

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFL	27-Feb-20	27-Feb-21
Generator - Signal	Keysight	N5171B-506	TEW	2-May-18	2-May-21

TEST DESCRIPTION

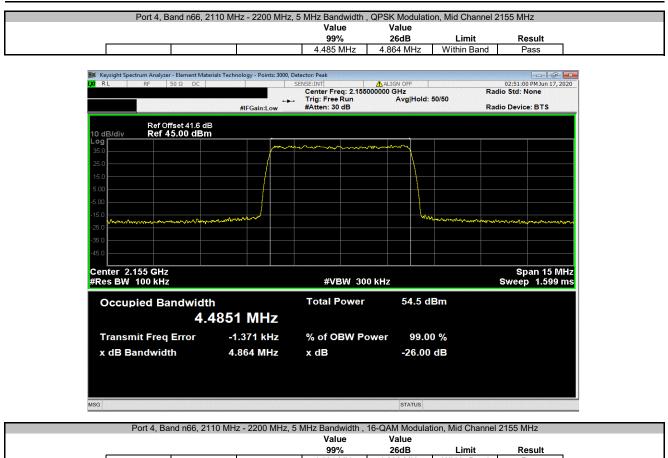
The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The method in section 5.4 of ANSI C63.26 was used to make this measurement. The spectrum analyzer settings were as follows

- RBW is 1% 5% of the occupied bandwidth
- VBW is ≥ 3x the RBW
- Peak Detector was used
- Trace max hold was used

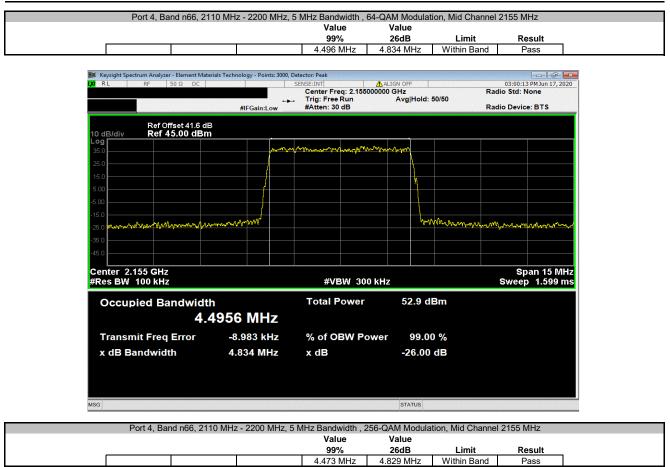
RF conducted emissions testing was performed only on one port. The testing was performed on the same version of hardware (AHFIG) as the original certification test. The AHFIG antenna ports are essentially electrically identical (the RF power variation between antenna ports is small as shown in the original certification testing) and antenna port 4 was selected to perform the testing under this effort as allowed by ANSI C63.26-2015 paragraph 5.7.2i.

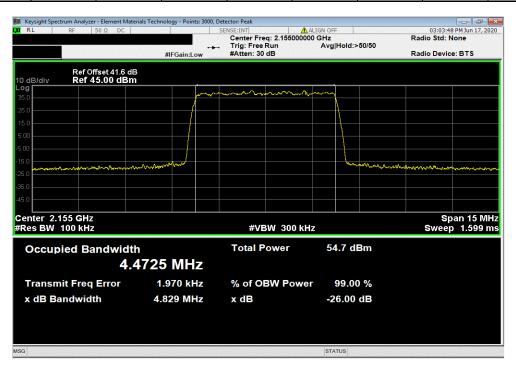
5G NR carrier bandwidths of 5MHz, 10MHz, 15MHz, and 20MHz with QPSK, 16QAM, 64QAM and 256QAM modulation types were verified under this effort. The 5G NR carriers/modulation types for this testing are set up according to 3GPP TS 38.141-1 Test Models and are NR-FR1-TM 1.1 (QPSK modulation type), NR-FR1-TM 3.1 (16QAM modulation type), NR-FR1-TM 3.1 (64QAM modulation type), and NR-FR1-TM 3.1a (256QAM modulation type).

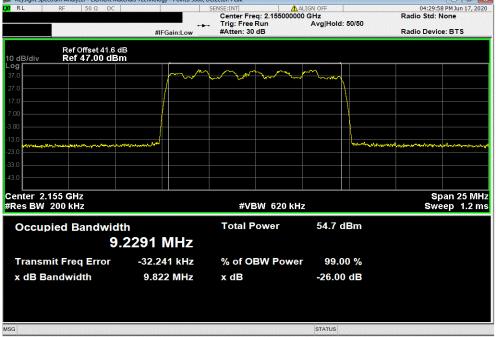
The occupied bandwidth was measured with the EUT configured in the modes called out in the data sheets. FCC 27.53(h)(3) defines he 26dB emission bandwidth requirement. RSS GEN Section 6.7 defines the 99% emission bandwidth requirement.


