Report on the RF Testing of:

KYOCERA Corporation

Mobile Phone, Model: EB1017

FCC ID: JOYEB1017

In accordance with FCC Part15 Subpart C

Prepared for: KYOCERA Corporation

Yokohama Office 2-1-1 Kagahara, Tsuzuki-ku

Yokohama-shi, Kanagawa, Japan

Phone: +81-45-943-6253 Fax: +81-45-943-6314

COMMERCIAL-IN-CONFIDENCE

Document Number: JPD-TR-20159-0

SIGNATURE Suguel NAME JOB TITLE RESPONSIBLE FOR ISSUE DATE Hiroaki Suzuki Deputy Manager of RF Group Approved Signatory 0.7 JUL 2020

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD Japan Ltd. document control rules.

EXECUTIVE SUMMARY – Result: Complied

A sample of this product was tested and the result above was confirmed in accordance with FCC Part15 Subpart C.

DISCLAIMER AND COPYRIGHT

The results in this report are applicable only to the equipment tested. This report shall not be re-produced except in full without the written approval of TÜV SÜD Japan Ltd.

ACCREDIATION

This test report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of the U.S. Government.

TÜV SÜD Japan Ltd. Yonezawa Testing Center 5-4149-7 Hachimanpara, Yonezawa-shi, Yamagata, 992-1128 Japan Phone: +81 (0) 238 28 2881 Fax: +81 (0) 238 28 2888 www.tuv-sud.jp

Contents

1	Summary of Test	3
1.1 1.2	Modification history of the test report	
1.3	Test methods	
1.4	Deviation from standards	
1.5	List of applied test(s) of the EUT	
1.6	Test information	
1.7	Test set up	
1.8	Test period	3
2	Equipment Under Test	4
2.1	EUT information	_
2.1	Modification to the EUT	
2.3	Variation of family model(s)	
2.4	Operating channels and frequencies	
2.5	Description of test mode	
2.6	Operating flow	6
3	Configuration of Equipment	7
3.1	Equipment used	
3.2	Cable(s) used	
3.3	System configuration	7
4	Test Result	8
4.1	Spurious Emissions - Radiated	8
4.2	Restricted Band of Operation	
4.3	AC Power Line Conducted Emissions	40
5	Antenna requirement	42
6	Measurement Uncertainty	43
7	Laboratory Information	44
Appen	ndix A. Test Equipment	45
Anner	ndix B. Duty Cycle	46

1 Summary of Test

1.1 Modification history of the test report

Document Number	Modification History	Issue Date
JPD-TR-20159-0	First Issue	Refer to the cover page

1.2 Standards

CFR47 FCC Part 15 Subpart C

1.3 Test methods

ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

1.4 Deviation from standards

None

1.5 List of applied test(s) of the EUT

Test item section	Test item	Condition	Result	Remark
15.247(a)(2)	DTS Bandwidth / Occupied Bandwidth (99%)	Conducted	N/A	*1
15.247(b)(3)	Maximum conducted (average) output power	Conducted	N/A	*1
15.247(d)	Band Edge Compliance of RF Conducted Emissions	Conducted	N/A	*1
15.247(d)		Conducted	N/A	*1
15.205 15.209	Spurious Emissions	Radiated	PASS	-
15.247(d) 15.205 15.209	Restricted Bands of Operation	Radiated	PASS	-
15.247(e)	Transmitter Power Spectral Density	Conducted	N/A	*1
15.207	AC Power Line Conducted Emissions	Conducted	PASS	-

^{*1} Since there is no change in Module from FCC ID: JOYDB05, only the Radiated test items were performed. Please refer to the test report "JPD-TR-19156-0" of "FCC ID: JOYDB05".

1.6 Test information

None

1.7 Test set up

Table-top

1.8 Test period

25-May-2020 - 8-June-2020

2 Equipment Under Test

2.1 EUT information

Applicant KYOCERA Corporation

Yokohama Office 2-1-1 Kagahara, Tsuzuki-ku Yokohama-shi,

Kanagawa, Japan

Phone: +81-45-943-6253 Fax: +81-45-943-6314

Equipment Under Test (EUT) Mobile Phone

Model number EB1017

Serial number N/A

Trade name Kyocera

Number of sample(s) 1

EUT condition Pre-Production

Power rating Battery: DC 3.85 V

Size (W) $73.0 \times (D) 153.0 \times (H) 8.9 \text{ mm}$

Environment Indoor and Outdoor use

Terminal limitation -20°C to 60°C

Hardware Version DMT1.5

Software Version 0.040RE.0022.a Firmware Version Not applicable

RF Specification

Protocol IEEE802.11b, IEEE802.11g, IEEE802.11n (HT20),

Frequency range IEEE802.11b /11g/11n (HT20): 2412 MHz-2462 MHz

Number of RF Channels 11 Channels

Modulation type IEEE802.11b: DSSS (DBPSK, DQPSK, CCK)

IEEE802.11g /11n (HT20): OFDM (BPSK, QPSK, 16QAM,

64QAM)

Data rate IEEE802.11b: 1, 2, 5.5, 11Mbps

IEEE802.11g: 6, 9, 12, 18, 24, 36, 48, 54Mbps

IEEE802.11n (HT20 LGI): 6.5, 13, 19.5, 26, 39, 52, 58.5, 65Mbps

IEEE802.11n (HT20 SGI): 7.2, 14.4, 21.7, 28.9, 43.3, 57.8, 65, 72.2Mbps

Channel separation 5 MHz

Conducted power 70.958 mW (IEEE802.11b)

140.605 mW (IEEE802.11g)

205.116 mW (IEEE802.11n: HT20)

Antenna type Internal antenna

Antenna gain -3.4 dBi

2.2 Modification to the EUT

The table below details modifications made to the EUT during the test project.

Modification State	Description of Modification	Modification fitted by	Date of Modification			
Model: EB1017, Se	Model: EB1017, Serial Number: N/A					
0	As supplied by the applicant	Not Applicable	Not Applicable			

2.3 Variation of family model(s)

2.3.1 List of family model(s)

Not applicable

2.3.2 Reason for selection of EUT

Not applicable

2.4 Operating channels and frequencies

Channel	Frequency [MHz]
1	2412
2	2417
3	2422
4	2427
5	2432
6	2437
7	2442
8	2447
9	2452
10	2457
11	2462

2.5 Description of test mode

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Tested Channel [11b, 11g, 11n(HT20)]	Frequency [MHz]
Low	2412
Middle	2437
High	2462

The pre-test has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates.

Tested Channel	Modulation Type	Data Rate
Low, Middle, High	IEEE802.11b: DSSS	1Mbps
Low, Middle, High	IEEE802.11g: OFDM	6Mbps
Low, Middle, High	IEEE802.11n (HT20 LGI): OFDM	MCS0 (6.5Mbps)

The field strength of spurious emissions was measured at each position of all three axis X, Y and Z to compare the level, and the maximum noise.

The worst emission was found in Z-axis and the worst case recorded.

Pre-scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports.

