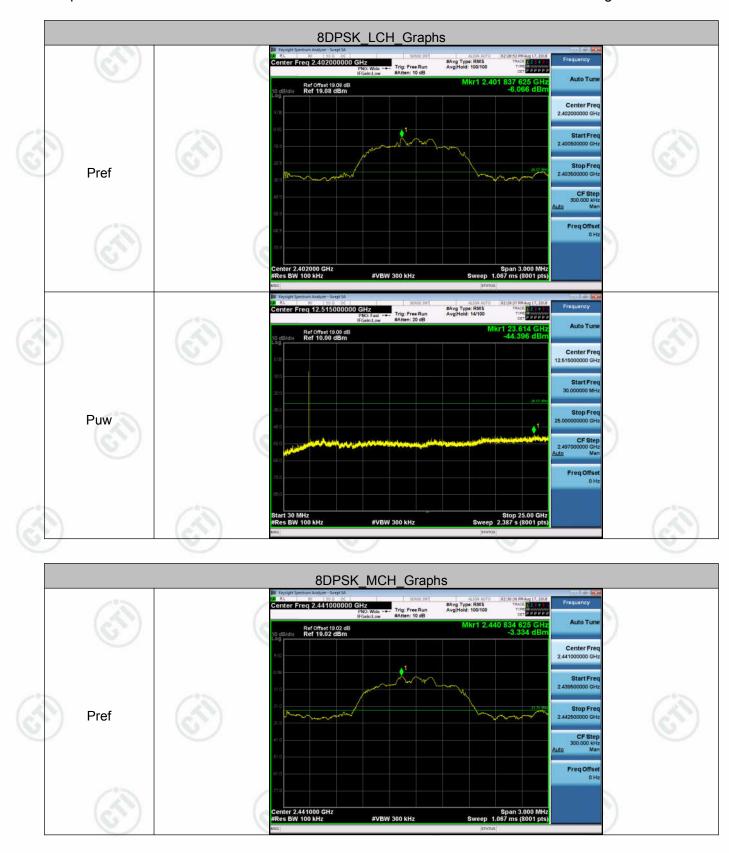
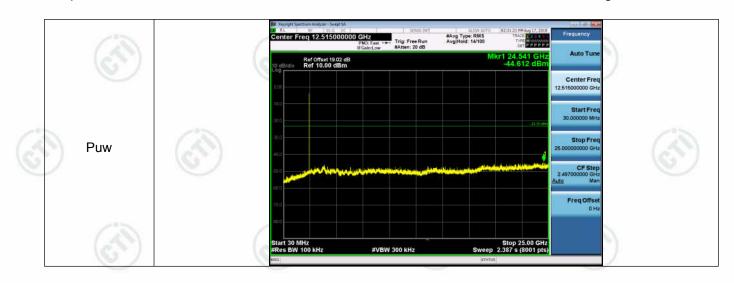


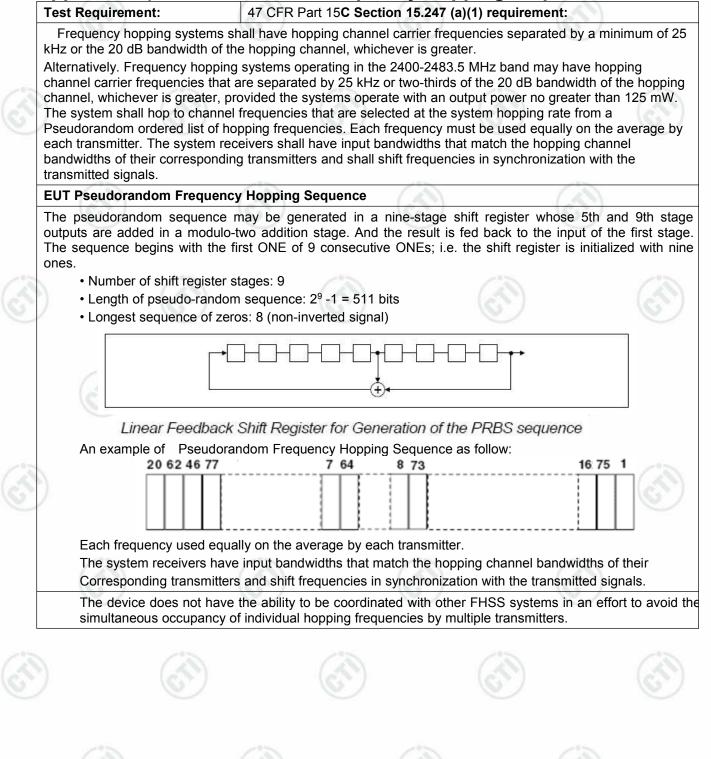
Page 41 of 84



Page 42 of 84



Page 43 of 84



Page 44 of 84

Appendix H): Pseudorandom Frequency Hopping Sequence

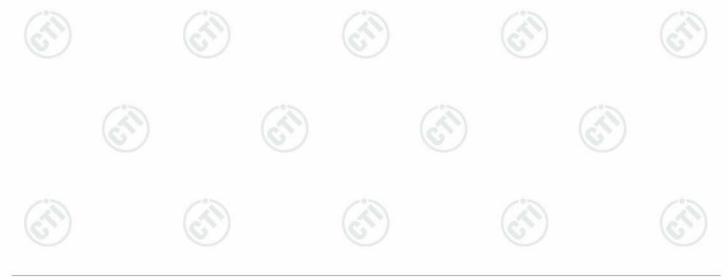
Page 45 of 84

Report No. : EED32K00209201

Appendix I): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is FPC Antenna and no consideration of replacement. The best case gain of the antenna is 2dBi

Antenne

Page 46 of 84

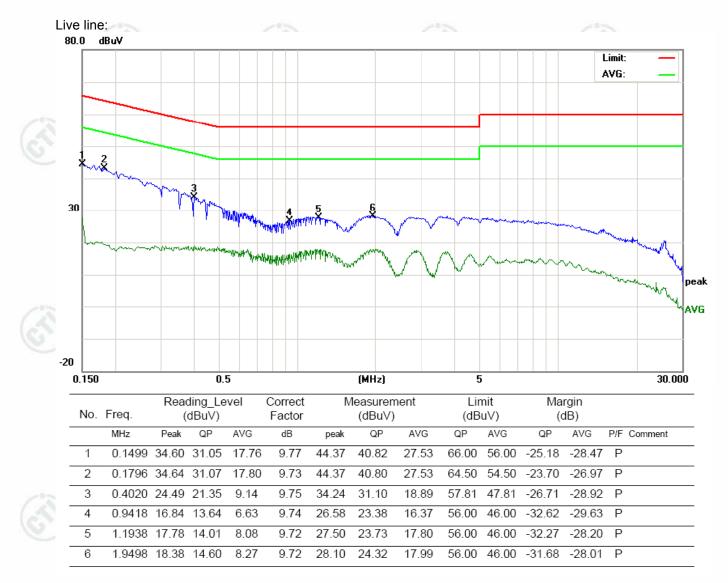
Appendix J): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz	-30MHz						
6	1)The mains terminal disturbar	nce voltage test was c	onducted in a shield	led room.				
	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50µH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet sTrip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.							
	3)The tabletop EUT was place reference plane. And for flo horizontal ground reference	or-standing arrangem		•				
	 4) The test was performed with a vertical ground reference plane. The rear of EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LI 1 was placed 0.8 m from the boundary of the unit under test and bonded t ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EI All other units of the EUT and associated equipment was at least 0.8 m from LISN 2. 							
	5) In order to find the maximum of the interface cables mus conducted measurement.							
Limit:	G	(C)	G)					
		Limit (c	lBμV)					
	Frequency range (MHz)	Quasi-peak	Average					
N 7	0.15-0.5	66 to 56*	56 to 46*	13				
) (0.5-5	56	46	6				
	5-30	60	50	\sim				
~~~	* The limit decreases linearly MHz to 0.50 MHz. NOTE : The lower limit is appli	Ū		e range 0.				

### **Measurement Data**

An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.







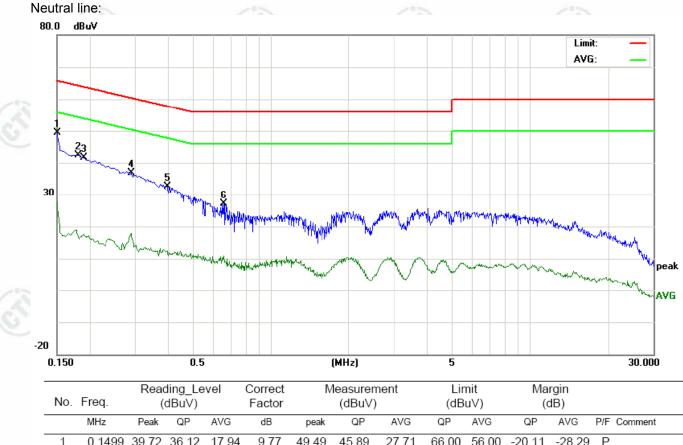





Page 47 of 84








Report No. : EED32K00209201





Page 48 of 84



	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1499	39.72	36.12	17.94	9.77	49.49	45.89	27.71	66.00	56.00	-20.11	-28.29	Ρ	
2	0.1779	32.67	30.25	9.19	9.73	42.40	39.98	18.92	64.58	54.58	-24.60	-35.66	Ρ	
3	0.1900	31.94	29.47	7.79	9.72	41.66	39.19	17.51	64.03	54.03	-24.84	-36.52	Ρ	
4	0.2898	27.09	25.13	8.05	9.77	36.86	34.90	17.82	60.53	50.53	-25.63	-32.71	Ρ	
5	0.3980	22.96	18.45	2.67	9.75	32.71	28.20	12.42	57.89	47.89	-29.69	-35.47	Ρ	
6	0.6580	17.42	15.22	1.04	9.75	27.17	24.97	10.79	56.00	46.00	-31.03	-35.21	Ρ	

#### Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.





