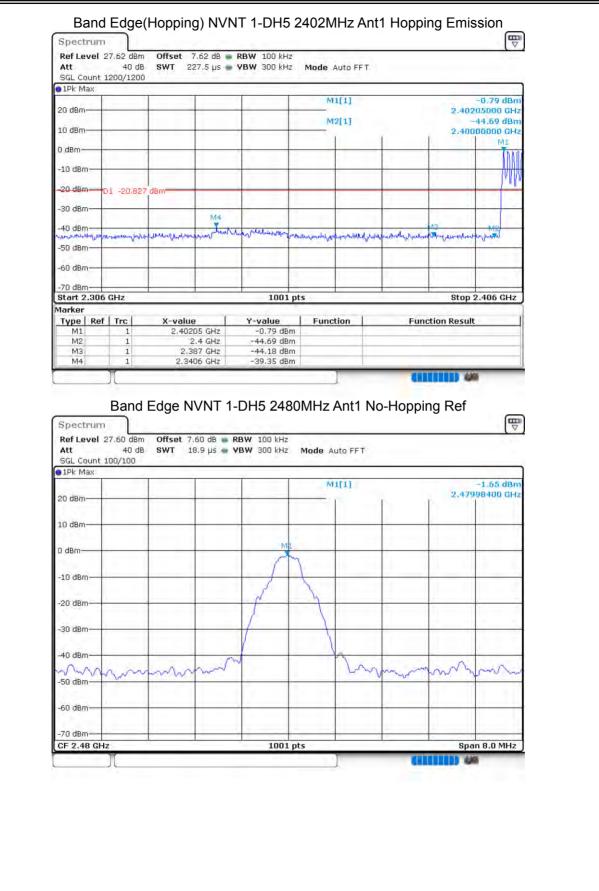






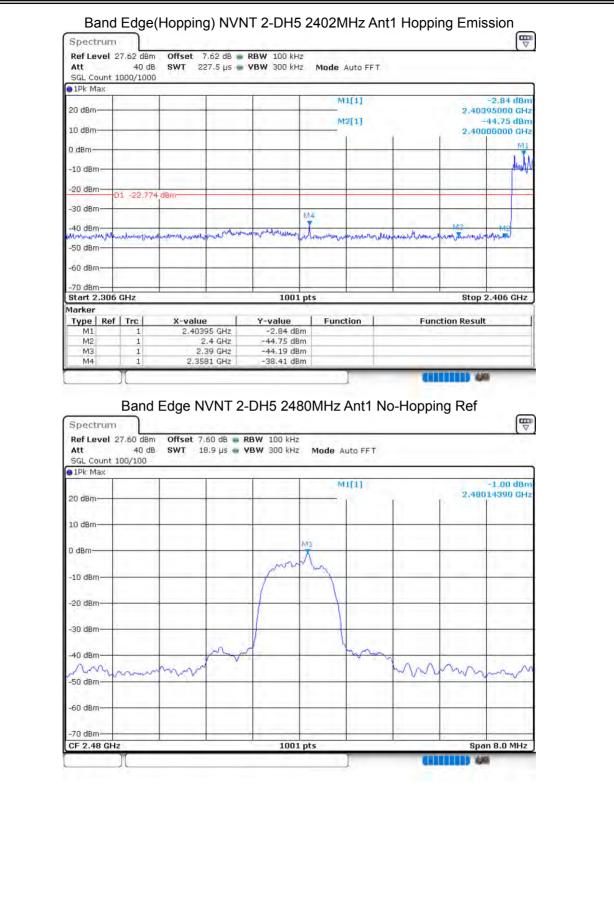
	IVNT 1-DH5 79 15 Pass Hopping No. NVNT 1-DH5 2402MHz Ref Level 27.62 dbm Offset 7.62 db RBW 100 kHz Image: Colspan="2">Colspan="2"Co	.5 NUME Condition	BER OF H				Verdi	ct				
Spectrum Image: Constraint of the second secon	Spectrum Image: constraint of the sector of th	NVNT				15						
Spectrum Image: Constraint of the second secon	Spectrum Image: constraint of the sector of th				Llon				E 24021			
Ref Level 27,62 dBm Offset 7.62 dB RBW 100 kHz Att 40 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep SGL Count 7000/7000 Ims VBW 300 kHz Mode Auto Sweep IPK Max	Ref Level 27.62 dBm Offset 7.62 dB RBW 100 kHz Att 40 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep SGL Count 7000/7000 00 0 Hz M1[1] -0.67 dBm 2.4017535 GHz 20 dBm 0 dBm 0.96 dBm 0.96 dBm 0.96 dBm 0.96 dBm 10 dBm 0.96 dBm 0.96 dBm 0.96 dBm 0.96 dBm 0.96 dBm -10 dBm 0.96 dBm 0.96 dBm 0.96 dBm 0.96 dBm 0.96 dBm -50 dBm		Spectre	um	πομ	ping No.	INVINI	ו-חם-ו	5 24021	VILL		
SGL Count 7000/7000 IPk Max 20 dBm	SGL Count 7000/7000 • 1Pk Max 20 dBm		Ref Lev	el 27.62 dBm				Mode A	uito Sween			
20 dBm	20 dBm		SGL Cou	int 7000/7000	941	1 115 101	300 K(12	Moue A	kutu sweep			
10 dBm M2[1] 0.96 dBm M1 2.4799095 GHz M2 M2 -10 dBm M2 -20 dBm M3 -30 dBm M3 -50 dBm M3 -50 dBm M3 -70 dBm M3 Start 2.4 GHz 1001 pts Start 2.4 GHz Stop 2.4835 GHz Marker M1 M1 1 2.4017535 GHz	M2[1] 0.96 dBm M1 0'dBm 0'dBm -10 dBm M2 M2 -20 dBm M3 M3 -30 dBm M3 M3 -50 dBm M3 M3 -50 dBm M3 M3 -50 dBm M3 M3 -50 dBm M3 M3 -60 dBm M3 M3 -70 dBm M3 1001 pts Stop 2.4835 GHz Marker M1 1 2.4017535 GHz -0.67 dBm		100			1		M	11[1]		2.40	
M1 M2 -10 J6m -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm	M1 M2 -10 HEm -20 HEm -20 HEm -30 HEm -40 HEm -50 HEm -60 HEm -70 HEm -70 HEm -80 HEm -90 HEm		10.00					M	12[1]			0.96 dBm
-10 ptm -20 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -50 dBm -60 dBm -70	-10 pem -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm -50 dBm -50 dBm -60 dBm -60 dBm -60 dBm -10 pem -10 peem -10 pem -10 pem -10 pem -10 peem -10 peem -1		MI					1 n n N n A J	HARAAR	MALANANA	Luch and h	
-20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70	-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -60 dBm -70 dB		- BURKU	AANDANANAN	(AAAAAAA)	100.000 AT	MAMM	UNAMA	MMMU	MANNA		
-B0 dBm -B0 dBm -B0 dBm -50 dBm -50 dBm -60 dBm -70	-80 dBm -80 dBm -80 dBm -50 dBm -60 dBm -60 dBm -60 dBm -70			A A A A A A A A A A A A A A A A A A A	DAMAGAAAA	AAAAAAAA	ANAAANAN	AAAAAA	UNHALODA.	(11)11111	Andnañani	01010
Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Result M1 1 2.4017535 GHz -0.67 dBm Function Function Result	-50 dBm -60 dBm -60 dBm -70									1		
Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Result M1 1 2.4017535 GHz -0.67 dBm Function Function Result	-50 dBm -60 dBm -60 dBm -70		-40 dBm-			-						
-70 dBm -70 dBm Stop 2.4835 GHz Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker	-70 dBm. Image: Constraint of the second secon		~									bothe
Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.4017535 GHz -0.67 dBm -0.67 dBm -0.67 dBm	Start 2.4 GHz 1001 pts Stop 2.4835 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.4017535 GHz -0.67 dBm -0.67 dBm -0.67 dBm		-60 dBm-					_		_		
Marker Type Ref Trc X-value Y-value Function Function Result I M1 1 2.4017535 GHz -0.67 dBm <td< td=""><td>Marker Type Ref Trc X-value Y-value Function Function Result I M1 1 2.4017535 GHz -0.67 dBm <td< td=""><td></td><td>-70 dBm-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td></td<></td></td<>	Marker Type Ref Trc X-value Y-value Function Function Result I M1 1 2.4017535 GHz -0.67 dBm <td< td=""><td></td><td>-70 dBm-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td></td<>		-70 dBm-								1	
M1 1 2.4017535 GHz -0.67 dBm	M1 1 2.4017535 GHz -0.67 dBm			4 GHz	-		1001 p	its			Stop 2	.4835 GHz
			Туре			I Y	-value	Eunr	tion	Fur	ction Result	1
				1	2.401753	5 GHz	-0.67 dBm			2.4		
]	a		8
]	a		
]	-		
]			
]			
]			
]			
]			
]			
]			
]			
]			
]			

8.6 BAND EDGE


0.0 DANUE							1
Condition	Mode	Frequency	Antenna	Hopping	Max Value	Limit	Verdict
		(MHz)		Mode	(dBc)	(dBc)	
NVNT	1-DH5	2402	Ant 1	No-Hopping	-39.75	-20	Pass
NVNT	1-DH5	2402	Ant 1	Hopping	-38.51	-20	Pass
NVNT	1-DH5	2480	Ant 1	No-Hopping	-40.51	-20	Pass
NVNT	1-DH5	2480	Ant 1	Hopping	-40.55	-20	Pass
NVNT	2-DH5	2402	Ant 1	No-Hopping	-35.08	-20	Pass
NVNT	2-DH5	2402	Ant 1	Hopping	-35.64	-20	Pass
NVNT	2-DH5	2480	Ant 1	No-Hopping	-41.2	-20	Pass
NVNT	2-DH5	2480	Ant 1	Hopping	-40.64	-20	Pass
NVNT	3-DH5	2402	Ant 1	No-Hopping	-37.85	-20	Pass
NVNT	3-DH5	2402	Ant 1	Hopping	-34.56	-20	Pass
NVNT	3-DH5	2480	Ant 1	No-Hopping	-41.48	-20	Pass
NVNT	3-DH5	2480	Ant 1	Hopping	-41.36	-20	Pass

