

CTC Laboratories, Inc.

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel: +86-755- 27521059 Fax: +86-755- 27521011 Http://www.sz-ctc.org.cn

TEST REPORT			
Report No. ·····:	CTC20230301E03		
FCC ID:	2AR24-AIBOX410		
Applicant	Shenzhen Absen Optoelectronic Co	o.,Ltd	
Address	18-20/F,Tower A,Building 3,Phase I,Tian An Cloud Park,N0.2018,Xuegang Rd,Bantian,Longgang District,Shenzhen,Guangdong,P.R.China		
Manufacturer	Shenzhen Absen Optoelectronic Co.,L	_td	
Address	18-20/F,Tower A,Building 3,Phase I,Tia Park,N0.2018,Xuegang Rd,Bantian,Lo District,Shenzhen,Guangdong,P.R.Ch	onggang	
Product Name:	LED Multimedia Processor		
Trade Mark······:	/		
Model/Type reference······:	Ai Box 410		
Listed Model(s) ·····:	/		
Standard:	FCC CFR Title 47 Part 15 Subpart C Section 15.247		
Date of receipt of test sample:	Mar. 02, 2023		
Date of testing	Mar. 02, 2023 to Mar. 27, 2023		
Date of issue	Jun. 02, 2023		
Result:	PASS		
Compiled by:			
(Printed name+signature)	Lucy Lan	They Tom	
Supervised by: (Printed name+signature)	Lucy Lan Incry Tem Tenc 2hang		
Approved by:	Totti Zhao		
(Printed name+signature)	Totti Zhao	/	
Testing Laboratory Name:	CTC Laboratories, Inc.		
Address	1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China		
This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client			

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

Table of Contents

Page

1.	TEST	SUMMARY	3
1	1.	Test Standards	3
1	2.	REPORT VERSION	3
1	3.	TEST DESCRIPTION	3
1	4.	Test Facility	4
1	5.	Measurement Uncertainty	
1	6.	Environmental Conditions	5
2.	GENE	ERAL INFORMATION	6
2	2.1.	CLIENT INFORMATION	6
2	.2.	GENERAL DESCRIPTION OF EUT	6
2	.3.	ACCESSORY EQUIPMENT INFORMATION	7
2	.4.	OPERATION STATE	8
2	.5.	Measurement Instruments List	10
3.	TEST	ITEM AND RESULTS	11
3	3.1.	CONDUCTED EMISSION	11
3	3.2.	RADIATED EMISSION	14
3	.3.	BAND EDGE EMISSIONS (RADIATED)	31
3	.4.	BAND EDGE AND SPURIOUS EMISSIONS (CONDUCTED)	48
3	.5.	DTS BANDWIDTH	82
3	.6.	OUTPUT POWER	101
3	3.7.	POWER SPECTRAL DENSITY	
3	.8.	DUTY CYCLE	
3	.9.	ANTENNA REQUIREMENT	123

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands of 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz.

<u>RSS 247 Issue 2:</u> Standard Specifications for Frequency Hopping Systems (FHSs) and Digital Transmission Systems (DTSs) Operating in the Bands 902-928MHz, 2400-2483.5MHz and 5725-5850MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report Version

Revised No.	Date of issue	Description
01	Jun. 02, 2023	Original

1.3. Test Description

FCC Part 15 Subpart C (15.247) / RSS 247 Issue 2				
Test liem	Standard Section		Decult	Test
Test Item	FCC	IC	Result	Engineer
Antenna Requirement	15.203	/	Pass	Lucy Lan
Conducted Emission	15.207	RSS-Gen 8.8	Pass	Lucy Lan
Radiated Band Edge and Spurious Emissions	15.205&15.209& 15.247(d)	RSS 247 5.5	Pass	Lucy Lan
Conducted Band Edge and Spurious Emissions	15.247(d)	RSS 247 5.5	Pass	Lucy Lan
6dB Bandwidth	15.247(a)(2)	RSS 247 5.2 (a)	Pass	Lucy Lan
Conducted Max Output Power	15.247(b)(3)	RSS 247 5.4 (d)	Pass	Lucy Lan
Power Spectral Density	15.247(e)	RSS 247 5.2 (b)	Pass	Lucy Lan
Transmitter Radiated Spurious	15.209&15.247(d)	RSS 247 5.5& RSS-Gen 8.9	Pass	Lucy Lan

Note:

1. The measurement uncertainty is not included in the test result.

1.4. Test Facility

CTC Laboratories, Inc.

Add: 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5365

CTC Laboratories, Inc. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation. Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 951311, Aug. 26, 2017.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties radio equipment characteristics; Part 2" and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.42 dB	(1)
Transmitter power Radiated	2.14 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.20 dB	(1)
Radiated Emissions 30~1000MHz	4.70 dB	(1)
Radiated Emissions 1~18GHz	5.00 dB	(1)
Radiated Emissions 18~40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.6. Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	21°C~27°C
Relative Humidity:	40%~60%
Air Pressure:	101kPa

ΕN

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	Shenzhen Absen Optoelectronic Co.,Ltd
Address:	18-20/F,Tower A,Building 3,Phase I,Tian An Cloud Park,N0.2018,Xuegang Rd,Bantian,Longgang District,Shenzhen,Guangdong,P.R.China
Manufacturer:	Shenzhen Absen Optoelectronic Co.,Ltd
Address:	18-20/F, Tower A, Building 3, Phase I, Tian An Cloud Park, N0.2018, Xuegang Rd, Bantian, Longgang District, Shenzhen, Guangdong, P.R. China

2.2. General Description of EUT

Product Name:	LED Multimedia Processor	
Trade Mark:	Abyen	
Model/Type reference:	Ai Box 410	
Listed Model(s):	1	
Model Difference:	1	
Power supply:	100-240V~ 50/60Hz	
RF Module Model:	ZK-7632A	
Hardware version:	/	
Software version:	1	
WIFI 802.11b/ g/ n(HT20)/ n(HT40)		
Modulation:	802.11b: DSSS(CCK, DQPSK, DBPSK) 802.11g/n: OFDM(BPSK, QPSK, 16QAM, 64QAM)	
Operation frequency:	802.11b/g/n(HT20): 2412MHz~2462MHz 802.11n(HT40): 2422MHz~2452MHz	
Channel number:	802.11b/g/n(HT20): 11 Channels 802.11n(HT40): 7 Channels	
Channel separation:	5MHz	
Antenna 1 or 2 type:	External Antenna	
Antenna 1 or 2 gain:	5dBi	

EN

2.3. Accessory Equipment Information

Equipment Information			
Name	Model	S/N	Manufacturer
Notebook	X220	/	Lenovo
Cable Information			
Name	Shielded Type	Ferrite Core	Length
USB Cable	Unshielded	NO	150cm
AC Cable	Unshielded	NO	120cm
Test Software Information			
Name	Software version	/	/
MT7662 QA	V1.0.3.14	/	/

2.4. Operation State

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing.

Operation Frequency List:

Channel	Frequency (MHz)
01	2412
02	2417
03	2422
04	2427
05	2432
06	2437
07	2442
08	2447
09	2452
10	2457
11	2462

Note: CH 01~CH 11 for 802.11b/g/n(HT20), CH 03~CH 09 for 802.11n(HT40)

Antenna Specification:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain(dBi)
1	NA	NA	External Antenna	IPEX	5
2	NA	NA	External Antenna	IPEX	5

Note: Antenna Gain=5dBi. For 2.4G, this EUT supports MIMO 2X2, any transmit signals are correlated with each other, so Directional gain = $G_{Ant.}$ +10log(N)dBi, that is Directional gain=5+10log(2)dBi=8dBi.So output power limit is 30-8+6=28dBm, the power spectral density limit is 8-8+6=6dBm/3KHz. The power spectral density limit is 8-8+6=6dBm/3KHz.

Data Rated

Preliminary tests were performed in different data rate, and found which the below bit rate is worst case mode, so only show data which it is a worst case mode.

Mode	Data rate (worst mode)
802.11b	1Mbps
802.11g	6Mbps
802.11n(HT20)	HT-MCS0
802.11n(HT40)	HT-MCS0

Test mode

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data Recorded in the report.