Report No. : EED32K00209201





## Appendix K): Restricted bands around fundamental frequency (Radiated)

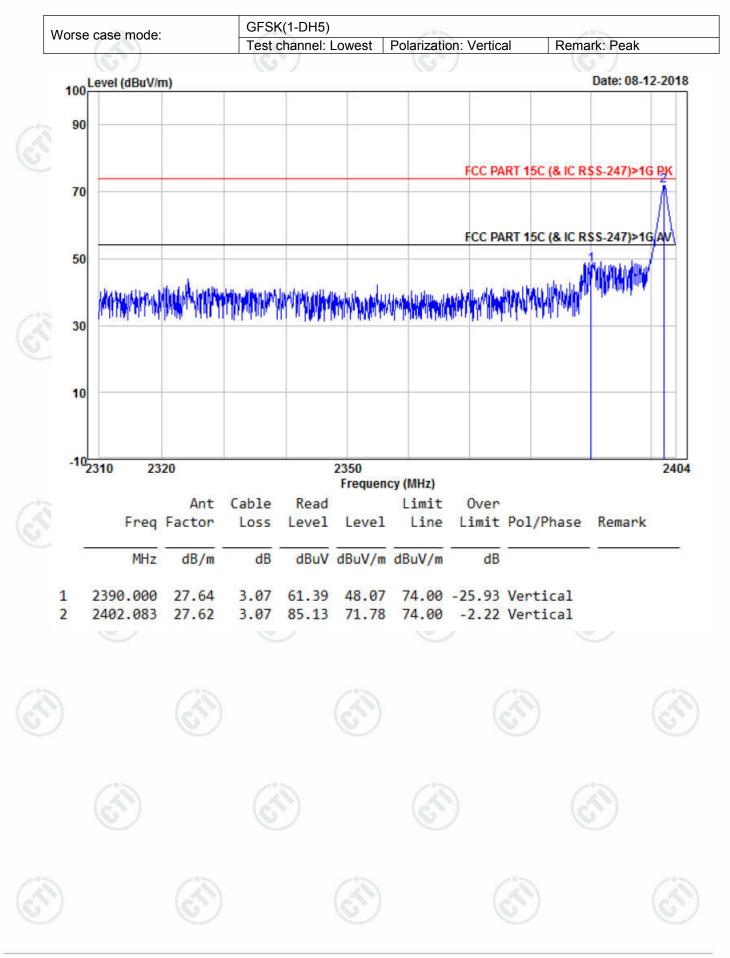
(Raulaleu)			10		6.31	
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
-	Above 1GHz	Peak	1MHz	3MHz Peak		- 0
	Above IGHz	Peak	1MHz	10Hz	Average	4
Test Procedure:	Below 1GHz test procedu	ure as below:	6	9		Ľ
	<ul> <li>a. The EUT was placed of at a 3 meter semi-anex determine the position</li> <li>b. The EUT was set 3 meters was mounted on the torn was mounted on the torn of the antenna height is determine the maximule polarizations of the antenna was tuned table was turned from</li> <li>e. The test-receiver system Bandwidth with Maxim</li> <li>f. Place a marker at the of frequency to show com bands. Save the spect for lowest and highest</li> <li>Above 1GHz test proceded</li> <li>g. Different between above to fully Anechoic Chammeter (Above 18GHz test proceded)</li> </ul>	on the top of a rot choic camber. The of the highest ra- eters away from to op of a variable-he varied from one of m value of the fiel tenna are set to re mission, the EUT d to heights from 0 degrees to 360 em was set to Pe oum Hold Mode. end of the restrict onpliance. Also me rum analyzer plo channel ure as below: ve is the test site onber and change	ted band of ted band of ted band of ted band of ted band of ted band of ted band of ted band of ted ba	as rotated 3 ence-receinna tower. our meters h. Both hou neasurement aged to its 4 meters 4 meters 5 find the Function a closest to the closest to the closest to the closest to the consistion for each por con Semi- e 0.8 meter	360 degrees to iving antenna, above the grou rizontal and ve ent. worst case and and the rotatak maximum reac and Specified he transmit s in the restrict ower and modu Anechoic Cha t to 1.5	wh unc rtic d th ble ling red ulat
Ð	<ul> <li>h. b. Test the EUT in the</li> <li>i. The radiation measure</li> <li>Transmitting mode, an</li> <li>j. Repeat above procedu</li> </ul>	lowest channel , ements are perfor id found the X ax	the Highe med in X, is position	st channel Y, Z axis p ing which i	positioning for it is worse case	<b>6</b>
Limit:	h. b. Test the EUT in the i. The radiation measure Transmitting mode, an	lowest channel , ements are perfor id found the X ax	the Highe med in X, is position uencies me	st channel Y, Z axis p ing which i easured wa	positioning for it is worse case	<b>e</b> .
Limit:	h. b. Test the EUT in the i. The radiation measure Transmitting mode, an j. Repeat above procedu	lowest channel , ements are perfor id found the X ax ures until all frequ	the Highe med in X, is position uencies me m @3m)	st channel Y, Z axis p ing which i easured wa	positioning for it is worse case as complete.	<b>e</b> .
Limit:	h. b. Test the EUT in the i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency	lowest channel , ements are perfor id found the X ax ures until all frequ Limit (dBµV/	the Highe med in X, is position uencies me m @3m)	st channel Y, Z axis p ing which i easured wa Re Quasi-po	positioning for it is worse case as complete. mark	<b>.</b>
Limit:	h. b. Test the EUT in the i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz	lowest channel , ements are perfor id found the X ax ures until all frequ Limit (dBµV/ 40.0	the Highe rmed in X, is position uencies me m @3m)	st channel Y, Z axis p ing which i easured wa Rei Quasi-po Quasi-po	oositioning for it is worse case as complete. mark eak Value	ð.
Limit:	h. b. Test the EUT in the i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz	lowest channel , ements are perfor id found the X ax ures until all frequ Limit (dBµV/ 40.0 43.5	the Highe med in X, is position uencies me m @3m)	st channel Y, Z axis p ing which i easured wa Rei Quasi-po Quasi-po Quasi-po	oositioning for it is worse case as complete. mark eak Value eak Value	e.
Limit:	h. b. Test the EUT in the i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	lowest channel , ements are perfor id found the X ax ures until all frequ Limit (dBµV/ 40.0 43.5 46.0	the Highe med in X, is position uencies me m @3m)	st channel Y, Z axis p ing which i easured wa Rei Quasi-po Quasi-po Quasi-po Quasi-po	oositioning for it is worse case as complete. mark eak Value eak Value eak Value	e.