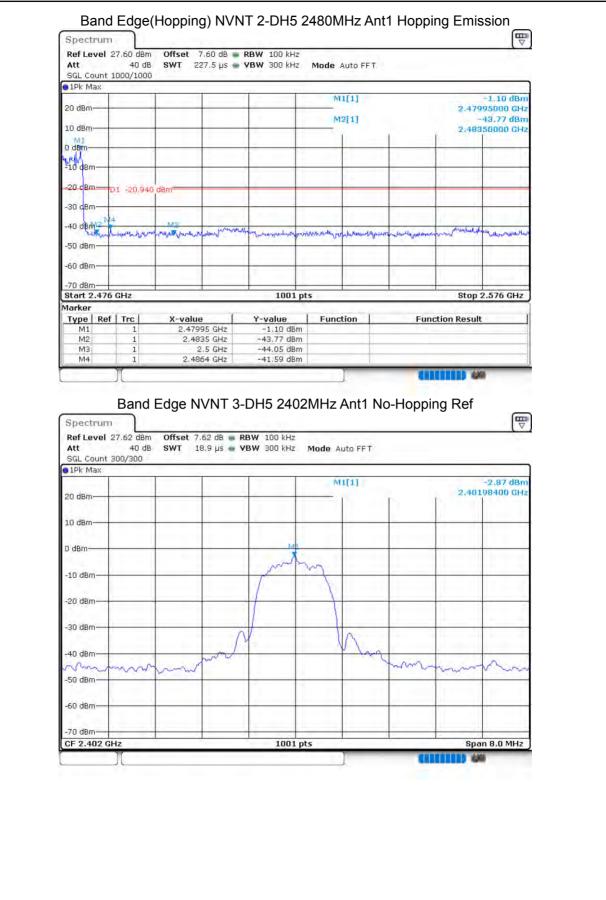
●1Pk Max		ú –		1	M	1[1]		_	-0.81 dBm	
20 dBm		-		-					185000 GHz	
10 dBm		-		1	IVI	2[1]	-		-46.02 dBm 000000 GHz	
0 dBm		1							M1	
-10 dBm				-			-	-		
-20 dBm	D1 -21.96	2 dBm	_	-	_			-		
-30 dBm	1			-						
-40 dBm	-		M4	handrown				M3 .	MZ	
-50 dBm-	umunlation	uluman horizontal	Man Maran Maran	and the second second second	anothermatic	mersonantary	al manual all	anna ann an Is	degraphic have	
-60 dBm	_			-				-		
-70 dBm				1						
Start 2.30 Marker	5 GHz			1001	pts			Stop	2.406 GHz	Į
Type Re M1	f Trc	X-value	≇ 85 GHz	Y-value -0.81 dB	Func	tion	Fund	tion Resul	t	
M2	1	2	2.4 GHz	-46.02 dB -46.88 dB	m				-	
	1	۷.	39 GHz							1
M3 M4	1	2,34	05 GHz	-41.72 dB	01					1
M4 Spectrun Ref Level Att SGL Count	and Ec	offset 7.	oing) N	-41.72 dB NVNT 1-D RBW 100 kHz VBW 300 kHz	1H5 240 Mode A	uto FFT	Ant1 Ho	pping R]
M4 Spectrun Ref Level Att	and Ec	offset 7.	oing) N	NVNT 1-D RBW 100 kHz	1H5 240 Mode A		Ant1 Ho			}
M4 Spectrun Ref Level Att SGL Count • 1Pk Max 20 dBm-	and Ec	offset 7.	oing) N	NVNT 1-D RBW 100 kHz	1H5 240 Mode A	uto FFT	Ant1 Ho		-0.83 dBm	}
M4 Spectrun Ref Level Att SGL Count • 1Pk Max	and Ec	offset 7.	oing) N	NVNT 1-D RBW 100 kHz	1H5 240 Mode A	uto FFT	Ant1 Ho		-0.83 dBm 581220 GHz	}
M4 Spectrun Ref Level Att SGL Count • 1Pk Max 20 dBm-	and Ec	offset 7.	oing) N	NVNT 1-D RBW 100 kHz	1H5 240 Mode A	uto FFT	Ant1 Ho		-0.83 dBm 581220 GHz	}
M4 Spectrun Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	and Ec	offset 7.	oing) N	NVNT 1-D RBW 100 kHz	1H5 240 Mode A	uto FFT		2.403	-0.83 dBm 581220 GHz	}
M4 Spectrun Ref Level Att SGL Count 11Pk Max 20 dBm- 10 dBm- 0 dBm-	and Ec	offset 7.	oing) N	NVNT 1-D RBW 100 kHz	1H5 240 Mode A	uto FFT		2.403	-0.83 dBm 581220 GHz	}
M4 Spectrun Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm-	and Ec	offset 7.	oing) N	NVNT 1-D RBW 100 kHz	1H5 240 Mode A			2.403	-0.83 dBm 581220 GHz M1	}
M4 Spectrun Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm-	and Ec	offset 7.	oing) N	NVNT 1-D RBW 100 kHz	1H5 240 Mode A			2.403	-0.83 dBm 581220 GHz M1	}
M4 Spectrun Ref Level Att SGL Count 10 dBm- 10 dBm- -10 dBm- -20 dBm-	and Ec	offset 7.	oing) N	NVNT 1-D RBW 100 kHz	1H5 240 Mode A			2.403	-0.83 dBm 581220 GHz M1	}
M4 Spectrun Ref Level Att SGL Count ID dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	and Ec	offset 7.	oing) N	NVNT 1-D RBW 100 kHz	1H5 240 Mode A			2.403	-0.83 dBm 581220 GHz M1	}
M4 Spectrum Ref Level Att SGL Count 10 dBm- 10 dBm- -10 dBm- -20 dBm- -20 dBm- -30 dBm- -30 dBm- -30 dBm- -50 dBm-	and Ec	offset 7.	oing) N	NVNT 1-D RBW 100 kHz	1H5 240 Mode A			2.403	-0.83 dBm 581220 GHz M1	}
M4 Spectrum Ref Level Att SGL Count ID dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm	and Ec	offset 7.	oing) N	NVNT 1-D RBW 100 kHz	1H5 240 Mode A			2.403	-0.83 dBm 581220 GHz M1	}
M4 Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	and Ec 27.62 dBn 40 db 8000/8000	offset 7.	oing) N	NVNT 1-D	Mode A			2.403	-0.83 dBm 581220 GHz M1	}
M4 Spectrum Ref Level Att SGL Count 10 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm- -30 dBm- -50 dBm- -60 dBm-	and Ec 27.62 dBn 40 db 8000/8000	offset 7.	oing) N	NVNT 1-D RBW 100 kHz	Mode A			2.403	-0.83 dBm 581220 GHz M1	}
M4 Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	and Ec 27.62 dBn 40 db 8000/8000	offset 7.	oing) N	NVNT 1-D	Mode A			2.403	-0.83 dBm 581220 GHz M1	}