2.5. Measurement Instruments List

	Radiated emission									
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until					
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	9168-759	Mar. 30, 2024					
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-647	Dec. 01, 2024					
3	Test Receiver	Keysight	N9038A	MY56400071	Dec. 16, 2023					
4	Broadband Premplifier	SCHWARZBECK	BBV9743B	259	Dec. 16, 2023					
5	5 Mirowave Broadband Amplifier SCHWARZBECK		BBV9718C	111	Dec. 16, 2023					
6	3m chamber 3	YIHENG	EE106	/	Sep. 09, 2023					

	Conducted emission										
Item	n Test Equipment Manufacturer		Model No.	Serial No.	Calibrated until						
1	LISN	R&S	ENV216	101112	Dec. 16, 2023						
2	LISN	R&S	ENV216	101113	Dec. 16, 2023						
3	EMI Test Receiver	R&S	ESCS30	100353	Dec. 16, 2023						
4	ISN CAT6	Schwarzbeck	NTFM 8158	CAT6-8158-0046	Dec. 16, 2023						
5	ISN CAT5	Schwarzbeck	NTFM 8158	CAT5-8158-0046	Dec. 16, 2023						

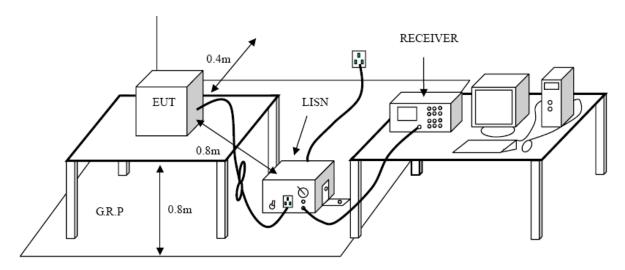
		Tonscend	RF Test System		
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	MXA Signal Analyzer	Keysight	N9020A	MY46471737	Dec. 16, 2023
2	Spectrum Analyzer	R&S	FSU26	100105	Dec. 16, 2023
3	Spectrum Analyzer	R&S	FSV40-N	101331	Mar. 14, 2024
4	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec. 16, 2023
5	PSG Analog Signal Generator	Agilent	E8257D	MY46521908	Dec. 16, 2023
6	Power Sensor	Keysight	U2021XA	MY55130004	Mar. 14, 2024
7	Power Sensor	Keysight	U2021XA	MY55130006	Mar. 14, 2024
8	Wideband Radio Communication Tester	R&S	CMW500	102414	Dec. 16, 2023
9	High and low temperature box	ESPEC	MT3035	/	Mar. 24, 2024
10	JS1120 RF Test system	TONSCEND	v2.6	/	/

Note:1. The Cal. Interval was one year.

2. The cable loss has calculated in test result which connection between each test instruments.

3. TEST ITEM AND RESULTS

3.1. Conducted Emission


<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.207/ RSS - Gen 8.8:

Frequency range (MHz)	Limit (dBuV)			
	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

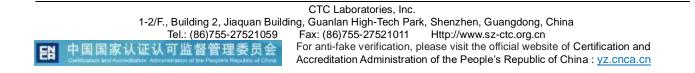
* Decreases with the logarithm of the frequency.

Test Configuration

Test Procedure

1. The EUT was setup according to ANSI C63.10:2013 requirements.

2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.

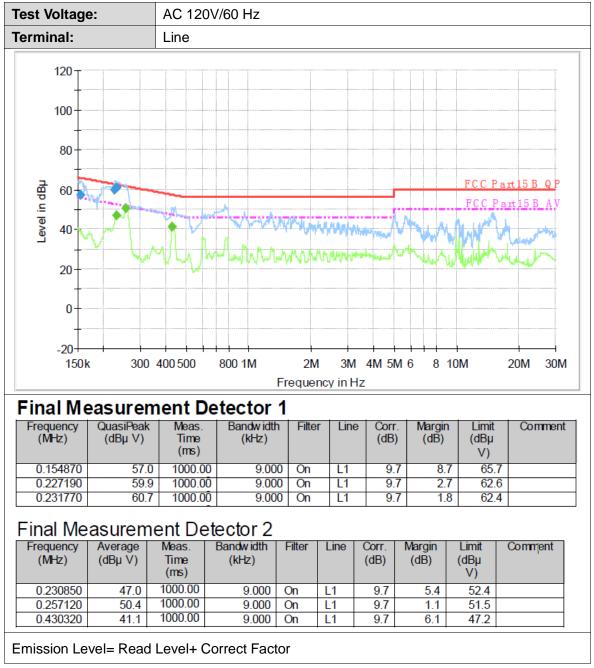

3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)

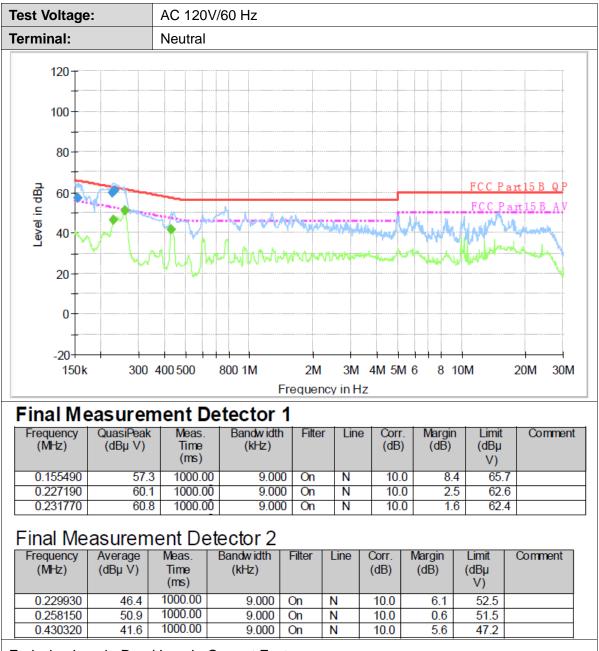
4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.

5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.

6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.

7. During the above scans, the emissions were maximized by cable manipulation.




Test Mode:

Please refer to the clause 2.4.

Test Results

Emission Level= Read Level+ Correct Factor

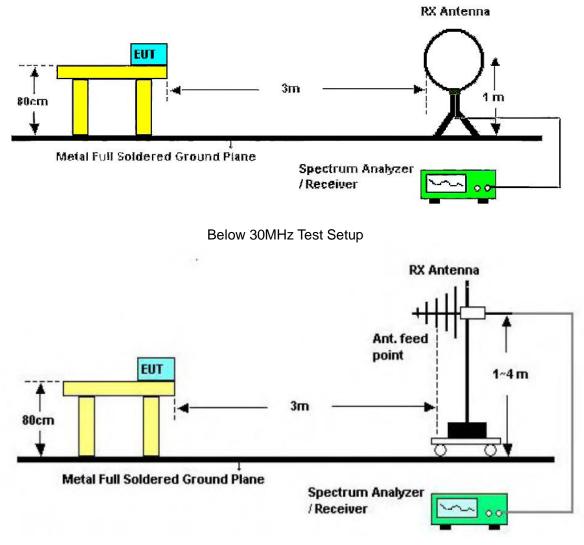
3.2. Radiated Emission

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.209/ RSS – Gen 8.9:

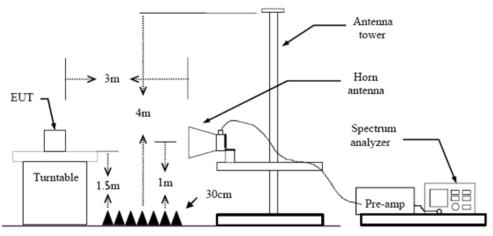
Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Frequency (MHz)	dB(uV/m) (at 3 meters)		
	Peak	Average	
Above 1000	74	54	


Note:

(1) The tighter limit applies at the band edges.

(2) Emission Level (dBuV/m)=20log Emission Level (uV/m).


Test Configuration

Above 1GHz Test Setup

Test Procedure

1. The EUT was setup and tested according to ANSI C63.10:2013

2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.

3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.

For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna 4. tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.

5. Set to the maximum power setting and enable the EUT transmit continuously.

- Use the following spectrum analyzer settings 6.
- (1) Span shall wide enough to fully capture the emission being measured;
- (2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW \ge 1/T Peak detector for Average value.

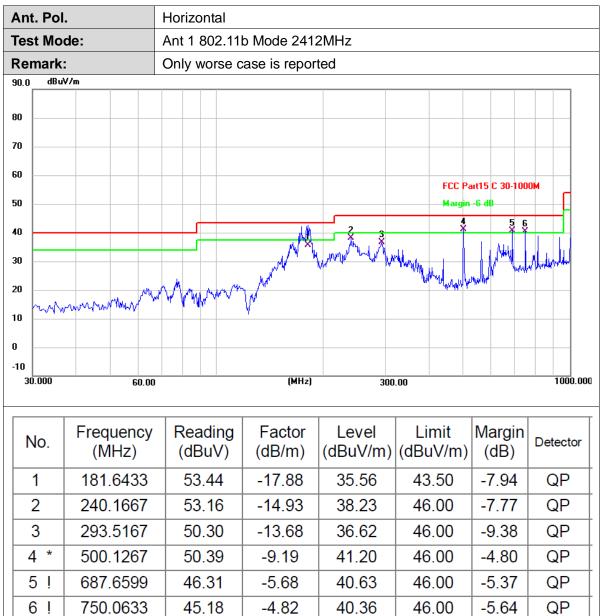
Note 1: For the 1/T& Duty Cycle please refer to clause 3.8 Duty Cycle.