#### Test plot as follows: GFSK(1-DH5) Worse case mode: Test channel: Lowest Polarization: Horizontal Remark: Peak 100 Level (dBuV/m) Date: 08-12-2018 90 FCC PART 15C (& IC R\$S-247)>1G FK 70 FCC PART 15C (& IC R\$S-247)>1G 50 inner an brachte an that the statistic of the state of the 30 10 -102310 2320 2350 2404 Frequency (MHz) Ant Cable Read Limit Over Freq Factor Loss Level Level Line Limit Pol/Phase Remark MHz dB dBuV dBuV/m dBuV/m dB dB/m 2390.000 74.00 -30.02 Horizontal 27.64 3.07 57.30 43.98 1 2 * 2402.083 27.62 3.07 90.06 76.71 74.00 2.71 Horizontal



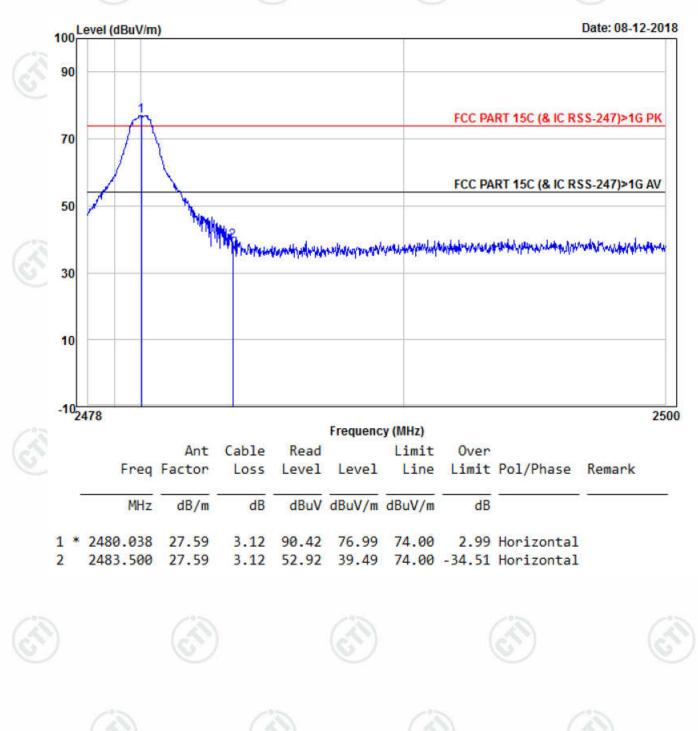




## Page 51 of 84





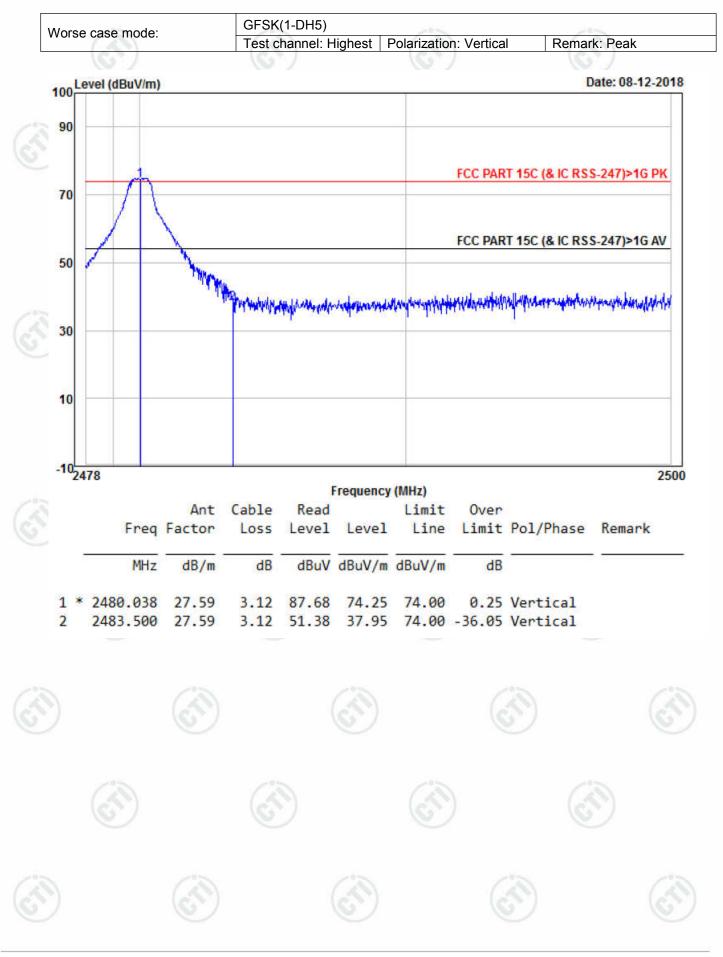







 Worse case mode:
 GFSK(1-DH5)

 Test channel: Highest
 Polarization: Horizontal
 Remark: Peak

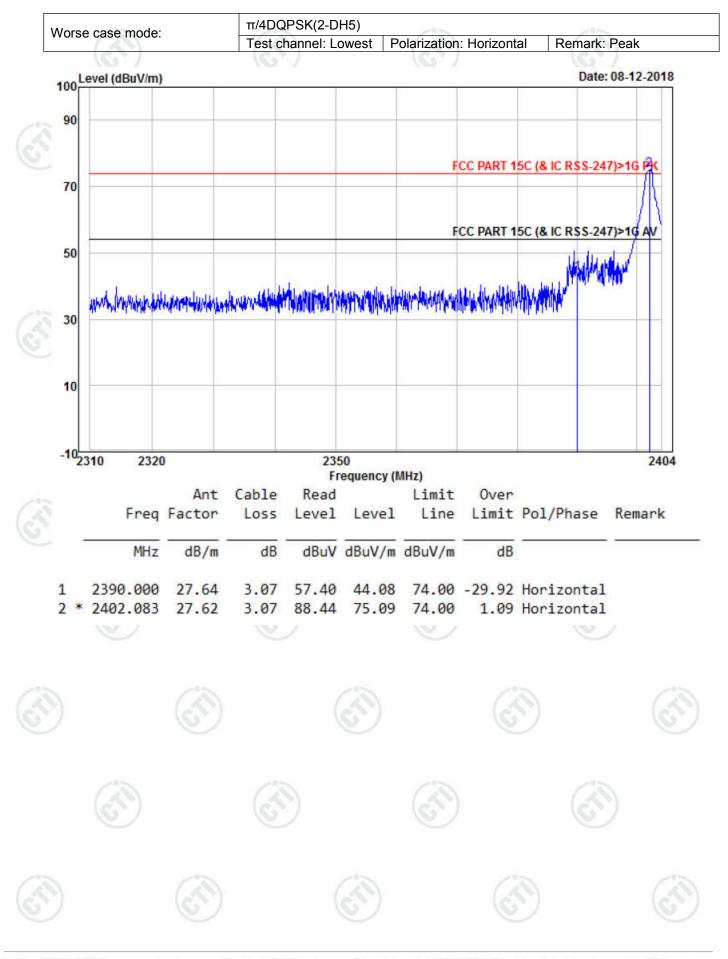









