

FCC RF Test Report

APPLICANT	:	PAX Technology Limited
EQUIPMENT	:	Secure Card Reader
BRAND NAME	:	PAX
MODEL NAME	:	D135
FCC ID	:	V5PD135S
STANDARD	:	FCC Part 15 Subpart C §15.247
CLASSIFICATION	:	(DSS) Spread Spectrum Transmitter
TEST DATE(S)	:	Nov. 22, 2023 ~ Dec. 05, 2023

We, Sporton International Inc. (Shenzhen), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Shenzhen), the test report shall not be reproduced except in full.

JasonJia

Approved by: Jason Jia

Sporton International Inc. (ShenZhen) 1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China

TABLE OF CONTENTS

RE	VISIO	N HISTORY	.3
SU	MMAR	Y OF TEST RESULT	.4
1	GENE	ERAL DESCRIPTION	.5
	1.1	Applicant	.5
	1.2	Manufacturer	.5
	1.3	Product Feature of Equipment Under Test	.5
	1.4	Product Specification of Equipment Under Test	.6
	1.5	Modification of EUT	.6
	1.6	Testing Location	.6
	1.7	Test Software	.7
	1.8	Applicable Standards	.7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	.8
	2.1	Carrier Frequency Channel	.8
	2.2	Test Mode	.9
	2.3	Connection Diagram of Test System	10
	2.4	Support Unit used in test configuration and system	11
	2.5	EUT Operation Test Setup	11
	2.6	Measurement Results Explanation Example	11
3	TEST	RESULT	12
	3.1	Number of Channel Measurement	12
	3.2	Hopping Channel Separation Measurement	14
	3.3	Dwell Time Measurement	17
	3.4	20dB and 99% Bandwidth Measurement	19
	3.5	Output Power Measurement	24
	3.6	Conducted Band Edges Measurement	25
	3.7	Conducted Spurious Emission Measurement	28
	3.8	Radiated Band Edges and Spurious Emission Measurement	32
	3.9	AC Conducted Emission Measurement	36
	3.10	Antenna Requirements	38
4	LIST	OF MEASURING EQUIPMENT	39
5	MEAS	SUREMENT UNCERTAINTY	40
AP	PEND	X A. CONDUCTED TEST RESULTS	
AP	PEND	X B. AC CONDUCTED EMISSION TEST RESULT	
AP	PEND	X C. RADIATED SPURIOUS EMISSION	
AP	PEND	X D. DUTY CYCLE PLOTS	
AP	PEND	X E. SETUP PHOTOGRAPHS	

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR3N0802A	Rev. 01	Initial issue of report	Dec. 15, 2023

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(1)	Number of Channels	≥ 15Chs	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	≥ 2/3 of 20dB BW	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	≤ 0.4sec in 31.6sec period	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	-	Report only	-
3.4	-	99% Bandwidth	-	Report only	-
3.5	15.247(b)(1)	Peak Output Power	≤ 125 mW	Pass	-
3.6	15.247(d)	Conducted Band Edges	≤ 20dBc	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	≤ 20dBc	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 7.96 dB at 71.71 MHz
3.9	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 23.66 dB at 1.42 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement	15.203 & 15.247(b)	Pass	-

Conformity Assessment Condition:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.

2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty"

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

1 General Description

1.1 Applicant

PAX Technology Limited

Room 2416, 24/F., Sun Hung Kai Centre, 30 Harbour Road, Wanchai, Hong Kong

1.2 Manufacturer

PAX Computer Technology (Shenzhen) Co., Ltd.

401 and 402, Building 3, Shenzhen Software Park, Nanshan District, Shenzhen City, Guangdong Province, P.R.C

1.3 Product Feature of Equipment Under Test

	Product Feature					
Equipment	Secure Card Reader					
Brand Name	PAX					
Model Name	D135					
FCC ID	V5PD135S					
SN Code	Conducted: 1890174166 for Config B (Sample 1) 1890174138 for Config C (Sample 3) Conduction: 1890174164 for Config B (Sample 1) 1890174135 for Config C (Sample 3) Radiation: 1890174139 for Config B (Sample 1) 1890174169 for Config C (Sample 3)					
HW Version	NA					
SW Version	NA					
EUT Stage	Production Unit					

Remark:

- 1. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
- There are three samples under test, sample 1(Config B) is 1st source LCD, sample 2 (Config B) is 2nd source LCD, sample 3(Config C) is without LCD, according to the difference, sample 1 perform full test and sample 3 verify the worst case for Radiation Spurious / AC Conducted Emission / Conducted Power items.

1.4 Product Specification of Equipment Under Test

Standards	Standards-related Product Specification				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz				
Number of Channels	79				
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78				
Maximum Output Power to Antenna	<config b=""> Bluetooth BR(1Mbps) : -1.51 dBm (0.0007 W) <config c=""> Bluetooth BR(1Mbps) : -1.62 dBm (0.0007 W)</config></config>				
99% Occupied Bandwidth	Bluetooth BR(1Mbps) : 1.047 MHz				
Antenna Type / Gain	Monopole Antenna with gain 1.49 dBi				
Type of Modulation	Bluetooth BR (1Mbps) : GFSK				

Note: the Bluetooth only support BR(1Mbps).

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton International Inc. (Shenzhen) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.01.

Test Firm	Sporton International Inc. (Shenzhen)							
Test Site Location	1/F, 2/F, Bldg 5, Shiling Industrial Zone, Xinwei Village, Xili, Nanshan, Shenzhen, 518055 People's Republic of China TEL: +86-755-86379589 FAX: +86-755-86379595							
Test Site No.	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.					
	CO01-SZ TH01-SZ	CN1256	421272					

Test Firm	Sporton International Inc. (Shenzhen)				
Test Site Location	101, 1st Floor, Block B, Building 1, No. 2, Tengfeng 4th Road, Fenghuang Community, Fuyong Street, Baoan District, Shenzhen City, Guangdong Province 518103 People's Republic of China TEL: +86-755-86066985				
Test Site No.	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.		
	03CH04-SZ	CN1256	421272		

1.7 Test Software

lte	əm	Site	Manufacturer	Name	Version
	1.	03CH04-SZ	AUDIX	E3	6.2009-8-24
2	2.	CO01-SZ	AUDIX	E3	6.120613b

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

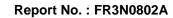
Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

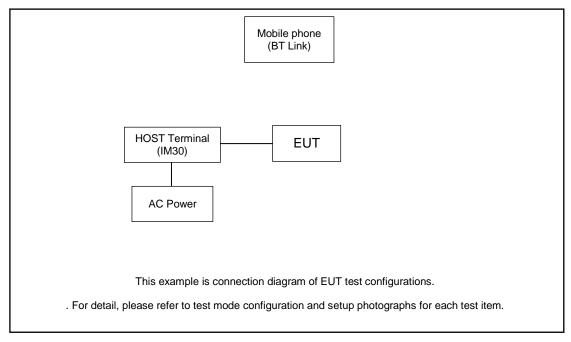
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

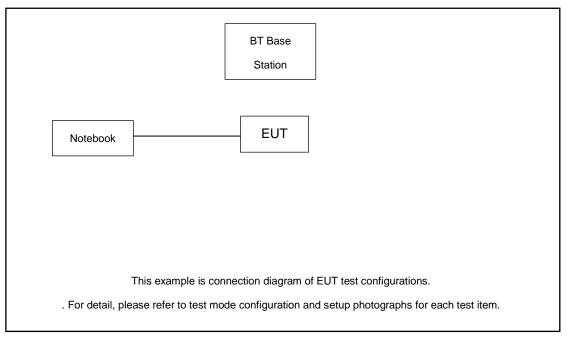


2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

	Summary table of Test Cases
	Data Rate / Modulation
Test Item	Bluetooth BR 1Mbps
	GFSK
Conducted	Mode 1: CH00_2402 MHz
Test Cases	Mode 2: CH39_2441 MHz
Test Cases	Mode 3: CH78_2480 MHz
	Bluetooth BR 1Mbps GFSK
Radiated	Mode 1: CH00_2402 MHz
Test Cases	Mode 2: CH39_2441 MHz
	Mode 3: CH78_2480 MHz
	Mode 1 : Bluetooth Link with Mobile Phone + USB Cable + Powered by IM30 + Battery
AC	for Config B (sample 1)
Conducted	Mode 2 : Bluetooth Link with Mobile Phone + USB Cable + Powered by IM30 + Battery
Emission	for Config C (sample 3)
Remark: For	Radiated Test Cases, The tests were performed with Notebook.


The following summary table is showing all test modes to demonstrate in compliance with the standard.



