

0659

FCC Radio Test Report

FCC ID: 2AMHM-P2-6E-WIFI

Report No. : BTL-FCCP-6-2105T078 Equipment : Communication Module

Model Name : LBEE5HY1MW

Brand Name : BOSCH

Applicant : Robert Bosch Engineering and Business Solutions Private Limited

Address : No.123, Industrial Layout, Hosur Road, Koramangala, Bangalore - 560 095

Radio Function : WLAN 2.4 GHz

FCC Rule Part(s) : FCC Part15, Subpart C (15.247)

Measurement : ANSI C63.10-2013

Procedure(s)

Date of Receipt : 2021/5/19

Date of Test : 2021/5/19 ~ 2021/9/24

Issued Date : 2021/10/13

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by

Approved by

Peter Chen, Vice Manager

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2105T078 Page 2 of 54 Report Version: R01

CONTENTS

1	SUMMAI	RY OF TEST RESULTS	5
1.1	TEST	FACILITY	6
1.2	MEAS	SUREMENT UNCERTAINTY	6
1.3	TEST	ENVIRONMENT CONDITIONS	6
1.4	TABLE	E OF PARAMETERS OF TEST SOFTWARE SETTING	6
2	GENERA	AL INFORMATION	7
2.1	DESC	RIPTION OF EUT	7
2.2	TEST	MODES	8
2.3	BLOC	K DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	9
2.4	SUPP	ORT UNITS	10
3	AC POW	'ER LINE CONDUCTED EMISSIONS TEST	11
3.1	LIMIT		11
3.2	TEST	PROCEDURE	11
3.3	DEVIA	ATION FROM TEST STANDARD	11
3.4	TEST	SETUP	12
3.5	TEST	RESULT	12
4	RADIATE	ED EMISSIONS TEST	13
4.1	LIMIT		13
4.2	TEST	PROCEDURE	14
4.3	DEVIA	ATION FROM TEST STANDARD	14
4.4	TEST	SETUP	14
4.5	EUT (OPERATING CONDITIONS	15
4.6	TEST	RESULT – BELOW 30 MHZ	16
4.7	TEST	RESULT – 30 MHZ TO 1 GHZ	16
4.8	TEST	RESULT – ABOVE 1 GHZ	16
5	OUTPUT	POWER TEST	17
5.1	LIMIT		17
5.2	TEST	PROCEDURE	17
5.3	DEVIA	ATION FROM TEST STANDARD	17
5.4	TEST	SETUP	17
5.5	EUT (OPERATING CONDITIONS	17
5.6	TEST	RESULT	17
6	LIST OF	MEASURING EQUIPMENTS	18
7	EUT TES	ST PHOTO	19
8	EUT PHO	OTOS	19
APPEND	IX A	AC POWER LINE CONDUCTED EMISSIONS	20
APPEND	IX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	25
APPEND	IX C	RADIATED EMISSIONS - ABOVE 1 GHZ	28
APPEND	IX D	OUTPUT POWER	53

REVISON HISTORY

Report No.	Version	Description	Issued Date
BTL-FCCP-6-2105T078	R00	Original Report.	2021/10/6
BTL-FCCP-6-2105T078	R01	Revised Typo.	2021/10/13

Project No.: 2105T078 Page 4 of 54 Report Version: R01

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

FCC Part 15, Subpart C (15.247)						
Standard(s) Section	Description	Test Result	Judgement	Remark		
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass			
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C	Pass			
15.247(b)	Output Power	APPENDIX D	Pass			

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.(2) The report format version is TP.1.1.1.
- (3) This test report is issued for the RF module (FCCID: VPYLBEE5HY1MW) to be incorporated to the host device (Model number: AD00 A2 0044 6YE, Product name: Phantom EDGE). Since the RF module has been certificated, after evaluation, above test items were criticized and reconfirmed in this report.
- (4) After spot check, this revision does not change original radio parameters.

Project No.: 2105T078 Page 5 of 54 Report Version: R01

1.1 TEST FACILITY

The test facilities used to collect the test data in this report:

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan The test sites and facilities are covered under FCC RN: 674415 and DN: TW0659.

The test sites and facilities are covered under PCC KN. 674415 and DN. 1700059.

□ CB18 □ CB18 □ CB16

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = \mathbf{2}$, providing a level of confidence of approximately 95 %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 \mathbf{U}_{cispr} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30MHz	3.44

B. Radiated emissions test:

Test Site	Measurement Frequency Range	U,(dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB15	1 GHz ~ 6 GHz	5.21
CB15	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

C. Conducted test:

Test Item	U,(dB)
Output Power	0.3669

NOTE

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	23 °C, 59 %	AC 120V	William Wei
Radiated emissions below 1 GHz	Refer to data	AC 120V	Jay Kao
Radiated emissions above 1 GHz	Refer to data	AC 120V	Hunter Chiang
Output Power	25.4 °C, 52 %	AC 120V	Tim Lian

1.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

Test Software		Tera Terr	n V.4.101	
Mode	2412 MHz	2437 MHz	2462 MHz	Data Rate
IEEE 802.11b	18	18	18	1 Mbps
IEEE 802.11g	12	15	11	6 Mbps
IEEE 802.11n (HT20)	12	14	12	MCS 0

Project No.: 2105T078 Page 6 of 54 Report Version: R01

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	Communication Module
Model Name	LBEE5HY1MW
Brand Name	BOSCH
Model Difference	N/A
Power Supply Rating	DC 3.3V from host equipment
Host device information	
Equipment	Phantom EDGE
Model Name	AD00 A2 0044 6YE
Brand Name	BOSCH
Power Source	AC Mains.
Power Rating	I/P: 90 – 280 V AC , <10W , 50/60Hz
Products Covered	N/A
WIFI+BT Module	LBEE5HY1MW
Operation Band	2400 MHz ~ 2483.5 MHz
Operation Frequency	2412 MHz ~ 2462 MHz
Maximum Output Power	IEEE 802.11b: 20.24 dBm (0.1057 W) IEEE 802.11g: 23.46 dBm (0.2218 W) IEEE 802.11n (HT20): 23.37 dBm (0.2173 W)
Test Model	AD00 A2 0044 6YE
Sample Status	Engineering Sample
EUT Modification(s)	N/A

NOTE:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

(2) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	05	2432	09	2452
02	2417	06	2437	10	2457
03	2422	07	2442	11	2462
04	2427	08	2447		

(3) Table for Filed Antenna:

Antenna	Manufacture	Model No.	Type	Connector	Gain (dBi)	Note
1	圣丹纳 SAINTENNA	SAA31139A	Dipole	SMA-J	2.35	

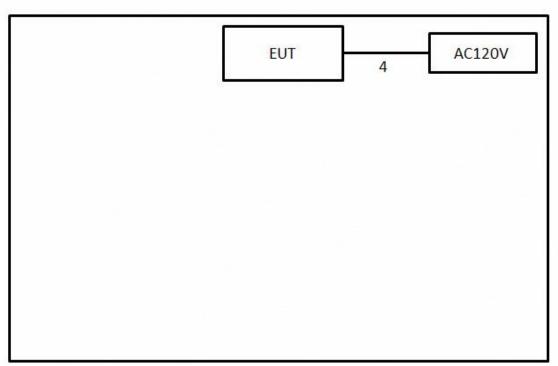
Project No.: 2105T078 Page 7 of 54 Report Version: R01

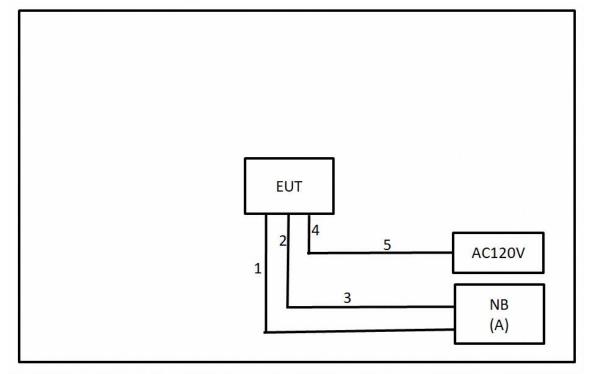
2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	IEEE 802.11g	11	-
To a constitue De Parte I Francisco	IEEE 802.11b		Bandedge
Transmitter Radiated Emissions (above 1GHz)	IEEE 802.11g	01/11	
(above 15112)	IEEE 802.11n (HT20)		
To a constitue De Parte I Francisco	IEEE 802.11b		Harmonic
Transmitter Radiated Emissions (above 1GHz)	IEEE 802.11g	01/06/11	
(45000 13112)	IEEE 802.11n (HT20)		
	IEEE 802.11b		
Output Power	IEEE 802.11g	01/06/11	-
	IEEE 802.11n (HT20)		

NOTE:

- (1) The Radiated emissions test was verified based on the worst conducted power and Bandwidth test results reported in the original report.
- (2) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.
- (3) All X, Y and Z axes are evaluated, but only the worst case (X axis) is recorded.


Project No.: 2105T078 Page 8 of 54 Report Version: R01


2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

AC Power Line Conducted Emissions Test

Radiated Emissions Test

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	NB	HP	TPN-I119	N/A	Furnished by test lab.

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	3m	RJ45 Cable	Supplied by test requester
2	N/A	N/A	1.5m	RS232 to RS232	Supplied by test requester
3	N/A	N/A	1.1m	RS232 to USB	Supplied by test requester
4	N/A	N/A	1m	Power Cord	Supplied by test requester
5	N/A	N/A	1.7m	Power Cord	Furnished by test lab.

Project No.: 2105T078 Page 10 of 54 Report Version: R01

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBμV)
(MHz)	Quasi-peak	Average
0.15 - 0.5	66 - 56 *	56 - 46 *
0.50 - 5.0	56	46
5.0 - 30.0	60	50

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	=	41.67

Measurement Value		Limit Value		Margin Level
41.67	-	60	=	-18.33

The following table is the setting of the receiver.

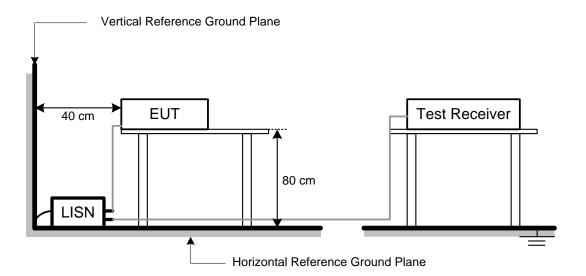
Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center.
 - The end of the cable will be terminated, using the correct terminating impedance.
 - The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.


3.3 DEVIATION FROM TEST STANDARD

No deviation.

Project No.: 2105T078 Page 11 of 54 Report Version: R01

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency (MHz)		Emissions V/m)	Measurement Distance
(IVIHZ)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

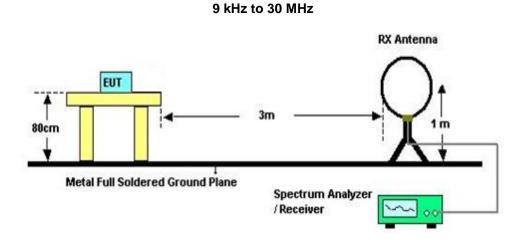
Reading Level		Correct Factor		Measurement Value
19.11	+	2.11	=	21.22

Measurement Value		Limit Value		Margin Level
21.22	-	54	-	-32.78

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average

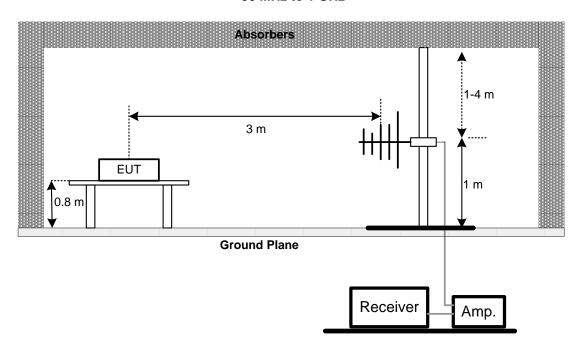
Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

Project No.: 2105T078 Page 13 of 54 Report Version: R01

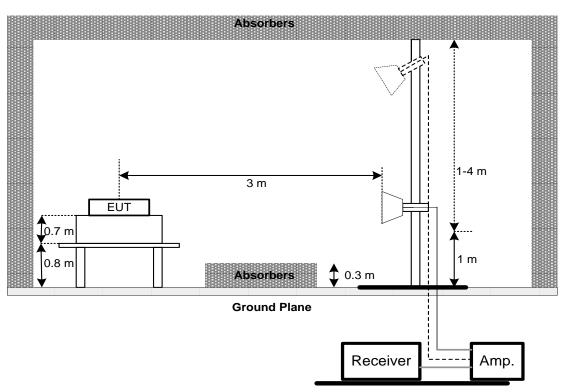

4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. (above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

4.3 DEVIATION FROM TEST STANDARD


No deviation.