SGL Count 100/10 91Pk Max						
20 dBm			M1[1]		-1.97 dB 2.48005000 GH	
			M2[1]		-46.35 dB	m
10 dBm				1 - D	2.48350000 GI	-12
0 dBm						7
-10 dBm		2				
-20 dBm-D1 -21	.653 dBm					-
-30 cBm						
-40 dBm	M4	antrodu Jonary Malagean		1000000	Massing	2
-50 dBm	with war with the	me and for a day of the	ellowed that was prophy to a lite when	and a sub-	a many anguranally	يوريو ور موري
-60 dBm						
-70 dBm				· · · · · · ·	1.1	
Start 2.476 GHz		1001 pts		<u> </u>	Stop 2.576 GH	z
Marker Type Ref Trc	X-value	Y-value	Function	Functio	n Result	I.
M1 1 M2 1						
M3 1	2.5 GHz	-46.52 dBm				
	2,4902 GH2	-42.10 UBIII				_
Spectrum Ref Level 27.60 Att 40 SGL Count 8009/8) dB SWT 18.9 µs) NVNT 1-DH5	lode Auto FFT	Ant1 Hopp	[
Band I Spectrum Ref Level 27.60 (Att 40 SGL Count 8009/6 1Pk Max	dBm Offset 7.60 dB 0 dB SWT 18,9 µs	RBW 100 kHz	1.2.1.1.1.	Ant1 Hopp	-1,19 dB	
Band I Spectrum Ref Level 27.60 Att 40	dBm Offset 7.60 dB 0 dB SWT 18,9 µs	RBW 100 kHz	lode Auto FFT	Ant1 Hopp	[
Band I Spectrum Ref Level 27.60 (Att 40 SGL Count 8009/6 1Pk Max	dBm Offset 7.60 dB 0 dB SWT 18,9 µs	RBW 100 kHz	lode Auto FFT	Ant1 Hopp	-1,19 dB	
Band I Spectrum Ref Level 27.60 Att 40 SGL Count 8009/6 1Pk Max 20 dBm 10 dBm	dBm Offset 7.60 dB 0 dB SWT 18,9 µs	RBW 100 kHz	lode Auto FFT	Ant1 Hopp	-1,19 dB	
Band I Spectrum Ref Level 27.60 Att 40 SGL Count 8009/8 IPk Max 20 dBm 10 dBm	dBm Offset 7.60 dB 0 dB SWT 18,9 µs	RBW 100 kHz	lode Auto FFT	Ant1 Hopp	-1,19 dB	
Band I Spectrum Ref Level 27.60 Att 40 SGL Count 8009/6 1Pk Max 20 dBm 10 dBm	dBm Offset 7.60 dB 0 dB SWT 18,9 µs	RBW 100 kHz	lode Auto FFT	Ant1 Hopp	-1,19 dB	
Band I Spectrum Ref Level 27.60 Att 40 SGL Count 8009/6 IPk Max 20 dBm 10 dBm 0 dBm M1	dBm Offset 7.60 dB 0 dB SWT 18,9 µs	RBW 100 kHz	lode Auto FFT	Ant1 Hopp	-1,19 dB	
Band I Spectrum Ref Level 27.60 Att 40 SGL Count 8009/8 IPk Max 20 dBm 10 dBm 0 dBm 10 dBm -10 dBm -20 dBm	dBm Offset 7.60 dB 0 dB SWT 18,9 µs	RBW 100 kHz	lode Auto FFT	Ant1 Hopp	-1,19 dB	
Band I Spectrum Ref Level 27.60 Att 40 SGL Count 8009/E 1Pk Max 20 dBm 10 dBm 0 dBm 10 dBm 11 dBm	dBm Offset 7.60 dB 0 dB SWT 18,9 µs	RBW 100 kHz	lode Auto FFT	Ant1 Hopp	-1,19 dB	
Band I Spectrum Ref Level 27.60 Att 40 SGL Count 8009/8 IPk Max 20 dBm 10 dBm 0 dBm 10 dBm -10 dBm -20 dBm	dBm Offset 7.60 dB 0 dB SWT 18,9 µs	RBW 100 kHz	lode Auto FFT	Ant1 Hopp	-1,19 dB	
Band I Spectrum Ref Level 27.60 Att 40 SGL Count 8009/8 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	dBm Offset 7.60 dB 0 dB SWT 18,9 µs	RBW 100 kHz	lode Auto FFT	Ant1 Hopp	-1,19 dB	
Band I Spectrum Ref Level 27.60 Att 40 SGL Count 8009/8 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	dBm Offset 7.60 dB 0 dB SWT 18,9 µs	RBW 100 kHz	lode Auto FFT	Ant1 Hopp	-1,19 dB	
Band I Spectrum Ref Level 27.60 Att 40 SGL Count 8009/8 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	dBm Offset 7.60 dB 0 dB SWT 18,9 µs	RBW 100 kHz	lode Auto FFT	Ant1 Hopp	-1,19 dB	
Band I Spectrum Ref Level 27.60 Att 40 SGL Count 8009/8 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	dBm Offset 7.60 dB 0 dB SWT 18,9 µs	RBW 100 kHz	lode Auto FFT	Ant1 Hopp	-1,19 dB	
Band I Spectrum Ref Level 27.60 Att 40 SGL Count 8009/8 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	dBm Offset 7.60 dB 0 dB SWT 18,9 µs	RBW 100 kHz	Node Auto FFT	Ant1 Hopp	-1,19 d8 2,47714690 Gi	
Band I Spectrum Ref Level 27.60 Att 40 SGL Count 8009/6 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	dBm Offset 7.60 dB 0 dB SWT 18,9 µs	RBW 100 kHz N	Node Auto FFT	Ant1 Hopp	-1,19 d8 2,47714690 Gi	
Band I Spectrum Ref Level 27.60 Att 40 SGL Count 8009/6 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	dBm Offset 7.60 dB 0 dB SWT 18,9 µs	RBW 100 kHz N	Node Auto FFT	Ant1 Hopp	-1,19 d8 2,47714690 Gi	
Band I Spectrum Ref Level 27.60 Att 40 SGL Count 8009/E IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -30 dBm -40 dBm -50 dBm -60 dBm	dBm Offset 7.60 dB 0 dB SWT 18,9 µs	RBW 100 kHz N	Node Auto FFT	Ant1 Hopp	-1,19 d8 2,47714690 Gi	

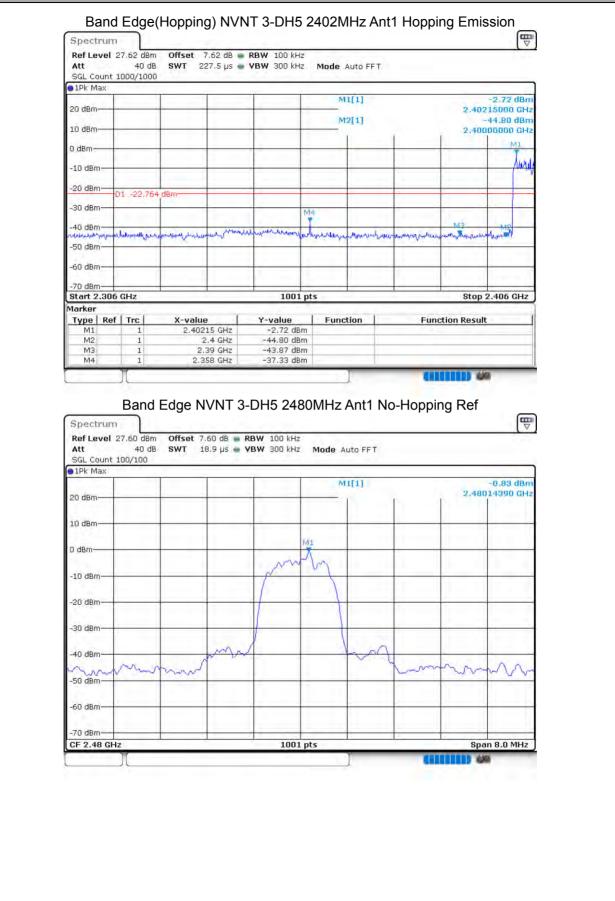


SGL Count 100 1Pk Max	0/ 1000			-	M	1[1]			-1.70 dBm
20 dBm									995000 GHz
10 dBm			\rightarrow	-	M	2[1]	6		-44,40 dBm 350000 GHz
		_		-					
-10 dBm		_			-	-			
-20 dBm-01	-21,193 0	iAm	-	5		-		11-11	1
-30 cBm						-		1	
-40 dBm		Ma	alarmi					A Real of L	1 1 1
-50 dBm	in my puterious	iphilating Nametha	from the man and the	and be a more supply and the	pymenniky constituted	manumenter	burnsmarsha	mula	an manual man
-60 dBm				·					
-70 dBm			1	· · · · ·		1	·	1	1 1
Start 2.476 GH	lz			1001	pts		1	Stop	2.576 GHz
Marker Type Ref 1	rc	X-value	.	Y-value	Funct	tion	Fund	tion Result	t - 1
M1 M2	1		95 GHz 35 GHz	-1.70 dB -44.40 dB					
M3	1		2.5 GHz 83 GHz	-44.37 dB -41.74 dB					
	1	2,48	63 GHZ						
M4	52 dBm 40 dB	Edge N	VNT 2-1)2MHz / Mode A	uto FFT	o-Hoppin	ng Ref	
M4 Spectrum Ref Level 27. Att SGL Count 100	and E	Edge N	VNT 2-1	DH5 24(BW 100 kHz)2MHz / Mode A		o-Hoppii		-5,36 dBm 201600 GHz
M4 Spectrum Ref Level 27. Att SGL Count 100 • 1Pk Max 20 dBm-	and E	Edge N	VNT 2-1	DH5 24(BW 100 kHz)2MHz / Mode A	uto FFT	o-Hoppin		-5,36 dBm
M4 Spectrum Ref Level 27. Att SGL Count 100 • 1Pk Max	and E	Edge N	VNT 2-1	DH5 24(BW 100 kHz)2MHz / Mode A	uto FFT	o-Hoppin		-5,36 dBm
M4 Spectrum Ref Level 27. Att SGL Count 100 • 1Pk Max 20 dBm-	and E	Edge N	VNT 2-1	DH5 24(BW 100 kHz	D2MHz / Mode Al	uto FFT	o-Hoppin		-5,36 dBm
M4 E Spectrum Ref Level 27. Att SGL Count 100 • 1Pk Max 20 dBm- 10 dBm-	and E	Edge N	VNT 2-1	DH5 24(BW 100 kHz BW 300 kHz	D2MHz / Mode Al	uto FFT	o-Hoppin		-5,36 dBm
M4 Spectrum Ref Level 27. Att SGL Count 100 0 1Pk Max 20 dBm 10 dBm -10 dBm	and E	Edge N	VNT 2-1	DH5 24(BW 100 kHz BW 300 kHz	D2MHz / Mode Al	uto FFT	o-Hoppin		-5,36 dBm
M4 Spectrum Ref Level 27. Att SGL Count 100 IPk Max 20 dBm- 10 dBm- 0 dBm-	and E	Edge N	VNT 2-1	DH5 24(BW 100 kHz BW 300 kHz	D2MHz / Mode Al	uto FFT	o-Hoppin		-5,36 dBm
M4 Spectrum Ref Level 27. Att SGL Count 100 0 1Pk Max 20 dBm 10 dBm -10 dBm	and E	Edge N	VNT 2-1	DH5 24(BW 100 kHz BW 300 kHz	D2MHz / Mode Al	uto FFT	o-Hoppin		-5,36 dBm
M4 E Spectrum Ref Level 27. Att SGL Count 100C SGL Count 100C 1Pk Max 20 dBm 10 dBm 10 dBm -0 dBm -10 dBm -20 dBm	and E	Edge N	VNT 2-I	DH5 24(BW 100 kHz BW 300 kHz	D2MHz / Mode Al	uto FFT	o-Hoppin		-5,36 dBm
M4 Spectrum Ref Level 27. Att SGL Count 1000 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	and E	Edge N	VNT 2-1	DH5 24(BW 100 kHz BW 300 kHz	D2MHz / Mode Al	uto FFT	o-Hoppin		-5,36 dBm
M4 E Spectrum Ref Level 27. Att SGL Count 1000 SGL Count 1000 10k Max 20 dBm 0 10 dBm 0 -10 dBm - -20 dBm - -30 dBm -	and E	Edge N	VNT 2-I	DH5 24(BW 100 kHz BW 300 kHz	D2MHz / Mode Al	uto FFT	o-Hoppin		-5,36 dBm
M4 Spectrum Ref Level 27. Att SGL Count 100 • 1Pk Max 20 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -60 dBm	and E	Edge N	VNT 2-I	DH5 24(BW 100 kHz BW 300 kHz	D2MHz / Mode Al	uto FFT	o-Hoppin		-5,36 dBm
M4 Spectrum Ref Level 27. Att SGL Count 100 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	and E	Edge N	VNT 2-I	DH5 24(BW 100 kHz BW 300 kHz		uto FFT	o-Hoppin	2.402	-5,36 dBm
M4 Spectrum Ref Level 27. Att SGL Count 100 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	and E	Edge N	VNT 2-I	DH5 240		uto FFT	o-Hoppin	2.402	-5,36 dBm 201600 GHz
M4 Spectrum Ref Level 27. Att SGL Count 100 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	and E	Edge N	VNT 2-I	DH5 240		uto FFT	o-Hoppin	2.402	-5,36 dBm 201600 GHz