2.3 Connection Diagram of Test System

AC Conducted Emission:

Radiated Emission:

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Mobile phone	NA	NA	NA	NA	NA
2.	Notebook	NA	NA	NA	NA	NA
3.	USB Cable	NA	NA	NA	NA	NA
4.	HOST terminal	PAX	IM30	V5PIM304GBWL	NA	NA

2.5 EUT Operation Test Setup

For Bluetooth function, the engineering test program was provided and enabled to make EUT connect with Bluetooth base station to continuous transmit.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 13.43 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

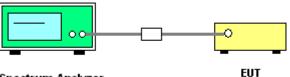
= 13.43 + 10 = 23.43 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

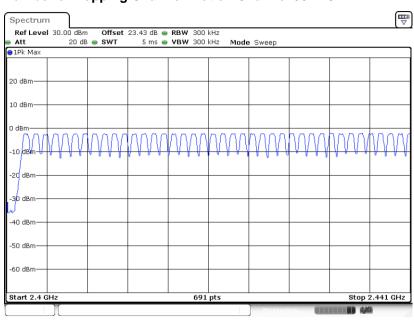

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup



Spectrum Analyzer

3.1.5 Test Result of Number of Hopping Frequency

Please refer to Appendix A.

Number of Hopping Channel Plot on Channel 00 - 78

Date: 22.NOV.2023 17:39:51

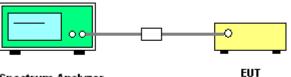
Ref Leve Att		20 dB		Offse SWT				ns (P	1od	e S	We	ep										
∋1Pk Max					_				—				_				_				_			_				_	
20 dBm									+				+											+					
10 dBm		_							+				+				\vdash							+				-	
	ΠΛ	าก	nr		٦ı	٦٢		Π		Л	n	M	r	n	7/	ገቦ	n	Π	m	M	h		n N		n	Λ		n m	
	VVV	V	V	₩¥	¥	V	Į.	μ	Η	H		Ľ	-4	L \	V	V	1	Ц	Ц	Ц	f ¥	V	Į I	Ψ	Ц	Ш	ĮΥ	M	
-20 dBm—																													
-30 dBm																	T												-U.
-40 dBm																													
-60 dBm																													
Start 2.44												69																	35 GF

Date: 22.NOV.2023 17:40:15

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.


3.2.2 Measuring Instruments

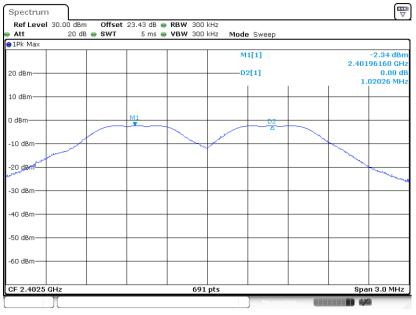
The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

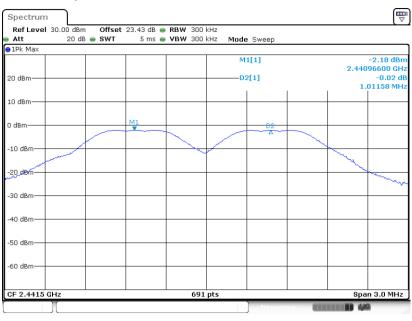
- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

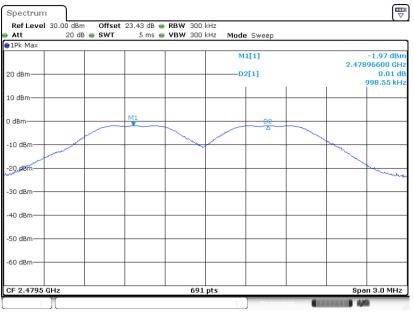
Spectrum Analyzer


3.2.5 Test Result of Hopping Channel Separation

Please refer to Appendix A.


<1Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 1.DEC.2023 10:49:24

Channel Separation Plot on Channel 39 - 40

Date: 22.NOV.2023 17:21:26

Channel Separation Plot on Channel 77 - 78

Date: 22.NOV.2023 17:22:36

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

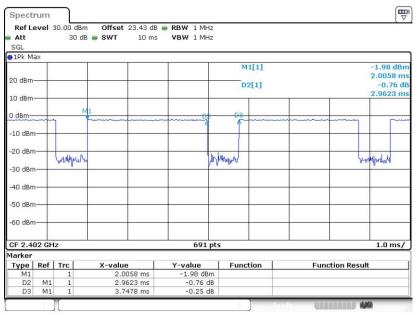

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup



Spectrum Analyzer

3.3.5 Test Result of Dwell Time

Please refer to Appendix A.

Package Transfer Time Plot

Date: 22.NOV.2023 13:09:27

Remark:

 In normal mode, hopping rate is 1600 hops/s with 6 slots (5 Transmit and 1 Receive slot) in 79 hopping channels.

With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.

- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels.
 With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s),
 Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

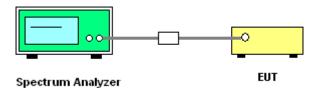
3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

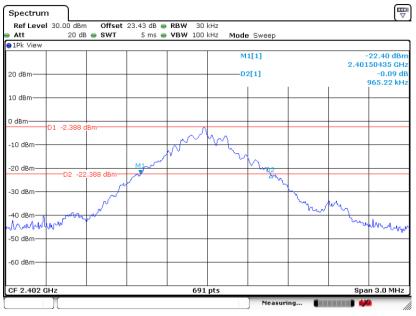

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 The RBW is set to 1% to 5% of the 99% OBW, the VBW is set to 3 times the RBW;
 Sweep = auto; Detector function = peak;
 Trace = max hold.
- 5. Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel; The RBW is set to 1% to 5% of the 99% OBW, the VBW is set to 3 times the RBW; Sweep = auto; Detector function = peak;

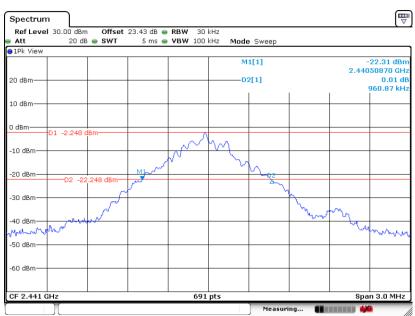
Trace = max hold.

6. Measure and record the results in the test report.

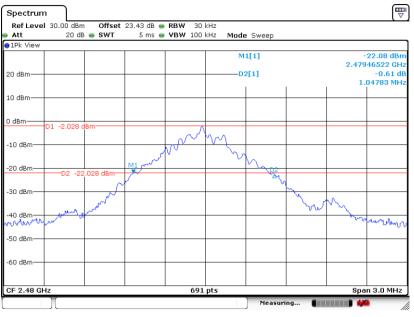
3.4.4 Test Setup


3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.


<1Mbps>

20 dB Bandwidth Plot on Channel 00

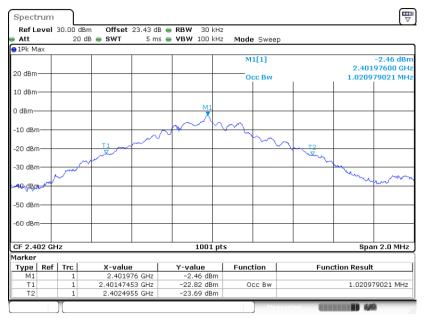

Date: 22.NOV.2023 17:18:37

20 dB Bandwidth Plot on Channel 39

Date: 22.NOV.2023 17:18:01

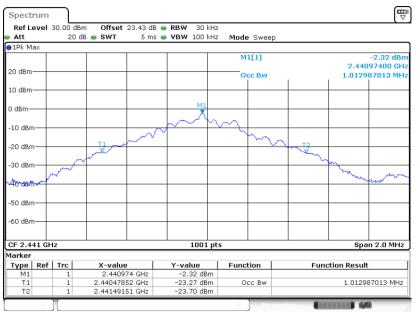
20 dB Bandwidth Plot on Channel 78

Date: 22.NOV.2023 17:17:26



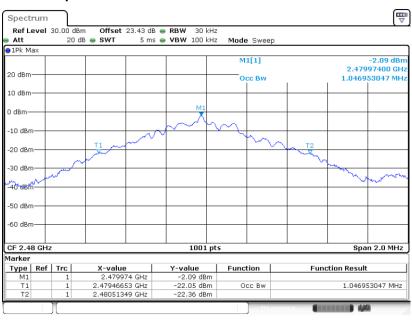
3.4.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.


<1Mbps>

99% Occupied Bandwidth Plot on Channel 00

Date: 22.NOV.2023 17:10:10



99% Occupied Bandwidth Plot on Channel 39

Date: 22.NOV.2023 17:12:01

99% Occupied Bandwidth Plot on Channel 78

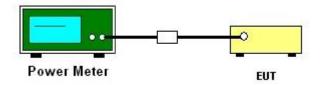
Date: 22.NOV.2023 17:13:26

Note : The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. The power limit for 1Mbps, 2Mbps, 3Mbps and AFH modes are 0.125 watts.