4.4 TEST SETUP



30 MHz to 1 GHz

Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

NOTE:

- (1) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
 (2) Limit line = specific limits (dBuV) + distance extrapolation factor.

4.6 TEST RESULT - BELOW 30 MHZ

There were no emissions found below 30 MHz within 20 dB of the limit.

4.7 TEST RESULT - 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

4.8 TEST RESULT - ABOVE 1 GHZ

Please refer to the APPENDIX C.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

Project No.: 2105T078 Page 16 of 54 Report Version: R01

5 OUTPUT POWER TEST

5.1 LIMIT

FCC Part15, Subpart C (15.247)							
Section	Test Item	Limit					
15.247(b)	Maximum Output Power	1 Watt or 30dBm					

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below.
- The maximum peak conducted output power was performed in accordance with FCC KDB 558074 D01 15.247 Meas Guidance.
- c. Subclause 11.9.1.1 of ANSI C63.10 is applied. The maximum peak conducted output power may be measured using a broadband peak RF power meter.
 - The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

5.3 DEVIATION FROM TEST STANDARD

No deviation.

5.4 TEST SETUP

EUT	Power Meter
	1 ower weter

5.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULT

Please refer to the APPENDIX D.

6 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions										
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until					
1	TWO-LINE V-NETWORK	R&S	ENV216	101339	2021/3/10	2022/3/9					
2	Test Cable	EMCI	EMCRG58-BM-B M-9000	210501	2021/5/3	2022/5/2					
3	EMI Test Receiver	R&S	ESR 7	101433	2020/12/11	2021/12/10					
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A					

Radiated Emissions									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until			
1	Preamplifier	EMCI	EMC02325B	980217	2021/4/8	2022/4/7			
2	Preamplifier	EMCI	EMC012645B	980267	2021/4/8	2022/4/7			
3	Preamplifier	EMCI	EMC001340	980555	2021/4/8	2022/4/7			
4	Test Cable	EMCI	EMC-SM-SM-100 0	180809	2021/4/8	2022/4/7			
5	Test Cable	EMCI	EMC104-SM-SM- 3000	151205	2021/4/8	2022/4/7			
6	Test Cable	EMCI	EMC-SM-SM-700 0	180408	2021/4/8	2022/4/7			
7	MXE EMI Receiver	Agilent	N9038A	MY554200087	2021/5/27	2022/5/26			
8	Signal Analyzer	Agilent	N9010A	MY52220990	2021/8/18	2022/8/17			
9	Loop Ant	Electro-Metrics	EMCI-LPA600	274	2021/6/1	2022/5/31			
10	Horn Ant	SCHWARZBECK	BBHA 9120D	9120D-1342	2021/6/2	2022/6/1			
11	Horn Ant	Schwarzbeck	BBHA 9170	BBHA 9170340	2021/7/9	2022/7/8			
12	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	VULB 9168-352	2021/8/11	2022/8/10			
13	5dB Attenuator	EMCI	EMCI-N-6-05	AT-N0625	2021/8/11	2022/8/10			
14	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A			

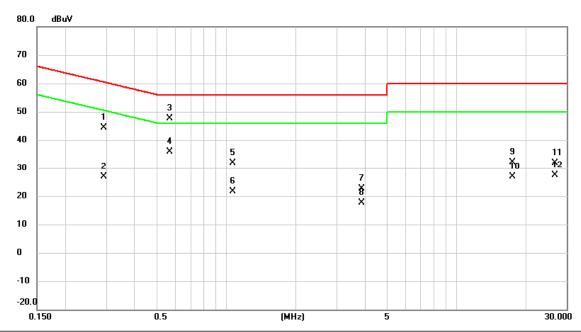
			Output Power			
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Power Meter	Anritsu	ML2495A	1128008	2021/5/26	2022/5/25
2	Power Sensor	Anritsu	MA2411B	1126001	2021/5/26	2022/5/25

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

Project No.: 2105T078 Page 18 of 54 Report Version: R01

7 EUT TEST PHOTO
Please refer to document Appendix No.: TP-2105T078-FCCP-2 (APPENDIX-TEST PHOTOS).
8 EUT PHOTOS
Please refer to document Appendix No.: EP-2105T078-1 (APPENDIX-EUT PHOTOS).

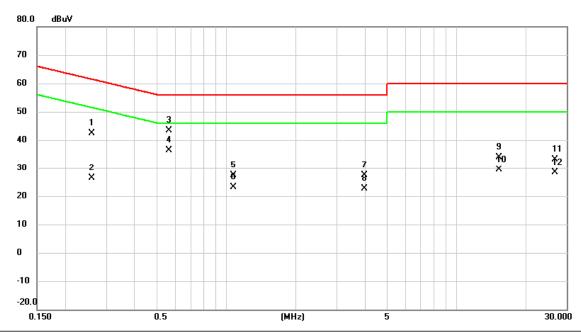
Project No.: 2105T078 Page 19 of 54 Report Version: R01



APPENDIX A	AC POWER LINE CONDUCTED EMISSIONS

Project No.: 2105T078 Page 20 of 54 Report Version: R01

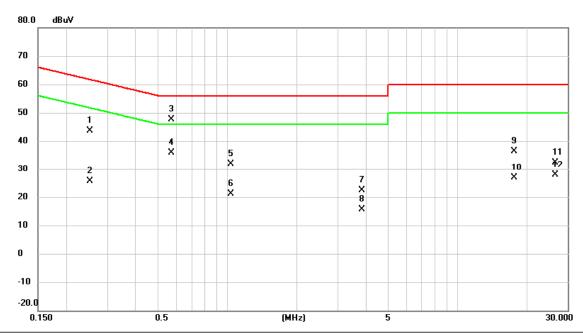
Test Mode	Normal	Tested Date	2021/6/9
Test Frequency	-	Phase	Line