## Page 53 of 84

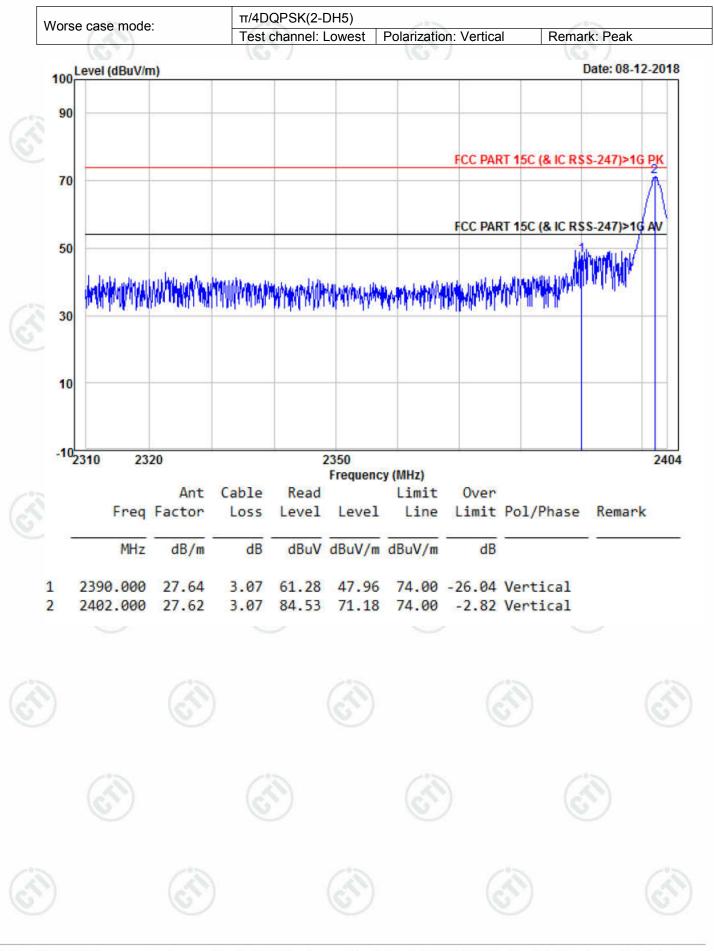









## Page 54 of 84

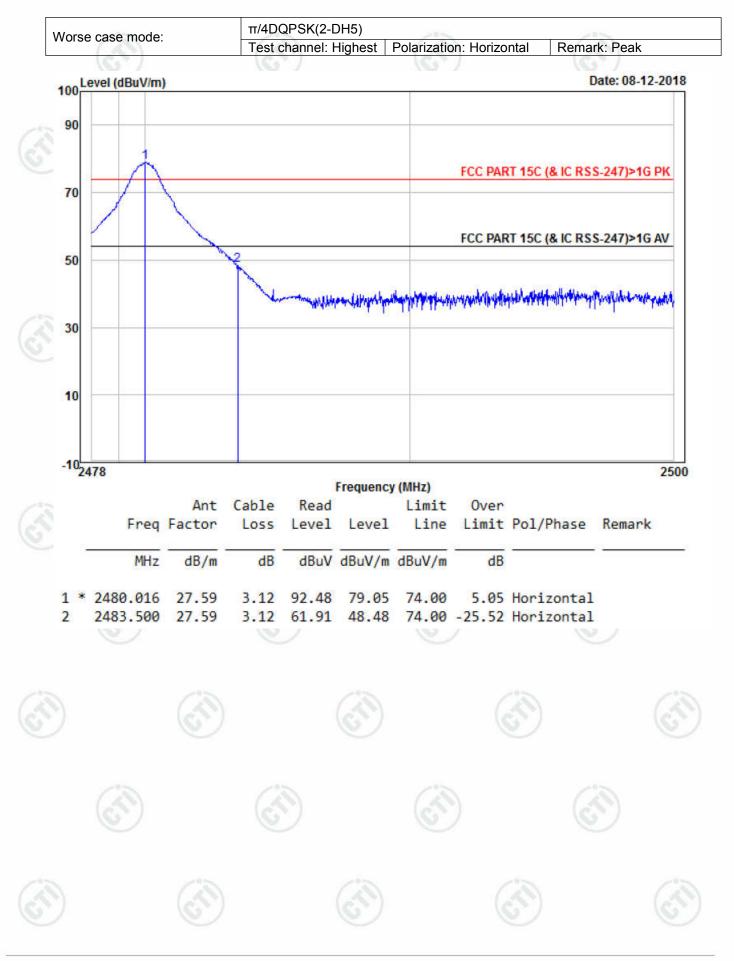









## Page 55 of 84



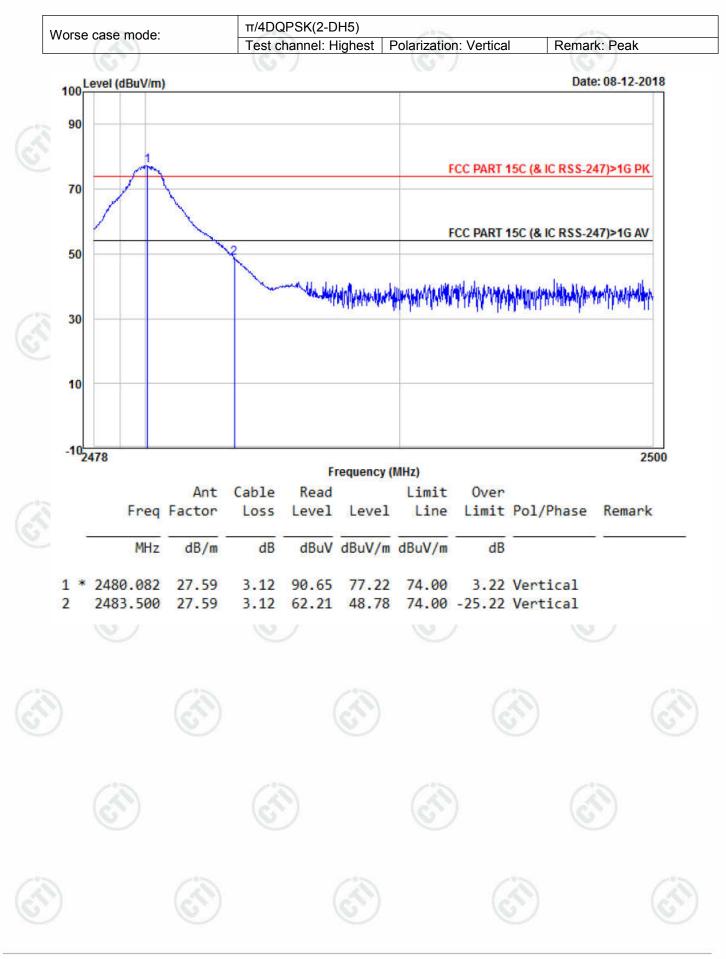







# Page 56 of 84



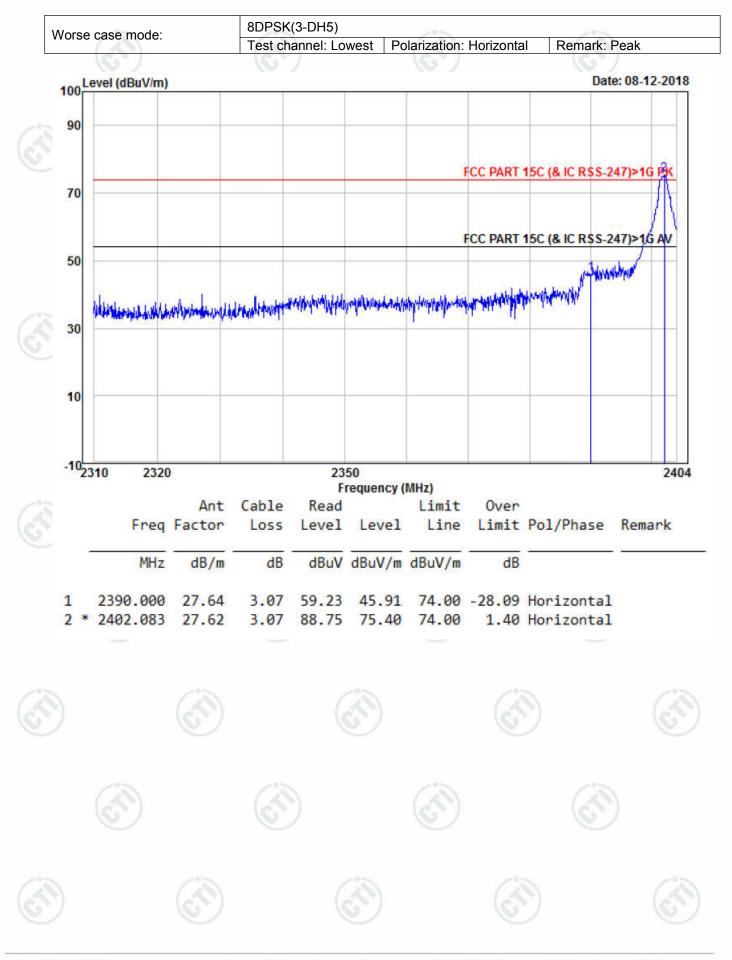







## Page 57 of 84

Report No. : EED32K00209201



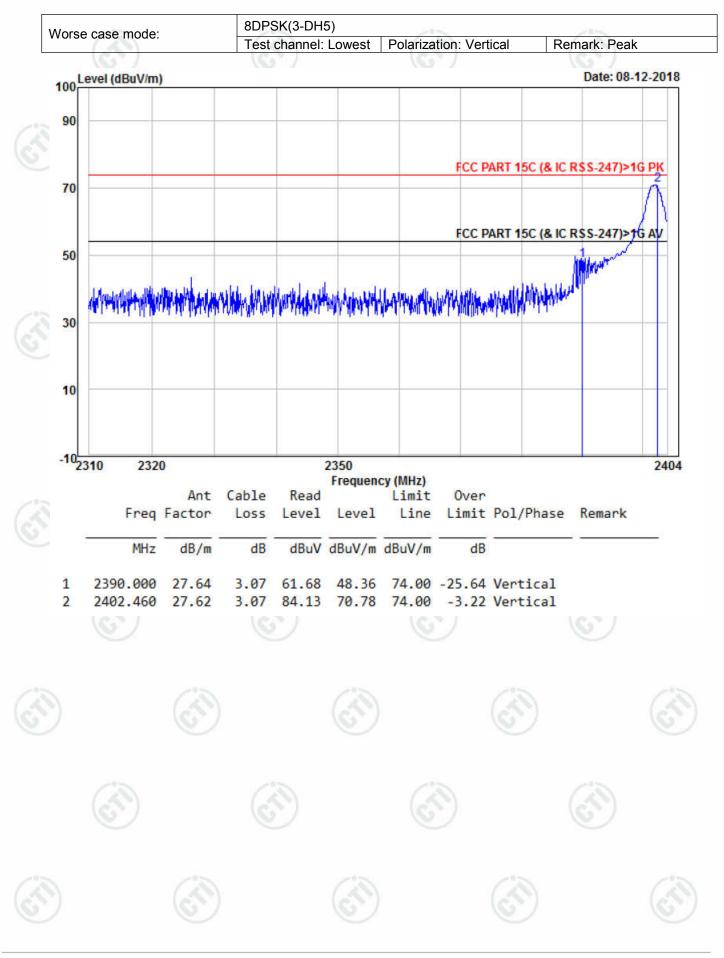







## Page 58 of 84



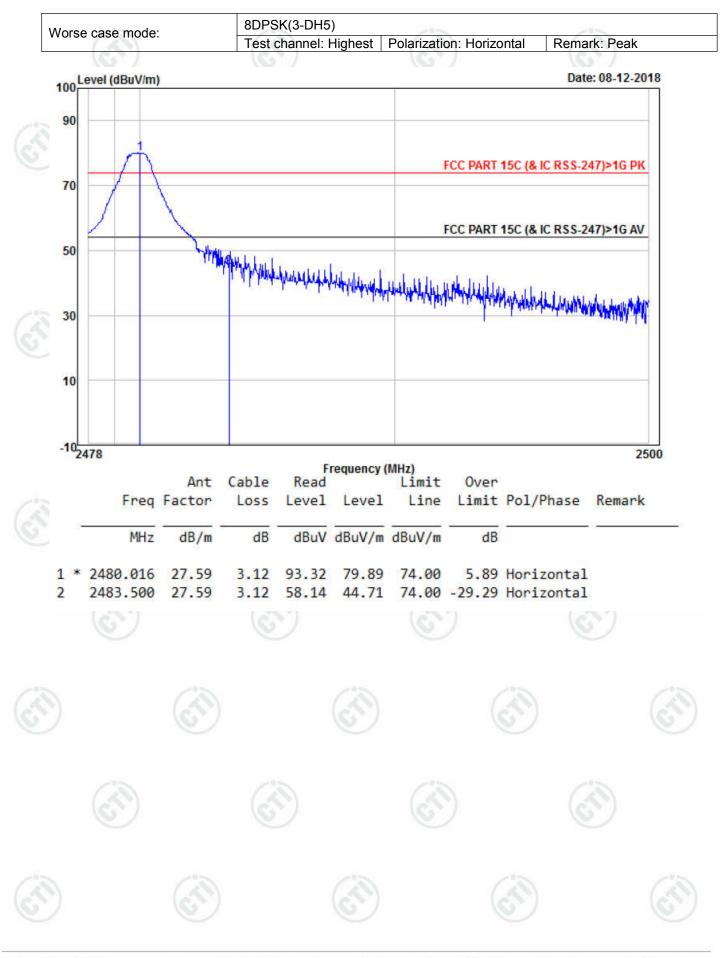

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com







## Page 59 of 84



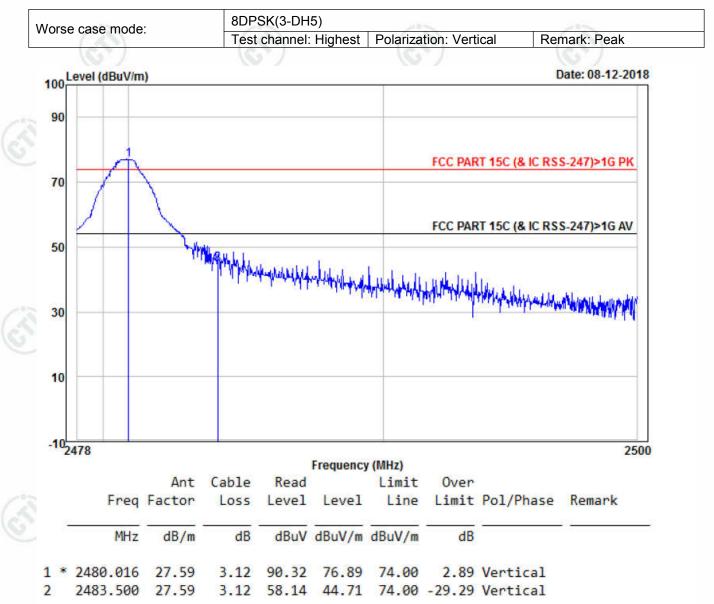















## Page 61 of 84

Report No. : EED32K00209201



Note:

1) Through Pre-scan transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of  $\pi$ /4DQPSK modulation type, the 3-DH5 of data type is the worse case of 8DPSK modulation type in charge + transmitter mode.