●1Pk Max				1	M	1[1]			-5.85 dBn	7
20 dBm				-				2.40	0185000 GH	z
10 dBm		2		-	M	2[1]	<i>.</i>	2.40	-47.34 dBn 1000000 GH	
0 dBm	_		-	-				-	TIM	
-10 dBm				-	-		-		1 Å	
-20 dBm	Li ile Li d		-	-			-	-		-
-30 dBm-	01 -25,362	dBm	-							2
-40 dBm			t date ture	and something and	M4	Farmer Sa	un un hang opposite	MB	we there was	4
-50 dBm	www.wall.wall.wall.wall	sharenny likeshay	STORING STORING	water	and mound was with	humanal	an channed when the	white	warding he	7
-60 dBm	_			-	-			-		-
-70 dBm	-			-						-
Start 2.306 Marker				100	1 pts	1		Sto	o 2.406 GHz	-
Type Ref M1 M2 M3 M4	1 1 1	2.	85 GHz 2.4 GHz 39 GHz	Y-value -5.85 di -47.34 di -47.04 di	Bm Bm		T un	tion Resu		
IN(T)	1	2,35	81 GHz	-40.44 di	Bm					
Ba Spectrum Ref Level : Att SGL Count I	and Edg 27.62 dBm 40 dB	ge(Hop	ping) N'	VNT 2-E	DH5 240		Ant1 Ho	oping F	¥ Ref [₩	
Ba Spectrum Ref Level : Att SGL Count I	and Edg 27.62 dBm 40 dB	ge(Hop	ping) N'	VNT 2-E	DH5 240 ^z ^z Mode A		Ant1 Ho			1
Ba Spectrum Ref Level : Att SGL Count 1 • 1Pk Max	and Edg 27.62 dBm 40 dB	ge(Hop	ping) N'	VNT 2-E	DH5 240 ^z ^z Mode A	uto FFT	Ant1 Ho		-2,77 dBn	1
Ba Spectrum Ref Level : Att SGL Count 1 • 1Pk Max 20 dBm-	and Edg 27.62 dBm 40 dB	ge(Hop	ping) N'	VNT 2-E	DH5 240 ^z ^z Mode A	uto FFT	Ant1 Ho		-2,77 dBn	1
Ba Spectrum Ref Level : Att SGL Count f IPk Max 20 dBm 10 dBm 0 dBm	and Edg 27.62 dBm 40 dB	ge(Hop	ping) N'	VNT 2-E	DH5 240 ^z ^z Mode A	uto FFT	Ant1 Ho		-2,77 dBn	1
Ba Spectrum Ref Level : Att SGL Count f SGL Count f 1Pk Max 20 dBm 10 dBm	and Edg 27.62 dBm 40 dB	ge(Hop	ping) N'	VNT 2-E	DH5 240 ^z ^z Mode A	uto FFT	Ant1 Ho		-2,77 dBn	1
Ba Spectrum Ref Level : Att SGL Count f IPk Max 20 dBm 10 dBm 0 dBm	and Edg 27.62 dBm 40 dB	ge(Hop	ping) N'	VNT 2-E	DH5 240 ^z ^z Mode A	uto FFT	Ant1 Ho		-2,77 dBn	1
Ba Spectrum Ref Level 3 Att SGL Count 1 O Bm 10 dBm 0 dBm -10 dBm	and Edg 27.62 dBm 40 dB	ge(Hop	ping) N'	VNT 2-E	DH5 240 ^z ^z Mode A	uto FFT			-2,77 dBn	1
Ba Spectrum Ref Level 3 Att SGL Count 1 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	and Edg 27.62 dBm 40 dB	ge(Hop	ping) N'	VNT 2-E	DH5 240 ^z ^z Mode A	uto FFT	Ant1 Ho		-2,77 dBn	1
Ba Spectrum Ref Level : Att SGL Count f IC dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm	and Edg 27.62 dBm 40 dB	ge(Hop	ping) N'	VNT 2-E	DH5 240 ^z ^z Mode A	uto FFT	Ant1 Ho		-2,77 dBn	1
Ba Spectrum Ref Level 3 Att SGL Count 1 9 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm	and Edg 27.62 dBm 40 dB	ge(Hop	ping) N'	VNT 2-E	DH5 240 ^z ^z Mode A	uto FFT	Ant1 Ho		-2,77 dBn	1
Ba Spectrum Ref Level : Att SGL Count f IC Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm	and Edg 27.62 dBm 40 dB	ge(Hop	ping) N'	VNT 2-E	DH5 240 ^z ^z Mode A	uto FFT	Ant1 Ho		-2,77 dBn	1
Ba Spectrum Ref Level : Att SGL Count I IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	and Edg 27.62 dBm 40 dB	ge(Hop	ping) N'	VNT 2-E	DH5 240 ^z ^z Mode A	uto FFT			-2,77 dBn	1
Ba Spectrum Ref Level : Att SGL Count I I Coun	and Edg 27.62 dBm 40 dB 3000/8000	ge(Hop	ping) N'		DH5 240 ^z ^z Mode A	uto FFT	Ant1 Ho	2.44	-2.77 dBn 0314290 GH	
Ba Spectrum Ref Level : Att SGL Count f SGL Count f ID dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	and Edg 27.62 dBm 40 dB 3000/8000	ge(Hop	ping) N'		DH5 240	uto FFT		2.44	-2.77 dBn)314290 GH	
Ba Spectrum Ref Level : Att SGL Count f SGL Count f ID dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	and Edg 27.62 dBm 40 dB 3000/8000	ge(Hop	ping) N'		DH5 240	uto FFT		2.44	-2.77 dBn 0314290 GH	