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1		0.2917	34.66	9.73	44.39	60.48	-16.09	QP	
2		0.2917	17.13	9.73	26.86	50.48	-23.62	AVG	
3	*	0.5685	37.97	9.73	47.70	56.00	-8.30	QΡ	
4		0.5685	26.04	9.73	35.77	46.00	-10.23	AVG	
5		1.0680	22.20	9.74	31.94	56.00	-24.06	QP	
6		1.0680	11.87	9.74	21.61	46.00	-24.39	AVG	
7		3.8423	12.68	9.88	22.56	56.00	-33.44	QP	
8		3.8423	7.82	9.88	17.70	46.00	-28.30	AVG	
9		17.4300	21.87	10.20	32.07	60.00	-27.93	QP	
10		17.4300	16.80	10.20	27.00	50.00	-23.00	AVG	
11		26.6618	21.60	10.24	31.84	60.00	-28.16	QP	
12		26.6618	17.23	10.24	27.47	50.00	-22.53	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

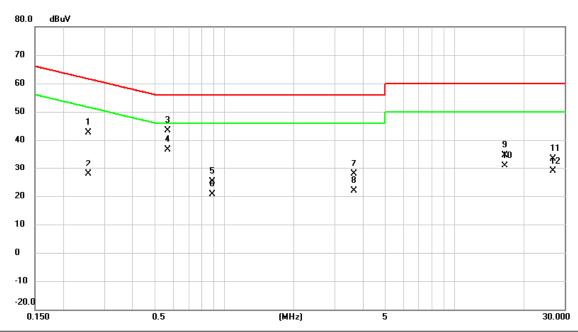
Test Mode	Normal	Tested Date	2021/6/9
Test Frequency	-	Phase	Neutral



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1		0.2602	32.77	9.73	42.50	61.43	-18.93	QР	
2		0.2602	16.76	9.73	26.49	51.43	-24.94	AVG	
3		0.5640	33.60	9.74	43.34	56.00	-12.66	QР	
4	*	0.5640	26.58	9.74	36.32	46.00	-9.68	AVG	
5		1.0702	17.72	9.75	27.47	56.00	-28.53	QР	
6		1.0702	13.33	9.75	23.08	46.00	-22.92	AVG	
7		3.9638	17.50	9.90	27.40	56.00	-28.60	QΡ	
8		3.9638	12.63	9.90	22.53	46.00	-23.47	AVG	
9		15.2453	23.51	10.26	33.77	60.00	-26.23	QP	
10		15.2453	19.20	10.26	29.46	50.00	-20.54	AVG	
11		26.6798	22.79	10.43	33.22	60.00	-26.78	QP	
12		26.6798	17.91	10.43	28.34	50.00	-21.66	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2021/6/9
Test Frequency	-	Phase	Line



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1		0.2513	33.88	9.73	43.61	61.71	-18.10	QP	
2		0.2513	15.91	9.73	25.64	51.71	-26.07	AVG	
3	*	0.5730	37.92	9.73	47.65	56.00	-8.35	QP	
4		0.5730	26.16	9.73	35.89	46.00	-10.11	AVG	
5		1.0342	22.11	9.74	31.85	56.00	-24.15	QP	
6		1.0342	11.45	9.74	21.19	46.00	-24.81	AVG	
7		3.8153	12.38	9.88	22.26	56.00	-33.74	QP	
8		3.8153	5.84	9.88	15.72	46.00	-30.28	AVG	
9		17.5605	26.21	10.21	36.42	60.00	-23.58	QP	
10		17.5605	16.67	10.21	26.88	50.00	-23.12	AVG	
11		26.4368	22.07	10.24	32.31	60.00	-27.69	QP	
12		26.4368	17.72	10.24	27.96	50.00	-22.04	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2021/6/9
Test Frequency	-	Phase	Neutral

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1		0.2558	32.95	9.73	42.68	61.57	-18.89	QР	
2		0.2558	18.12	9.73	27.85	51.57	-23.72	AVG	
3		0.5685	33.66	9.74	43.40	56.00	-12.60	QР	
4	*	0.5685	26.80	9.74	36.54	46.00	-9.46	AVG	
5		0.8835	15.38	9.75	25.13	56.00	-30.87	QP	
6		0.8835	11.00	9.75	20.75	46.00	-25.25	AVG	
7		3.6375	17.98	9.87	27.85	56.00	-28.15	QP	
8		3.6375	12.12	9.87	21.99	46.00	-24.01	AVG	
9		16.4738	24.40	10.29	34.69	60.00	-25.31	QP	
10		16.4738	20.52	10.29	30.81	50.00	-19.19	AVG	
11		26.6123	23.01	10.43	33.44	60.00	-26.56	QP	
12		26.6123	18.42	10.43	28.85	50.00	-21.15	AVG	

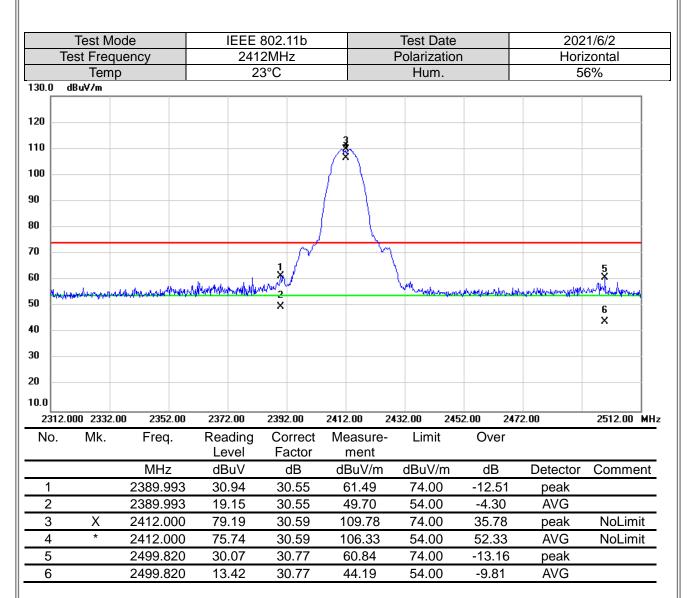
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

APPENDIX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ


Project No.: 2105T078 Page 25 of 54 Report Version: R01

-	Test Mo	de	IEEE	802.11g		Test Date		202	1/7/5	
Tes	st Frequ			S2MHz		Polarizatio	n		rtical	
	Temp		2	:3°C		Hum.		5	7%	
80.0 dB	uV/m									7
70										
60										-
50	1					3 4				
40	ř	2 >	2			x x	5 ×		8 X	
30										
20										
10										-
0.0										
30.000	127.00	224.00	321.00	418.00	515.00 61	2.00 709	9.00 806	5.00	1000.00	_мн
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comme	ent
1	*	88.0383	57.38	-14.41	42.97	43.50	-0.53	QP		
2	!	254.5226		-9.10	41.35	46.00	-4.65	QP		
3	!	600.0043		-0.46	42.36	46.00	-3.64	QP		
4	!	649.9916	42.17	0.10	42.27	46.00	-3.73	QP		
5		749.9986	36.96	1.86	38.82	46.00	-7.18	peak		
6		949.9803	31.21	4.98	36.19	46.00	-9.81	peak		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX C	RADIATED EMISSIONS - ABOVE 1 GHZ