Test Mode

Please refer to the clause 2.4.

Test Result

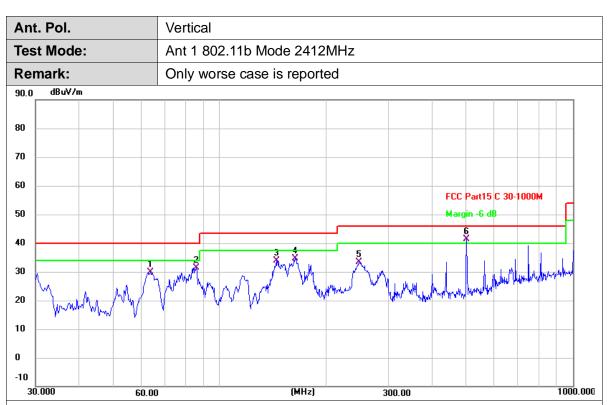
9 KHz~30 MHz


From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Pre-scan all antenna, only show the test data for worse case antenna on the test report.

30MHz-1GHz



Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	63.6267	46.81	-16.84	29.97	40.00	-10.03	QP
2	85.6133	50.53	-19.05	31.48	40.00	-8.52	QP
3	144.7833	53.61	-19.80	33.81	43.50	-9.69	QP
4	163.2133	53.75	-19.02	34.73	43.50	-8.77	QP
5	247.9267	48.01	-14.70	33.31	46.00	-12.69	QP
6 *	500.1267	50.52	-9.19	41.33	46.00	-4.67	QP

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX B Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4823.985	27.23	2.20	29.43	54. <mark>0</mark> 0	-24.57	AVG
2	4824.005	40.38	2.20	42.58	74.00	-31.42	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.: Ant 1								
	Ant. Pol. Vertical							
Test Mode: TX B Mode 2412MHz								
Remark: No report for the emission which more than 20 dB below the prescribed limit.					9			
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	1 *	4823.969	33.40	2.20	35.60	54.00	-18.40	AVG
	2	4823.970	43.24	2.20	45.44	74.00	-28.56	peak

Remarks:

Ant No.:	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX B Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.
	prescribea limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.797	40.17	2.30	42.47	74.00	-31.53	peak
2 *	4873.847	26.50	2.30	28.80	54.00	-25.20	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX B Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.934	42.64	2.30	44.94	74.00	-29.06	peak
2 *	4873.983	34.47	2.30	36.77	54.00	-17.23	AVG

Remarks:

Ant No.:	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX B Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4923.991	30.63	2.41	33.04	54.00	-20.96	AVG
2	4924.225	41.47	2.41	43.88	74.00	-30.12	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX B Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4923.998	39.32	2.41	41.73	54.00	-12.27	AVG
2	4924.101	44.63	2.41	47.04	74.00	-26.96	peak

Remarks:

中国国家认证认

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

可监督管理委员会

Ant No.:	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX G Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4823.995	24.53	2.20	26.73	54.00	-27.27	AVG
2	4824.286	39.49	2.20	41.69	74.00	-32.31	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX G Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	4824.140	25.69	2.20	27.89	54.00	-26.11	AVG
2	4824.158	41.25	2.20	43.45	74.00	-30.55	peak

Remarks:

中国国家认证认

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

可监督管理委员会

Ant No.:	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX G Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	4874.149	23.93	2.30	26.23	54.00	-27.77	AVG
2	4874.461	39.60	2.30	41.90	74.00	-32.10	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX G Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4873.736	25.61	2.30	27.91	54.00	-26.09	AVG
2	4873.750	39.86	2.30	42.16	74.00	-31.84	peak

Remarks:

Ant No.:	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX G Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	4923.489	24.04	2.41	26.45	54.00	-27.55	AVG
2	4924.075	39.14	2.41	41.55	74.00	-32.45	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX G Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	4923.608	26.78	2.41	29.19	54.00	-24.81	AVG
2	4923.943	41.00	2.41	43.41	74.00	-30.59	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

Ant. Po Fest Mo		Horizontal						
	ode:	TV N20 Mod		Horizontal				
Domori		TX N20 Mode 2412MHz						
Remark	k :	No report for the emission which more than 20 dB below the prescribed limit.					Э	
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1	4823.723	40.28	2.20	42.48	74.00	-31.52	peak	
2 *	4824.307	25.43	2.20	27.63	54.00	-26.37	AVG	

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX N20 Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4823.899	27.74	2.20	29.94	54.00	-24.06	AVG
2	4823.944	42.09	2.20	44.29	74.00	-29.71	peak

Remarks:

Ant No.:	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX N20 Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4873.292	24.52	2.30	26.82	54.00	-27.18	AVG
2	4874.526	39.22	2.30	41.52	74.00	-32.48	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX N20 Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4874.175	26.00	2.30	28.30	54.00	-25.70	AVG
2	4874.491	40.42	2.30	42.72	74.00	-31.28	peak

Remarks:

Ant No.:	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX N20 Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4923.707	24.57	2.41	26.98	54.00	-27.02	AVG
2	4924.084	39.72	2.41	42.13	74.00	-31.87	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX N20 Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4923.959	42.63	2.41	45.04	74.00	-28.96	peak
2 *	4924.388	28.37	2.41	30.78	54.00	-23.22	AVG

Remarks:

Ant No.:		Ant 1 + Ant 2						
Ant. Pol	l .	Horizontal						
Test Mo	de:	TX N40 Mode	e 2422MHz					
Remark	:	No report for prescribed lin		n which more	e than 20 dB	below the	e	
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1 *	4843.844	24.53	2.24	26.77	54.00	-27.23	AVG	
2	4844.333	39.76	2.24	42.00	74.00	-32.00	peak	
							I	
Remarks	S: (dP/m) Anton							

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin	value =	Level	-Limit	value

Ant No.:	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX N40 Mode 2422MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4843.631	41.04	2.24	43.28	74.00	-30.72	peak
2 *	4843.771	25.41	2.24	27.65	54.00	-26.35	AVG

Remarks:

Ant No.:	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX N40 Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.553	40.61	2.30	42.91	74.00	-31.09	peak
2 *	4873.983	24.77	2.30	27.07	54.00	-26.93	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX N40 Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.901	39.74	2.30	42.04	74.00	-31.96	peak
2 *	4874.324	24.41	2.30	26.71	54.00	-27.29	AVG

Remarks:

Ant No.:	Ant 1 + Ant 2									
Ant. Pol.	Horizontal									
Test Mode:	TX N40 Mode 2452MHz									
Remark:	No report for the emission which more than 20 dB below the prescribed limit.									

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4904.445	39.87	2.36	42.23	74.00	-31.77	peak
2 *	4904.576	24.74	2.36	27.10	54.00	-26.90	AVG

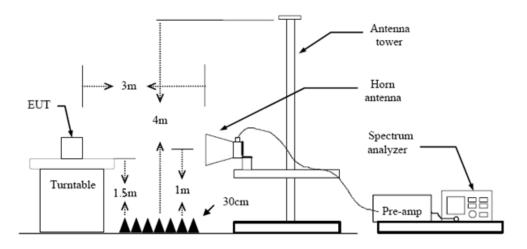
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX N40 Mode 2452MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4903.769	41.44	2.36	43.80	74.00	-30.20	peak
2 *	4903.892	25.30	2.36	27.66	54.00	-26.34	AVG

Remarks:


3.3. Band Edge Emissions (Radiated)

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d)/ RSS 247 5.5:

Restricted Frequency Band	(dBuV/m)(at 3m)						
(MHz)	Peak	Average					
2310 ~2390	74	54					
2483.5 ~2500	74	54					

Test Configuration

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- 5. The receiver set as follow:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.7 Duty Cycle.

Test Mode

Please refer to the clause 2.4.

CTC Laboratories, Inc.

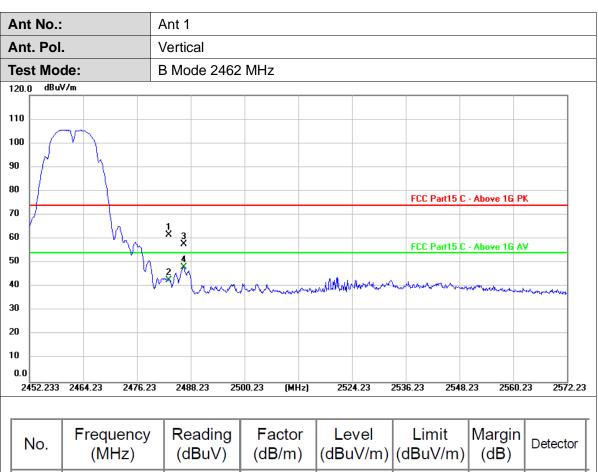
Test Results

EN

Pre-scan all antenna, only show the test data for worse case antenna on the test report.