2.6 Operating flow

- Tx mode

- i) Test program setup to the Software
- ii) Select a Test mode

[IEEE802.11b, IEEE802.11g, IEEE802.11n (HT20)]

Operating frequency: Channel Low: 2412MHz, Channel Middle: 2437MHz, Channel High: 2462MHz

iii) Start test mode

- Rx mode

- i) Test program setup to the Software
- ii) Select a Test mode

[IEEE802.11b, IEEE802.11g, IEEE802.11n (HT20)]

Operating frequency: Channel Low: 2412MHz, Channel Middle: 2437MHz, Channel High: 2462MHz

iii) Start test mode

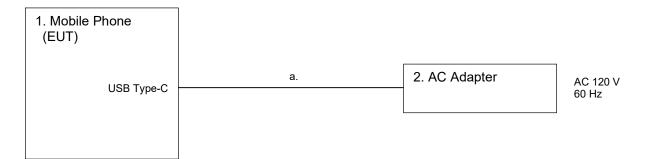
3 Configuration of Equipment

Numbers assigned to equipment on the diagram in "3.3 System configuration" correspond to the list in "3.1 Equipment used" and "3.2 Cable(s) used".

Cabling and setup(s) were taken into consideration and test data was taken under worse case condition.

3.1 Equipment used

No.	Equipment	Company	Model No.	Serial No.	FCC ID/DoC	Comment
1	Mobile Phone	KYOCERA	EB1017	N/A	JOYEB1017	EUT
2	AC Adapter	KDDI	0301PQA	N/A	N/A	*


^{*:}AC power line Conducted Emission Test.

3.2 Cable(s) used

No.	Equipment	Length[m]	Shield	Connector	Comment
а	USB cable (for AC Adapter)	1.0	Yes	Metal	*

^{*:}AC power line Conducted Emission Test.

3.3 System configuration

4 Test Result

4.1 Spurious Emissions - Radiated -

4.1.1 Measurement procedure

[FCC 15.247(d), 15.205, 15.209, KDB 558074 D01 v05r02, Section 8.6]

Test was applied by following conditions.

Test method : ANSI C63.10 Frequency range : 9 kHz to 25 GHz

Test place : 3m Semi-anechoic chamber

EUT was placed on : Styrofoam table / (W) 1.0 × (D) 1.0 × (H) 0.8 m (below 1 GHz)

Styrofoam table / (W) 0.6 × (D) 0.6 × (H)1.5 m (above 1 GHz)

Antenna distance : 3 m

Test receiver setting Below 1 GHz

- Detector : Average (9 kHz-90 kHz, 110 kHz-490 kHz), Quasi-peak

- Bandwidth : 200 Hz, 120 kHz Spectrum analyzer setting Above 1 GHz

- Peak : RBW=1 MHz, VBW=3 MHz, Span=0 Hz, Sweep=auto - Average : RBW=1 MHz, VBW=1kHz,3kHz, Span=0 Hz, Sweep=auto

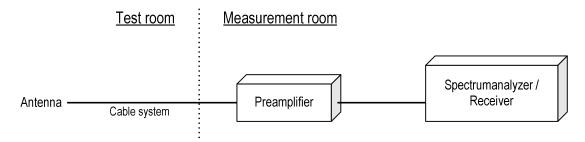
Display mode=Linear

Average Measurement Setting [VBW]

Mode	Duty Cycle (%)	T _{on} (us)	T _{off} (us)	1/T _{on} (kHz)	Determined VBW Setting
IEEE802.11b	96.31	992	38	1.008	1kHz
IEEE802.11g	96.80	1390	46	0.719	1kHz
IEEE802.11n(HT20)	96.55	1286	46	0.778	1kHz

Although these tests were performed other than open area test site, adequate comparison measurements

were confirmed against 30 m open are test site.


Therefore, sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 937606.

Radiated emission measurements are performed at 3m distance with the broadband antenna (Loop antenna, Biconical antenna, Log periodic antenna and Double ridged guide antenna). The antenna is positioned both the horizontal and vertical planes of polarization and height is varied 1m to 4m and stopped at height producing the maximum emission. As for the Loop antenna, it is positioned with its plane vertical, and the center of the Loop antenna is 1m above the ground plane.

The EUT is Placed on a turntable, which is 0.8m/1.5m above ground plane. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. The test results represent the worst case emission for each emission with manipulating the EUT, support equipment, interconnecting cables and varying the mode of operation. Sufficient time for the EUT, support equipment, and test equipment are allowed in order for them to warm up to their normal operating condition.

- Test configuration

4.1.2 Calculation method

[9 kHz to 150 kHz]

Emission level = Reading + (Ant factor + Cable system loss)

Margin = Limit – Emission level

[150 kHz to 25 GHz]

Emission level = Reading + (Ant factor + Cable system loss - Amp. Gain)

Margin = Limit – Emission level

Example:

Limit @ 4824.0 MHz : 74.0 dBuV/m (Peak Limit) S.A Reading = 49.5 dBuV Cable system loss = 8.4 dB

Result = 49.5 + 8.4 = 45.1 dBuV/m Margin = 74.0 - 45.1 = 16.1 dB

4.1.3 Limit

Frequency	Field s	Distance	
[MHz]	[uV/m]	[dBuV/m]	[m]
0.009-0.490	2400 / F [kHz]	20logE [uV/m]	300
0.490-1.705	24000 / F [kHz]	20logE [uV/m]	30
1.705-30	30	29.5	30
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level [dBuV/m] = 20log Emission [uV/m]
- 3. As shown in 15.35(b), for frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition modulation.

4.1.4 Test data

Date : 25-May -2020

Temperature : 19.6 [°C]

Humidity : 67.7 [%] Test engineer : Test place : 3m Semi-anechoic chamber Kazunori Saito

Date : 1-June -2020

Temperature : 19.0 [°C]

Humidity : 45.3 [%] Test engineer :

Test place : 3m Semi-anechoic chamber <u>Kazunori Saito</u>

Test engineer

Date : 3-June -2020

Temperature : 19.9 [°C] Humidity : 51.3 [%]

Test place : 3m Semi-anechoic chamber Kazunori Saito

Date : 5-June -2020

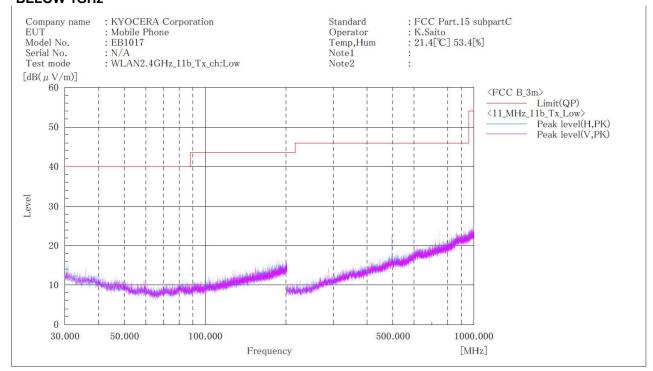
Temperature : 21.4 [°C]