3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

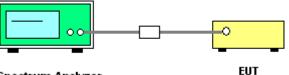
3.5.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

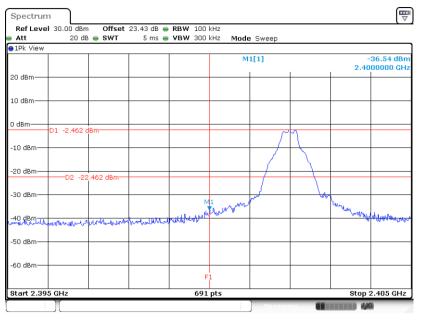

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

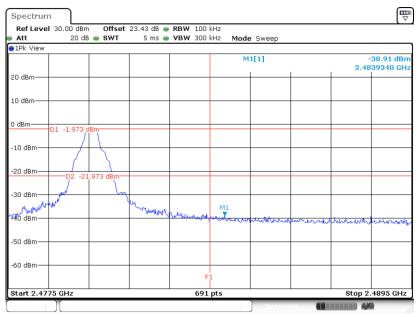
3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup


Spectrum Analyzer

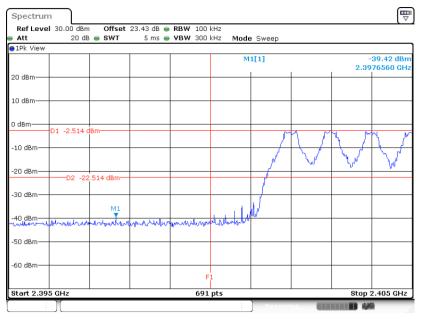
3.6.5 Test Result of Conducted Band Edges


<1Mbps>

Low Band Edge Plot on Channel 00

Date: 22.NOV.2023 17:23:58

High Band Edge Plot on Channel 78


Date: 22.NOV.2023 17:29:17

3.6.6 Test Result of Conducted Hopping Mode Band Edges

<1Mbps>

Hopping Mode Low Band Edge Plot

Date: 22.NOV.2023 17:41:37

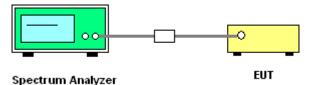
Hopping Mode High Band Edge Plot

Date: 22.NOV.2023 17:44:17

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

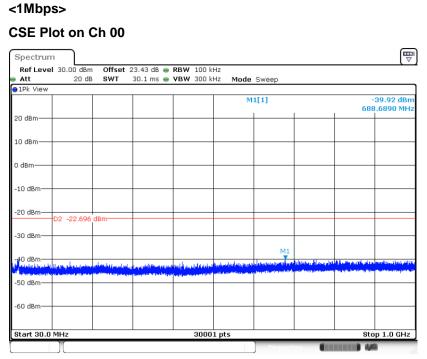
In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


3.7.2 Measuring Instruments

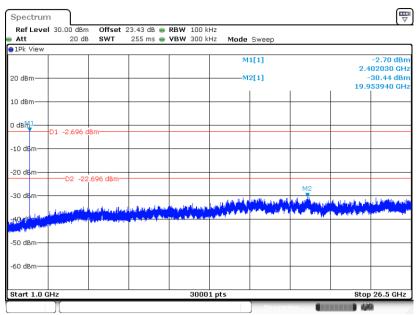
The measuring equipment is listed in the section 4 of this test report.

3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.


3.7.4 Test Setup

Sporton International Inc. (ShenZhen) TEL : +86-755-8637-9589 FAX : +86-755-8637-9595 FCC ID: V5PD135S



3.7.5 Test Result of Conducted Spurious Emission

Date: 22.NOV.2023 17:31:27

CSE Plot on Ch 00

Date: 22.NOV.2023 17:30:52

CSE Plot on Ch 39

Spectrur	n								
	l 30.00 dBm			RBW 100 k					
Att	20 dB	SWT	30.1 ms 😑	VBW 300 k	Hz Mode	Sweep			
1Pk View									
					м	1[1]			-39.55 dBm 1.7420 MHz
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm	-D2 -23.451	dDar							
-30 dBm	102 -23.431								
40 dBm	I tide a total concern			المتصبون فرأم ريونهم		N. Institute of the second		land der an eine statistichte	a ta a sa sti ika shi itu
	U U U U U U U U U U U U U U U U U U U	a fille a full and a growth	da se juda da da da da da s		A shared proved by the second	the same of the second s	and the latter of the		and the second
-50 dBm—									
-60 dBm—									
Start 30.0	MHz			3000	1 pts			Sto	p 1.0 GHz
						Measuri	. 1 1		6

Date: 22.NOV.2023 17:32:56

CSE Plot on Ch 39

Ref Level 30.	.00 dBm Offset	: 23.43 dB 😑 R	BW 100 kHz					
Att	20 dB SWT	255 ms 👄 🗸	BW 300 kHz	Mode	Sweep			
1Pk View								
				M	1[1]			-3.45 dBn
20 dBm				5.41	2[1]			41130 GH 30.37 dBr
20 dBm					2[1]			93030 GH
LO dBm								
	-3.451 dBm							
DI -	-3.451 060							
10 dBm								
20 dBm		+ +						
	-D2 -23.451 dBm							N
-30 dBm				Lab A	The Balling and Ball	la lla state and a state		
	ين يريد أنبيا والتسويرين و	La Strength Strength	ارو الراج المانين		al also a del		free and the bar for	All and the second second
40. de altaul	and the second second	and the second s	under angener a Angener angener a	Margary.			A survey of a s	
and the surface of the second s								
50 dBm								ļ
								l l
60 dBm								
Start 1.0 GHz			30001 p	ots			Stop	26.5 GHz

Date: 22.NOV.2023 17:32:31

CSE Plot on Ch 78

Spectrum								
Ref Level 30.00	dBm Offset	23.43 dB 😑 🖡	RBW 100 ki	Ηz				
	O dB SWT	30.1 ms 😑 🕻	/BW 300 ki	Hz Mode	Sweep			
1Pk View								
				м	1[1]			39.58 dBn .0540 MH:
20 dBm								
10 dBm								
D dBm								
-10 dBm								
-20 dBm	.118 dBm							
-30 dBm								
40 dBm							M1	
the second for the second second	a serie de la ferra de la series			a Carl a la constant de la constant Constant de la constant de la constant de la constant de la constant de la c	and the selection of the second s	Insurplicition of the second	The second se	Distriction of the state of the
-50 dBm	and the second second second							
-60 dBm								
Start 30.0 MHz			3000	L pts			Sto	p 1.0 GHz
T T					Measur			A

Date: 22.NOV.2023 17:36:01

CSE Plot on Ch 78

Ref Level 30.00	dBm Offset dB SWT	23.43 dB 👄	RBW 100 VBW 300		Sweep			
1Pk View	JUB 3W1	255 ms 🥃	VBW 300	KH2 MODE	Sweep			
20 dBm					1[1] 2[1]		-	-2.12 dBm 80230 GHz 30.50 dBm 29970 GHz
10 dBm								
D dBm 1 -2.1	18 dBm							
-10 dBm								
20 dBmD2	-22.118 dBm-							
30 dBm				1.44.44	المرادي ومطالك	M2	a	a dala a da di
a suma a sta	della barre bitterite	ويتكر أرقادة إدراد	New Xoluly Lab		and the second second	had a state of the second	and the second sec	and the second
40.d8	and the second							
-50 dBm								
60 dBm								
Start 1.0 GHz			3000)1 pts			Stor	26.5 GHz

Date: 22.NOV.2023 17:35:35

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

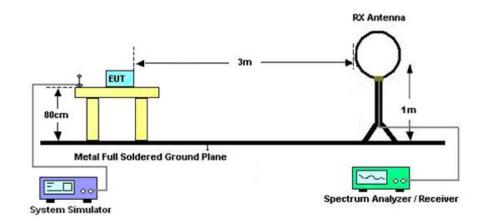
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 - 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

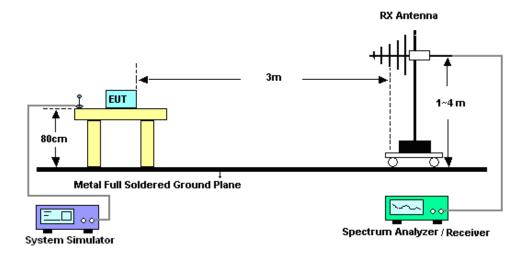
3.8.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

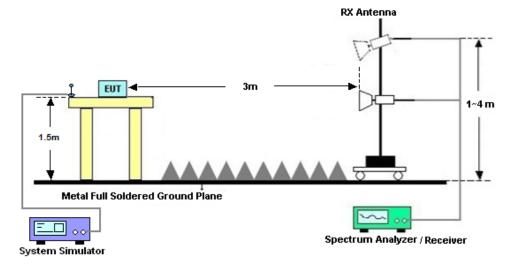
3.8.3 Test Procedures


- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than peak limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.55dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.



3.8.4 Test Setup


For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

Sporton International Inc. (ShenZhen) TEL : +86-755-8637-9589 FAX : +86-755-8637-9595 FCC ID: V5PD135S Page Number : 34 of 40 Report Issued Date : Dec. 15, 2023 Report Version : Rev. 01 Report Template No.: BU5-FR15CBT Version 2.0

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.8.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic or 40GHz, whichever is lower)

Please refer to Appendix C.