Ant No	.:		A	Ant 1										
Ant. Po	ı.		н	Horizontal										
Test Mo	ode:		В	B Mode 2412MHz										
120.0 dB	u¥/m													
110														
100														
90													h	\sim
80														
70										FCC	°art15 C	- Above	16 PI	<u>k (</u>
60														
50											Part15 C	- Abdve	16 A	<u> </u>
40										1 X		۲°۷		
30	an production and a second	warmen	Annor		Anna	www.www.	-terrer	~ * ***********		2	and the			
20														
10														
0.0	0 2313.00	2325		233		349.00			3.00	2385.00	2397		2409.0	
No.		luenc 1Hz)	У		ading 3uV)	1	ctor /m)		vel IV/m)	Lin (dBu)		Mar (dE		Detector
1	239	0.000)	14	4.19	30	.84	45	.03	74.	00	-28.	97	peak
2 *	239	0.000)	5	.03	30	.84	35	.87	54.	00	-18.	13	AVG
Remark 1.Facto		= Ant	enna	a Fa	ctor (dl	3/m)+C	able 1	Factor	(dB)-F	Pre-am	olifier	Facto)r	

Ant N	lo.:		A	nt 1												
Ant. F	Pol.		Ve	ertica	al											
	Mode:		В	Moc	de 2412	MHz										
120.0	dBu¥/m															
110															~~	_
100														-(<u>v</u> }	_
90 -														_/	<u> </u> `1	
80												CC Part15			DV	fl –
70											F		L - A		PK	4
60													S	V		
50											F	CG Part15 X N	<u>C - A</u>	bove 16 /	AV	-
40					. 4							2m				_
30	number of the second	have been a start of the second	akapatan kara	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	water and the second second	min	wedernam	and so	whether	- Marker	~~~·	×				_
20																_
10																_
0.0																
2301.	.000 2313.0	0 232).UU	2337	.00 23	49.00	(MH2	zj	237	3.00	2385.0	UU 23	97.00	2409	1.00 2	421.00
No		quenc MHz)	y		ading BuV)		actor 3/m)			vel ıV/m)		Limit BuV/m		largir (dB)	Dete	ctor
1	23	90.00)	21	1.26	30	0.84	Τ	52	.10	7	74.00	-	21.90	pea	ak
2	* 23	90.00)	11	1.22	30	0.84	╈	42	.06	5	54.00	-	11.94	· AV	'G
													-			<u> </u>


EN

		Ant 1					
nt. Pol	•	Horizontal					
est Mod	de:	B Mode 246	62 MHz				
20.0 dBu\	V/m						
0							
	\sim						
					FCC Part15 C	- Above 1G Pl	<u>د</u>
					FCC Part15 C	- Above 1G A	/
\sim		X					
	* 4	had have a second		man and the second s	An Morrison		e the sector way
.0 2450.600	2462.60 2474	.60 2486.60	2498.60 (MHz)	2522.60	2534.60 2546.	60 2558.6	io 2570.0
No.	Frequenc (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500		31.24	48.04	74.00	-25.96	peak
	2483.500) 4.31	31.24	35.55	54.00	-18.45	AVG

EN

NO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Delector
1	2483.500	30.41	31.24	61.65	74.00	-12.35	peak
2	2483.500	11. <mark>6</mark> 1	31.24	42.85	54.00	-11.15	AVG
3	2486.673	26.41	31.25	57.66	74.00	-16.34	peak
4 *	2486.673	17.04	31.25	48.29	54.00	-5.71	AVG

ΞN

Ant No	•	Ant 1					
Ant. Po		Horizontal					
Test Mo		G Mode 2412	2MHz				
120.0 dB	uV/m						
110							
100							
90							
80							\sim
					FCC Part15 C	Above 1G P	ĸ
70							
60					FCC Part15 G	- Above 1G A	
50					×		
40	Male on entering between	and a second			2 month and a start		
30							
20							
10							
0.0 2304.60	0 2316.60 2328.6	0 2340.60 23	852.60 (MHz)	2376.60	2388.60 2400	.60 2412.0	50 2424.60
				1			
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2390.000	16.17	30.84	47.01	74.00	-26.99	peak
2 *	2390.000	6.00	30.84	36.84	54.00	-17.16	AVG

EN

Ant	: No.:			Ant 1										
Ant	. Pol		\	/ertic	al									
Tes	t Moo	de:	(G Mo	de 2412	2MHz								
120.0) dBu\	//m												
110														
100												~~~	~	
90													\downarrow	
80														
70										FCC	Part15 C	- Above 1G		
60									1 X		A			Survey of the second se
50									2		Part15 C	- Above 1G	AV	
40														
40 30	there was	an water and we have the had been	a, Marala a sa	-annapalan	haddeedaansp	and the second	man have a start ward	and and a second						
20														
10 0.0														
	09.400	2321.40 233	33.40	234	5.40 23	857.40	(MHz)	238	1.40	2393.40	2405.	.40 241	7.40	2429.40
	۱o.	Frequen			ading				vel		mit	Margi	n _C	Detector
		(MHz)			BuV)		3/m)	· ·	ıV/m)					
	1	2390.00	0	32	2.28	30	.84	63	.12	74	.00	-10.88	3	peak
2	2 *	2390.00	0	19	9.47	30	.84	50	.31	54	.00	-3.69		AVG

EN

	Horizontal G Mode 2462	2MHz		FCC Part15 C	- Above 16 Pl	
	1 X	2MHz			- Above 16 A	
					- Above 16 A	
					- Above 16 A	
					- Above 16 A	
					- Above 16 A	
					- Above 16 A	
					- Above 16 A	
			alle filmer and an article	FCC Part15 C		V
- Currow .			Mathian and a second	FCC Part15 C		V
			alle d'Artenae en atalane et altre		ensegnen and have been go	Marrandarante
	2		de dibrig na constant da constant			Marina
3.80 2475.80	0 2487.80 24	499.80 (MHz)	2523.80 2	2535.80 2547.	.80 2559.8	BO 2571.
requency (MHz)		Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
483.500	20.46	31.24	51.70	74.00	-22.30	peak
483.500	4.40	31.24	35.64	54.00	-18.36	AVG
22	(MHz) 483.500	(MHz) (dBuV) 483.500 20.46	(MHz) (dBuV) (dB/m) 483.500 20.46 31.24	(MHz)(dBuV)(dB/m)(dBuV/m)483.50020.4631.2451.70	(MHz)(dBuV)(dB/m)(dBuV/m)483.50020.4631.2451.7074.00	(MHz)(dBuV)(dB/m)(dBuV/m)(dB)483.50020.4631.2451.7074.00-22.30

ΕN

Ant No.:	:	Ant 1					
Ant. Pol	l.	Vertical					
Test Mo	de:	G Mode 2462	2MHz				
20.0 dBu	W/m	·					
10							
1 (
' 							
					FCC Part15 C	- Above 1G P	ĸ
·		1 X					
	- Jam	<u> </u>			ECC Part15 C	- Above 1G A	v
		4					
		and a second and a second		musee Weethermon	allow the second star all the	with a second second	1
			Mar Repairing a second				and a second and a second and and a
.0							
2450.000	2462.00 2474.0	0 2486.00 24	198.00 (MHz)	2522.00	2534.00 2546	.00 2558.0	00 2570.0
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500	36.55	31.24	67.79	74.00	-6.21	peak
2 *	2483.500	18.40	31.24	49.64	54.00	-4.36	AVG
۷	2463.500	16.40	31.24	49.04	54.00	-4.30	AVC

EN

nt No.:		Ant 1	+ Ant 2					
nt. Pol	•	Horiz	zontal					
est Mo	de:	N(H	20) Moc	de 2412MHz	1			
20.0 dBu	V/m				ĺ			
10								
00								
0								
								-
						FCC Part15 0	- Above 1G P	к
0								
0						FCC Part15	- Above 16 A	\sim
0						1 A		~~~~
o						32 martin		
0	***************************************	tutum name	ang darang mengement was a series of the ser	and a second as a second s	dagaagene en en en de			
o								
o 📃								
0.0								
2305.800	2317.80 2329	0.80 23 ⁴	41.80 23	853.80 (MHz)	2377.80	2389.80 2401	.80 2413.	80 2425
No.	Frequenc (MHz)		eading IBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detecto
No. 1		(0				1		Detecto

EN

nt No.	.:	ŀ	Ant 1 + Ant 2					
nt. Po	l.	١	/ertical					
est Mo	ode:	1	N(HT20) Mod	de 2412MHz				
20.0 dB	uV/m							
0								
0						1		
								-+-
						FCC Part15 C	- Above 16 Pl	
						1		
						*		<u> </u>
						FCP Part15 C	- Above 1G A	<u> </u>
week-antro	anna har anna	and the property of the proper	an marine and the second as	man and a start and a start and a start	all an and a second and a second and a second			
.0	0 2317.80	2329.80	2341.80 23	53.80 (MHz)	2377.80	2389.80 2401.	80 2413.8	30 2425.1
	1			53.80 (MHz)				
No.	Frequ (MI	uency Hz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2390	.000	33.06	30.84	63.90	74.00	-10.10	peak
2 *	2390	.000.	19.72	30.84	50.56	54.00	-3.44	AVG