Project No.: 2105T078 Page 28 of 54 Report Version: R01

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

	Test Mo			802.11b		Test Date			1/6/2	
1	Test Freq			2MHz		Polarization	n		zontal	
400.0	Tem	р	2	3°C		Hum.		50	6%	
130.0	dBuV/m									7
120										-
110 📙					*					-
100					$\int \uparrow \setminus$					
90					/ \					
80										1
70 -					hu)	\				7
60	1			- Au		5				-
50 X	orarynya, myranaru	-41/1/menography-com	hvist, de vez lighter vistfind	AND-IT W		S. S	Marin and Assessment Assessment	washington with windy	ayamadah, mada	<u>v.</u>
						^				
40	2 X									1
30										$\frac{1}{2}$
20										-
10.0										
2362	2.000 2382.	00 2402.00	2422.00	2442.00	2462.00 2	482.00 250	02.00 252	2.00	2562.00	_МН
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over			
		B 41 1	Level	Factor	ment	ID 1//		D ()		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comme	ent
1		2370.520 2370.520	29.54 6.52	30.50	60.04 37.02	74.00	-13.96 -16.98	peak AVG		
3	Х	2462.000	79.07	30.50 30.69	109.76	54.00 74.00	35.76	peak	NoLim	it
4	*	2462.000	75.44	30.69	106.13	54.00	52.13	AVG	NoLim	
		2483.900	28.08	30.74	58.82	74.00	-15.18	peak	TTOLIII	
5										

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mod	de	IEEE	802.11g		Test Date		202	1/6/2
Tes	st Freque	ency		2MHz		Polarization	n		zontal
	Temp		2	3°C		Hum.		50	6%
130.0 dB	uV/m								
120									
110					3				
100					* *				
90									
80				-					
70				, Marrier Park	N A A	haylan daylan da			
60		1 .		MI.		YPYNAMOU.		handle literatura phalaide litera	5
50 Julyul	والمواجعة والمواجعة	Jeroghter of John Windows	Villerana Anni Arnikali (hankak	2 X		Totalique	الواسطة ويواسي الارواب المريد والمرادوا	handle he was a free free free	
40				×					× 6
30									
20									
10.0									
	0 2332.00	2352.00	2372.00	2392.00	2412.00 24	132.00 245	52.00 24 7	2.00	2512.00 MI
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2389.373	41.08	30.55	71.63	74.00	-2.37	peak	
2		2389.373	19.18	30.55	49.73	54.00	-4.27	AVG	
3	Χ	2412.000	77.38	30.59	107.97	74.00	33.97	peak	NoLimit
4	*	2412.000	67.79	30.59	98.38	54.00	44.38	AVG	NoLimit
5		2503.633	29.42	30.78	60.20	74.00	-13.80	peak	
6		2503.633	13.79	30.78	44.57	54.00	-9.43	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	est Mo			802.11g		Test Date			1/6/2
Test	t Frequ			2MHz		Polarization	n		zontal
	Temp		2	3°C		Hum.		50	6%
130.0 dBu	W/m								
120					3				
110					***				
100					*				
90									
80					<u> </u>				
70				THE PROPERTY OF THE PARTY OF TH	***	W. A			
60	1 X	ballumunk tiange inline	ANY MANY	741		C MALE IN			
50	ught bi Vallaria (4	hallstonent gangi tellmi	CHANNEL AND			6 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	h/h-/h-dhe-adju-ke-y/h-beta	rdrags, com. 11 pt 14. And 14. Anders	Making angle of a companies
40	2 X								
30									
20									
10.0									
2362.000			2422.00	2442.00				2.00	2562.00 M
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Commen
1		2377.380	28.27	30.52	58.79	74.00	-15.21	peak	
2		2377.380	5.73	30.52	36.25	54.00	-17.75	AVG	
3	Χ	2462.000	80.74	30.69	111.43	74.00	37.43	peak	NoLimit
4	*	2462.000	71.28	30.69	101.97	54.00	47.97	AVG	NoLimit
5		2483.853	40.56	30.74	71.30	74.00	-2.70	peak	
6		2483.853	21.03	30.74	51.77	54.00	-2.23	AVG	· · · · · · · · · · · · · · · · · · ·