3.8.8 Duty cycle correction factor for average measurement

Please refer to Appendix D.

3.9 AC Conducted Emission Measurement

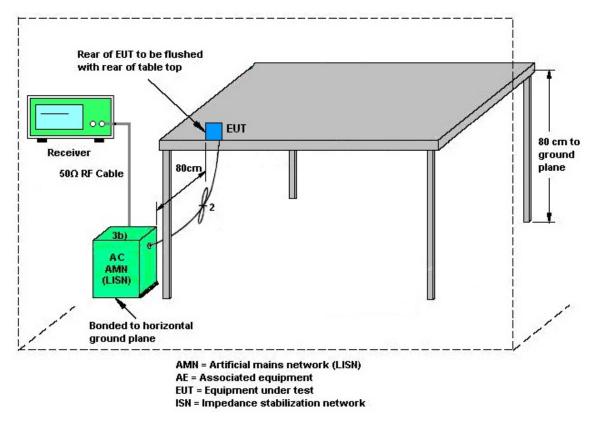
3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted	limit (dBµV)
Frequency of emission (MHZ)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.9.4 Test Setup

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
EMI Test Receiver	R&S	ESR7	101404	9kHz~7GHz	Oct. 18, 2023	Dec. 05, 2023	Oct. 17, 2024	Radiation (03CH04-SZ)
EXA Spectrum Analyzer KEYSIGHT		N9010A	MY55150213	10Hz~44GHz	Jul. 07, 2023	Dec. 05, 2023	Jul. 06, 2024	Radiation (03CH04-SZ)
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	Jun. 28, 2022	Dec. 05, 2023	Jun. 27, 2024	Radiation (03CH04-SZ)
Bilog Antenna	TeseQ	CBL6111D	41909	30MHz~1GHz	May. 14, 2023	Dec. 05, 2023	May. 13, 2024	Radiation (03CH04-SZ)
Double Ridge Horn Antenna	SCHWARZBE CK	BBHA9120D	9120D-1474	1GHz~18GHz	Jul. 07, 2023	Dec. 05, 2023	Jul. 06, 2024	Radiation (03CH04-SZ)
Horn Antenna	SCHWARZBE CK	BBHA9170	9170#679	15GHz~40GHz	Jul. 08, 2023	Dec. 05, 2023	Jul. 07, 2024	Radiation (03CH04-SZ)
Amplifier	Burgeon	BPA-530	102211	0.01Hz ~3000MHz	Oct. 18, 2023	Dec. 05, 2023	Oct. 17, 2024	Radiation (03CH04-SZ)
HF Amplifier MITEQ		AMF-7D-0010 1800-30-10P- R	1943528	1GHz~18GHz	Oct. 18, 2023	Dec. 05, 2023	Oct. 17, 2024	Radiation (03CH04-SZ)
HF Amplifier MITEQ		TTA1840-35- HG	1871923	18GHz~40GHz	Jul. 07, 2023	Dec. 05, 2023	Jul. 06, 2024	Radiation (03CH04-SZ)
Amplifier Agilent Technologies		83017A	MY57280136	500MHz~26.5G Hz	Aug. 21, 2023	Dec. 05, 2023	Aug. 20, 2024	Radiation (03CH04-SZ)
AC Power Source	APC	AFV-S-600B	F119050019	N/A	Oct. 18, 2023	Dec. 05, 2023	Oct. 17, 2024	Radiation (03CH04-SZ)
Turn Table	EM	EM1000	N/A	0~360 degree	NCR	Dec. 05, 2023	NCR	Radiation (03CH04-SZ)
Antenna Mast	EM	EM1000	N/A	1 m~4 m	NCR	Dec. 05, 2023	NCR	Radiation (03CH04-SZ)
Spectrum Analyzer	R&S	FSV40	101078	10Hz~40GHz	Apr. 06, 2023	Nov. 22, 2023~ Dec. 01, 2023	Apr. 05, 2024	Conducted (TH01-SZ)
Pulse Power Senor	Anritsu	MA2411B	1339473	30MHz~40GHz	Dec. 27, 2022	Nov. 22, 2023~ Dec. 01, 2023	Dec. 26, 2023	Conducted (TH01-SZ)
Power Meter	Anritsu	ML2495A	1542004	50MHz Bandwidth	Dec. 27, 2022	Nov. 22, 2023~ Dec. 01, 2023	Dec. 26, 2023	Conducted (TH01-SZ)
Thermo meter	Anymetre	JR593	#7	- 10°C ~ 50°C 10%RH~99%R H	Apr. 08, 2023	Nov. 22, 2023~ Dec. 01, 2023	Apr. 07, 2024	Conducted (TH01-SZ)
EMI Receiver	R&S	ESR7	101630	9kHz~7GHz;	Jul. 06, 2023	Nov. 28, 2023	Jul. 05, 2024	Conduction (CO01-SZ)
AC LISN	R&S	ENV216	100063	9kHz~30MHz	Aug. 21, 2023	Nov. 28, 2023	Aug. 20, 2024	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	EMCO	3816/2SH	00103892	9kHz~30MHz	Oct. 16, 2023	Nov. 28, 2023	Oct. 15, 2024	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	6160200008 91	100Vac~250Vac	Jul. 07, 2023	Nov. 28, 2023	Jul. 06, 2024	Conduction (CO01-SZ)

NCR: No Calibration Required

5 Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Measurement

Test Item	Uncertainty
Conducted Spurious Emission & Bandedge	±1.34 dB
Occupied Channel Bandwidth	0.1%
Conducted Power	±1.34 dB
Conducted Power Spectral Density	±1.32 dB
Frequency	±1.3 Hz

Uncertainty of AC Conducted Emission Measurement (0.15 MHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.7 dB
of 95% (U = 2Uc(y))	2.7 dB

Uncertainty of Radiated Emission Measurement (9 KHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	5.1 dB
01.93 / 8 (0 = 200 (y))	

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.1 dB
of 95% (U = 2Uc(y))	5.1 dB

Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	4.8 dB
--	--------

Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)

of 95% (U = 2Uc(y))	5.1 dB
---------------------	--------

----- THE END ------

Appendix A. Conducted Test Results

Report Number : FR3N0802A

Appendix A. Test Result of Conducted Test Items

For Config B (sample 1)

Test Engineer:	ZhiQiang Chen	Temperature:	21~25	°C
Test Date:	2023/11/22~2023/12/01	Relative Humidity:	51~54	%

	TEST RESULTS DATA 20dB and 99% Occupied Bandwidth and Hopping Channel Separation								
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	0.965	1.021	1.020	0.6435	Pass
DH	1Mbps	1	39	2441	0.961	1.013	1.012	0.6407	Pass
DH	1Mbps	1	78	2480	1.048	1.047	0.999	0.6985	Pass

	<u>TEST RESULTS DATA</u> Dwell Time								
Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time(hops)	Package Transfer Time (msec)	Dwell Time (sec)	Limits (sec)	Pass/Fail			
Nomal	79	106.67	2.96	0.32	0.4	Pass			
AFH	20	53.33	2.96	0.16	0.4	Pass			

TEST RESULTS DATA Peak Power Table									
DH	CH.	NTX	Peak Power (dBm)	Power Level	Power Limit (dBm)	Test Result			
	0	1	-2.13	default	20.97	Pass			
DH5	39	1	-1.73	default	20.97	Pass			
	78	1	-1.51	default	20.97	Pass			

	<u>TEST RESULTS DATA</u> <u>Average Power Table</u> (Reporting Only)							
DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)				
DH1	0 39	1	-2.37	4.32				
BIII	78	1	-1.97	4.32				

<u>TEST RESULTS DATA</u> Number of Hopping Frequency								
Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail					
79	20	> 15	Pass					

For Config C (sample 3)

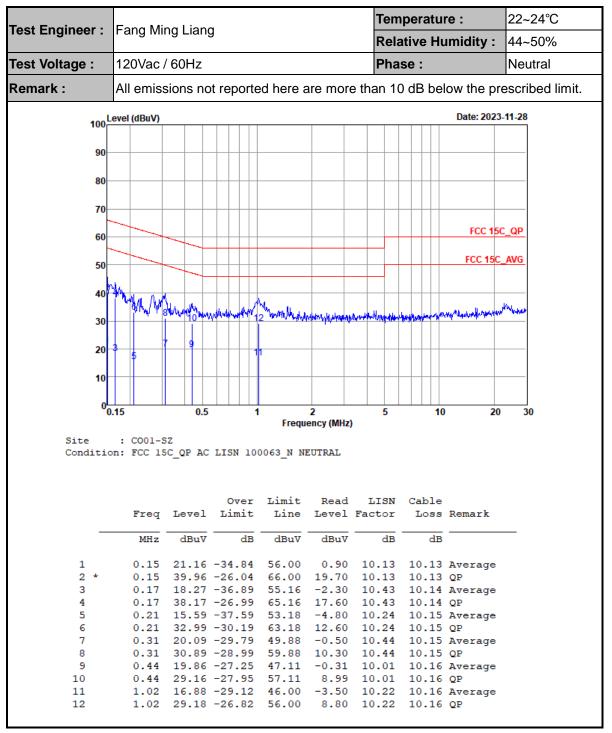
<u>TEST RESULTS DATA</u> Peak Power Table								
DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result			
	0	1	-2.21	20.97	Pass			
DH5	39	1	-1.83	20.97	Pass			
	78	1	-1.62	20.97	Pass			