EN

Ant No.:	:	Ant 1 + Ant 2	2				
Ant. Pol	I.	Horizontal					
est Mo	de:	N(HT20) Mo	de 2462MHz				
20.0 dBu	V/m	1			1		
10							
00							
0							
0	~~						
					FCC Part15 C	- Above 1G P	К
		1			FCC Part15 C	- Above 16 A	v
0 🎽		<u>^</u>					
D		No. 2	and and a set of the s	a server a local and a server and a server a ser	methermore	here and the second	mounder
D							
0							
o							
0.0 2450.000	2462.00 2474.0	0 2486.00 2	2498.00 (MHz)	2522.00	2534.00 2546.	.00 2558.	00 2570.0
	1			1			
No.	Frequency (MHz)	v Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500	22.10	31.24	53.34	74.00	-20.66	peak
2 *	2483.500	4.85	31.24	36.09	54.00	-17.91	AVG

EN

	Vertical N(HT20) Mc	ode 2462MHz		FCC Part15 C		
		ode 2462MHz		FCC Part15 C		
	~		my cur the state of a	FCC Part15 C		
	~		mgray-littleterAllthankova	FCC Part15 C		
	~			FCC Part15 C		
	~		mynesetellette villet mer om og	FCC Part15 C		
	~		manue to the set of the second	FCC Part15 C		
	~		wyneser hilder wedd fawr o o	FCC Part15 C		
	~	Million Mary Mary Marker My Kat	un and the state of the second		- Above 16 A	<u>v</u>
	~	And the second sec			- Above 16 A	<u>v</u>
	- 2 Martine Mart	and free management of the	mentertet all more	un un anterna anterna anterna		
	Mart Martine	under Marson and an agent	meneraldelike betty have a	un un and and and and and and and and and an		
					mounterman	manumente
2.00 2474.0	0 2486.00 2	2498.00 (MHz)	2522.00	2534.00 2546.	.00 2558.	00 2570.
requency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)		Detecto
483.500	32.25	31.24	63.49	74.00	-10.51	peak
483.500	17.79	31.24	49.03	54.00	-4.97	AVG
(24	MHz) 83.500	MHz) (dBuV) 83.500 32.25	MHz) (dBuV) (dB/m) 83.500 32.25 31.24	MHz) (dBuV) (dB/m) (dBuV/m) 83.500 32.25 31.24 63.49	MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) 83.500 32.25 31.24 63.49 74.00	MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 83.500 32.25 31.24 63.49 74.00 -10.51

EN

Ant No.:		A	Ant 1 + A	nt 2									
Ant. Pol	•	ŀ	Iorizonta	I									
Test Mo	de:	1	V(HT40)	Moc	le 2422N	1Hz							
120.0 dBu\	//m												_
110													
00													
											ment pres		
0									FCC F	Part15 Č	- Above 1G	PK	
0													
0										Part15 C	- Above 1G	AV	
i0									X				\mathbf{t}
0										1 ¹⁰			<u></u>
0	a ya, 460-17-004 8 768.	4940°					Meril Automatica a						
:0													
0													
0.0 2246.000	2266.00	2286.00	2306.00		26.00 (⊮	IHz)	236	- 00	2386.00	2406	00 242	6.00	2446.0
No.	Frequ (Mł	uency Hz)	Readir (dBu√	<u> </u>	Facto (dB/m		Le ^v (dBu		Lin (dBu)		Margii (dB)	n _{Det}	tector
1	2390	.000	18.15	5	30.84	1	48	99	74.	00	-25.01	1 pe	eak
2 *	2390	.000	5.11		30.84	1	35.	95	54.	00	-18.05	5 A'	VG

ΕN

Ant No.:		Ant 1 + Ant 2					
Ant. Pol		Vertical					
Test Mo		N(HT40) Mod	le 2422MHz				
120.0 dBu		(- /					
110							
100							
					-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	man
90						γ	
80					FCC Part15 C	- Above 1G Pl	ĸ
70							
60					FCC Pafil15 C	- Above 16 AV	, h
50					- Sund		
40			and we have a strategy and the state		****		
30	and the second	and marked and the second s	An and a second s				
20							
10							
0.0							
2245.000	2265.00 2285.00) 2305.00 23	25.00 (MHz)	2365.00	2385.00 2405.	.00 2425.0	0 2445.00
Ne	Frequency	Reading	Factor	Level	Limit	Margin	Detector
No.	(MHz)	(dBuV)	(dB/m)		(dBuV/m)	(dB)	Detector
1	2390.000	30.40	30.84	61.24	74.00	-12.76	peak
2 *	2390.000	19.69	30.84	50.53	54.00	-3.47	AVG

EN

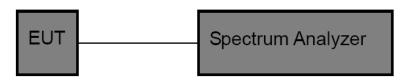
nt No.:	:	Ant 1 + Ant 2	<u>)</u>				
nt. Pol	-	Horizontal					
est Mo	de:	N(HT40) Mo	de 2452MHz				
0.0 dBu ³	V/m						
o							
	- Comment				FCC Part15 C	- Above 1G P	ĸ
		1 X			FCC Part15 C	- Above 1G A	v
		M. Handler and	men warmente when	www.terresseerigetimere	man and a second se	www.enwormen	- marine marine
.0 2432.750	2452.75 2472.	75 2492.75 2	512.75 (MHz)	2552.75	2572.75 2592	.75 2612.3	75 2632.
No.	Frequency (MHz)	<pre>/ Reading (dBuV)</pre>	Factor (dB/m)		Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500	20.03	31.24	51.27	74.00	-22.73	noak
I I	2483.500	5.47	31.24	36.71	54.00	-22.73	peak AVG
2 *			1 31 74	50 / 1	54 00	-17 29	

emarks.

EN

Ant No.:	:	Ant 1 + Ant 2					
Ant. Pol	-	Vertical					
Test Mo	de:	N(HT40) Mod	de 2452MHz				
120.0 dBu	V/m			1			
110							
100							
90	m						
	T)						
80					FCC Part15 C	- Above 1G P	ĸ
70		1					
60	4	<u>h</u>			FCC Part15 C	- Above 16 A	v
50		and the second					
40		have been been been been been been been be	menantilettermour	Malan Mary and mary and	mulan market		
30							
20							
10							
0.0							
2431.000	2451.00 2471.	00 2491.00 25	511.00 (MHz)	2551.00	2571.00 2591.	00 2611.	00 2631.00
No.	Frequency (MHz)	/ Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500	32.55	31.24	63.79	74.00	-10.21	peak
2 *	2483.500	19.29	31.24	50.53	54.00	-3.47	AVG
	-						

EN



3.4. Band edge and Spurious Emissions (Conducted)

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

Test Configuration

Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: RBW = 100 kHz, VBW ≥ RBW, scan up through 10th harmonic.
- Sweep = auto, Detector function = peak, Trace = max hold4. Measure and record the results in the test report.