Humidity : 53.4 [%] Test engineer

Test place : 3m Semi-anechoic chamber <u>Kazunori Saito</u>

Date : 8-June -2020

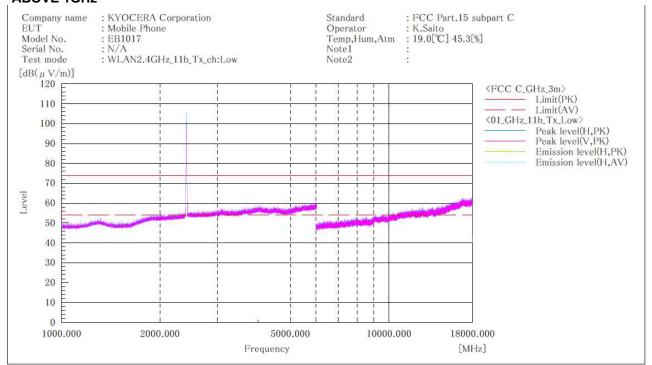
Temperature : 21.3 [°C]


Humidity: 49.6 [%] Test engineer:

Test place : 3m Semi-anechoic chamber Kazunori Saito

4.1.4.1 Transmission mode

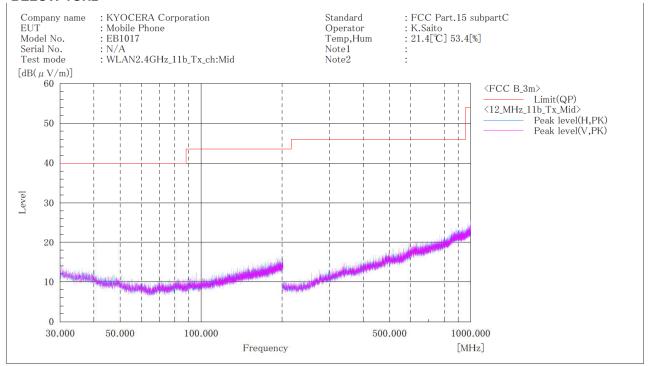
[11b] Channel Low BELOW 1GHz



Final Result

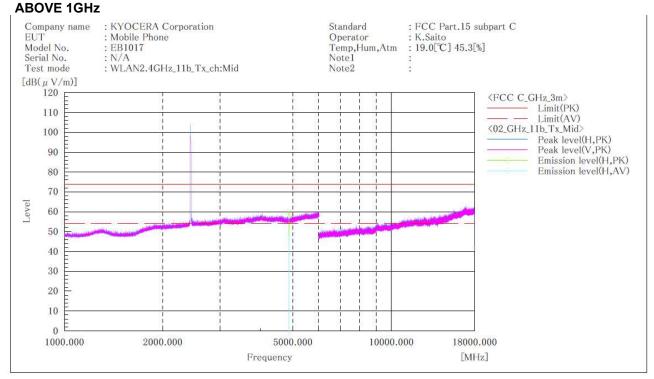
- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

[11b] Channel Low ABOVE 1GHz



- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

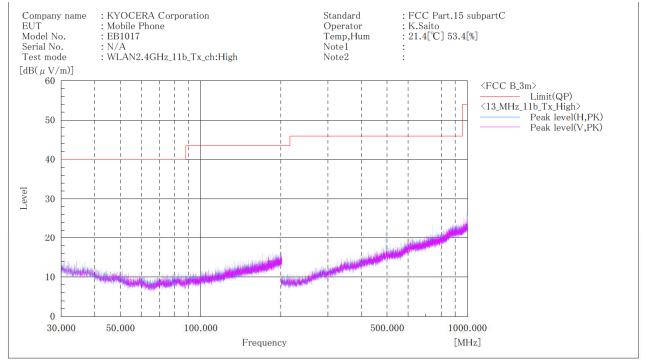
[11b] Channel Middle BELOW 1GHz



Final Result

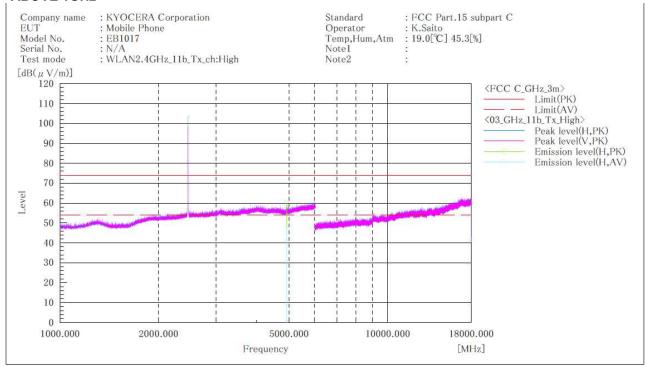
- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

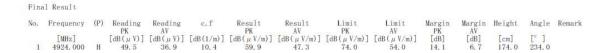
[11b] Channel Middle



- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

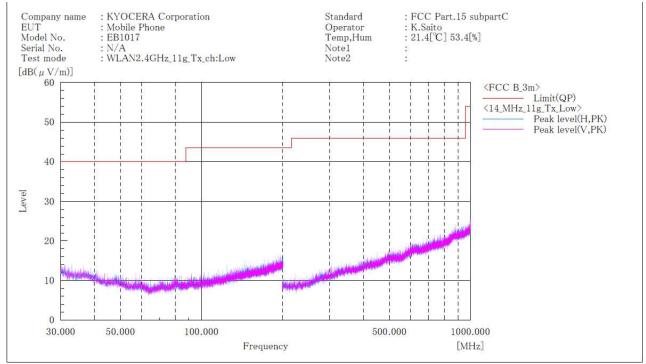
[11b] Channel High BELOW 1GHz




Final Result

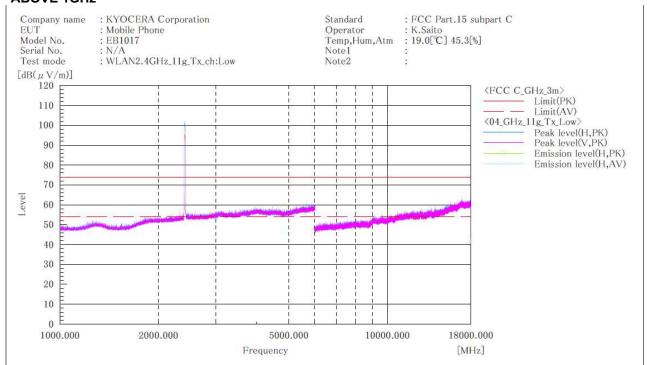
- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

[11b] Channel High ABOVE 1GHz



- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

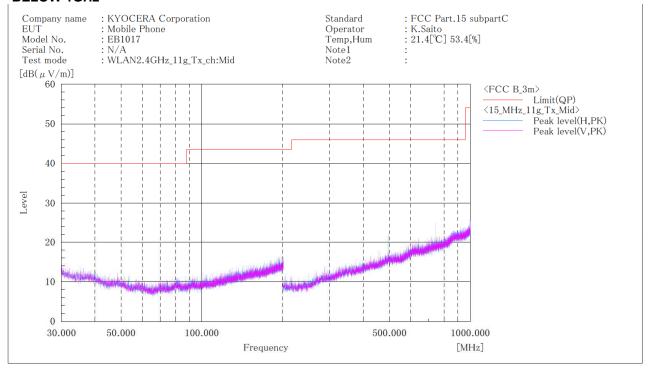
[11g] Channel Low BELOW 1GHz



Final Result

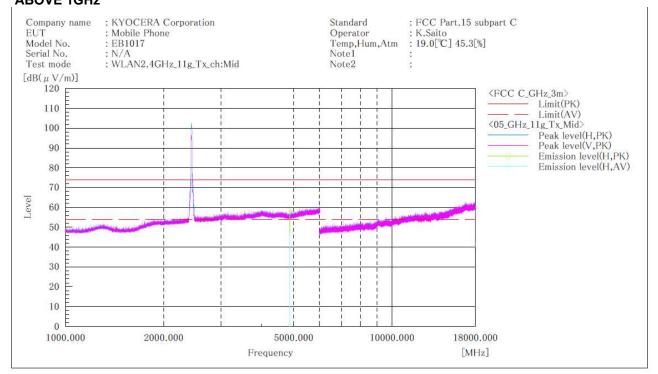
- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