<u>TEST RESULTS DATA</u> <u>Average Power Table</u> (Reporting Only)								
DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)				
	0	1	-2.37	1.01				
DH5	39	1	-2.17	1.01				
	78	1	-2.07	1.01				

Appendix B. AC Conducted Emission Test Results

.						Tem	peratu	re :	22~24°C
Test Engineer :	Fang Mi	ng Liang	3			Rela	ative Hu	imidity :	44~50%
est Voltage :	120Vac / 60Hz Phase :							Line	
emark :	Allomic	niona na	troporto	dhoro	thop 1(than 10 dB below the pre			
eniark.	All ettils		reporte						scribed in
100 ¹	evel (dBuV)							Date: 2023-	11-28
90-									
80-									
70-									
60								FCC 150	_QP
60-									
50								FCC 15C	AVG
40	White	h		"hiph-him him) 12					
30	- rpr-ur	S Mr Man Way	what you that the second s) 12 ^M M	hoperation	ad a ship with a ship	workighter	when and a second	1 mary for the
	5			14					
20	3			-					
10									
0					2	5		20	
,	0.15	0.5	1		∠ ency (MHz)	-	10	20	30
Site	: CO01-5	5Z							
Conditio	on: FCC 15	5C_QP AC	LISN 100	0063_L L	INE				
Conditi	on: FCC 1	5C_QP AC		D063_L L		LISN	Cable		
Conditi		_		- Limit				Remark	
Conditi		_	Over	- Limit	Read			Remark	
Conditio — 1	Freq MHz	_ Level 	Over Limit dB	Limit Line dBuV	Read Level dBuV	Factor dB	Loss dB	Remark Average	
 1 2 *	Freq MHz 0.16 0.16	Level dBuV 22.68 41.88	Over Limit 	Limit Line dBuV 55.69 65.69	Read Level dBuV 2.20 21.40	Factor dB 10.34 10.34	Loss dB 10.14 10.14	Average QP	
1 2 * 3	Freq MHz 0.16 0.16 0.21	Level dBuV 22.68 41.88 17.77	Over Limit 	Limit Line dBuV 55.69 65.69 53.27	Read Level dBuV 2.20 21.40 -2.80	Factor dB 10.34 10.34 10.42	Loss dB 10.14 10.14 10.15	Average QP Average	
 1 2 *	Freq MHz 0.16 0.16 0.21 0.21	Level dBuV 22.68 41.88 17.77 34.87	Over Limit 	Limit Line dBuV 55.69 65.69 53.27 63.27	Read Level dBuV 2.20 21.40 -2.80 14.30	Factor dB 10.34 10.34 10.42 10.42	Loss dB 10.14 10.14 10.15 10.15	Average QP Average QP	
1 2 * 3 4	Freq MHz 0.16 0.16 0.21 0.21 0.26	Level dBuV 22.68 41.88 17.77 34.87 24.76 34.06	Over Limit 	Limit Line dBuV 55.69 65.69 53.27 63.27 51.34 61.34	Read Level dBuV 2.20 21.40 -2.80 14.30 4.51 13.81	Factor dB 10.34 10.42 10.42 10.42 10.10 10.10	Loss dB 10.14 10.15 10.15 10.15 10.15 10.15	Average QP Average QP Average QP	
1 2 * 3 4 5 6 7	Freq MHz 0.16 0.21 0.21 0.22 0.26 0.26 0.31	Level dBuV 22.68 41.88 17.77 34.87 24.76 34.06 19.35	Over Limit dB -33.01 -23.81 -35.50 -28.40 -26.58 -27.28 -30.53	Limit Line dBuV 55.69 65.69 53.27 63.27 51.34 61.34 49.88	Read Level dBuV 2.20 21.40 -2.80 14.30 4.51 13.81 -0.89	Factor dB 10.34 10.42 10.42 10.42 10.10 10.10 10.09	Loss dB 10.14 10.15 10.15 10.15 10.15 10.15	Average QP Average QP Average QP Average	
1 2 * 3 4 5 6 7 8	Freq MHz 0.16 0.21 0.21 0.22 0.26 0.26 0.31 0.31	Level dBuV 22.68 41.88 17.77 34.87 24.76 34.06 19.35 29.55	Over Limit dB -33.01 -23.81 -35.50 -28.40 -26.58 -27.28 -30.53 -30.33	Limit Line dBuV 55.69 65.69 53.27 63.27 51.34 61.34 49.88 59.88	Read Level dBuV 2.20 21.40 -2.80 14.30 4.51 13.81 -0.89 9.31	Factor dB 10.34 10.42 10.42 10.42 10.10 10.10 10.09 10.09	Loss dB 10.14 10.15 10.15 10.15 10.15 10.15 10.15	Average QP Average QP Average QP Average QP	
1 2 * 3 4 5 6 7 8 9	Freq MHz 0.16 0.21 0.21 0.26 0.26 0.26 0.31 0.31 0.99	Level dBuV 22.68 41.88 17.77 34.87 24.76 34.06 19.35 29.55 19.62	Over Limit dB -33.01 -23.81 -35.50 -28.40 -26.58 -27.28 -30.53 -30.33 -26.38	Limit Line dBuV 55.69 65.69 53.27 63.27 51.34 61.34 49.88 59.88 46.00	Read Level dBuV 2.20 21.40 -2.80 14.30 4.51 13.81 -0.89 9.31 -0.81	Factor dB 10.34 10.42 10.42 10.42 10.10 10.10 10.09 10.09 10.27	Loss dB 10.14 10.15 10.15 10.15 10.15 10.15 10.15 10.15 10.16	Average QP Average QP Average QP Average QP Average	
1 2 * 3 4 5 6 7 8	Freq MHz 0.16 0.21 0.21 0.26 0.26 0.31 0.31 0.99 0.99	Level dBuV 22.68 41.88 17.77 34.87 24.76 34.06 19.35 29.55 19.62 30.33	Over Limit -33.01 -23.81 -35.50 -28.40 -26.58 -27.28 -30.53 -30.33 -26.38 -25.67	Limit Line dBuV 55.69 65.69 53.27 63.27 51.34 61.34 61.34 49.88 59.88 46.00 56.00	Read Level dBuV 2.20 21.40 -2.80 14.30 4.51 13.81 -0.89 9.31 -0.81 9.90	Factor dB 10.34 10.34 10.42 10.42 10.42 10.10 10.10 10.09 10.09 10.27 10.27	Loss dB 10.14 10.15 10.15 10.15 10.15 10.15 10.15 10.16 10.16	Average QP Average QP Average QP Average QP Average	

Toot Engineer .	Eong Mi		~			Tem	peratu	re :	22~24°C		
Test Engineer :	Fang win							Relative Humidity :			
Test Voltage :	120Vac / 60Hz						se :		Neutral		
Remark :	All emiss	sions no	t reporte	ed here a	are more	e than 10) dB bel	low the pr	escribed limit.		
	Level (dBuV)							Date: 2023	-11-28		
100											
90											
80											
70											
								ECC AF			
60								FCC 15	<u>QP</u>		
50								FCC 15C	AVG		
50											
40	m			•							
	TAYWY	Mun m	. In anothing	1211444414444444				herselynandsamlandar	mune		
30		<u>יייר 10 איייי</u>	White and a set	< 177. MANAN	MAN AN AN AN AN	ing the the termine	www.angradia.angrama	LAN HE ANALINE AL IN LONG			
		, 9									
20	\$ 5			1							
10											
10											
0	0.45		1		2	5	10	20	30		
	0.15	0.5	1		∠ ency (MHz)		10	20	30		
Site	: CO01-S	Z									
Conditi	on: FCC 15	C QP AC	LISN 10	0063 <u>N</u> N	EUTRAL						
	_	- 1	Over		Read		Cable				
	rreq	TeAeT	Limit	Line	TeAeT	Factor	Loss	Remark			
-	MHz	dBuV	dB	dBuV	dBuV	dB	dB				
1	0.15	22.20	-33.71	55.91	1.91	10.16	10.13	Average			
2 *			-24.71				10.13	-			
3	0.18	18.37	-36.09	54.46	-2.19	10.42		Average			
4			-27.89								
5								Average			
6			-28.95								
7								Average			
8 9			-29.27					QP Average			
10			-27.60								
10								Average			
12			-25.02					-			
								-			


Note:

- 1. Level(dB μ V) = Read Level(dB μ V) + LISN Factor(dB) + Cable Loss(dB)
- 2. Over $Limit(dB) = Level(dB\mu V) Limit Line(dB\mu V)$

	Eana Mi	naliona	N N			Tem	peratu	re :	22~24	
est Engineer :			9			Rela	ative Hu	imidity :	44~50	
est Voltage :	120Vac	/ 60Hz			Phase :					
emark :	All emiss	sions no	t reporte	ed here a	are more	e than 10) dB be	ow the pr	escribe	
400	evel (dBuV)							Date: 2023	3-11-28	
100										
90										
80										
70										
60								FCC 15	C_QP	
50								FCC 15C	AVG	
l	a l									
40	2m									
	14M/ 4	Lund Shin	Man Here Marker	10 12 W	haddraum	no makanan at		Mary Mary	Maryante	
30					1	W. N. W.				
		; 7		11						
20	3									
40										
10										
	0.15	0.5	1		2 ancy (MHz)	5	10	20	30	
0_0			1		2 ency (MHz	-	10	20	30	
0_0 Site	: CO01-5	Z		Frequ	ency (MHz	-	10	20) 30	
0_0 Site		Z		Frequ	ency (MHz	-	10	20) 30	
0_0 Site	: CO01-5	Z		Frequ	ency (MHz	-	10	20	0 30	
0_0 Site	: CO01-S on: FCC 15	SZ SC_QP AC	LISN 100 Over	Frequ D063_L L Limit	INE Read) LISN	Cable		30	
0_0 Site	: CO01-S on: FCC 15	SZ SC_QP AC	LISN 100 Over	Frequ D063_L L Limit	INE Read)	Cable	20 Remark	30	
0_0 Site	: CO01-S on: FCC 15	SZ SC_QP AC	LISN 100 Over	Frequ DO63_L L Limit Line	INE Read Level) LISN Factor	Cable		30	
0 Site Conditio	: COO1-S on: FCC 15 Freq MHz	SZ GC_QP AC Level 	LISN 100 Over Limit dB	Frequ 0063_L L Limit Line dBuV	Read Level dBuV	LISN Factor 	Cable Loss dB	Remark) 30	
0 Site Conditio	: COO1-S on: FCC 15 Freq MHz 0.16	SZ GC_QP AC Level dBuV 19.42	LISN 100 Over Limit dB -35.83	Frequ D063_L L Limit Line dBuV 55.25	Read Level dBuV -1.00	LISN Factor dB 10.28	Cable Loss dB 10.14	Remark) 30	
0 Site Conditio	: COO1-S on: FCC 15 Freq MHz 0.16	52 5C_QP AC Level dBuV 19.42 38.22	UISN 100 Over Limit dB -35.83 -27.03	Frequ D063_L L Limit Line dBuV 55.25	Read Level dBuV -1.00 17.80	LISN Factor 	Cable Loss dB 10.14 10.14	Remark) 30	
0 Site Conditio	: CO01-S pn: FCC 15 Freq MHz 0.16 0.16	22 C_QP AC Level dBuV 19.42 38.22 15.01	LISN 100 Over Limit dB -35.83 -27.03 -37.95	Frequ 0063_L L Limit Line dBuV 55.25 65.25 52.96	Read Level dBuV -1.00 17.80 -5.50	LISN Factor dB 10.28 10.28	Cable Loss dB 10.14 10.14 10.15	Remark Average QP Average) 30	
0 Site Conditio	: C001-S pn: FCC 15 Freq MHz 0.16 0.16 0.22 0.22 0.31	22 C_QP AC Level dBuV 19.42 38.22 15.01 31.71 20.32	UISN 100 Over Limit dB -35.83 -27.03 -37.95 -31.25 -29.74	Frequ 0063_L L Limit Line dBuV 55.25 65.25 52.96 62.96 50.06	Read Level dBuV -1.00 17.80 -5.50 11.20 0.10	LISN Factor dB 10.28 10.28 10.36 10.36 10.07	Cable Loss dB 10.14 10.14 10.15 10.15 10.15	Average QP Average QP Average) 30	
0 Site Conditio	: C001-5 on: FCC 15 Freq MHz 0.16 0.16 0.22 0.22 0.31 0.31	22 C_QP AC Level dBuV 19.42 38.22 15.01 31.71 20.32 31.12	UISN 100 Over Limit dB -35.83 -27.03 -37.95 -31.25 -29.74 -28.94	Frequ 0063_L L Limit Line dBuV 55.25 65.25 52.96 62.96 50.06 60.06	Read Level dBuV -1.00 17.80 -5.50 11.20 0.10 10.90	LISN Factor dB 10.28 10.28 10.36 10.36 10.07 10.07	Cable Loss dB 10.14 10.15 10.15 10.15 10.15	Average QP Average QP Average QP) 30	
0 Site Conditio 1 2 3 4 5 6 7	: C001-5 on: FCC 15 Freq MHz 0.16 0.16 0.22 0.22 0.31 0.31 0.44	22 C_QP AC Level dBuV 19.42 38.22 15.01 31.71 20.32 31.12 21.22	LISN 100 Over Limit dB -35.83 -27.03 -37.95 -31.25 -29.74 -28.94 -25.80	Frequ 0063_L L Limit Line dBuV 55.25 65.25 52.96 62.96 50.06 60.06 47.02	Read Level dBuV -1.00 17.80 -5.50 11.20 0.10 10.90 0.70	LISN Factor dB 10.28 10.36 10.36 10.07 10.07 10.07	Cable Loss dB 10.14 10.15 10.15 10.15 10.15 10.15	Remark Average QP Average QP Average QP Average) 30	
0 Site Conditio 1 2 3 4 5 6 7 8	: C001-5 on: FCC 15 Freq MHz 0.16 0.16 0.22 0.22 0.31 0.31 0.44 0.44	2 GC_QP AC Level dBuV 19.42 38.22 15.01 31.71 20.32 31.12 21.22 30.92	LISN 100 Over Limit dB -35.83 -27.03 -37.95 -31.25 -29.74 -28.94 -25.80 -26.10	Frequ D063_L L Limit Line dBuV 55.25 65.25 52.96 62.96 50.06 60.06 47.02 57.02	Read Level dBuV -1.00 17.80 -5.50 11.20 0.10 10.90 0.70 10.40	LISN Factor dB 10.28 10.28 10.36 10.36 10.07 10.07 10.07 10.36	Cable Loss dB 10.14 10.15 10.15 10.15 10.15 10.16 10.16	Average QP Average QP Average QP Average QP) 30	
0 Site Conditio 1 2 3 4 5 6 7 8 9	: C001-5 on: FCC 15 Freq MHz 0.16 0.16 0.22 0.22 0.31 0.31 0.44 0.44 1.08	2 3 3 3 3 3 3 3 3 3 3 3 3 3	LISN 100 Over Limit dB -35.83 -27.03 -37.95 -31.25 -29.74 -28.94 -25.80 -26.10 -27.02	Frequ D063_L L Limit Line dBuV 55.25 65.25 52.96 62.96 50.06 60.06 47.02 57.02 46.00	Read Level dBuV -1.00 17.80 -5.50 11.20 0.10 10.90 0.70 10.40 -1.40	LISN Factor dB 10.28 10.28 10.36 10.36 10.07 10.07 10.07 10.36 10.36 10.21	Cable Loss dB 10.14 10.15 10.15 10.15 10.15 10.16 10.16 10.17	Average QP Average QP Average QP Average QP Average QP Average) 30	
0 Site Conditio 1 2 3 4 5 6 7 8	: C001-5 on: FCC 15 Freq MHz 0.16 0.16 0.22 0.22 0.31 0.31 0.44 0.44	Eevel Level dBuV 19.42 38.22 15.01 31.71 20.32 31.12 21.22 30.92 18.98 29.68	LISN 100 Over Limit dB -35.83 -27.03 -37.95 -31.25 -29.74 -28.94 -25.80 -26.10	Frequ D063_L L Limit Line dBuV 55.25 52.96 62.96 50.06 60.06 47.02 57.02 46.00 56.00	Read Level dBuV -1.00 17.80 -5.50 11.20 0.10 10.90 0.70 10.40 -1.40	LISN Factor dB 10.28 10.28 10.36 10.36 10.07 10.07 10.36 10.36 10.36 10.21 10.21	Cable Loss dB 10.14 10.15 10.15 10.15 10.15 10.16 10.16 10.17 10.17	Average QP Average QP Average QP Average QP Average QP Average) 30	