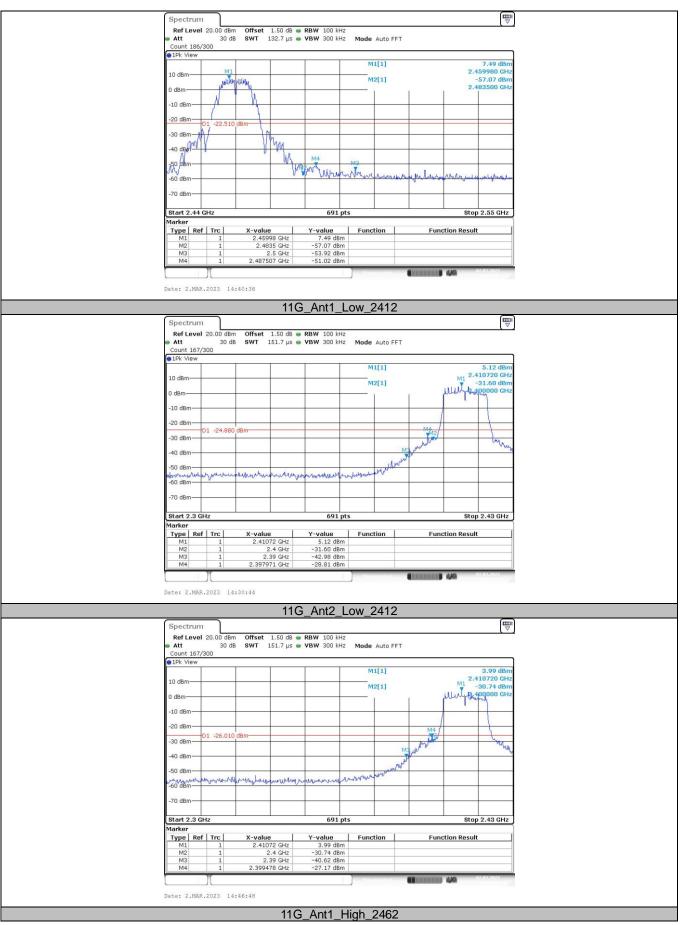
Test Mode

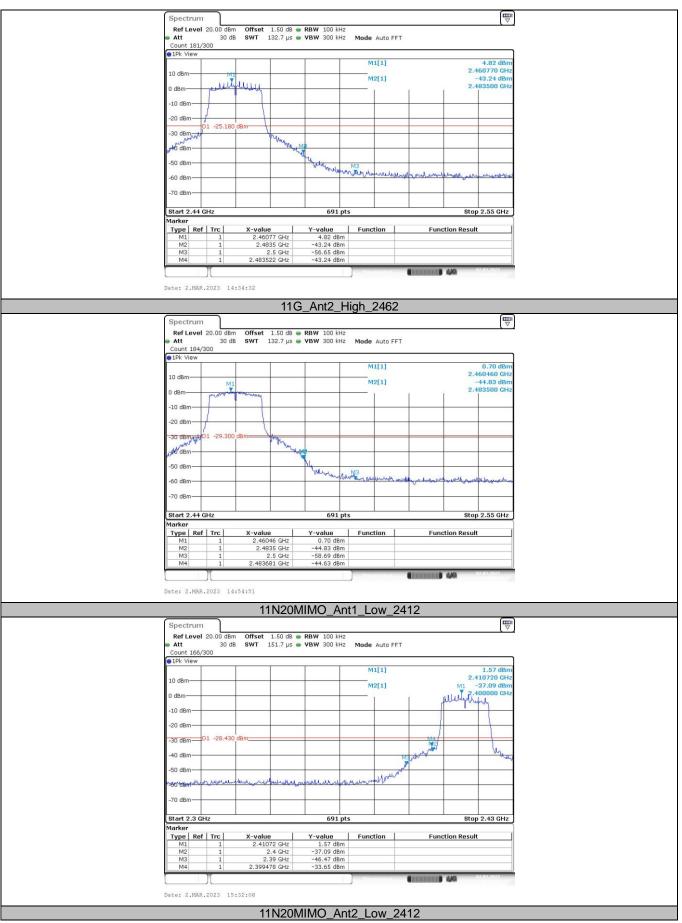
Please refer to the clause 2.4.

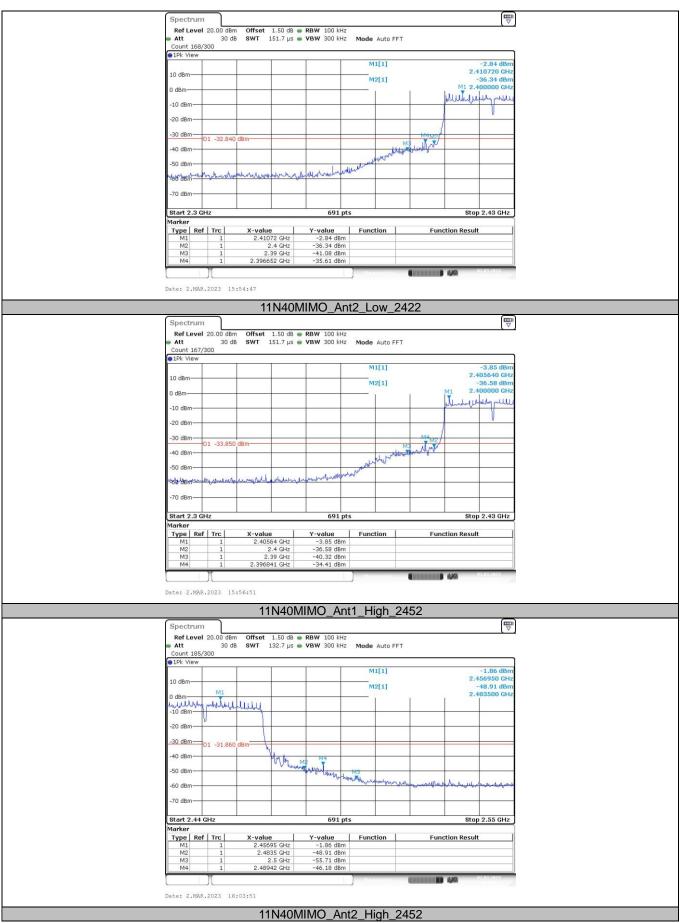
Test Results

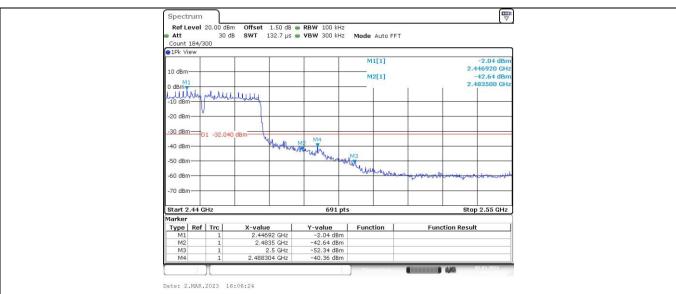

EN

(1) Band edge Conducted Test


TestMode	Antenna	ChName	Channel	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
	Ant1	Low	2412	6.80	-35.89	≤-23.2	PASS
11B	Ant2	Low	2412	6.07	-34	≤-23.93	PASS
ПВ	Ant1	High	2462	5.26	-48.23	≤-24.74	PASS
	Ant2	High	2462	7.49	-51.02	≤-22.51	PASS
	Ant1	Low	2412	5.12	-28.81	≤-24.88	PASS
11G	Ant2	Low	2412	3.99	-27.17	≤-26.01	PASS
ПG	Ant1	High	2462	4.82	-43.24	≤-25.18	PASS
	Ant2	High	2462	0.70	-44.63	≤-29.3	PASS
	Ant1	Low	2412	1.57	-33.65	≤-28.43	PASS
11N20MIMO	Ant2	Low	2412	1.66	-33.3	≤-28.34	PASS
	Ant1	High	2462	1.44	-49.27	≤-28.56	PASS
	Ant2	High	2462	1.70	-45.1	≤-28.3	PASS
	Ant1	Low	2422	-2.84	-35.61	≤-32.84	PASS
11N40MIMO	Ant2	Low	2422	-3.85	-34.41	≤-33.85	PASS
	Ant1	High	2452	-1.86	-46.18	≤-31.86	PASS
	Ant2	High	2452	-2.04	-40.36	≤-32.04	PASS


Page 50 of 123


CTC Laboratories, Inc. 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059 下a:: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : <u>yz.cnca.cn</u>



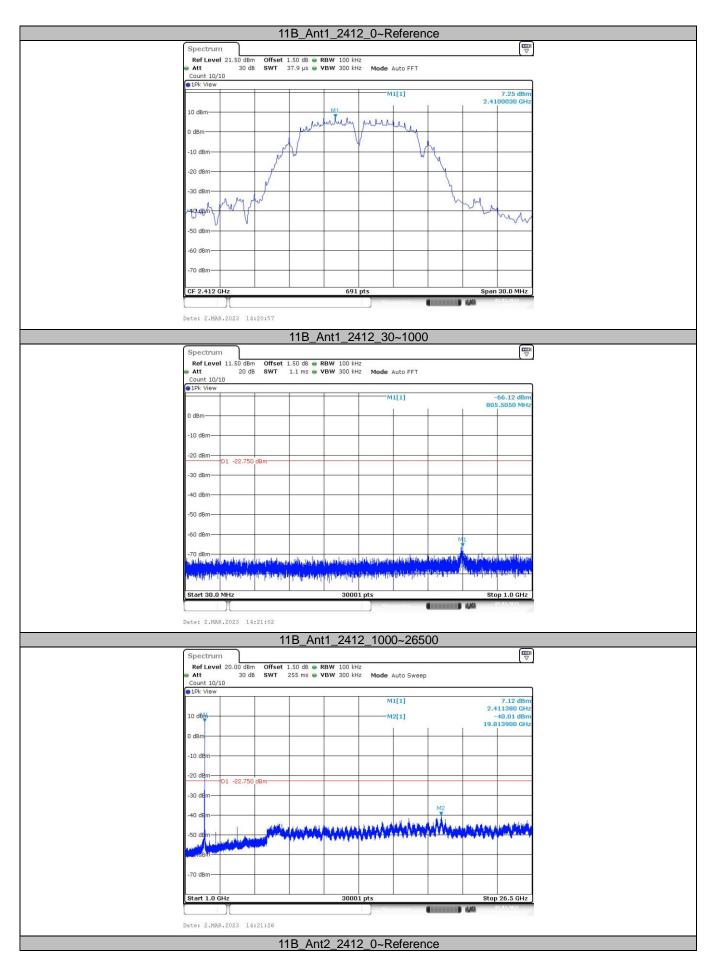
CTC Laboratories, Inc. 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059 下a:: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : <u>yz.cnca.cn</u>