2) As shown in this section, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak values are measured.

3) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor







## **Appendix L): Radiated Spurious Emissions**

Receiver Setup:			10	-		
C)	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
N	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
)	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
$(e^{s})$		Peak	1MHz	3MHz	Peak	
$\bigcirc$	Above 1GHz	Peak	1MHz	10Hz	Average	

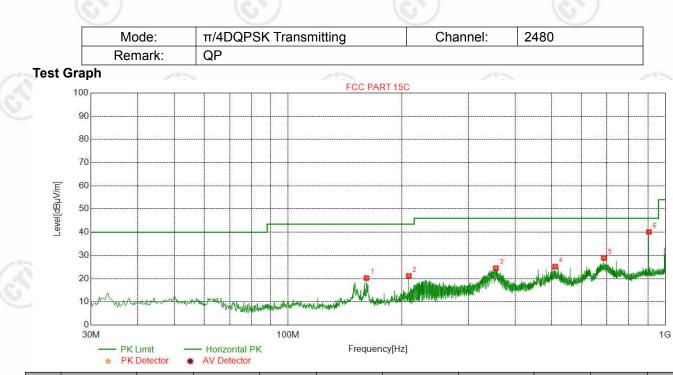
#### **Test Procedure:**

#### Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
  f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be
- If the emission level of the EOT in peak mode was food lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

#### Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter( Above 18GHz the distance is 1 meter and table is 1.5 meter).
  h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.


#### j. Repeat above procedures until all frequencies measured was complete.

Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measuren distance				
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300				
	0.490MHz-1.705MHz	24000/F(kHz)	-	205	30	103			
	1.705MHz-30MHz	30	- (	<u>}</u>	30	65			
	30MHz-88MHz	100	40.0	Quasi-peak	3	V			
	88MHz-216MHz	8MHz-216MHz 150 43.5 Quasi-p		Quasi-peak	3				
	216MHz-960MHz	200	46.0	Quasi-peak	3				
	960MHz-1GHz	500	54.0	Quasi-peak	3				
	Above 1GHz	500	54.0	Average	3				
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.								



Report No. : EED32K00209201

## Radiated Spurious Emissions test Data: Radiated Emission below 1GHz



	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
	1	161.3643	7.98	1.48	-31.98	42.80	20.28	43.50	23.22	Pass	Horizontal
13	2	208.9038	11.13	1.71	-31.94	40.28	21.18	43.50	22.32	Pass	Horizontal
2	3	355.5971	14.42	2.25	-31.85	39.70	24.52	46.00	21.48	Pass	Horizontal
Ľ	4	510.4401	17.21	2.69	-31.94	37.25	25.21	46.00	20.79	Pass	Horizontal
	5	687.5975	19.70	3.14	-32.06	38.13	28.91	46.00	17.09	Pass	Horizontal
	6	905.1150	22.13	3.60	-31.53	45.94	40.14	46.00	5.86	Pass	Horizontal

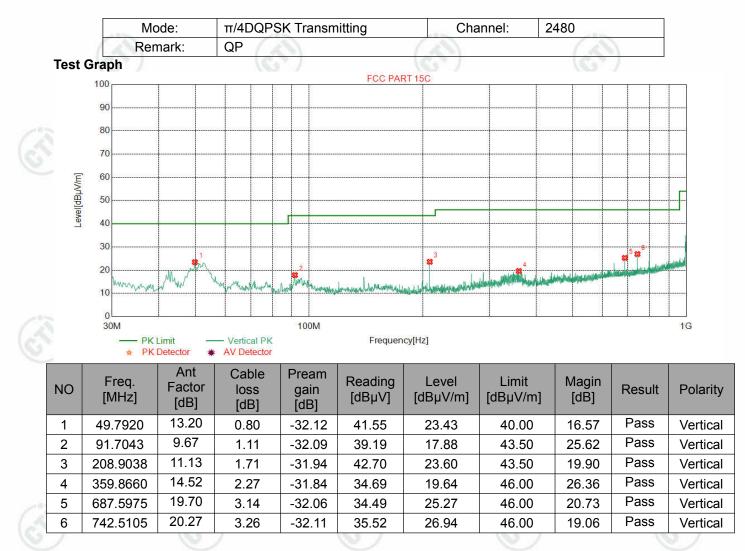


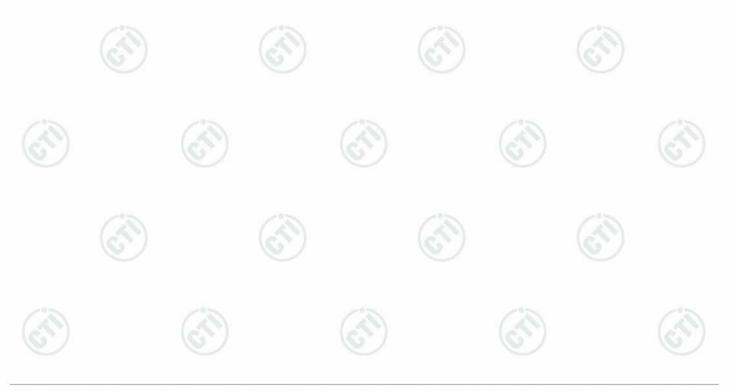









)


Page 63 of 84















## Transmitter Emission above 1GHz

Worse c	ase mode:	GFSK	Test channel: Lowest								
Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Polarity	Remark		
1792.1584	30.33	3.31	-36.81	51.14	47.97	74.00	26.03	Н	Peak		
2994.3989	33.19	4.53	-36.72	47.86	48.86	74.00	25.14	Н	Peak		
4804.0000	34.50	4.55	-36.15	50.37	53.27	74.00	20.73	Н	Peak		
4804.0000	34.50	4.55	-36.15	44.95	47.85	54.00	6.15	Н	Average		
7206.0000	36.31	5.81	-36.43	41.47	47.16	74.00	26.84	Н	Peak		
8479.0729	36.59	6.45	-36.43	43.91	50.52	74.00	23.48	Н	Peak		
9608.0000	37.64	6.63	-36.79	43.26	50.74	74.00	23.26	Н	Peak		
1397.6795	28.30	2.90	-37.21	51.23	45.22	74.00	28.78	V	Peak		
4804.0000	34.50	4.55	-36.15	53.28	56.18	74.00	17.82	V	Peak		
4804.0000	34.50	4.55	-36.15	35.49	38.39	54.00	15.61	V	Average		