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo			2.11n(HT20	_	Test Date			1/6/2
Tes	st Frequ			2MHz		Polarization	า		zontal
	Temp		2	3°C		Hum.		50	6%
130.0 dB	uV/m								
120									
110					3				
100					/ * \				
90									
80				- M					
70				A VANDO	M.	Man .			
60		January and Carlos	and the house of the first	√ [¶] 2		My My Charles	Landa drik bandar Manara	kandalahan mandalah	5
50	a official dates it is a			×					6 X
40									
30									
20									
10.0	0 2332.0	0 2352.00	2372.00	2392.00	2412.00 24	132.00 245	52.00 247	2.00	2512.00 MF
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	2.00	2312.00 MF
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2389.467	39.56	30.55	70.11	74.00	-3.89	peak	
2		2389.467	19.14	30.55	49.69	54.00	-4.31	AVG	
3	Χ	2412.000	77.91	30.59	108.50	74.00	34.50	peak	NoLimit
4	*	2412.000	68.30	30.59	98.89	54.00	44.89	AVG	NoLimit
5		2497.113	27.96	30.77	58.73	74.00	-15.27	peak	
6		2497.113	13.79	30.77	44.56	54.00	-9.44	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo			2.11n(HT20	0)	Test Date			1/6/2	
Tes	st Frequ			62MHz		Polarizatio	n		zontal	
130.0 dB	Temp		2	23°C		Hum.		50	6%	
100:0 40										
120										
110					3 X.					
""										
100					* \					
90										
80										
80					H,					
70				23.00	7	₩ 5 . X				
60				A Property		~\\ <u>\</u>				
_ hayen	المساكيد لمعربيت	want franklije began	Mariafeltan and and le	Pagnial ,			WIMMINAMAN	war and May before	brokenson/Assar	
50						×				
40	2 X									
30	×									
20										
10.0		2 2422 22	0400.00	0.110.00	2462.00 2	400.00	20.00	20.00	2522.22	
2362.00 No.	0 2382.00 Mk.	0 2402.00 Freq.	2422.00 Reading	2442.00 Correct	Measure-	482.00 250 Limit	02.00 252 Over	22.00	2562.00 M	IH Z
INO.	IVIK.	ı ıeq.	Level	Factor	ment	LIIIII	Ovei			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Commen	nt
1		2381.960	27.36	30.52	57.88	74.00	-16.12	peak		_
2		2381.960	5.21	30.52	35.73	54.00	-18.27	AVG		
3	Χ	2462.000	80.09	30.69	110.78	74.00	36.78	peak	NoLimit	_
4	*	2462.000	70.65	30.69	101.34	54.00	47.34	AVG	NoLimit	
5		2483.947	37.80	30.74	68.54	74.00	-5.46	peak		
6		2483.947	18.97	30.74	49.71	54.00	-4.29	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test M			I		802.1					Test D					1/6/2
Te	est Freq					2MH:	Z			F	<u>Polariza</u>					rtical
130.0 d	Tem dBuV/m	р			2	3°C					Hun	า.			5	6%
130.0	JBUY/M															
120																
110 -																
100 -																
90																
во																
70 <u> </u>																
io																
50		1 X														
to		×														
30		2 X														
20																
10.0																
1000.0	000 3550.	00 6100	0.00	8650	.00	1120	0.00	1375	0.00	16	300.00	188	50.00	2140	00.00	26500.00 M
No.	Mk.	Freq		Read Lev			rrect ctor		easur ment		Limi	t	Ove	er		
		MHz	<u>z</u>	dBı			B		BuV/r		dBuV	/m	dE	3	Detector	Commen
1		4824.0	000	53.		-8	.83		14.92		74.0		-29.	80	peak	
2	*	4824.0	000	41.	55	-8	.83	(32.72		54.0	0	-21.	28	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode				IEEE 802.11b					Test Date						2021/6/2	
Test Frequency				2412MHz					Polarization						Horizontal	
Temp				23°C				Hum.					5	56%		
130.0	dBuV/m										1					
120																
110 -																
100																
90																
30																
'o																
io																
50		1														
40 L		1 X														
80		2 X														
20																
10.0																
	000 3550.0			8650		11200.0		13750				18850		1400.00	26500.00 MH	
No.	Mk.	Mk. Freq.		Reading Level		Correct Factor		Measure- ment		-	Limit		Over			
		MHz		dBuV		dB		dBuV/m			dBuV/m		dB	Detector	Comment	
1	1 4824		00	53.12		-8.83		44.29			74.00		-29.71	peak		
2	*	4824.0	00	42.	31	-8.8	3	3	3.48		54.00)	-20.52	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		st Mo			l		802.1					Test D					1/6/2	
		Temp	iency				<u>7MHz</u> 3°C	-			- 1	Polariza Hun					rtical 6%	
130.0	dBuV						3 C					Hull	l.			<u> </u>	J /0	
120																		
110 _																		
100																		
90																		
30 <u> </u>																		
o																		
io																		
io <u> </u>			_															
10			X X															
80			2 X															
20																		
10.0																		
1000	00.000 3550.00 6100.0	0.00	8650	.00	11200	.00	1375	0.00	16	300.00	188	50.00	2140	0.00	26500.00 N	ИH		
No.	N	/lk.	Freq		Rea Le		Cor Fac			easur ment		Limi	t	Ove	er			
			MHz		dB		d			3uV/r		dBuV	/m	dE	3	Detector	Commer	nt
1			4874.0	00	51.	76	-8.	75		13.01		74.0		-30.	99	peak		_
2		*	4874.0	00	42.	12	-8.	75	3	33.37		54.0	0	-20.	63	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		Mo			l	EEE	802.1 7MH:					Test D					1/6/2 zontal	
	Test F	emp					<u>7 іvіп.</u> 3°С					Hun		<u> </u>			2011(a) 6%	
130.0	dBuV/i						0 0					Han	•				5 70	
120																		
110 📙																		
100																		
90																		
BO																		
70																		
60 <u> </u>																		
50			1 X															
10 - 30 -			2 X															
20																		
10.0	0.000 3550.00 6100.0	1 00	8650	1.00	1120	n nn	1275	i0.00	16	300.00	199	50.00	21.40	00.00	26500.00 N	иц.		
No.	M		Freq		Rea	ding	Co	rrect	Мє	easur	e-	Limi		Ove		JU. UU	20300.00 F	411
			MHz	,	Le ^s			ctor IB		ment 3uV/r		dBuV	/m	dB	3	Detector	Commer	nt
1			4874.0		54.			.75		15.34		74.0		-28.0		peak	301111101	<u>:</u>
2	*		4874.0		41.	69	-8	.75		32.94		54.0	0	-21.0	06	AVG		_