(2) Conducted Spurious Emissions Test

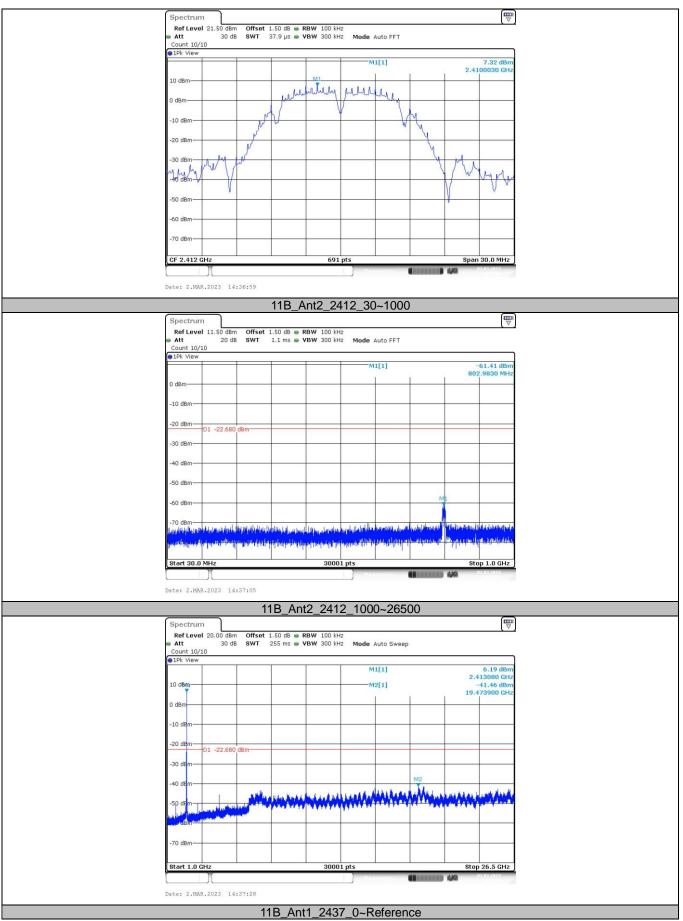
TestMode	Antenna	Channel	FreqRange [Mhz]	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
11B			Reference	7.25	7.25		PASS
	Ant1	2412	30~1000	7.25	-66.12	≤-22.75	PASS
			1000~26500	7.25	-40.01	≤-22.75	PASS
		2412	Reference	7.32	7.32		PASS
	Ant2		30~1000	7.32	-61.41	≤-22.68	PASS
			1000~26500	7.32	-41.46	≤-22.68	PASS
		2437	Reference	7.14	7.14		PASS
	Ant1		30~1000	7.14	-64.32	≤-22.86	PASS
			1000~26500	7.14	-40.01	≤-22.86	PASS
	Ant2	2437	Reference	7.43	7.43		PASS
			30~1000	7.43	-60.48	≤-22.57	PASS
			1000~26500	7.43	-41.08	≤-22.57	PASS
	Ant1	2462	Reference	6.82	6.82		PASS
			30~1000	6.82	-63.51	≤-23.18	PASS
			1000~26500	6.82	-40.99	≤-23.18	PASS
	Ant2	2462	Reference	7.23	7.23		PASS
			30~1000	7.23	-62.24	≤-22.77	PASS
			1000~26500	7.23	-41.32	≤-22.77	PASS
	Ant1	2412	Reference	3.28	3.28		PASS
			30~1000	3.28	-68.28	≤-26.72	PASS
			1000~26500	3.28	-40.94	≤-26.72	PASS
			Reference	4.16	4.16		PASS
	Ant2	2412	30~1000	4.16	-66.41	≤-25.84	PASS
			1000~26500	4.16	-41.4	≤-25.84	PASS
			Reference	3.37	3.37		PASS
	Ant1	2437	30~1000	3.37	-67.7	≤-26.63	PASS
			1000~26500	3.37	-40.86	≤-26.63	PASS
11G		2437	Reference	3.94	3.94		PASS
	Ant2		30~1000	3.94	-66.91	≤-26.06	PASS
			1000~26500	3.94	-41.33	≤-26.06	PASS
	Ant1	2462	Reference	3.10	3.10		PASS
			30~1000	3.10	-66.91	≤-26.9	PASS
			1000~26500	3.10	-40.28	≤-26.9	PASS
	Ant2	2462	Reference	3.56	3.56		PASS
			30~1000	3.56	-65.83	≤-26.44	PASS
			1000~26500	3.56	-41.41	≤-26.44	PASS
	Ant1	2412	Reference	1.52	1.52		PASS
			30~1000	1.52	-69.43	≤-28.48	PASS
			1000~26500	1.52	-41.73	≤-28.48	PASS
	Ant2	2412	Reference	1.77	1.77		PASS
			30~1000	1.77	-68.9	≤-28.23	PASS
			1000~26500	1.77	-41.16	≤-28.23	PASS
	Ant1	2437	Reference	1.70	1.70		PASS
			30~1000	1.70	-68.52	≤-28.3	PASS
			1000~26500	1.70	-40.93	≤-28.3	PASS
11N20MIMO	Ant2	2437	Reference	1.89	1.89		PASS
			30~1000	1.89	-69.17	≤-28.11	PASS
			1000~26500	1.89	-40.48	≤-28.11	PASS
	Ant1	2462	Reference	1.38	1.38		PASS
			30~1000	1.38	-67.9	≤-28.62	PASS
			1000~26500	1.38	-40.9	≤-28.62	PASS
	Ant2	2462	Reference	1.66	1.66		PASS
			30~1000	1.66	-69.3	≤-28.34	PASS
			1000~26500	1.66	-41.1	≤-28.34	PASS
	Ant1	2422	Reference	-1.83	-1.83		PASS
			30~1000	-1.83	-69.51	≤-31.83	PASS
11N40MIMO			1000~26500	-1.83	-40.87	<u>≤</u> -31.83	PASS
	Ant2	2422	Reference	-1.83	-40.87	<u> </u>	PASS
			30~1000	-2.09	-68.64	 ≤-32.09	PASS
							PASS
			1000~26500	-2.09	-41.15	≤-32.09	
	Ant1	2437	Reference	-1.58	-1.58	 < 21 E0	PASS
			30~1000	-1.58	-69.2	<u>≤-31.58</u>	PASS
			1000~26500	-1.58	-41.25	≤-31.58	PASS

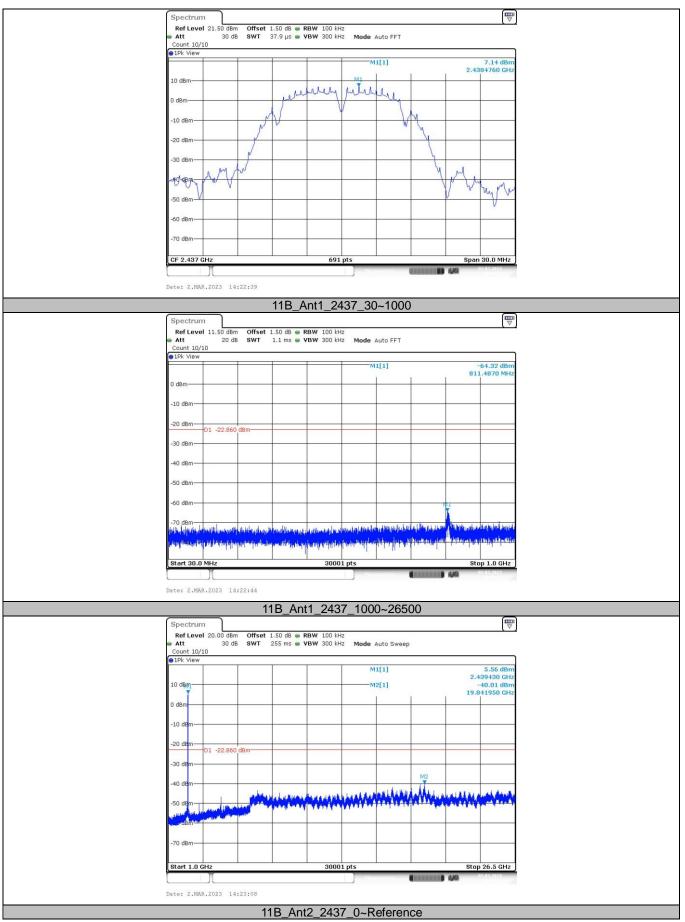
CTC Laboratories, Inc.