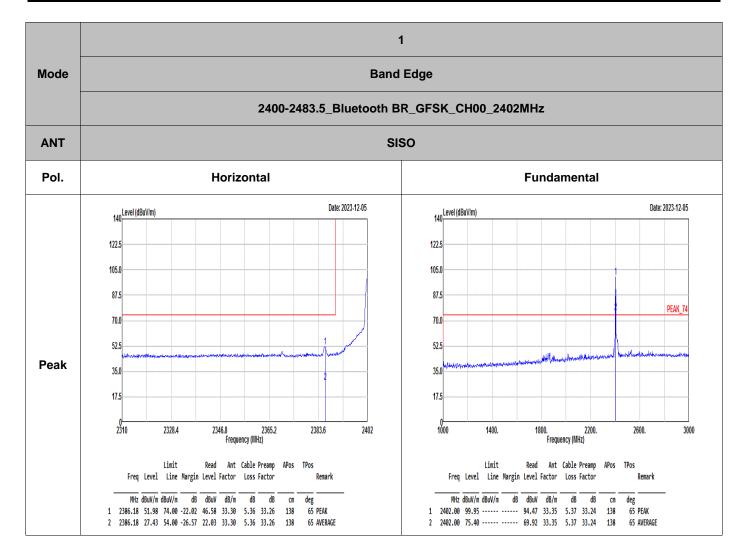
Note:

1.Level(dBµV) = Read Level(dBµV) + LISN Factor(dB) + Cable Loss(dB)

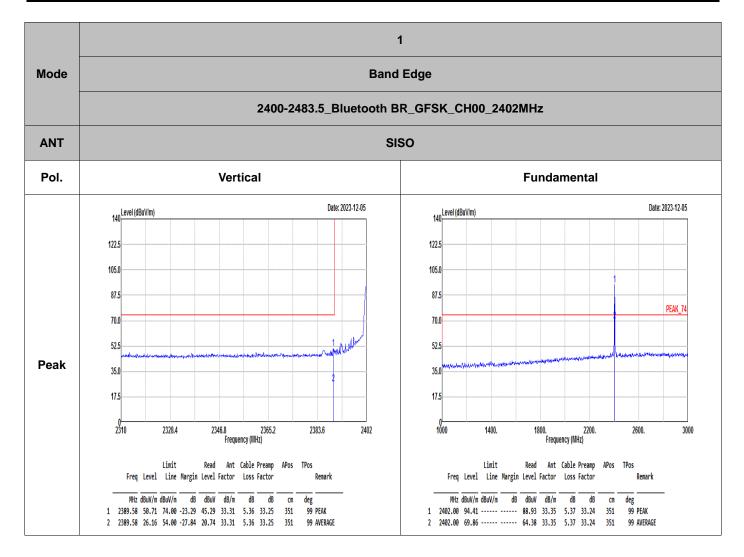
2.Over Limit(dB) = Level(dBµV) – Limit Line(dBµV)

Appendix C. Radiated Spurious Emission Test Data

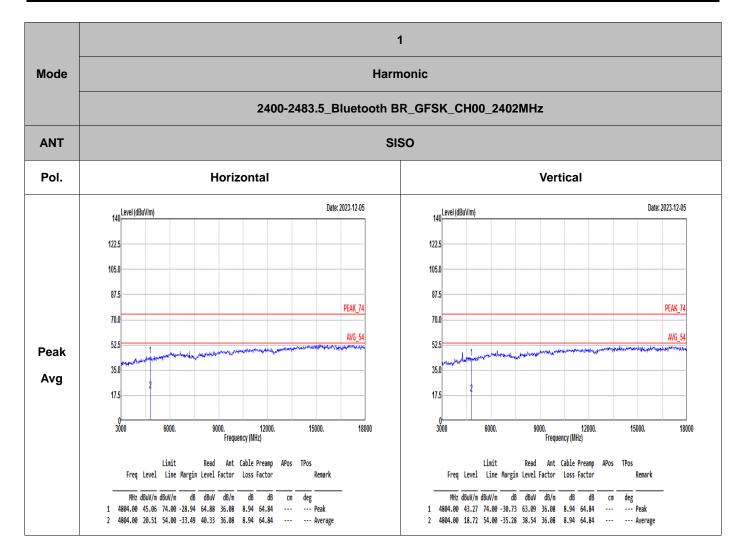
Test Engineer :	Jia Kuang	Relative Humidity :	48~49%
lest Engineer.	Jia Kuang	Temperature :	24~25 ℃

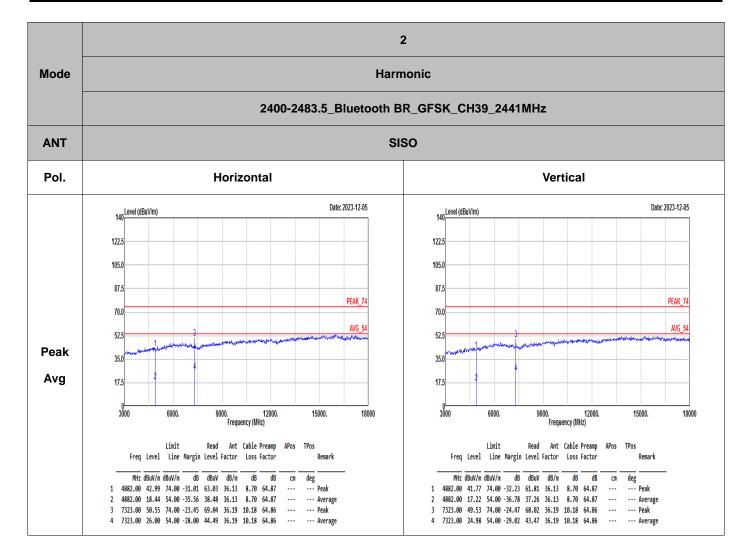

Radiated Spurious Emission Test Modes

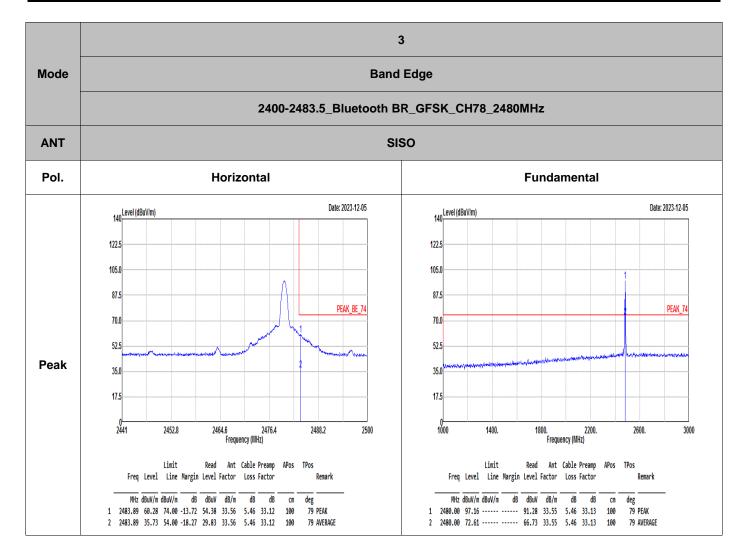
Mode	Band (MHz)	Antenna	Modulation	Channel	Frequency	Data Rate	Remark
Mode 1	2400-2483.5	SISO	Bluetooth BR_GFSK	00	2402	1DH5	With Config B
Mode 2	2400-2483.5	SISO	Bluetooth BR_GFSK	39	2441	1DH5	With Config B
Mode 3	2400-2483.5	SISO	Bluetooth BR_GFSK	78	2480	1DH5	With Config B
Mode 4	2400-2483.5	SISO	Bluetooth BR_GFSK	78	2480	1DH5	With Config B (LF)
Mode 5	2400-2483.5	SISO	Bluetooth BR_GFSK	78	2480	1DH5	With Config C