1Pk Max		-		1	M	1[1]		_	-1.66 dBm
20 dBm									985000 GHz
10 dBm		_		-	M	2[1]	200		-46.09 dBm 350000 GHz
0 dam									
-10 dBm								1	
-20 cBm-D	1 00.000	-Dec		5		-		1	1
-30 dBm	1 -20,9991	ADUL.							
A	MA		17		1000	1.12	1	1	1 6.
-50 dBm	inverse bring	1. MB	themandant	here have been a second and the marked	annan an a	the start and th	repushinghing	papendar Mindhear	all comparison the
			1	·					
-60 dBm				· · · · · · · ·				1	+
-70 dBm Start 2.476	GHz	1	1	1001	pts			Stop	2.576 GHz
Marker Type Ref	Tre	X-value		Y-value	Funct	tion 1	Eun	ction Resul	
M1	1	2.479	35 GHz	-1.66 dB	m		Fui	ccion Kesu	
M2 M3	1	2	35 GHz .5 GHz	-46.08 dB -47.04 dB	m				
	1	2,493	34 GHz	-42.20 dB	m				
Spectrum Ref Level 2 Att SGL Count 8	nd Edg	e(Hopp Offset 7	60 dB 🐞 F	VNT 2-D RBW 100 kHz VBW 300 kHz	F 23. 2.		Ant1 Ho	pping R	ef
Ba Spectrum Ref Level 2 Att	nd Edg	e(Hopp Offset 7	60 dB 🐞 F	RBW 100 kHz	Mode A		Ant1 Ho		
Ba Spectrum Ref Level 2 Att SGL Count 8 • 1Pk Max	nd Edg	e(Hopp Offset 7	60 dB 🐞 F	RBW 100 kHz	Mode A	uto FFT	Ant1 Ho		-0,94 dBm
Ba Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm	nd Edg	e(Hopp Offset 7	60 dB 🐞 F	RBW 100 kHz	Mode A	uto FFT	Ant1 Ho		-0,94 dBm
Ba Spectrum Ref Level 2 Att SGL Count B 1Pk Max 20 dBm	nd Edg	offset 7. swr 18	60 dB 🐞 F	RBW 100 kHz	Mode A	uto FFT	Ant1 Ho		-0,94 dBm
Ba Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm	nd Edg	offset 7. swr 18	60 dB 🐞 F	RBW 100 kHz	Mode A	uto FFT	Ant1 Ho		-0,94 dBm
Ba Spectrum Ref Level 2 Att SGL Count 8 O IPK Max 20 dBm 10 dBm 0 dBm	nd Edg	offset 7. swr 18	60 dB 🐞 F	RBW 100 kHz	Mode A	uto FFT	Ant1 Ho		-0,94 dBm
Ba Spectrum Ref Level 2 Att SGL Count 8 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	nd Edg	offset 7. swr 18	60 dB 🐞 F	RBW 100 kHz	Mode A	uto FFT	Ant1 Ho		-0,94 dBm
Ba Spectrum Ref Level 2 Att SGL Count B • IPk Max 20 dBm 10 dBm 0 dBm - 10 dBm	nd Edg	offset 7. swr 18	60 dB 🐞 F	RBW 100 kHz	Mode A	uto FFT	Ant1 Ho		-0,94 dBm
Ba Spectrum Ref Level 2 Att SGL Count 8 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	nd Edg	offset 7. swr 18	60 dB 🐞 F	RBW 100 kHz	Mode A	uto FFT	Ant1 Ho		-0,94 dBm
Ba Spectrum Ref Level 2 Att SGL Count 8 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	nd Edg	offset 7. swr 18	60 dB 🐞 F	RBW 100 kHz	Mode A	uto FFT	Ant1 Ho		-0,94 dBm
Ba Spectrum Ref Level 2 Att SGL Count 8 • IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm	nd Edg	offset 7. swr 18	60 dB 🐞 F	RBW 100 kHz	Mode A	uto FFT	Ant1 Ho		-0,94 dBm
Ba Spectrum Ref Level 2 Att SGL Count 8 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	nd Edg	offset 7. swr 18	60 dB 🐞 F	RBW 100 kHz	Mode A	uto FFT	Ant1 Ho		-0,94 dBm
Ba Spectrum Ref Level 2 Att SGL Count 8 SGL Count 8	nd Edg 7.60 dBm 40 dB 2000/8000	offset 7. swr 18	60 dB 🐞 F		Mode Ar	uto FFT	Ant1 Ho	2.47	-0.94 dBm 797800 GHz
Ba Spectrum Ref Level 2 Att SGL Count 8 O dBm 10 dBm 0 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm	nd Edg 7.60 dBm 40 dB 2000/8000	offset 7. swr 18	60 dB 🐞 F	RBW 100 kHz	Mode Ar	uto FFT	Ant1 Ho	2.47	-0.94 dBm 797800 GHz
Ba Spectrum Ref Level 2 Att SGL Count 8 O dBm 10 dBm 0 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm	nd Edg 7.60 dBm 40 dB 2000/8000	offset 7. swr 18	60 dB 🐞 F		Mode Ar	uto FFT	Ant1 Ho	2.47	-0.94 dBm 797800 GHz
Ba Spectrum Ref Level 2 Att SGL Count B • IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm	nd Edg 7.60 dBm 40 dB 2000/8000	offset 7. swr 18	60 dB 🐞 F		Mode Ar	uto FFT	Ant1 Ho	2.47	-0.94 dBm 797800 GHz



SGL Count 1Pk Max								
20 dBm					M1[1]		2.	-3.19 dBm 40205000 GHz
10 dBm			1.1	1.1	M2[1]		2.	~45.91 dBm 40000000 GHz
0 dBm								M1
-10 dBm-			1		2	111		A A
-20 dBm-								
	D1 -22.872	dBm						
-30 dBm			1	M4.		- 1 () - 1		
-40 dBm-	and Marathe Annie	montenertransp	artigraph the twin	up and the second	Horney Purchan Marilando	whatever and we are	w. hulleting many	wolling must been
-50 dBm				·				
-60 dBm			-	·				
-70 dBm	6 GHz			1001	pts		St	op 2.406 GHz
Marker Type Re	fluol	X-value		Y-value	Function	í.	Function Re:	- ult I
M1	1	2.402	05 GHz	-3.19 dBr	n		Function Ke	suit
M2 M3	1	2.	2.4 GHz 39 GHz	-45.91 dBr -46.59 dBr	n			
M4	1	2,34	89 GHz	-40.73 dBr	n ''			100
Spectrur Ref Level Att SGL Count	and Ed 27.62 dBm 40 dB 8000/8000	Offset 7		BW 100 kHz ' BW 300 kHz	Mode Auto F	FT		
Spectrur Ref Level Att	n 27.62 dBm 40 dB	Offset 7			Mode Auto F			-2,76 dBm 40281520 GHz
Spectrur Ref Level SGL Count • 1Pk Max 20 dBm	n 27.62 dBm 40 dB	Offset 7			-			-2,76 dBm
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm-	n 27.62 dBm 40 dB	Offset 7			-			-2,76 dBm 40281520 GHz
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 0 dBm- -10 dBm-	n 27.62 dBm 40 dB	Offset 7			-			-2,76 dBm 40281520 GHz
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	n 27.62 dBm 40 dB	Offset 7			-			-2,76 dBm 40281520 GHz
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm-	n 27.62 dBm 40 dB	Offset 7			-			-2,76 dBm 40281520 GHz
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -20 dBm- -30 dBm-	n 27.62 dBm 40 dB	Offset 7			-			-2,76 dBm 40281520 GHz
Spectrur Ref Level Att SGL Count ID dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	n 27.62 dBm 40 dB	Offset 7			-			-2,76 dBm 40281520 GHz
Spectrur Ref Level Att SGL Count 19k Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -20 dBm- -30 dBm- -50 dBm- -60 dBm-	n 27.62 dBm 40 dB	Offset 7			-			-2,76 dBm 40281520 GHz
Spectrur Ref Level Att SGL Count SGL Count 10 dBm	n 27.62 dBm 40 dB 8000/8000	Offset 7					Mann	-2,76 dBm 40281520 GHz
Spectrur Ref Level Att SGL Count SGL Count ID dBm 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm	n 27.62 dBm 40 dB	Offset 7			-			-2,76 dBm 40281520 GHz

20 dBm-			M1[1]			n
20 0011			M2[1]		2.47995000 GH	z
10 dBm			1	() (2.48350000 GH	
	-					-
-10 cBm			-	-		-
-20 cBm	0.826 dBm					-
-30 dBm						-
-40 deme	M4			and the set	1 MARINE I	
-50 dBm	where the week of the second	address and another states	-new-material matches and the	worne was an all	- an answer of fundamental	N.
-60 dBm						
-70 dBm					1 1 1 1 1	
Start 2.476 GHz		10	001 pts	<u>^</u>	Stop 2.576 GHz	3
Marker Type Ref Tro			e Function	Function	Result	Ĩ.
M1 // // // // // // // // // // // // //	1 2.4799 1 2.483	5 GHz -1.09 5 GHz -43.66		1 M 1		-
	11	5 GHz -45.29	dBm			-
M3 :						-
M4 Band Spectrum Ref Level 27.60	1 2.497 Edge(Hopp dBm Offset 7.6 0 dB SwT 18	5 GHz -42.31 ing) NVNT 3-	-DH5 2480MHz kHz kHz Mode Auto FFT	Ant1 Hoppin	Ţ	
M4 Band Spectrum Ref Level 27.60 Att 4 SGL Count 8000/	1 2.497 Edge(Hopp dBm Offset 7.6 0 dB SwT 18	5 GHz -42.31 ing) NVNT 3-	-DH5 2480MHz	Ant1 Hoppin		
M4 Band Spectrum Ref Level 27.60 Att 4 SGL Count 8000/ 1Pk Max 20 dBm- 10 dBm-	1 2.497 Edge(Hopp dBm Offset 7.6 0 dB SWT 18 8000	5 GHz -42.31	-DH5 2480MHz kHz kHz Mode Auto FFT	Ant1 Hoppin	-0.71 dBn	
M4 Spectrum Ref Level 27.60 Att 4 SGL Count 8000/ 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm	1 2.497 Edge(Hopp dBm Offset 7.6 0 dB SWT 18 8000	5 GHz -42.31	-DH5 2480MHz kHz kHz Mode Auto FFT	Ant1 Hoppin	-0.71 dBn	
M4 Band Spectrum Ref Level 27.60 Att 4 SGL Count 8000/ 1Pk Max 20 dBm 10 dBm 0 dBm	1 2.497 Edge(Hopp dBm Offset 7.6 0 dB SWT 18 8000	5 GHz -42.31	-DH5 2480MHz kHz kHz Mode Auto FFT	Ant1 Hoppin	-0.71 dBn	
M4 Spectrum Ref Level 27.60 Att 4 SGL Count 8000/ 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm	1 2.497 Edge(Hopp dBm Offset 7.6 0 dB SWT 18 8000	5 GHz -42.31	-DH5 2480MHz kHz kHz Mode Auto FFT	Ant1 Hoppin	-0.71 dBn	
M4 Spectrum Ref Level 27.60 Att 4 SGL Count 8000/ 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	1 2.497 Edge(Hopp dBm Offset 7.6 0 dB SWT 18 8000	5 GHz -42.31	-DH5 2480MHz kHz kHz Mode Auto FFT	Ant1 Hoppin	-0.71 dBn	
M4 Image: Spectrum Ref Level 27.60 4 SGL Count 8000/ 10 1Pk Max 4 20 dBm 10 10 dBm 10 -20 dBm -10 -30 dBm -40 dBm	1 2.497 Edge(Hopp dBm Offset 7.6 0 dB SWT 18 8000	5 GHz -42.31	-DH5 2480MHz kHz kHz Mode Auto FFT	Ant1 Hoppin	-0.71 dBn	
M4 Image: Spectrum Ref Level 27.60 4 SGL Count 8000/ 4 ID dBm 10 10 dBm 0 20 dBm - -10 dBm - -20 dBm - -30 dBm - -50 dBm -	1 2.497 Edge(Hopp dBm Offset 7.6 0 dB SWT 18 8000	5 GHz -42.31	-DH5 2480MHz kHz kHz Mode Auto FFT	Ant1 Hoppin	-0.71 dBn	
M4 Image: Spectrum Ref Level 27.60 4 SGL Count 8000/ 10 1Pk Max 4 20 dBm 10 10 dBm 10 -20 dBm -10 -30 dBm -40 dBm	1 2.497 Edge(Hopp dBm Offset 7.6 0 dB SWT 18 8000	5 GHz -42.31	-DH5 2480MHz kHz kHz Mode Auto FFT	Ant1 Hoppin	-0.71 dBn	
M4 Image: Spectrum Ref Level 27.60 Att 4 SGL Count 8000/ 11 Pk Max 20 dBm 10 dBm 10 dBm 0 -10 dBm 0 -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -60 dBm	1 2.497 Edge(Hopp dBm Offset 7.6 0 dB SWT 18 8000	5 GHz -42.31	-DH5 2480MHz	Ant1 Hoppin	-0.71 dBn 2.47814590 GH:	n
M4 Image: Spectrum Ref Level 27.60 4 ScL Count 8000/ 4 10 dBm 1 10 dBm 1 20 dBm 1 -10 dBm 1 -20 dBm -30 dBm -50 dBm -60 dBm	1 2.497 Edge(Hopp dBm Offset 7.6 0 dB SWT 18 8000	5 GHz -42.31	-DH5 2480MHz kHz kHz Mode Auto FFT	Ant1 Hoppin	-0.71 dBn	nzz