[11g] Channel Low ABOVE 1GHz



- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

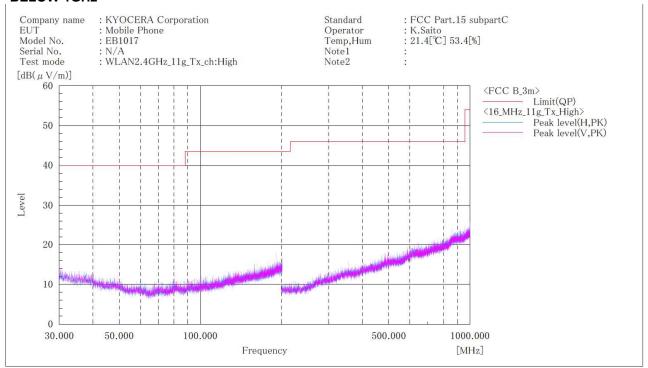
[11g] Channel Middle BELOW 1GHz



Final Result

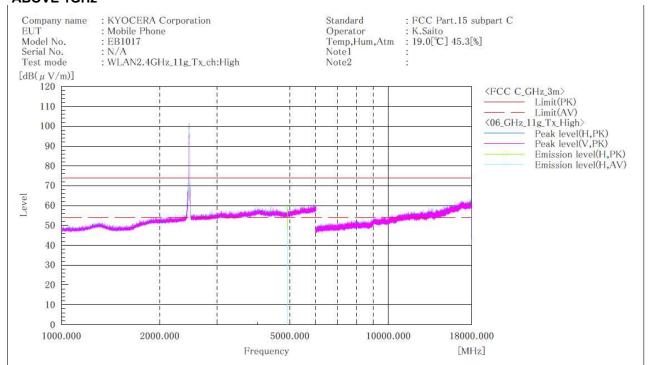
- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

[11g] Channel Middle ABOVE 1GHz



- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

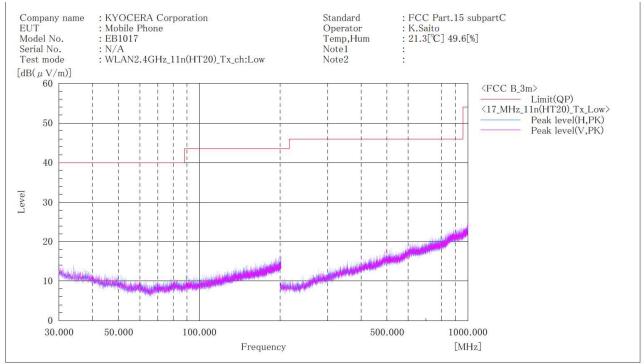
[11g] Channel High BELOW 1GHz



Final Result

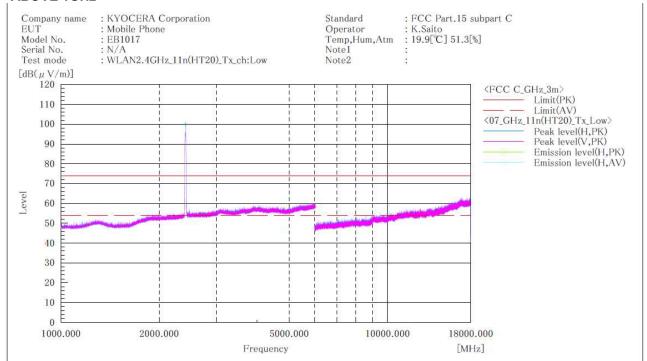
- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

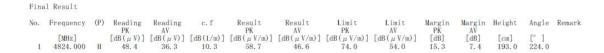
[11g] Channel High ABOVE 1GHz



- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

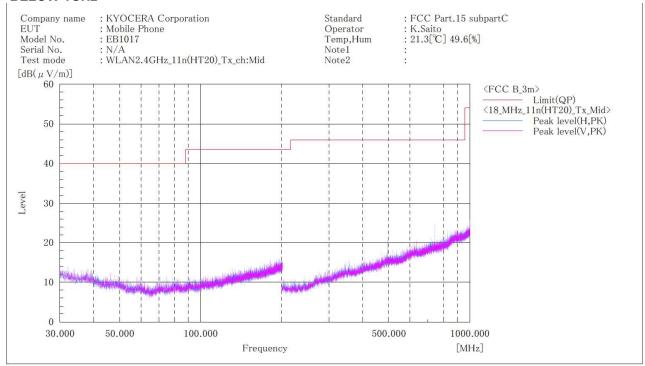
[11n(HT20)] Channel Low BELOW 1GHz




Final Result

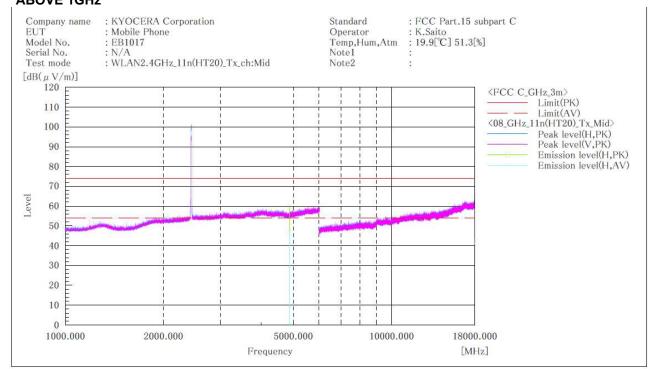
- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

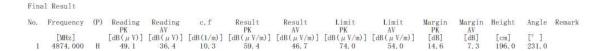
[11n(HT20)] Channel Low ABOVE 1GHz



- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

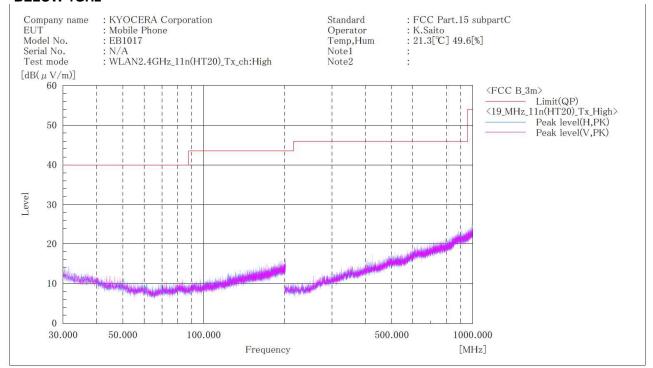
[11n(HT20)] Channel Middle BELOW 1GHz




Final Result

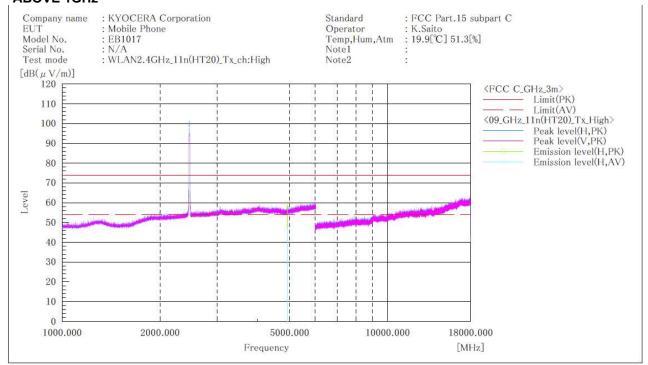
- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