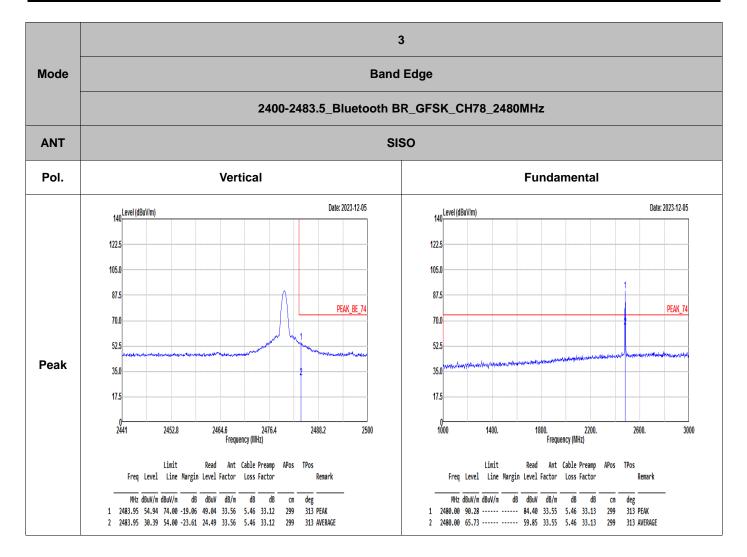

Summary of each worse mode

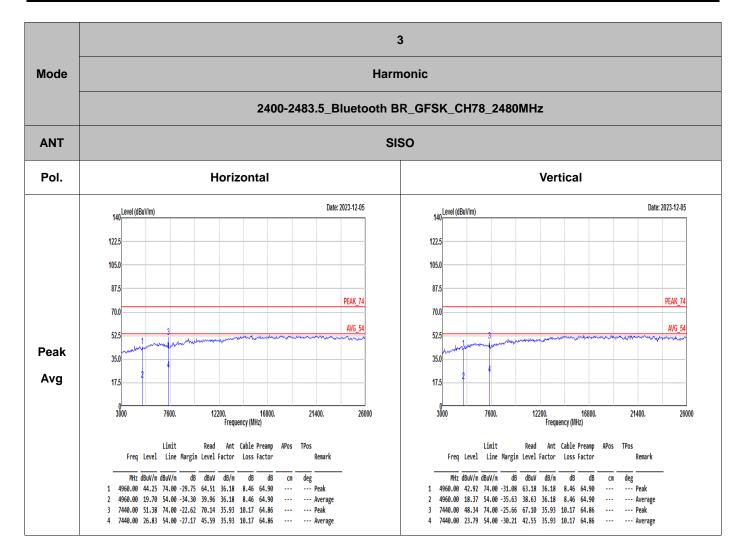
Mode	Modulation	Ch.	Freq. (MHz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol.	Peak Avg.	Result	Remark
1	Bluetooth BR_GFSK	00	2386.18	51.98	74.00	-22.02	Н	PEAK	Pass	Band Edge
1	Bluetooth BR_GFSK	00	4804.00	45.06	74.00	-28.94	Н	Peak	Pass	Harmonic
2	Bluetooth BR_GFSK	39	-	-	-	-	-	-	-	Band Edge
2	Bluetooth BR_GFSK	39	7323.00	50.55	74.00	-23.45	Н	Peak	Pass	Harmonic
3	Bluetooth BR_GFSK	78	2483.89	60.28	74.00	-13.72	Н	PEAK	Pass	Band Edge
3	Bluetooth BR_GFSK	78	7440.00	51.38	74.00	-22.62	Н	Peak	Pass	Harmonic
4	Bluetooth BR_GFSK	78	71.71	32.04	40.00	-7.96	Н	Peak	Pass	LF
5	Bluetooth BR_GFSK	78	2483.54	58.63	74.00	-15.37	V	PEAK	Pass	Band Edge
5	Bluetooth BR_GFSK	78	7440.00	51.62	74.00	-22.38	Н	Peak	Pass	Harmonic

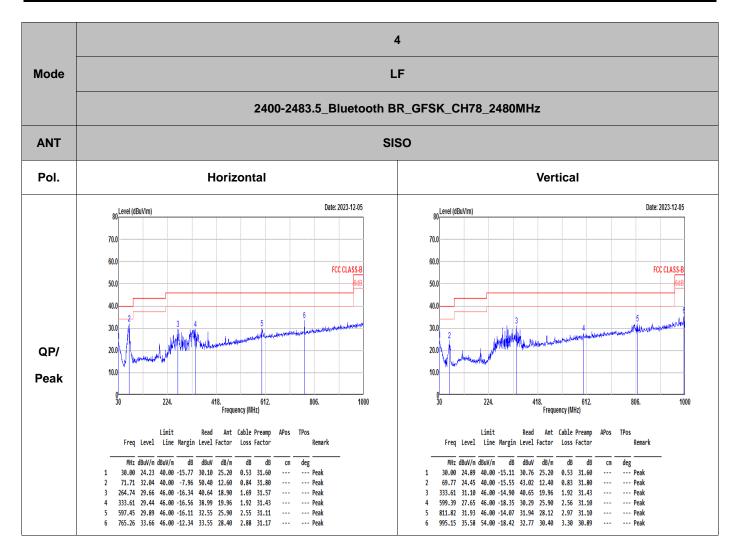


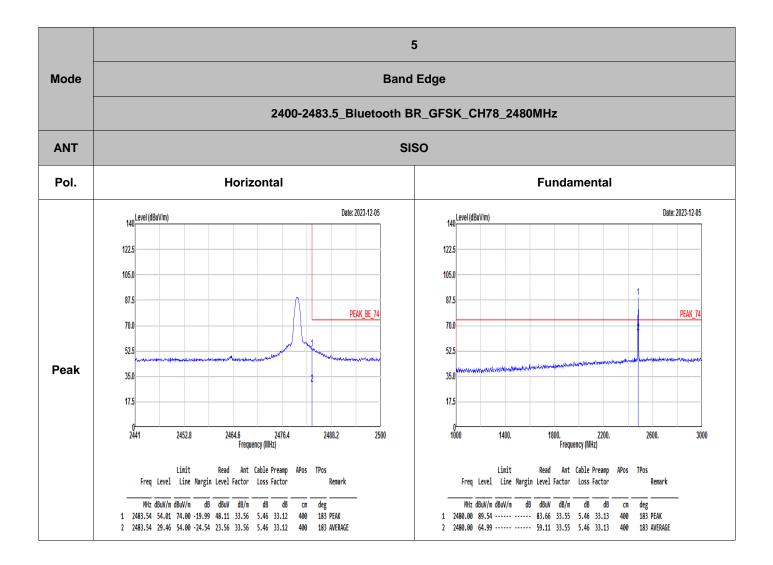


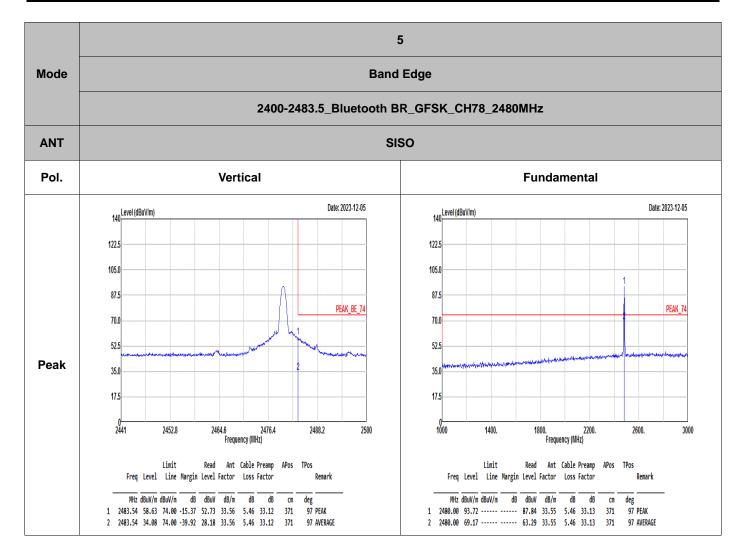


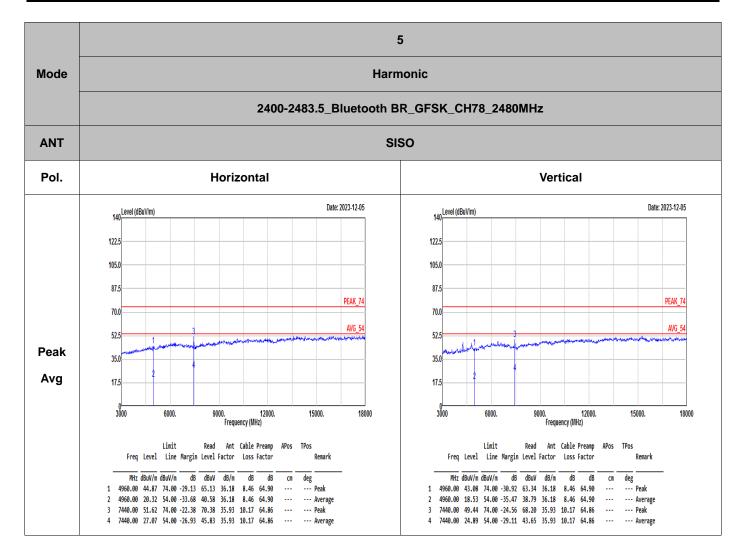


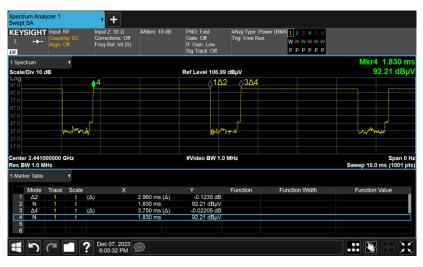


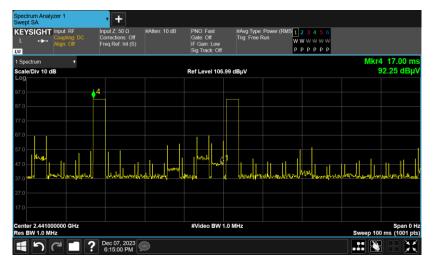












Appendix D. Duty Cycle Plots

DH5 on time (One Pulse) Plot on Channel 00

DH5 on time (Count Pulses) Plot on Channel 00

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.96 / 100 = 5.92 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.55 dB
- 3. DH5 has the highest duty cycle worst case and is reported.