[₩ 				RBW 100 kHz	7.60 dB	Offset	7.60 dBr	trum evel 27	20.00
		Auto FFT	Mode				40 d		Att
				11.1.1.1.1			000/100		
				1000				/lax	1Pk M
-1.71 dBm		M1[1]	n						
2.48005000 GHz		-						n	0 dBm
-43.36 dBm		M2[1]	1	1.1				_	0 dBm
2.48350000 GHz	1 E		-						
	-								dBm-
In case of the second									
	-	-						m	D cBm
		_		-		3 dBm	-20.7	m-D	20 cBrr
		-						m	30 dBm
						MAMA		Ma	hab of
for a phone that have been been been and the	and market and the rolling	Marthalanthall and	mander	undry any more lyon	nor hand	wanter to advert	NPLAMA	Manut	n anu
	a sources	A Martin Part	A second				11.1 Q.	× .	0 dBm
1				4 4 ·····				in l	o abii
								m	50 dBm
		-						m	70 dBm
Stop 2.576 GHz			ts	1001 pts	<u></u>		GHz	2.476 0	tart 2
								r i	arker
ction Result	Funct	nction	Fun	Y-value	ue	X-valu	Trc	Ref	Type
				-1.71 dBm	BOD5 GHz	and the second se	1	_	M1
				-43.36 dBm	4835 GHz	2.48	1	2	M2
				-44.53 dBm	2.5 GHz	Card	1	1	M3

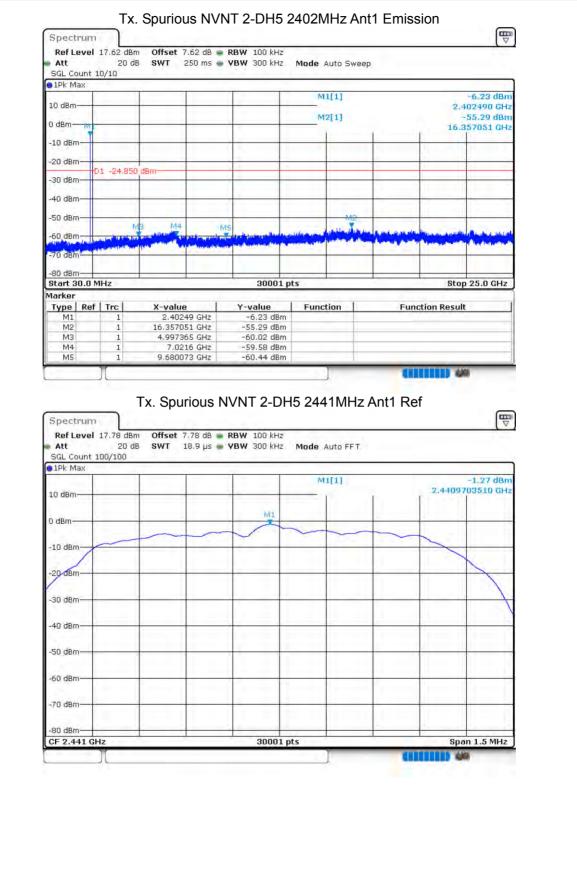
8.7 CONDUCTED RF SPURIOUS EMISSION

• ••	••••					
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant 1	-55.05	-20	Pass
NVNT	1-DH5	2441	Ant 1	-53.44	-20	Pass
NVNT	1-DH5	2480	Ant 1	-54.09	-20	Pass
NVNT	2-DH5	2402	Ant 1	-50.44	-20	Pass
NVNT	2-DH5	2441	Ant 1	-54.36	-20	Pass
NVNT	2-DH5	2480	Ant 1	-52.81	-20	Pass
NVNT	3-DH5	2402	Ant 1	-51.23	-20	Pass
NVNT	3-DH5	2441	Ant 1	-52.51	-20	Pass
NVNT	3-DH5	2480	Ant 1	-54.57	-20	Pass

₽ Spectrum Ref Level 17.62 dBm Offset 7.62 dB 🖷 RBW 100 kHz 20 dB SWT 18.9 µs 🛥 VBW 300 kHz Att Mode Auto FFT SGL Count 100/100 1Pk Max -0,47 dBm 2,4018144060 GHz MI[1] 10 dBm-MI 0 dBm -10 dBm--20 dBm--30 dBm--40 dBm -50 dBm -60 dBm -70 dBm -80 dBm-Span 1.5 MHz 30001 pts CF 2.402 GHz 144

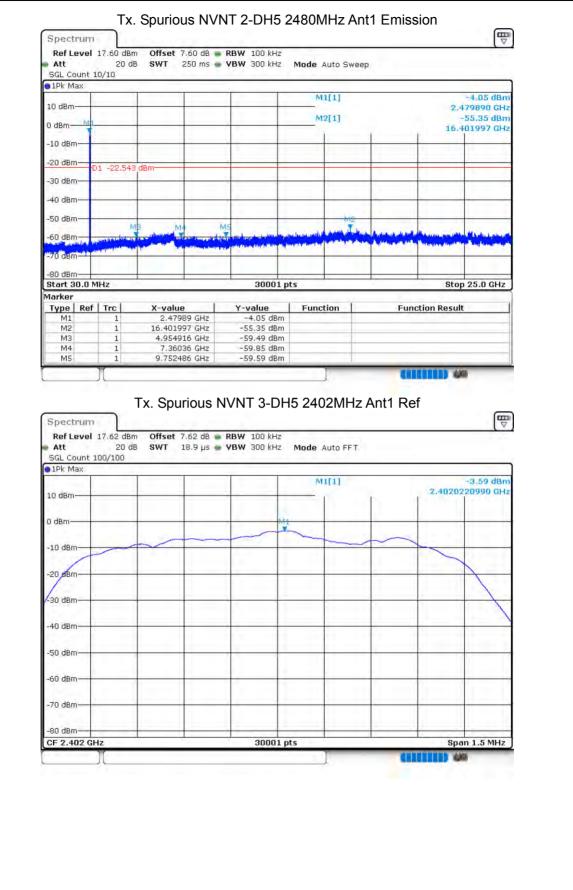
Tx. Spurious NVNT 1-DH5 2402MHz Ant1 Ref