6100.8101	35.82	5.26	-36.34	42.54	47.28	74.00	26.72	V	Peak		
7206.0000	36.31	5.81	-36.43	44.88	50.57	74.00	23.43	V	Peak		
8153.3903	36.46	6.42	-36.45	43.27	49.70	74.00	24.30	V	Peak		
9608.0000	37.64	6.63	-36.79	42.10	49.58	74.00	24.42	V	Peak		

Page 65 of 84

Worse c	ase mode:	GFSK	Test channel: Middle								
Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Polarity	Remark		
3163.8164	33.27	4.59	-36.89	46.60	47.57	74.00	26.43	Н	Peak		
4882.0000	34.50	4.81	-36.10	49.10	52.31	74.00	21.69	Н	Peak		
4882.0000	34.50	4.81	-36.10	35.55	38.76	24.00	15.24	Н	Average		
5789.7540	35.46	4.97	-36.04	43.66	48.05	74.00	25.95	Н	Peak		
7323.0000	36.42	5.85	-36.41	42.91	48.77	74.00	25.23	Н	Peak		
8427.3927	36.57	6.37	-36.35	43.81	50.40	74.00	23.60	Н	Peak		
9764.0000	37.71	6.71	-36.83	42.89	50.48	74.00	23.52	Н	Peak		
1795.3591	30.35	3.31	-36.81	48.67	45.52	74.00	28.48	V	Peak		
3190.1440	33.28	4.63	-36.74	45.89	47.06	74.00	26.94	V	Peak		
4882.0000	34.50	4.81	-36.10	47.58	50.79	74.00	23.21	V	Peak		
6378.7129	35.88	5.37	-36.25	42.21	47.21	74.00	26.79	V	Peak		
7323.0000	36.42	5.85	-36.41	43.16	49.02	74.00	24.98	V	Peak		
9764.0000	37.71	6.71	-36.83	42.98	50.57	74.00	23.43	V	Peak		





37.77

37.77

6.79

6.79

-36.82

-36.82

9920.0000

9920.0000





## Page 66 of 84

Remark

Peak

Average

V

V

22.17

17.04

Worse case mode: GFSK Test channel: Highest Ant Cable Pream Reading Level Limit Magin Freq. Factor Polarity loss gain [dBµV] [dBµV/m] [dBµV/m] [dB] [MHz] [dB] [dB] [dB] 33.21 Н 3020.4770 4.89 -36.78 46.71 48.03 74.00 25.97 4960.0000 34.50 4.82 -36.20 46.15 49.27 74.00 24.73 Н 35.14 5587.9088 5.11 -36.11 43.96 48.10 74.00 25.90 Н 35.89 6441.1191 5.48 -36.27 43.58 48.68 74.00 25.32 Н 36.54 7440.0000 5.85 -36.34 48.23 74.00 25.77 Н 42.18 37.77 Н 9920.0000 6.79 -36.82 41.81 49.55 74.00 24.45 33.21 V 3014.6265 4.90 -36.76 46.50 47.85 74.00 26.15 34.50 V 4960.0000 4.82 -36.20 43.54 46.66 74.00 27.34 V 5541.1041 35.07 5.16 -36.06 44.02 48.19 74.00 25.81 36.54 V 7440.0000 5.85 -36.34 41.10 47.15 74.00 26.85 V 36.57 44.22 8413.7414 6.35 -36.31 50.83 74.00 23.17

44.09

29.22

51.83

36.96

74.00

54.00

	Worse case	e mode: π/4	1DQPSK	Test channel: Lowest							
	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Polarity	Remark	
	3057.5308	33.22	4.81	-36.86	46.45	47.62	74.00	26.38	Н	Peak	
	4804.0000	34.50	4.55	-36.15	48.60	51.50	74.00	22.50	Н	Peak	
1	4804.0000	34.50	4.55	-36.15	40.86	43.76	54.00	10.24	Н	Average	
	5691.2691	35.31	5.01	-36.11	43.21	47.42	74.00	26.58	Н	Peak	
4	7206.0000	36.31	5.81	-36.43	41.00	46.69	74.00	27.31	Н	Peak	
	8489.7990	36.60	6.47	-36.45	43.73	50.35	74.00	23.65	Н	Peak	
	9608.0000	37.64	6.63	-36.79	43.04	50.52	74.00	23.48	Н	Peak	
	3190.1440	33.28	4.63	-36.74	45.81	46.98	74.00	27.02	V	Peak	
	4804.0000	34.50	4.55	-36.15	50.75	53.65	74.00	20.35	V	Peak	
	4804.0000	34.50	4.55	-36.15	35.93	38.83	54.00	15.17	V	Average	
	6761.9262	36.00	5.68	-36.20	42.74	48.22	74.00	25.78	V	Peak	
	7206.0000	36.31	5.81	-36.43	40.53	46.22	74.00	27.78	V	Peak	