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

_		st Mc			l		802.1					Test D					1/6/2	
		Frequ Temp	iency				2MHz 3°C					Polariza Hun					rtical 6%	
130.0	dBuV						3 C					Пип	<u>I.</u>			31	070	
120																		
110																		
100																		
90 <u> </u>																		
30																		
70																		
60 <u> </u>																		
50			1 X															
10			2 X															
30 - 20 -																		
10.0																		
	00.000 3550.00 6100.0 b. Mk. Freq.		8650		11200			0.00		300.00		50.00		00.00	26500.00 N	ИH		
No.	N	∕lk.	Freq	•	Rea Le		Cor Fac			easur ment		Limi	t	Ove	er			
			MHz	<u>-</u>	dB	uV	d	В	dl	3uV/r	n	dBuV	/m	dB	3	Detector	Commer	٦t
1			4924.0		54.		-8.	66		15.65		74.0		-28.3		peak		
2		*	4924.0	00	41.	76	-8.	66	(33.10		54.0	0	-20.9	90	AVG	•	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test I			l	EEE						Test D					21/6/2	
	Test Fre					2MH	Z			F	Polariza					zontal	
30.0	Ter	mp			2	3°C					Hum	١.			5	6%	
30.0	dBuV/m																\neg
20																	-
110																	-
100																	4
90																	-
30																	-
'o																	-
io																	4
io =		1 X															+
10 <u> </u>																	4
:0		2 X															
eo																	
0.0																	
	1.000 3550.00 6100.0		8650		1120		1375			300.00	1885		21400.0	00	26500.0	0 MH	
No.	Mk.	F	req.		ding vel		rrect ctor		easur ment	9-	Limit	t	Ove	r			
		N	1Hz	dB	uV	(dΒ	dl	3uV/n	n	dBuV/	m /	dB		Detector	Comm	ent
1		492	4.000	53	.61	-8	.66		14.95		74.00	0	-29.0)5	peak		
2	*	492	4.000	42	.31	-8	.66	(33.65		54.00	0	-20.3	35	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test N			I		802.1					Test D					1/6/2	
	Test Fre					2MHz	<u>z</u>			F	Polariza					rtical	
130.0	Ten dBuV/m	np			2	3°C					Hum	າ			5	6%	
130.0	dBuV/m																7
120 _																	
110																	-
100																	-
90																	-
BO _																	-
70 F																	1
SO _																	-
50		1 ×															1
40 L																	
30		2 X															
20																	
10.0																	
		00 3550.00 6100.0		8650		1120			0.00		300.00			21400	0.00	26500.00	МН
No.	Mk.	Fred	1.	Rea Le			rect ctor		easur ment	e-	Limi	t	Ove	r			
		MH:	Z	dB	uV	d	В	dl	3uV/r	n	dBuV	/m	dB		Detector	Comme	nt
1		4824.0	000	53.	37	-8	.83		14.54		74.0	0	-29.4	ŀ6	peak		
2	*	4824.0	000	41.	28	-8	.83	3	32.45		54.0	0	-21.5	55	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo					802.1					Test Da				1/6/2
Te	est Freq					2MHz				F	Polariza				zontal
100.0	Tem	р			2	3°C					Hum	۱.		5	6%
130.0	dBuV/m														
120															
110															
100															
90															
80															
70															
60															
50															
40		1 X													
30		2 X													
20															
10.0															
1000.0	000 3550.).00	8650	.00	11200	.00	1375	0.00	163	300.00	1885	0.00 214	00.00	26500.00 MHz
No.	Mk.	Freq		Rea Le		Corr			easure ment	9-	Limit	t	Over	_	
		MHz	<u>.</u>	dB		dl			3uV/n	n	dBuV/	m	dB	Detector	Comment
1		4824.0	00	52.	82	-8.	33		13.99		74.00)	-30.01	peak	
2	*	4824.0	000	41.	88	-8.	33	3	33.05		54.00)	-20.95	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			I		802.11	g				Test Da				21/6/2
16	est Frequ					7MHz					Polariza				ertical
130.0 d	Temp dBuV/m)			2	3°C					Hum	<u> </u>			56%
130.0	JB Q ¥ 7 III														
120															
10															
00 -															
30															
80															
'0 <u> </u>															
io															
50															
		1 X													
to		2 X													
30		X													
20															
10.0															
	000 3550.0	3550.00 6100.00	1.00	8650	.00	11200.	00	1375	0.00	163	300.00	18850	0.00 2	1400.00	26500.00 MH
No.	Mk.	Freq		Rea		Corr		Me	asure	- -	Limit		Over		
				Le		Fac			ment						
		MHz		dB		dE			3uV/n	า	dBuV/r		dB	Detector	Comment
1		4874.0		53.		-8.7			4.47		74.00		-29.53		
2	*	4874.0	00	41.	76	-8.7	7 5	3	3.01		54.00)	-20.99	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test F	Mo					802.1 7MHz				Test D					1/6/2 zontal
		emp					3°C				 Hun					2011(a) 6%
130.0	dBuV/r											•••				
120																
110 📙																
100																
30 <u> </u>																
во																
70																
io																
50			1 X													
10 - 10 -			2 X													
20																
10.0																
	00.000 3550.00 6100.0 b. Mk. Freq.		8650		11200			50.00	300.00		50.00		00.00	26500.00 M		
No.	IVII	۲.	Freq		Kea Le	ding vel		rect ctor		easur ment	Limi	IL	Ove	3 f		
			MHz		dB			В		BuV/ı	dBuV	/m	dE	3	Detector	Commen
1			4874.0		52.		-8.	75		44.11	74.0		-29.		peak	
2	*		4874.0	00	42.	10	-8.	75	- (33.35	 54.0	0	-20.	65	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			I		802.11g				Test Da				1/6/2
T	est Freque					2MHz			P	olariza				rtical
100.0	Temp)			2	3°C				Hum.			5	6%
130.0	dBuV/m													
120														
110														
100														
90														
80														
70														
60														
50														
40		1 ×												
30		2 X												
20														
10.0														
1000.0	000 3550.0	00 3550.00 6100.0	.00	8650	.00	11200.00	137	50.00	163	00.00	18850.00	214	00.00	26500.00 MHz
No.	Mk.	Freq		Read Lev		Correc Factor		easure ment)-	Limit	0	ver	_	
		MHz		dB		dB		BuV/m)	dBuV/r	n (dB	Detector	Comment
1		4924.0		52.		-8.66		43.78		74.00		0.22	peak	
2	*	4924.0		42.		-8.66		33.39		54.00	-2	0.61	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		st Mo			I		802.1 2MH					Test D					1/6/2 zontal	
		Temp	iency				21/1⊓/ 3°C	<u> </u>				-olanza Hun					2011(a) 6%	
130.0	dBuV						<u> </u>					ı iuii	1.			<u>J</u> i	J 70	_
120																		
110																		
00 _																		
90																		
30 <u> </u>																		
o																		
io <u> </u>																		
0			1 X															
10			2 X															
20																		
0.0	00.000 3550.00 6100.0		0050		1100	2.00	107	0.00	-10	200.00	100	FO 00	01.4	20.00	2000000			
No.	000.000 3550.00 lo. Mk.	Freq		8650 Rea		1120	rect		0.00 easur		300.00 Limi		50.00 Ove		00.00	26500.00 N	4H	
140.	IV		1 164	•	Le			ctor		ment		LIIII		Ove	٠,			
			MHz		dB	uV	С	В	dl	3uV/r	n	dBuV	/m	dE	3	Detector	Commer	٦t
1			4924.0	00	53.	53	-8	.66		14.87		74.0	0	-29.	13	peak		
2		*	4924.0	00	42.	37	-8	.66	3	33.71		54.0	0	-20.2	29	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test				IEE	E 802))			Test D					1/6/2
	est Fre	eque mp	ency				<u>2MH</u> 3°C	Z				Polariza Hun		<u> </u>			rtical 6%
130.0	dBuV/m	пр					<u> </u>					Пип	<u>I.</u>			31	070
120																	
110																	
100																	
10																	
80																	
o																	
io																	
50			1 X														
10			2 X														
io -			^														
20																	
	0.000 3550.00 6100.0	0.00	8650	0.00	1120	0.00	1375	50.00	16	300.00	188	50.00	2140	00.00	26500.00 M		
No.	Mk		Freq			ding vel		rrect		easur ment		Limi	t	Ove	er		
			MHz	<u> </u>		uV		dB		BuV/r		dBuV	/m	dE	3	Detector	Commen
1			4824.0	00		.83		.83		45.00		74.0		-29.	00	peak	
2	*		4824.0	00	42	.55	-8	.83	- ;	33.72		54.0	0	-20.2	28	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		st Mo			IEE		2.11n())			Test D					1/6/2	
	Test F	requ Temp					<u>2MHz</u> 3°C	<u>-</u>				Polariza Hun		1			zontal 6%	
130.0	dBuV/						3 C					пип	1.			31	070	
120																		
110 📙																		
100																		
90																		
BO _																		
70 E																		
io _																		
50																		
10			1 X															
30			2 X															
20																		
10.0																		
1000	0.000 3550.00 6100.0	.00	8650	.00	11200	0.00	1375	0.00	16	300.00	188	50.00	2140	00.00	26500.00 N	đН		
No.	N	1k.	Freq		Rea Le	ding vel		rect		easur ment		Limi	it	Ove	er	_	_	
			MHz	<u> </u>	dB			B		3uV/r		dBuV	/m	dE	3	Detector	Commen	٦t
1			4824.0		51.			83		12.94		74.0		-31.		peak		_
2		*	4824.0	00	42.	15	-8.	83	(33.32		54.0	0	-20.	68	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode Test Frequency			2.11n(HT20 37MHz))	Test Date Polarization	2		1/6/2 rtical	
	Temp			3°C		Hum.	56%		
130.0	dBuV/m	<i>J</i>		.5 0		Tidili.			<i>57</i> 0
120									
110 📙									
100									
90									
80									
_									
70									
60 —									
50		1							
40		X							
30		2 X							
20									
10.0 1000	0.000 3550.0	00 6100.00	8650.00	11200.00	13750.00 1	6300.00 188	350.00 21 4	00.00	26500.00 MH
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	00.00	20300.00 MII
			Level	Factor	ment				
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	<u>-</u>	4874.000		-8.75	44.03	74.00	-29.97	peak	
2	*	4874.000	42.19	-8.75	33.44	54.00	-20.56	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode Test Frequency					2.11n(HT20 7MHz	0)	Test Date Polarization			1/6/2 zontal
<u>J</u>					3°C		Hum.	11		2011(a) 3%
130.0	dBuV/m	ıρ			0 0		T IQITI.			3 70
120										
110 -										
100										
90										
30										
70 <u> </u>										
io —										
50		1 ×								
10		2 X								
20										
10.0										
	000 3550			8650.00	11200.00				00.00	26500.00 MH
No.	Mk.	Freq.		Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	•	4874.0		53.08	-8.75	44.33	74.00	-29.67	peak	•
2	*	4874.0	00	41.99	-8.75	33.24	54.00	-20.76	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode				IEEE		:.11n())			Test D					1/6/2	
	Test Frequency Temp				2MH: 3°C	Z				Polariza Hun		<u> </u>		Vertical 56%			
130.0	dBuV						3 C					Hull	1.			31	0%
20 🗕																	
10																	
00																	
0																	
:0																	
o																	
:0																	
io -			X X														
0			2														
io -			X														
20																	
0.0																	
1000	0.000	3550.0	0 6100.	00	8650.	00	1120	0.00	1375	0.00	16	300.00	188	50.00	2140	00.00	26500.00 M
No.	N	Лk.	Freq.		Read			rect		easur		Limi	it	Ove	er		
			MHz		Lev dBu			ctor IB		ment 3uV/r		dBuV	/m	dE	₹	Detector	Commen
1			4924.00	00	54.3			.66		15.70		74.0		-28.		peak	Commen
2		*	4924.00		42.			.66		33.87		54.0		-20.		AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode Test Frequency				IEEI			(HT20	0)			Test D					1/6/2		
	Temp		2462MHz 1 23°C					- 1	Polarization Hum.					Horizontal 56%				
130.0	dBuV/						3 C					Hull	<u>I.</u>			<u>J</u>	0 /0	
120 🗀																		
110																		
100																		
90																		
BO																		
70																		
60 <u> </u>																		
50			1															
40			X															
			2 X															
30																		
20																		
10.0																		
1000	0.000 3		0 6100	.00	8650	.00	1120	0.00	1375	0.00	16	300.00		50.00	2140	0.00	26500.00	MH:
No.	M	lk.	Freq		Rea			rrect		easur		Limi	t	Ove	er			
			MHz		Le ^v dB			ctor dB		ment 3uV/r		dBuV	/m	dE	₹	Detector	Comme	nt
1			4924.0		54.			.66		15.91		74.0		-28.		peak	Comme	116
2		*	4924.0		42.			.66		34.05		54.0		-19.		AVG		_