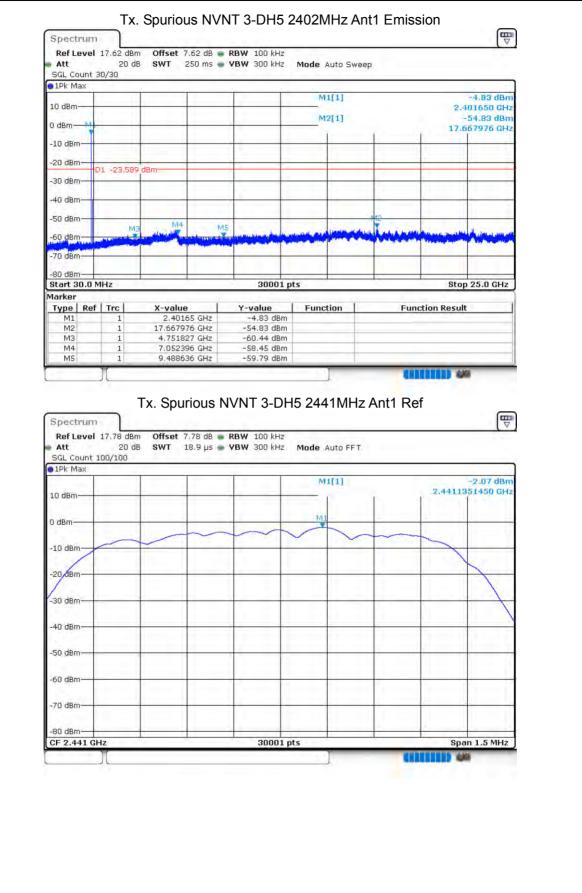
• 1Pk Max				M1	[1]			-1.37 dBm
10 dBm								401650 GHz
0 dBm		\rightarrow	-	M2	[1]			-55.53 dBm 999515 GHz
-10 dBm					_			
-20-dBm-D1 -20	1.474 dBm	_				2	· · · ·	
-30 dBm		_	-					
-40 dBm		_	1					
-50 dBm		1		1.45				
-60 dBm	MB M4	M5	In Million Laboration		And all from		"hallowers and and	A links of a longer
-70 dBm		1					-b	
				1			1	
-80 dBm Start 30.0 MHz			30001	pts			Sto	p 25.0 GHz
Marker	1 4 1		9	1			Mar D.	
Type Ref Trc M1 1	2,4016	5 GHz	Y-value -1.37 dBm		un	Fun	ction Resul	
M2 1 M3 1			-55.53 dBn -59.20 dBn					
M4 1	7.03824	7 GHz	-57.53 dBn	n				
M5 1	9,44202	S GHZ	~59.64 dBn	1				
Spectrum Ref Level 17.78 Att 2 SGL Count 100/10 1Pk Max	20 dB SWT 1	.78 dB 🝙 F	VNT 1-D		uto FFT.	Ant1 Re	f	-1.47 dBm
Ref Level 17.78 Att 2 SGL Count 100/10	dBm Offset 7 20 dB SWT 1	.78 dB 🝙 F	RBW 100 kHz	Mode Au	uto FFT.	Ant1 Re		
Ref Level 17.78 Att 2 SGL Count 100/10 1Pk Max	dBm Offset 7 20 dB SWT 1	.78 dB 🝙 F	RBW 100 kHz	Mode Au	uto FFT.	Ant1 Re		-1.47 dBm
Ref Level 17.78 Att 2 SGL Count 100/10 1Pk Max 10 dBm- 0 dBm-	dBm Offset 7 20 dB SWT 1	.78 dB 🝙 F	RBW 100 kHz	Mode Au	uto FFT.	Ant1 Re		-1.47 dBm
Ref Level 17.78 Att 2 SGL Count 100/10 1Pk Max 10 dBm-	dBm Offset 7 20 dB SWT 1	.78 dB 🝙 F	RBW 100 kHz	Mode Au	uto FFT.	Ant1 Re		-1.47 dBm
Ref Level 17.78 Att 2 SGL Count 100/10 1Pk Max 10 dBm- 0 dBm-	dBm Offset 7 20 dB SWT 1	.78 dB 🝙 F	RBW 100 kHz	Mode Au	uto FFT.	Ant1 Re		-1.47 dBm
Ref Level 17.78 Att 2 SGL Count 100/10 1Pk Max 10 dBm- 0 dBm- -10 dBm-	dBm Offset 7 20 dB SWT 1	.78 dB 🝙 F	RBW 100 kHz	Mode Au	uto FFT.	Ant1 Re		-1.47 dBm
Ref Level 17.78 Att 2 SGL Count 100/10 1Pk Max 10 dBm- 0 dBm- -10 dBm-	dBm Offset 7 20 dB SWT 1	.78 dB 🝙 F	RBW 100 kHz	Mode Au	uto FFT.	Ant1 Re		-1.47 dBm
Ref Level 17.78 Att 2 SGL Count 100/10 1Pk Max 10 dBm 0 -10 dBm -	dBm Offset 7 20 dB SWT 1	.78 dB 🝙 F	RBW 100 kHz	Mode Au	uto FFT.	Ant1 Re		-1.47 dBm
Ref Level 17.78 Att 2 SGL Count 100/10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	dBm Offset 7 20 dB SWT 1	.78 dB 🝙 F	RBW 100 kHz	Mode Au	uto FFT.	Ant1 Re		-1.47 dBm
Ref Level 17.78 Att 2 SGL Count 100/10 1Pk Max 10 10 dBm 0 dBm -10 dBm - - -20 dBm - - -30 dBm - -	dBm Offset 7 20 dB SWT 1	.78 dB 🝙 F	RBW 100 kHz	Mode Au	uto FFT.	Ant1 Re		-1.47 dBm
Ref Level 17.78 Att 2 SGL Count 100/10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	dBm Offset 7 20 dB SWT 1	.78 dB 🝙 F	RBW 100 kHz	Mode Au	uto FFT.	Ant1 Re		-1.47 dBm
Ref Level 17.78 Att 2 SGL Count 100/10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	dBm Offset 7 20 dB SWT 1	.78 dB 🝙 F	RBW 100 kHz	Mode Au	uto FFT.	Ant1 Re		-1.47 dBm
Ref Level 17.78 Att 2 SGL Count 100/10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	dBm Offset 7 20 dB SWT 1	.78 dB 🝙 F	RBW 100 kHz	Mode Au	uto FFT.	Ant1 Re		-1.47 dBm
Ref Level 17.78 Att 2 SGL Count 100/10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -60 dBm -70 dBm -70 dBm	dBm Offset 7 20 dB SWT 1	.78 dB 🝙 F	88W 100 kHz 78W 300 kHz	Mode Au	uto FFT.	Ant1 Re	2.4410	-1.47 dBm 419490 GHz
Ref Level 17.78 Att 2 SGL Count 100/10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	dBm Offset 7 20 dB SWT 1	.78 dB 🝙 F	RBW 100 kHz	Mode Au	uto FFT.	Ant1 Re	2.4410	-1.47 dBm
Ref Level 17.78 Att 2 SGL Count 100/10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm	dBm Offset 7 20 dB SWT 1	.78 dB 🝙 F	88W 100 kHz 78W 300 kHz	Mode Au	uto FFT.	Ant1 Re	2.4410	-1.47 dBm 419490 GHz



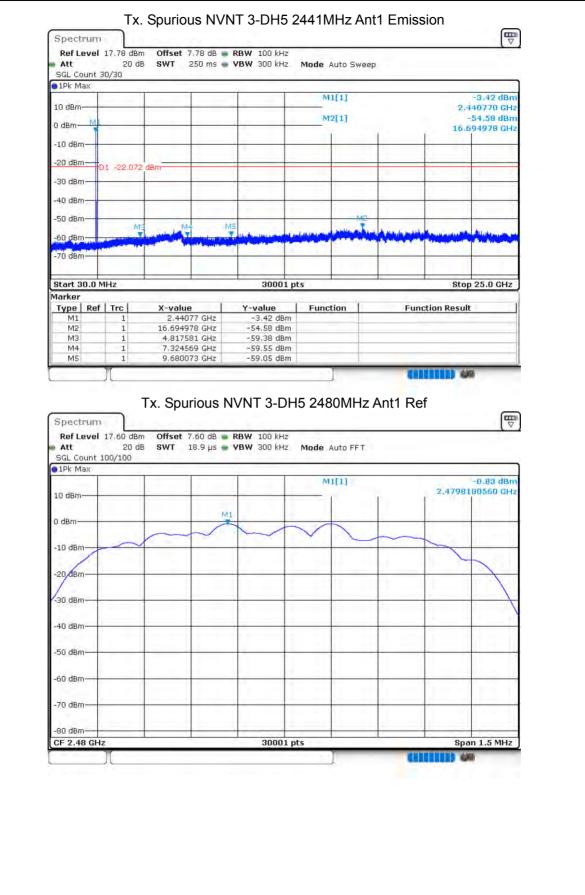
Mi Mi Mi Mi 10 dBm Image: state sta	- 1.28 dBm i40770 GHz 54.91 dBm i77867 GHz
0 dBm	77867 GH2
-20 dBm D1 -21.466 dBm dBm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	25.0 GHz
-30 dBm -40 dBm -50 dBm -50 dBm -70	25.0 GHz
-40 dBm -50 dBm -50 dBm -50 dBm -70	25.0 GHz
-50 dBm -60 dBm -70	25.0 GHz
Add dBm M5 -70 dBm -70 dBm Start 30.0 MHz 30001 pts Start 30.0 MHz 30001 pts Start 30.0 MHz -70 dBm Marker -70 dBm Type Ref Trc X-value Y-value Function M1 1 2,44077 GHz -1.28 dBm M2 1 15.677867 GHz -54.91 dBm	25.0 GHz
Start 30.0 MHz 30001 pts Stop Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.44077 GHz -1.28 dBm M2 1 15.677867 GHz -54.91 dBm	25.0 GHz
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.44077 GHz -1.28 dBm </td <td>25.0 GHz</td>	25.0 GHz
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.44077 GHz -1.28 dBm </td <td>25.0 GHz</td>	25.0 GHz
M1 1 2.44077 GHz -1.28 dBm M2 1 15.677867 GHz -54.91 dBm	
M2 1 15.677867 GHz -54.91 dBm	
M4 1 7.295438 GHz -59.62 dBm M5 1 9.567708 GHz -59.96 dBm	
	8
10 dBm 2.47981	77060 GHz
0 dBm	
-10 dBm	
-20 dBm	
-30 dBm-	
-40 dBm-	
-50 dBm-	
-50 dBm	
-60 dBm	
-60 dBm	
-60 dBm	n 1.5 MHz