[11n(HT20)] Channel Middle ABOVE 1GHz



- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

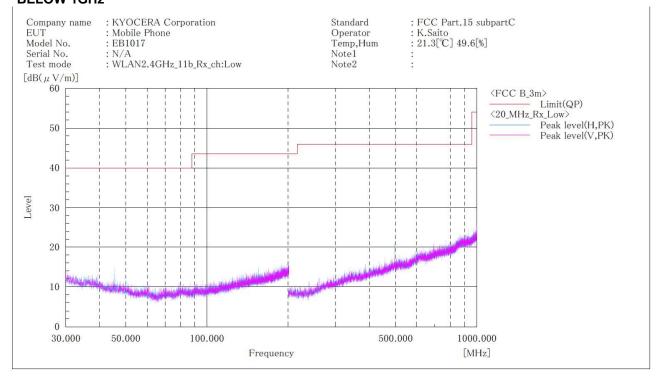
[11n(HT20)] Channel High BELOW 1GHz



Final Result

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 1000MHz at the 3 meters distance.

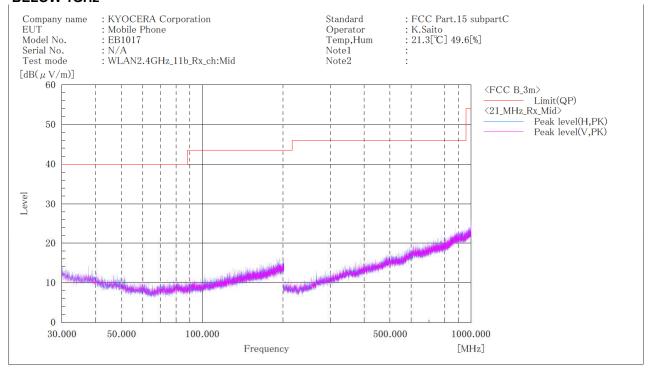
[11n(HT20)] Channel High ABOVE 1GHz


Final Result
No. Frequency (P) Reading Reading c.f Result Result Limit AV Result AV PK AV PK AV PK AV ROLL RESULT RESU

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 18GHz to 25GHz at the 3 meters distance.

4.1.4.2 Receive mode

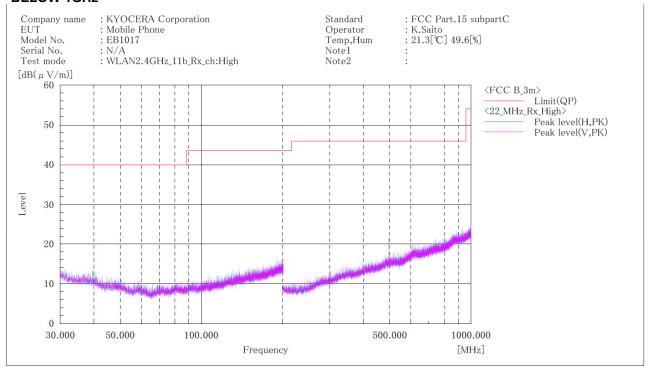
Channel Low BELOW 1GHz



Final Result

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 1000MHz and 1GHz to 25GHz at the 3 meters distance.

Channel Middle BELOW 1GHz



Final Result

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 1000MHz and 1GHz to 25GHz at the 3 meters distance.

Channel High BELOW 1GHz

Final Result

- 1. Emission Level (Margin) = Limit [Reading + Factor (Antenna + Cable Amp)]
- 2. No emission were detected in frequency range 9kHz to 1000MHz and 1GHz to 25GHz at the 3 meters distance.

4.2 Restricted Band of Operation

4.2.1 Measurement procedure

[FCC 15.247(d), 15.205, 15.209, KDB 558074 D01 v05r02, Section 8.6]

Test was applied by following conditions.

Test method : ANSI C63.10

Test place : 3m Semi-anechoic chamber

EUT was placed on : Styrofoam table / (W) 1.0 × (D) 1.0 × (H) 0.8 m (below 1 GHz)

Styrofoam table / (W) $0.6 \times (D) 0.6 \times (H) 1.5 \text{ m}$ (above 1 GHz)

Antenna distance : 3n

Spectrum analyzer setting

- Peak : RBW=1 MHz, VBW=3 MHz, Span=Arbitrary setting, Sweep=auto

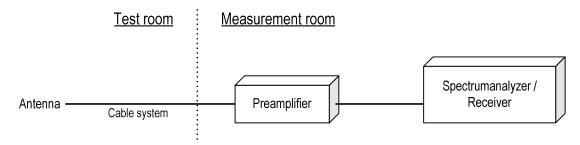
- Average : RBW=1 MHz, VBW=1kHz, 3kHz, Span=0 Hz, Sweep=auto

Display mode=Linear

Average Measurement Setting [VBW]

Mode	Duty Cycle (%)	T _{on} (us)	T _{off} (us)	1/T _{on} (kHz)	Determined VBW Setting
IEEE802.11b	96.31	992	38	1.008	1kHz
IEEE802.11g	96.80	1390	46	0.719	1kHz
IEEE802.11n(HT20)	96.55	1286	46	0.778	1kHz

Although these tests were performed other than open area test site, adequate comparison measurements


were confirmed against 30 m open are test site.

Therefore, sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 937606.

Radiated emission measurements are performed at 3m distance with the broadband antenna (Double ridged guide antenna). The antenna is positioned both the horizontal and vertical planes of polarization and height is varied 1m to 4m and stopped at height producing the maximum emission.

The EUT is Placed on a turntable, which is 0.8m/1.5m above ground plane. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. The test results represent the worst case emission for each emission with manipulating the EUT, support equipment, interconnecting cables and varying the mode of operation. Sufficient time for the EUT, support equipment, and test equipment are allowed in order for them to warm up to their normal operating condition.

- Test configuration

4.2.2 Limit

Emission at the boundary of the restricted band provided by 15.205 shall be lower than 15.209 limit.