-	8435.1935	36.57	6.38	-36.37	44.29	50.87	74.00	23.13	V	Peak	
ć	9608.0000	37.64	6.63	-36.79	41.87	49.35	74.00	24.65	V	Peak	
				•				1			

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com







# Page 67 of 84

	Worse case	e mode: π/4	IDQPSK		Test channel: Middle							
	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Polarity	Remark		
	3031.2031	33.21	4.87	-36.82	45.95	47.21	74.00	26.79	Н	Peak		
1	4882.0000	34.50	4.81	-36.10	47.58	50.79	74.00	23.21	Н	Peak		
3	6373.8374	35.87	5.39	-36.23	42.63	47.66	74.00	26.34	Н	Peak		
~	7323.0000	36.42	5.85	-36.41	40.34	46.20	74.00	27.80	Н	Peak		
	8386.4386	36.55	6.29	-36.38	44.12	50.58	74.00	23.42	Н	Peak		
	9764.0000	37.71	6.71	-36.83	42.27	49.86	74.00	24.14	Н	Peak		
	1687.3375	29.64	3.18	-36.87	48.11	44.06	74.00	29.94	V	Peak		
	3189.1689	33.28	4.63	-36.75	48.62	49.78	74.00	24.22	V	Peak		
	4882.0000	34.50	4.81	-36.10	45.32	48.53	74.00	25.47	V	Peak		
	6516.2016	35.91	5.43	-36.19	42.26	47.41	74.00	26.59	V	Peak		
	7323.0000	36.42	5.85	-36.41	40.77	46.63	74.00	27.37	V	Peak		
	9764.0000	37.71	6.71	-36.83	43.20	50.79	74.00	23.21	V	Peak		
	ST)	6	21		$(c_{2}^{\infty})$		162	)		(22)		

Worse case	e mode: π/4	IDQPSK	Test channel: Highest								
Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Polarity	Remark		
3191.1191	33.28	4.64	-36.75	46.29	47.46	74.00	26.54	Н	Peak		
4960.0000	34.50	4.82	-36.20	47.46	50.58	74.00	23.42	Н	Peak		
6371.8872	35.87	5.39	-36.21	43.19	48.24	74.00	25.76	Н	Peak		
7440.0000	36.54	5.85	-36.34	39.45	45.50	74.00	28.50	Н	Peak		
8404.9655	36.56	6.34	-36.28	43.22	49.84	74.00	24.16	Н	Peak		
9920.0000	37.77	6.79	-36.82	40.06	47.80	74.00	26.20	Н	Peak		
3196.9697	33.28	4.65	-36.71	47.19	48.41	74.00	25.59	V	Peak		
4960.0000	34.50	4.82	-36.20	43.60	46.72	74.00	27.28	V	Peak		
5760.5011	35.42	4.95	-36.11	43.23	47.49	74.00	26.51	V	Peak		
7440.0000	36.54	5.85	-36.34	40.24	46.29	74.00	27.71	V	Peak		
8439.0939	36.58	6.38	-36.38	43.85	50.43	74.00	23.57	V	Peak		
9920.0000	37.77	6.79	-36.82	42.56	50.30	74.00	23.70	V	Peak		









# Page 68 of 84

Worse case mode: 8DPSK			Test channel: Lowest							
Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Polarity	Remark	
1974.5949	31.53	3.44	-36.78	47.99	46.18	74.00	27.82	Н	Peak	
3376.3876	33.35	4.54	-36.67	45.92	47.14	74.00	26.86	Н	Peak	
4804.0000	34.50	4.55	-36.15	49.05	51.95	74.00	22.05	Н	Peak	
4804.0000	34.50	4.55	-36.15	34.16	37.06	54.00	16.94	Н	Average	
6395.2895	35.88	5.32	-36.32	43.27	48.15	74.00	25.85	Н	Peak	
7206.0000	36.31	5.81	-36.43	40.93	46.62	74.00	27.38	Н	Peak	
9608.0000	37.64	6.63	-36.79	42.46	49.94	74.00	24.06	Н	Peak	
2982.3965	33.17	4.50	-36.75	47.06	47.98	74.00	26.02	V	Peak	
4804.0000	34.50	4.55	-36.15	47.79	50.69	74.00	23.31	V	Peak	
5701.9952	35.32	5.02	-36.12	42.69	46.91	74.00	27.09	V	Peak	
7206.0000	36.31	5.81	-36.43	40.82	46.51	74.00	27.49	V	Peak	
8447.8698	36.58	6.40	-36.42	43.35	49.91	74.00	24.09	V	Peak	
9608.0000	37.64	6.63	-36.79	43.37	50.85	74.00	23.15	V	Peak	

	Worse case mode: 8DPSK			Test channel: Middle							