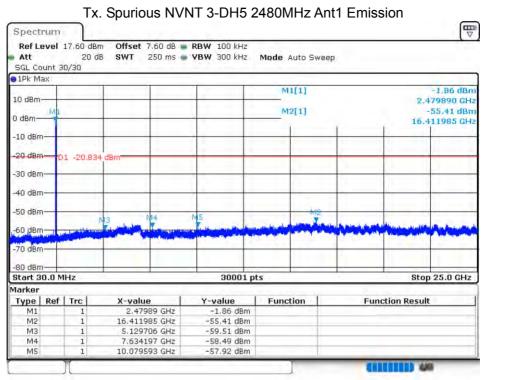
●1Pk Max	1 1	1 1	503511		0.01.40	
10 dBm-			M1[1]		-2.21 dB 2.479890 GF	Iz
0 dBm M1			M2[1]		-55.44 dB 15.688687 GH	
-10 dBm				1 1		
-20.dBm-01 -21.3						
-30 dBm						
-40 dBm						
-50 dBm			ME			
-60 dBm	MB M4	MB	and and a second second	- Langerand	and a state of the state of the	
-70 dBm	and the second	And the second state of the second state			and a second	
-80 dBm						
Start 30.0 MHz		30001	pts	1. 1.	Stop 25.0 GH	z
Marker Type Ref Trc	X-value	Y-value	Function	Euncti	on Result	
M1 1	2.47989	GHz -2.21 dBr	n	Turcu	on Result	
M2 1 M3 1	15.688687 4.95991					
M4 1 M5 1	7.262144 9.959737					-
T				(111)		
Spectrum Ref Level 17.62 d Att 20 SGL Count 100/100 1Pk Max		2 dB — RBW 100 kHz 9 µs — VBW 300 kHz			(q	
Ref Level 17.62 di Att 20 SGL Count 100/100 1Pk Max	Bm Offset 7.6	2 dB 🖷 RBW 100 kHz			-4,85 dB 2,4020153490 Gł	
Ref Level 17.62 d Att 20 SGL Count 100/100	Bm Offset 7.6	2 dB 🖷 RBW 100 kHz	Mode Auto FFT		-4,85 dB	
Ref Level 17.62 di Att 20 SGL Count 100/100 1Pk Max	Bm Offset 7.6	2 dB RBW 100 kHz 9 µs VBW 300 kHz	Mode Auto FFT		-4,85 dB	
Ref Level 17.62 dl Att 20 SGL Count 100/100 IPk Max 10 dBm 0 dBm 0	Bm Offset 7.6	2 dB RBW 100 kHz 9 µs VBW 300 kHz	Mode Auto FFT		-4,85 dB	
Ref Level 17.62 dl Att 20 SGL Count 100/100 IPk Max 10 10 dBm 0 -10 dBm -10	Bm Offset 7.6	2 dB RBW 100 kHz 9 µs VBW 300 kHz	Mode Auto FFT		-4,85 dB	
Ref Level 17.62 dl Att 20 SGL Count 100/100 IPk Max 10 dBm 0 dBm 0	Bm Offset 7.6	2 dB RBW 100 kHz 9 µs VBW 300 kHz	Mode Auto FFT		-4,85 dB	
Ref Level 17.62 dl Att 20 SGL Count 100/100 IPk Max 10 10 dBm 0 -10 dBm -10	Bm Offset 7.6	2 dB RBW 100 kHz 9 µs VBW 300 kHz	Mode Auto FFT		-4,85 dB	
Ref Level 17.62 dl Att 20 SGL Count 100/100 1Pk Max 10 0 dBm 0 -10 dBm -0 -20 dBm -30 dBm	Bm Offset 7.6	2 dB RBW 100 kHz 9 µs VBW 300 kHz	Mode Auto FFT		-4,85 dB	
Ref Level 17.62 dl Att 20 SGL Count 100/100 1Pk Max 10 10 dBm 0 -10 dBm -20 dBm	Bm Offset 7.6	2 dB RBW 100 kHz 9 µs VBW 300 kHz	Mode Auto FFT		-4,85 dB	
Ref Level 17.62 dl Att 20 SGL Count 100/100 1Pk Max 10 0 dBm 0 -10 dBm -0 -20 dBm -30 dBm	Bm Offset 7.6	2 dB RBW 100 kHz 9 µs VBW 300 kHz	Mode Auto FFT		-4,85 dB	
Ref Level 17.62 dl Att 20 SGL Count 100/100 1Pk Max 10 0 dBm 0 -10 dBm -0 -20 dBm -30 dBm -40 dBm -40 dBm	Bm Offset 7.6	2 dB RBW 100 kHz 9 µs VBW 300 kHz	Mode Auto FFT		-4,85 dB	
Ref Level 17.62 dl Att 20 SGL Count 100/100 IPk Max 10 0 dBm 0 -10 dBm -0 -20 dBm	Bm Offset 7.6	2 dB RBW 100 kHz 9 µs VBW 300 kHz	Mode Auto FFT		-4,85 dB	
Ref Level 17.62 dl Att 20 SGL Count 100/100 1Pk Max 10 10 dBm 0 -10 dBm -0 -20 dBm	Bm Offset 7.6	2 dB RBW 100 kHz 9 µs VBW 300 kHz	Mode Auto FFT		-4,85 dB	
Ref Level 17.62 dl Att 20 SGL Count 100/100 • IPk Max 10 • 0 dBm - • 0 dBm - • -10 dBm - • -20 dBm - • -30 dBm - • -40 dBm - • -50 dBm -	Bm Offset 7.6	2 dB RBW 100 kHz 9 µs VBW 300 kHz	Mode Auto FFT		-4,85 dB	
Ref Level 17.62 dl Att 20 SGL Count 100/100 IPk Max 10 10 dBm 0 -10 dBm -0 -20 dBm	Bm Offset 7.6	2 dB RBW 100 kHz 9 µs VBW 300 kHz	Mode Auto FFT		-4,85 dB 2.4020153490 GH	
Ref Level 17.62 dl Att 20 SGL Count 100/100 IPk Max 10 0 dBm 10 -10 dBm -0 -20 dBm	Bm Offset 7.6	2 dB RBW 100 kHz	Mode Auto FFT		-4,85 dB 2.4020153490 G	





●1Pk Max	TT T	1 1	M1[1]		_	-5.38 dBm
10 dBm					2.4	41610 GHz
0 dBm			M2[1]	1		55.64 dBm 51329 GHz
-10 dBm-						
-20 dBm-01 -21,2	70 dBm					
-30 dBm-				-	-	
-40 dBm					1	
-50 dBm	M3 M4	ME	375 1 A 44	112	10.00	Conclusion of
-60 dBm		and a second			Thomas Providence and and	American
-70 dBm-						
Start 30.0 MHz		30001 pts	s		Stop	25.0 GHz
Marker Type Ref Trc	X-value	Y-value	Function	Func	tion Result	1
M1 1 M2 1	2.44161 GHz 17.651329 GHz	-5.38 dBm -55.64 dBm				
M3 1 M4 1	5.030659 GHz 7.178079 GHz	-59.73 dBm -59.96 dBm				
	9.945587 GHz	-59.50 dBm				
M5 1			7		2 - C - 7 - 7 - 1	
M5 1 Spectrum Ref Level 17,60 df Att 20 SGL Count 100/100 1Pk Max	Tx. Spurious	NVNT 2-DH				-2.54 dBm
Spectrum Ref Level 17,60 dt Att 20 SGL Count 100/100	Tx. Spurious	NVNT 2-DH	Mode Auto FFT			
Spectrum Ref Level 17,60 df Att 20 SGL Count 100/100 1Pk Max	Tx. Spurious	NVNT 2-DH	Mode Auto FFT			-2.54 dBm
Spectrum Ref Level 17,60 df Att 20 SGL Count 100/100 1Pk Max 10 dBm 0 dBm	Tx. Spurious	NVNT 2-DH	Mode Auto FFT.			-2.54 dBm
Spectrum Ref Level 17,60 dd Att 20 SGL Count 100/100 IPk Max 10 dBm -10 dBm	Tx. Spurious	NVNT 2-DH	Mode Auto FFT			-2.54 dBm
Spectrum Ref Level 17,60 df Att 20 SGL Count 100/100 1Pk Max 10 dBm 0 dBm	Tx. Spurious	NVNT 2-DH	Mode Auto FFT			-2.54 dBm
Spectrum Ref Level 17,60 dd Att 20 SGL Count 100/100 1Pk Max 10 dBm -10 dBm	Tx. Spurious	NVNT 2-DH	Mode Auto FFT			-2.54 dBm
Spectrum Ref Level 17.60 dd Att 20 SGL Count 100/100 1Pk Max 10 dBm -10 dBm -20 dBm	Tx. Spurious	NVNT 2-DH	Mode Auto FFT			-2.54 dBm
Spectrum Ref Level 17.60 dd Att 20 SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Tx. Spurious	NVNT 2-DH	Mode Auto FFT			-2.54 dBm
Spectrum Ref Level 17.60 dt Att 20 SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	Tx. Spurious	NVNT 2-DH	Mode Auto FFT			-2.54 dBm
Spectrum Ref Level 17.60 dt Att 20 SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Tx. Spurious	NVNT 2-DH	Mode Auto FFT			-2.54 dBm
Spectrum Ref Level 17.60 dt Att 20 SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	Tx. Spurious	NVNT 2-DH	Mode Auto FFT			-2.54 dBm
Spectrum Ref Level 17.60 di Att 20 SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	Tx. Spurious	NVNT 2-DHS	Mode Auto FFT			-2.54 dBm
Spectrum Ref Level 17.60 di Att 20 SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	Tx. Spurious	NVNT 2-DH	Mode Auto FFT		2.48010	-2.54 dBm 67460 GHz
Spectrum Ref Level 17.60 d8 Att 20 SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	Tx. Spurious	NVNT 2-DHS	Mode Auto FFT		2.48010	-2.54 dBm 67460 GHz
Spectrum Ref Level 17.60 d8 Att 20 SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm -80 dBm	Tx. Spurious	NVNT 2-DHS	Mode Auto FFT		2.48010	-2.54 dBm 67460 GHz





END OF REPORT