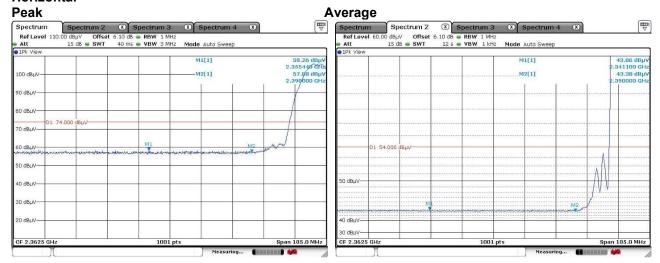
4.2.3 Measurement Result

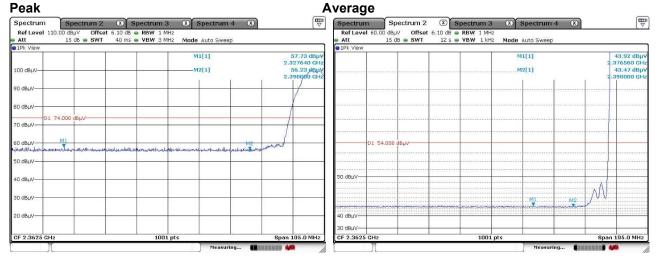
[IEEE802.11b、IEEE802.11g、IEEE802.11n (HT20)]

[[:===0=:::0, :===0=::::0, :===0]						
Cha	nnel	Frequency [MHz]	Results Chart	Result			
Lo)W	2412	See the Trace Data	Pass			
Hi	gh	2462	See the Trace Data	Pass			

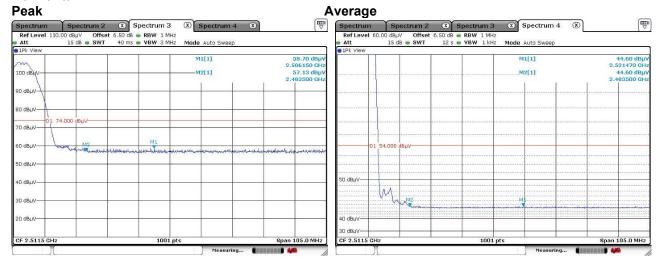
4.2.4 Test data

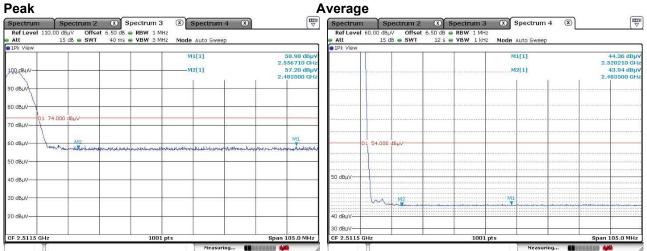
Date : 4-June-2020 Temperature : 21.4 [°C]


Humidity : 53.8 [%] Test engineer

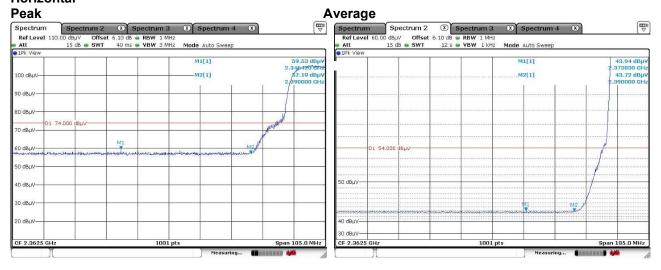

Test place : 3m Semi-anechoic chamber Kazunori Saito

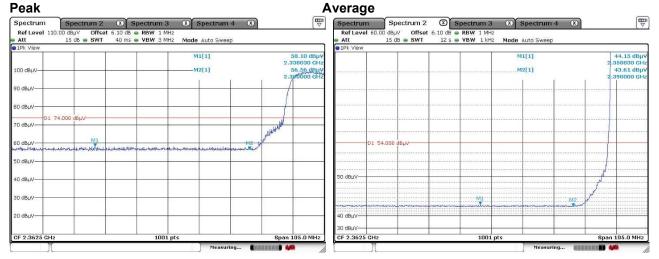
[IEEE802.11b]


Channel Low Horizontal

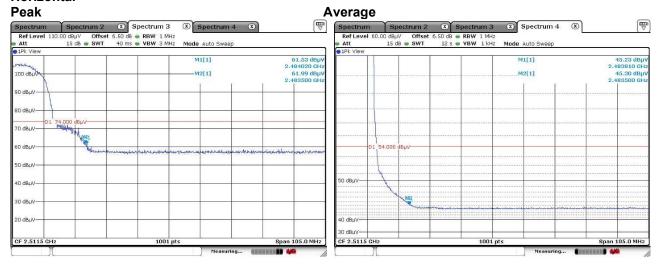


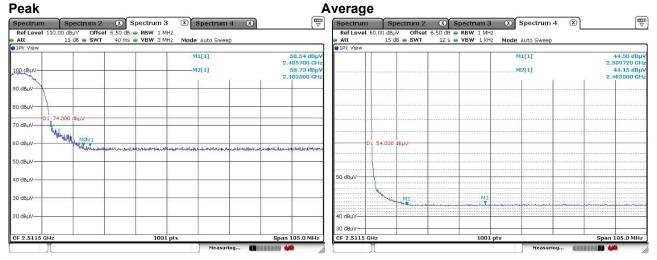
Channel High Horizontal



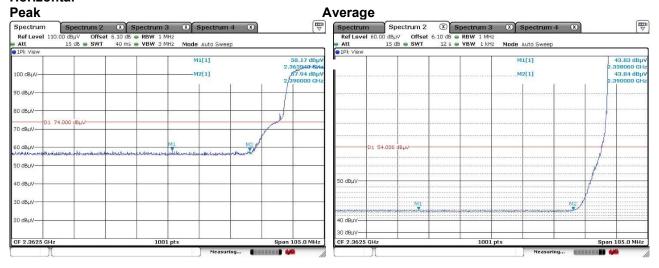


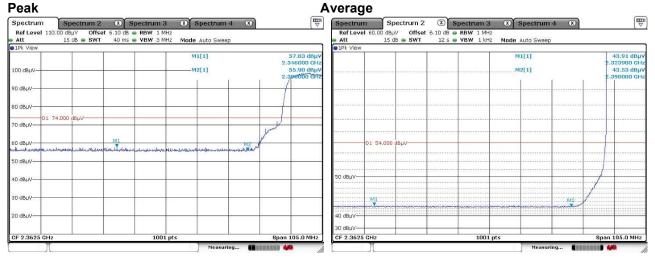
[IEEE802.11g]


Channel Low Horizontal

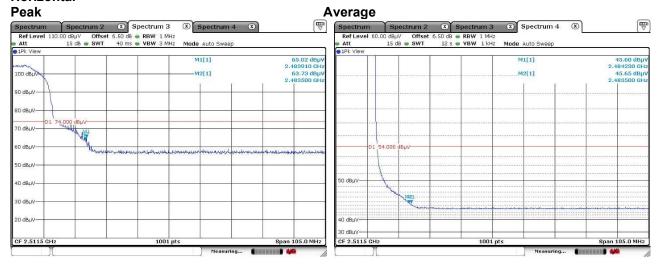


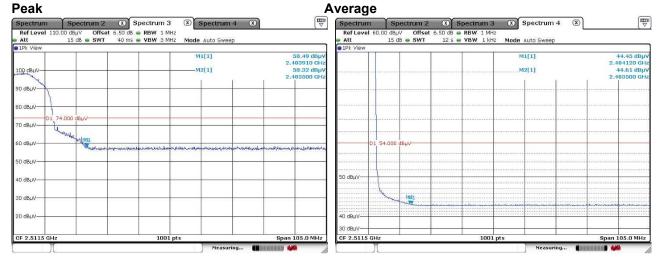
Channel High Horizontal





[IEEE802.11n (HT20)]


Channel Low Horizontal



Channel High Horizontal

4.3 AC Power Line Conducted Emissions

4.3.1 Measurement procedure

[FCC 15.207]

Test was applied by following conditions.