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Report No.: BTL-FCCP-6-2105T078 APPENDIX D OUTPUT POWER

Project No.: 2105T078 Page 53 of 54 Report Version: R01

Test Mode

Report No.: BTL-FCCP-6-2105T078

Tested Date

2021/8/11

Test Mode	IEEE 802.11b			Tested Date	2021/8/11
Frequency	Conducted Power	Conducted Power (W)	Limit	Limit	Result
(MHz)	(dBm)	Conducted Fower (vv)	(dBm)	(W)	Result
2412	20.24	0.1057	30.00	1.0000	Complies
2437	19.85	0.0966	30.00	1.0000	Complies
2462	20.22	0.1052	30.00	1.0000	Complies
				_	
Test Mode	IEEE 802.11g			Tested Date	2021/8/11

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Limit (dBm)	Limit (W)	Result
2412	21.86	0.1535	30.00	1.0000	Complies
2437	23.46	0.2218	30.00	1.0000	Complies
2462	21.74	0.1493	30.00	1.0000	Complies

-	uency Hz)	Conducted Power (dBm)	Conducted Power (W)	Limit (dBm)	Limit (W)	Result
24	12	21.37	0.1371	30.00	1.0000	Complies
24	37	23.37	0.2173	30.00	1.0000	Complies
24	62	21.96	0.1570	30.00	1.0000	Complies

IEEE 802.11n (HT20)

End of Test Report