	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Polarity	Remark	
	3195.0195	33.28	4.64	-36.72	46.09	47.29	74.00	26.71	Н	Peak	
n	4882.0000	34.50	4.81	-36.10	48.93	52.14	74.00	21.86	Н	Peak	
	4882.0000	34.50	4.81	-36.10	30.80	34.01	4.00	19.99	Н	Average	
C	6352.3852	35.87	5.45	-36.14	43.36	48.54	74.00	25.46	Н	Peak	
	7323.0000	36.42	5.85	-36.41	40.29	46.15	74.00	27.85	Н	Peak	
	8382.5383	36.55	6.27	-36.40	44.52	50.94	74.00	23.06	Н	Peak	
	9764.0000	37.71	6.71	-36.83	42.65	50.24	74.00	23.76	Н	Peak	
	1877.3755	30.89	3.40	-36.85	50.06	47.50	74.00	26.50	V	Peak	
	3191.1191	33.28	4.64	-36.75	46.94	48.11	74.00	25.89	V	Peak	
	4882.0000	34.50	4.81	-36.10	45.78	48.99	74.00	25.01	V	Peak	
	5804.3804	35.49	4.99	-36.02	43.30	47.76	74.00	26.24	V	Peak	
	7323.0000	36.42	5.85	-36.41	40.75	46.61	74.00	27.39	V	Peak	
1	9764.0000	37.71	6.71	-36.83	42.56	50.15	74.00	23.85	V	Peak	
G	20	6	57		G		6			G	











# Page 69 of 84

Report No. : EED32K00209201

Worse case mode: 8DPSK			Test channel: Highest							
Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Polarity	Remark	
4391.4641	34.35	4.54	-36.16	44.58	47.31	74.00	26.69	Н	Peak	
4960.0000	34.50	4.82	-36.20	42.32	45.44	74.00	28.56	Н	Peak	
6280.2280	35.86	5.42	-36.26	43.46	48.48	74.00	25.52	Н	Peak	
7440.0000	36.54	5.85	-36.34	40.73	46.78	74.00	27.22	Н	Peak	
8414.7165	36.57	6.35	-36.31	43.96	50.57	74.00	23.43	Н	Peak	
9920.0000	37.77	6.79	-36.82	42.69	50.43	74.00	23.57	Н	Peak	
2154.2308	31.92	3.65	-36.32	49.54	48.79	74.00	25.21	V	Peak	
3195.0195	33.28	4.64	-36.72	47.39	48.59	74.00	25.41	V	Peak	
4960.0000	34.50	4.82	-36.20	42.62	45.74	74.00	28.26	V	Peak	
6386.5137	35.88	5.35	-36.29	44.10	49.04	74.00	24.96	V	Peak	
7440.0000	36.54	5.85	-36.34	41.22	47.27	74.00	26.73	V	Peak	
9920.0000	37.77	6.79	-36.82	41.76	49.50	74.00	24.50	V	Peak	

#### Note:

1) Through Pre-scan transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of  $\pi$ /4DQPSK modulation type, he 3-DH5 of data type is the worse case of 8DPSKmodulation type in transmitter mode.

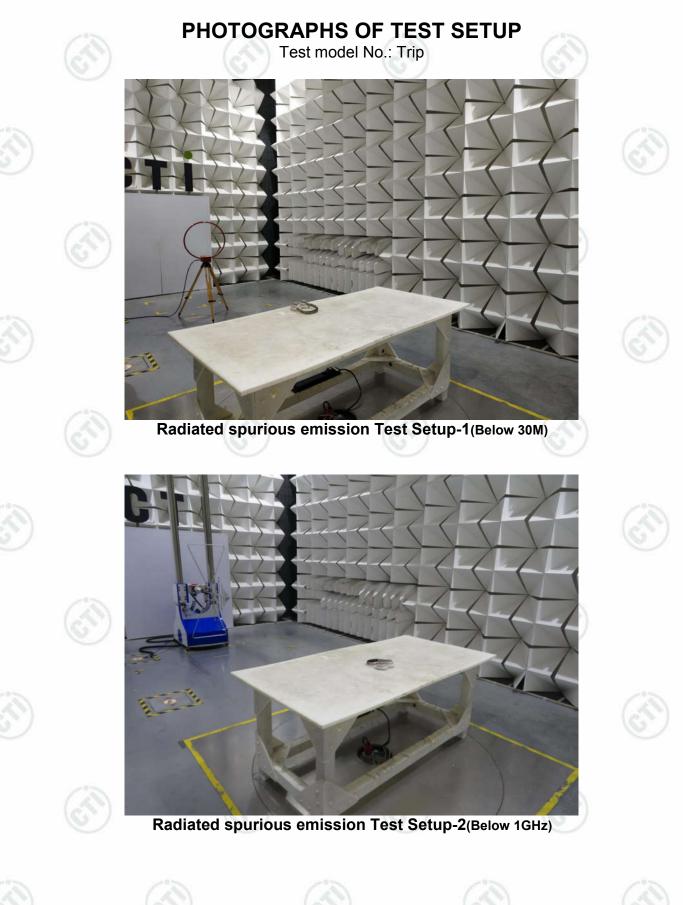
2) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. H owever, the peak field strength of any emission shall not exceed the maximum permitted average limits specifie d above by more than 20 dB under any condition of modulation. So, only the peak values are measured.

3) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

4) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.






Report No. : EED32K00209201



Page 70 of 84













Radiated spurious emission Test Setup-3(Above 1GHz)



## **Conducted emissions Test Setup**

Conducted em



















































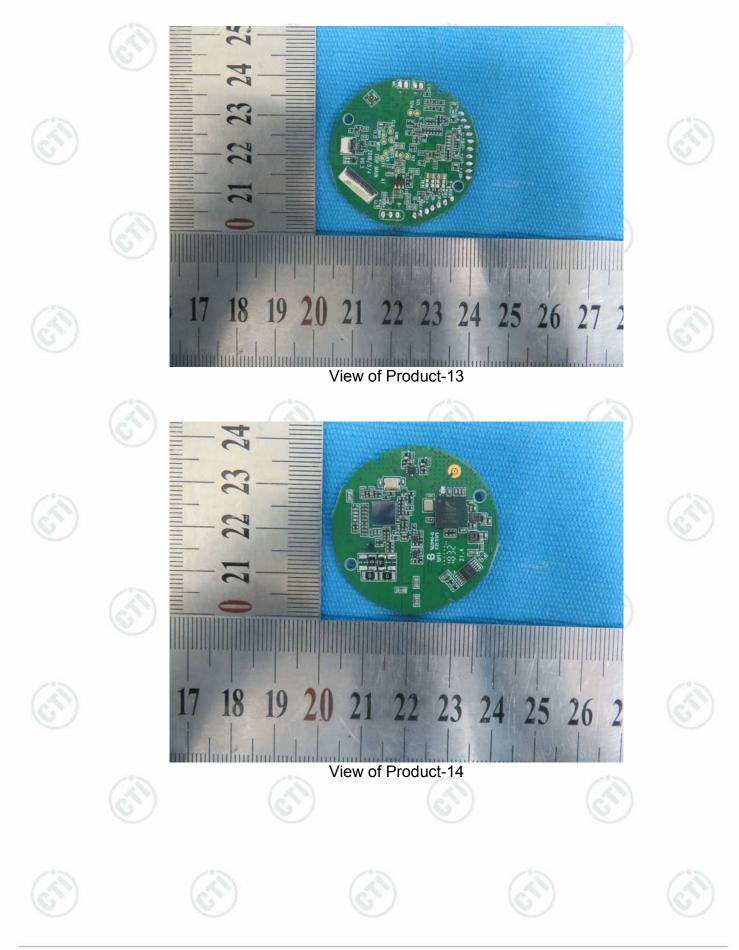










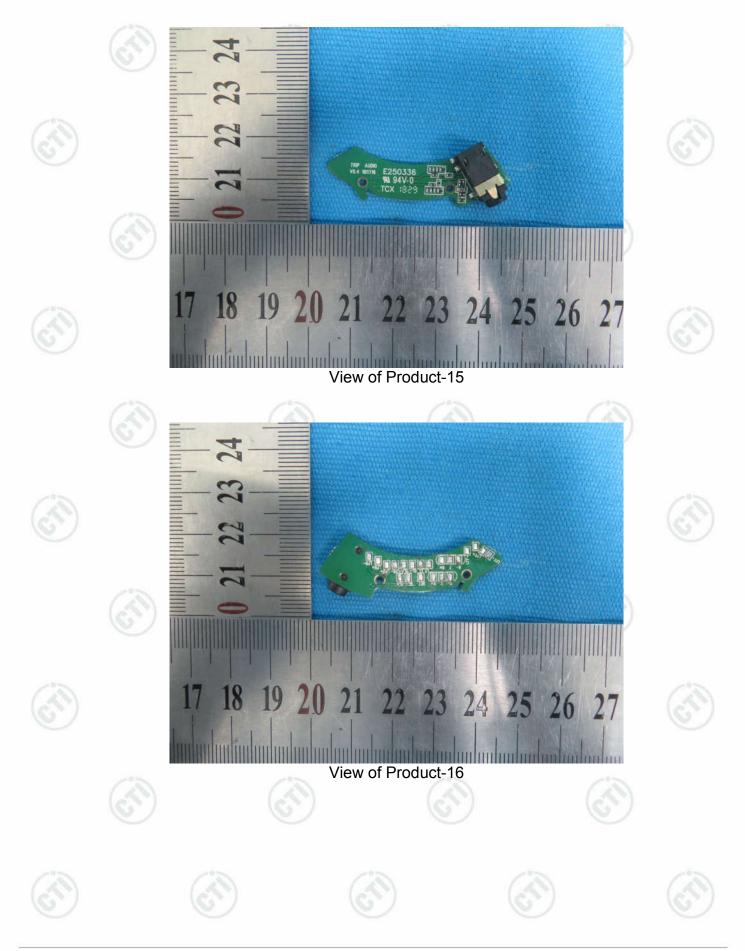










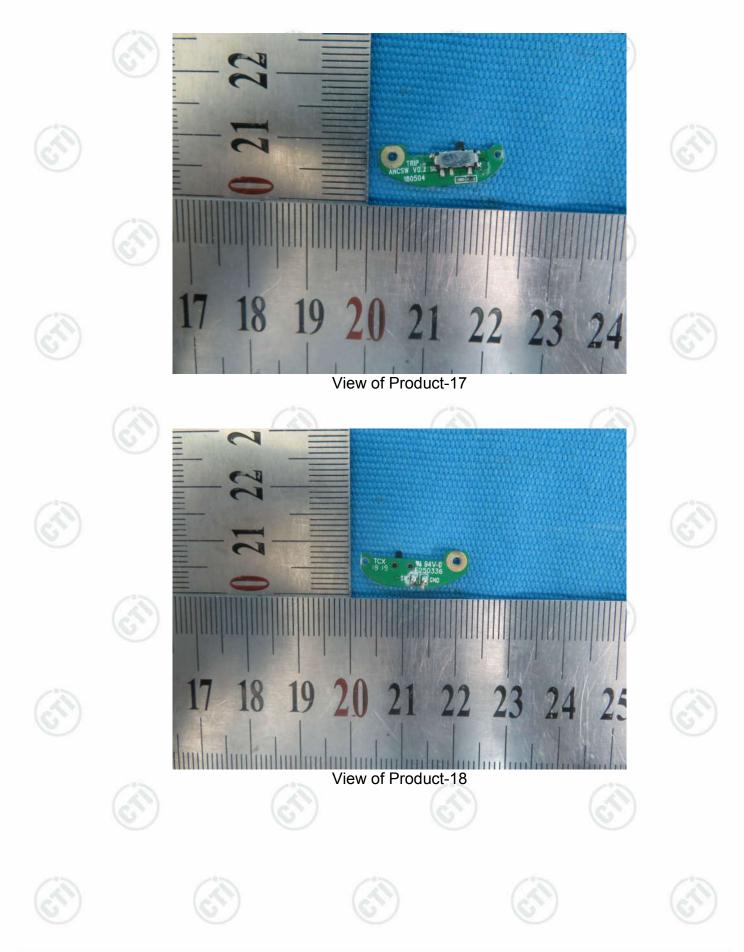











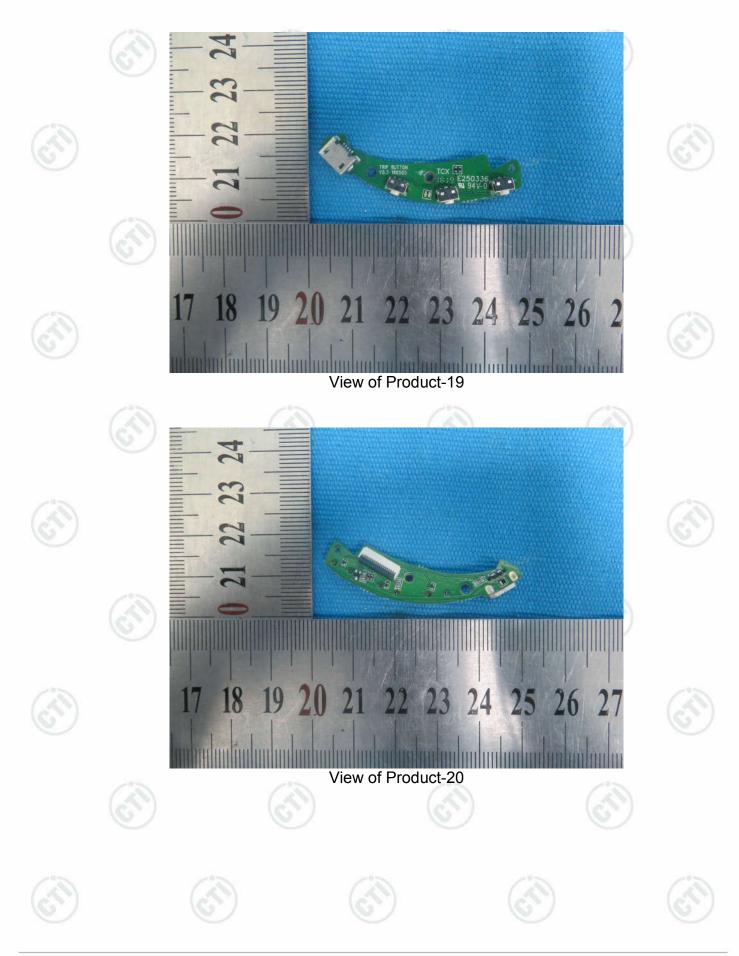



















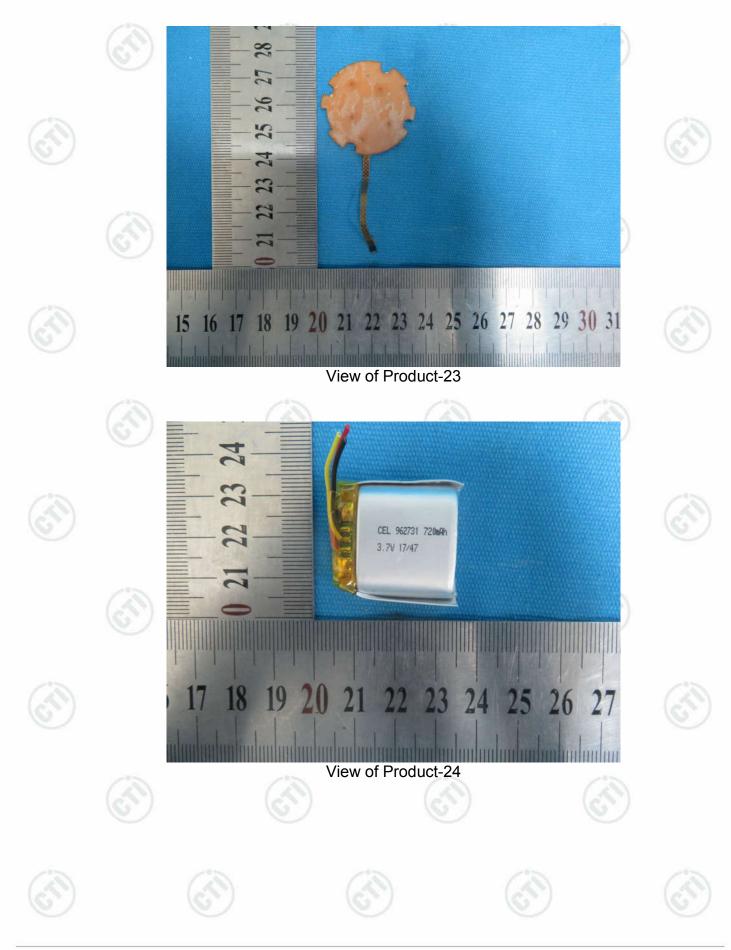














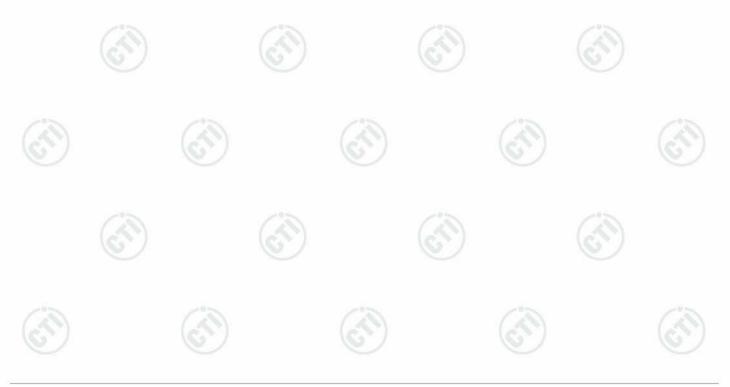















*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