Test method : ANSI C63.10

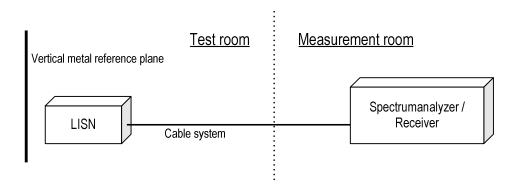
Frequency range : 0.15 MHz to 30 MHz

Test place : 3m Semi-anechoic chamber

EUT was placed on : FRP table / (W) $2.0 \times$ (D) $1.0 \times$ (H) 0.8 m Vertical Metal Reference Plane : (W) $2.0 \times$ (H) $2.0 \times$ (D) $1.0 \times$ (H) $0.8 \times$ m

Test receiver setting

- Detector : Quasi-peak, Average


- Bandwidth : 9 kHz

EUT and peripherals are connected to $50\Omega/50~\mu H$ Line Impedance Stabilization Network (LISN) which are connected to reference ground plane, and are placed 80cm away from EUT. Excess of AC power cable is bundled in center.

LISN for peripheral is terminated in 50Ω .

EUT operating mode is selected to emit the maximum noise. Overall frequency range is investigated with spectrum analyzer using peak detector. Maximum emission configuration is determined by manipulating the EUT, peripherals, interconnecting cables. Then, emission measurements are performed with test receiver in above setting to each current-carrying conductor of the mains port. Sufficient time for EUT, peripherals and test equipment is provided in order for them to warm up to their normal operating condition. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits.

- Test configuration

4.3.2 Calculation method

Emission level = Reading + (LISN. Factor + Cable system loss) Margin = Limit – Emission level

Example:

Limit @ 0.403 MHz: 57.8 dBµV(Quasi-peak)

: 47.8 dBµV(Average)

(Quasi peak)Reading = 22.7 dBµV c.f. = 10.4 dB

Emission level = $22.7 + 10.4 = 33.1 \text{ dB}\mu\text{V}$

Margin = 57.8 - 33.1 = 24.7 dB

(Average) Reading = $6.5 \text{ dB}\mu\text{V}$ c.f. = 10.4 dB

Emission level = $6.5 + 10.4 = 16.9 \text{ dB}\mu\text{V}$

Margin = 47.8 - 16.9 = 30.9 dB

4.3.3 Limit

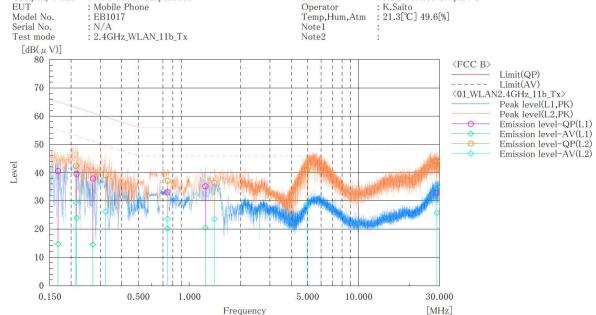
Frequency	Liı	mit
[MHz]	QP [dBuV]	AV [dBuV]
0.15-0.5	66-56*	56-46*
0.5-5	56	46
5-30	60	50

^{*:} The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.

4.3.4 **Test data**

Company Name

Date 8-June-2020 Temperature 21.3 [°C] Humidity 49.6 [%]


Test place 3m Semi-anechoic chamber

: KYOCERA Corporation

Test engineer

Kazunori Saito : FCC Part.15 Subpart C

Standard : K.Saito : 21.3[℃] 49.6[%] Operator Temp, Hum, Atm

Final Result --- L1 Phase -Margin QP No. Frequency Reading Reading c.f Result Result Limit Limit Margin CAV QP CAV QP CAV QP AV [MHz] $[dB(\mu V)]$ $[dB(\mu V)]$ [dB(μV)] [dB] $[dB(\mu V)]$ [dB] $[dB(\mu V)]$ [dB] $[dB(\mu V)]$ 0.168 30.3 65.1 10.3 10.3 40.6 55. 1 53. 0 24.5 40.4 4.4 14.7 0.216 29.3 23.9 23. 4 29.1 13.6 39.6 63.0 3 0.270 10.2 23. 1 27.8 4.3 38.0 14.5 61.1 51.1 36.6 0.744 22.8 9.8 10.3 33.1 20.1 46.0 22.9 25.9 56.0 20.5 1.246 24.9 10.2 10.3 35.2 56.0 46.0 20.8 25.5 5 28.921 21.6 14.3 33.0 25.7 60.0 50.0 24.3 --- L2 Phase --Margin QP No. Frequency Reading Reading c.f Result Result Limit Limit Margin QP CAV QP CAV QP AV CAV [dB] [MHz] $[dB(\mu V)]$ [dB] [dB] $[dB(\mu V)]$ $[dB(\mu V)]$ $[dB(\mu V)]$ $[dB(\mu V)]$ $[dB(\mu V)]$ 32. 2 0.214 42.5 29.4 63.0 53.0 20.5 23.6 1 19.1 10.3 23. 6 22. 4 22. 5 26. 1 0.321 28.8 2 15.8 10.3 39.1 59.7 49.7 20.6 3 0.745 26.9 10.3 37.2 23.6 56.0 46.0 18.8 13.3 1.407 26. 2 10.3 36.5 23.5 56.0 46.0 19.5 13.2 4 4.960 30.5 15.0 5 18.4 10.5 41.0 28.9 56.0 46.017.1 28.920 11.3 15.9 23.8 44.1 35.1 60.0 50.0 14.9

5 Antenna requirement

According to FCC section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The antenna is a special antenna mounted inside of the EUT. Therefore, the EUT complies with the antenna requirement of FCC section 15.203.

6 Measurement Uncertainty

Expanded uncertainties stated are calculated with a coverage Factor k=2. Please note that these results are not taken into account when measurement uncertainty considerations contained in ETSI TR 100 028 Parts 1 and 2 determining compliance or non-compliance with test result.

Test item	Measurement uncertainty
Conducted emission, AMN (9 kHz – 150 kHz)	±3.8 dB
Conducted emission, AMN (150 kHz – 30 MHz)	±3.4 dB
Radiated emission (9kHz – 30 MHz)	±3.9 dB
Radiated emission (30 MHz – 1000 MHz)	±4.9 dB
Radiated emission (1 GHz – 6 GHz)	±4.6 dB
Radiated emission (6 GHz – 18 GHz)	±4.9 dB
Radiated emission (18 GHz – 40 GHz)	±5.8 dB
Radio Frequency	±1.4 * 10 ⁻⁸
RF power, conducted	±0.6 dB
Temperature	±0.6 °C
Humidity	±1.2 %
Voltage (DC)	±0.4 %
Voltage (AC, <10kHz)	±0.2 %

Judge	Measured value and standard limit value				
PASS	Case1 Standard limit value +Uncertai Me: Case2	1			
FAIL	Case3	a limit value won't be fulfilled if uncertainty is taken into consideration. Although measured value exceeds a standard limit value, a limit value will be fulfilled if uncertainty is taken into consideration. Even if it takes uncertainty into consideration, a standard limit value isn't fulfilled.			