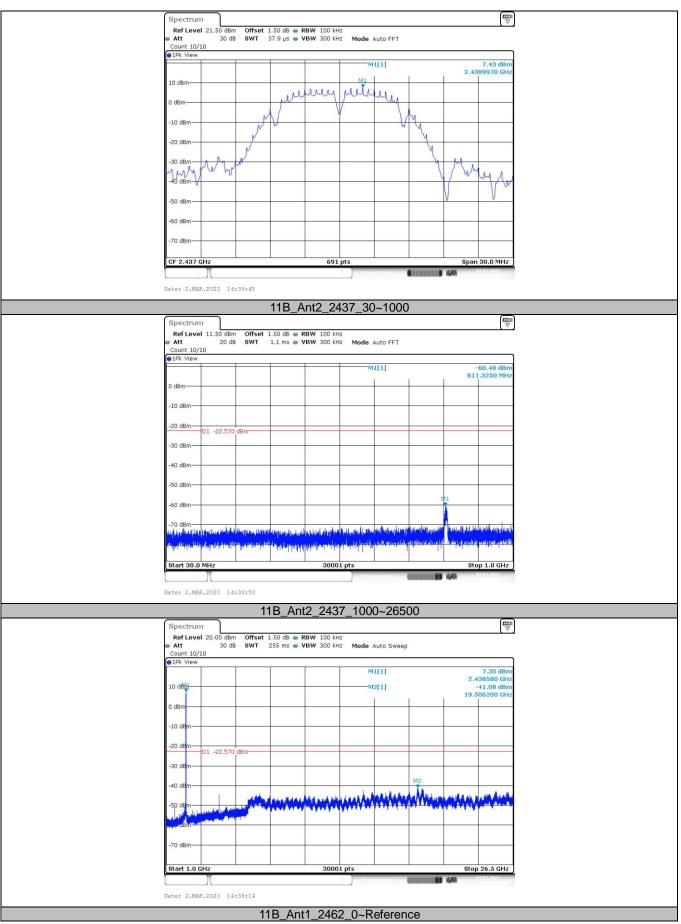
中国国家认证认可监督管理委员会 EN

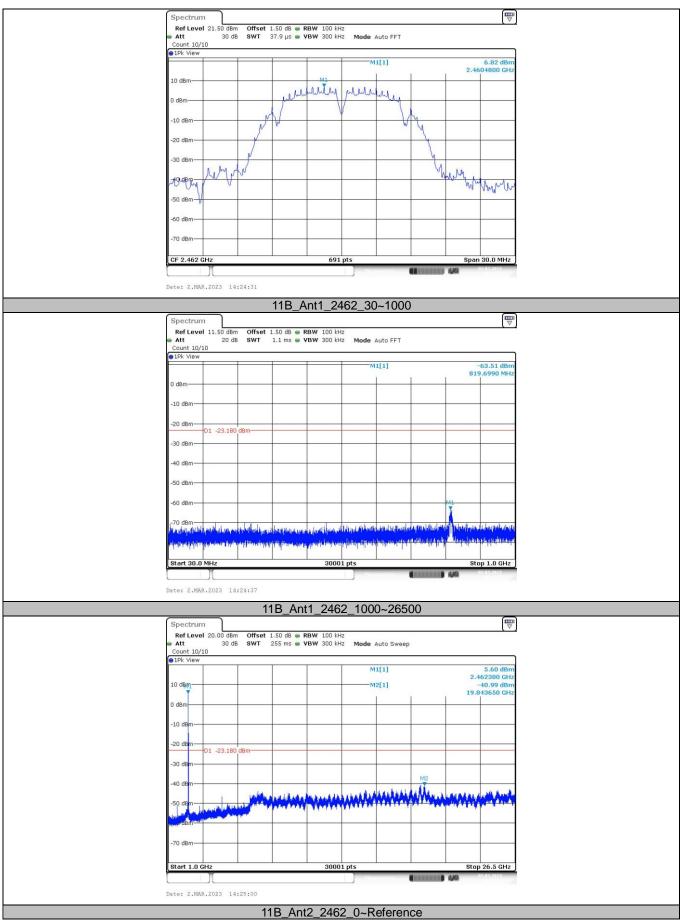

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn 证认可监督管理委员会 For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

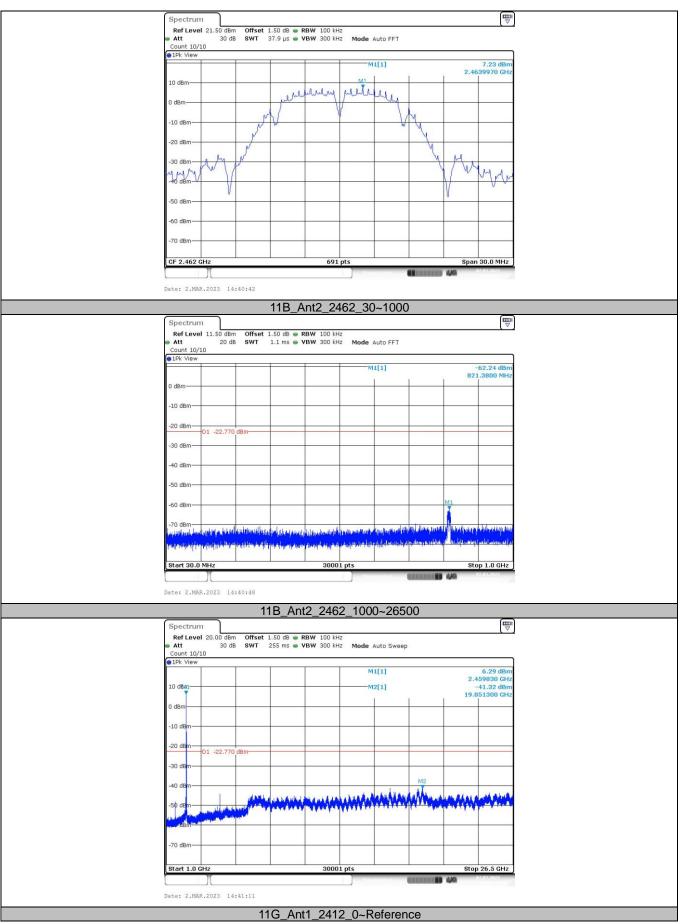
Page 57 of 123

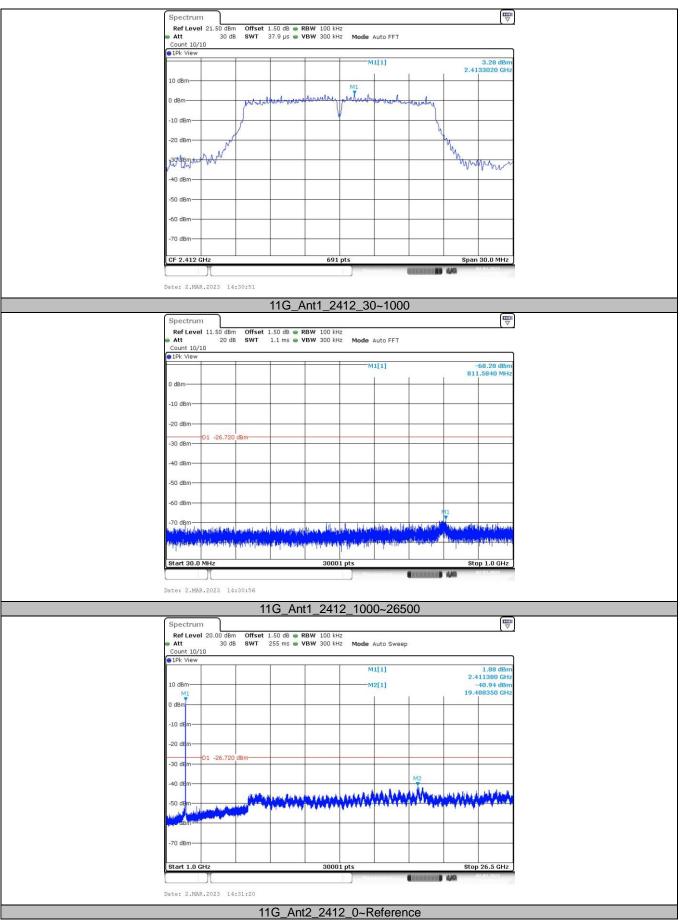

	Ant2	2437	Reference	-2.45	-2.45		PASS
			30~1000	-2.45	-69.17	≤-32.45	PASS
			1000~26500	-2.45	-40.96	≤-32.45	PASS
	Ant1	2452	Reference	-1.68	-1.68		PASS
			30~1000	-1.68	-68.92	≤-31.68	PASS
			1000~26500	-1.68	-41.37	≤-31.68	PASS
	Ant2	2452	Reference	-1.98	-1.98		PASS
			30~1000	-1.98	-67.44	≤-31.98	PASS
			1000~26500	-1.98	-41.79	≤-31.98	PASS











CTC Laboratories, Inc. 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059 下anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : <u>yz.cnca.cn</u>