7 Laboratory Information

Testing was performed and the report was issued at:

TÜV SÜD Japan Ltd. Yonezawa Testing Center

Address: 5-4149-7 Hachimanpara, Yonezawa-shi, Yamagata, 992-1128 Japan

Phone: +81-238-28-2881 Fax: +81-238-28-2888

Accreditation and Registration

A2LA

Certificate #3686.03

VLAC

Accreditation No.: VLAC-013

BSMI

Laboratory Code: SL2-IN-E-6018, SL2-A1-E-6018

Innovation, Science and Economic Development Canada

ISED#: 4224A

VCCI Council

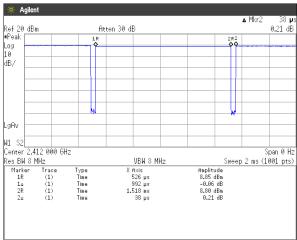
Registration number	Expiration date
A-0166	03-July-2021

Appendix A. Test Equipment

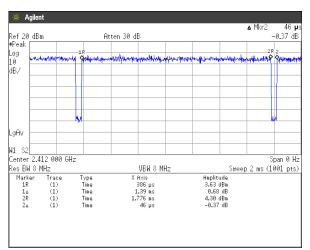
Radiated emission

Equipment	Company	Model No.	Serial No.	Cal. Due	Cal. Date
EMI Receiver	ROHDE&SCHWARZ	ESCI	100765	30-Sep-2020	25-Sep-2019
Spectrum analyzer	Agilent Technologies	E4447A	MY46180188	31-Mar-2021	27-Mar-2020
Spectrum analyzer	Agilent Technologies	E4440A	US40420937	30-Sep-2020	26-Sep-2019
Spectrum analyzer	ROHDE&SCHWARZ	FSV40	101732	28-Feb-2021	17-Feb-2020
Preamplifier	SONOMA	310	372170	30-Sep-2020	26-Sep-2019
Loop antenna	ROHDE&SCHWARZ	HFH2-Z2	100515	30-Apr-2021	15-Apr-2020
Attenuator	TOYO Connector	NA-PJ-6	N/A(S507)	31-Dec-2020	18-Dec-2019
Biconical antenna	Schwarzbeck	VHBB9124/BBA9106	1344	31-Dec-2020	04-Dec-2019
Log periodic antenna	Schwarzbeck	VUSLP9111B	345	31-Aug-2020	27-Aug-2019
Attenuator	TOYO Connector	NA-PJ-6	N/A(S507)	31-Dec-2020	18-Dec-2019
Attenuator	TAMAGAWA.ELEC	CFA-10/3dB	N/A(S503)	31-Jul-2020	17-Jul-2019
Preamplifier	TSJ	MLA-100M18-B02-40	1929118	31-Jan-2021	08-Jan-2020
Attenuator	AEROFLEX	26A-10	081217-08	31-Jan-2021	10-Jan-2020
Double ridged guide antenna	ETS LINDGREN	3117	00052315	30-Apr-2021	08-Apr-2020
Attenuator	HUBER+SUHNER	6803.17.B	N/A(2341)	31-Dec-2020	18-Dec-2019
Double ridged guide antenna	A.H.Systems Inc.	SAS-574	469	31-Aug-2020	28-Aug-2019
Preamplifier	TSJ	MLA-1840-B03-35	1240332	31-Aug-2020	28-Aug-2019
Band rejection filter	Micro-Tronics	BRC50702	045	31-May-2021	15-May-2020
	HUBER+SUHNER	SUCOFLEX104/9m	MY30037/4	31-Jan-2021	08-Jan-2020
		SUCOFLEX104/1m	my24610/4	31-Jan-2021	08-Jan-2020
		SUCOFLEX104/8m	SN MY30031/4	31-Jan-2021	09-Jan-2020
Microwave cable		SUCOFLEX104	MY32976/4	31-Jan-2021	08-Jan-2020
		SUCOFLEX104/1.5m	MY19309/4	31-Jan-2021	08-Jan-2020
		SUCOFLEX104/7m	41625/6	31-Jan-2021	08-Jan-2020
PC	DELL	DIMENSION E521	75465BX	N/A	N/A
Software	TOYO Corporation	EP5/RE-AJ	0611193/V5.6.0	N/A	N/A
Absorber	RIKEN	PFP30	N/A	N/A	N/A
3m Semi an-echoic Chamber	TOKIN	N/A	N/A(9002-NSA)	31-May-2021	29-May-2020
3m Semi an-echoic Chamber	TOKIN	N/A	N/A(9002-SVSWR)	31-May-2020	13-May-2019
3m Semi an-echoic Chamber	TOKIN	N/A	N/A(9002-SVSWR)	31-May-2021	29-May-2020

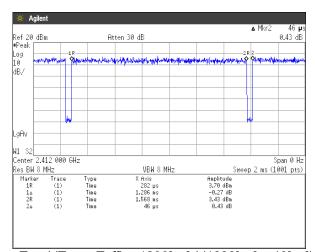
Equipment	Company	Model No.	Serial No.	Cal. Due	Cal. Date
EMI Receiver	ROHDE&SCHWARZ	ESCI	100765	30-Sep-2020	25-Sep-2019
Attenuator	HUBER+SUHNER	6810.01.A	N/A (S411)	31-Jan-2021	08-Jan-2020
Line impedance stabilization network	Kyoritsu Electrical Works, Ltd.	TNW-407F2	12-17-110-2	30-Jun-2021	03-Jun-2020
Coaxial cable	FUJIKURA	5D-2W/4m	N/A (S350)	31-Jan-2021	08-Jan-2020
Coaxial cable	FUJIKURA	5D-2W/1m	N/A (S193)	31-Jan-2021	08-Jan-2020
Coaxial cable	HUBER+SUHNER	RG214/U/10m	N/A (S194)	31-Jan-2021	08-Jan-2020
PC	DELL	DIMENSION	75465BX	N/A	N/A
Software	TOYO Corporation	EP5/CE-AJ	0611193/V5.4.11	N/A	N/A


^{*:} The calibrations of the above equipment are traceable to NIST or equivalent standards of the reference organizations.

Appendix B. Duty Cycle


[Plot & Calculation]

11b


Duty Cycle = Ton / (Ton + Toff) = $992[\mu s] / (992[\mu s] + 38[\mu s]) = 96.31[\%]$

11g

Duty Cycle = $\frac{1390[\mu s]}{(1390[\mu s] + 46[\mu s])} = 96.8[\%]$

11n (HT20)

Duty Cycle = $\frac{1286[\mu s]}{(1286[\mu s] + 46[\mu s])} = 96.55[\%]$