Band n66	Emissions	Designators:	

	Band n66 (2110MHz to 2200MHz) Emission Designators								
Channel Bandwidth	Radio Channel	5G-NR	5G-NR: QPSK 5G-NR: 16-QAM 5G-NR: 64-QAM				64-QAM	5G-NR: 2	56-QAM
bandwiddi	Channel	FCC	IC	FCC	IC	FCC	IC	FCC	IC
5 MHz	Mid	4M86G7W	4M49G7W	4M84G7W	4M50G7W	4M83G7W	4M50G7W	4M83G7W	4M47G7W
10 MHz	Mid	9M90G7W	9M32G7W	9M82G7W	9M23G7W	9M88G7W	9M33G7W	9M89G7W	9M29G7W
15 MHz	Mid	14M85G7W	14M13G7W	14M85G7W	14M17G7W	14M84G7W	14M13G7W	14M84G7W	14M11G7W
20 MHz	Mid	19M93G7W	18M93G7W	19M90G7W	19M03G7W	19M97G7W	18M94G7W	19M97G7W	18M96G7W
Note: FCC bas	ed on 26db	emission ban	dwidth: IC ba	sed on 99% er	nission bandy	vidth			


EUT: AH	FIG			Work Order:	TbtTx 2020.06.08.0 BETA	XMit 2020.0
Serial Number: K9					18-Jun-20	
	kia Solutions and Networks			Temperature:		
	chell Hill, John Rattanavong			Humidity:		
Project: No				Barometric Pres.:		
Tested by: Bra		Power: 54 VDC		Job Site:		
EST SPECIFICATION		Test Method		000 01101		
CC 27:2020	•	ANSI C63.26:2015				
OMMENTS II measurement path	losses were accounted for in the reference level offest in	cluding any attenuators, filters and DC blocks. The	carrier was set to maximu	m for all testing.		
EVIATIONS FROM TE	ST STANDARD					
lone	• •					
Configuration #	2 Signature	Ja Jan				
			Value 99%	Value 26dB	Limit	Result
Port 4, Band n66, 2110 I						
5 N	1Hz Bandwidth					
	QPSK Modulation					
	Mid Channel 2155 MHz		4.485 MHz	4.864 MHz	Within Band	Pass
	16-QAM Modulation					_
	Mid Channel 2155 MHz		4.501 MHz	4.838 MHz	Within Band	Pass
	64-QAM Modulation		4.400 Mille	4 004 MUL	Mithin David	Deer
	Mid Channel 2155 MHz 256-QAM Modulation		4.496 MHz	4.834 MHz	Within Band	Pass
	Mid Channel 2155 MHz		4.473 MHz	4.829 MHz	Within Band	Pass
10	MHz Bandwidth		4.473 MHZ	4.029 10112	Within Danu	газэ
10	QPSK Modulation					
	Mid Channel 2155 MHz		9.315 MHz	9.898 MHz	Within Band	Pass
	16-QAM Modulation		0.01011112	0.000 11112	Than Dana	1 400
	Mid Channel 2155 MHz		9.229 MHz	9.822 MHz	Within Band	Pass
	64-QAM Modulation					
	Mid Channel 2155 MHz		9.328 MHz	9.881 MHz	Within Band	Pass
	256-QAM Modulation					
	Mid Channel 2155 MHz		9.285 MHz	9.886 MHz	Within Band	Pass
15	MHz Bandwidth					
	QPSK Modulation					
	Mid Channel 2155 MHz		14.126 MHz	14.851 MHz	Within Band	Pass
	16-QAM Modulation					_
	Mid Channel 2155 MHz		14.166 MHz	14.847 MHz	Within Band	Pass
	64-QAM Modulation		44 407 MUL	14 042 MU-	Mithin Dand	Der -
	Mid Channel 2155 MHz		14.127 MHz	14.843 MHz	Within Band	Pass
	256-QAM Modulation Mid Channel 2155 MHz		14.108 MHz	14.837 MHz	Within Band	Pass
20	Mid Channel 2155 MHZ MHz Bandwidth		14.100 IVIHZ	14.037 IVITIZ	vviunin band	Pass
20	QPSK Modulation					
	Mid Channel 2155 MHz		18.925 MHz	19.933 MHz	Within Band	Pass
	16-QAM Modulation					_
	Mid Channel 2155 MHz		19.028 MHz	19.904 MHz	Within Band	Pass
	64-QAM Modulation		40.040 M	40.000 MU	Mitte Daw d	Dec
	Mid Channel 2155 MHz		18.943 MHz	19.966 MHz	Within Band	Pass
	256-QAM Modulation		10.050 MIL-	10.072 MU-	Within Dand	Dec
	Mid Channel 2155 MHz		18.958 MHz	19.972 MHz	Within Band	Pass



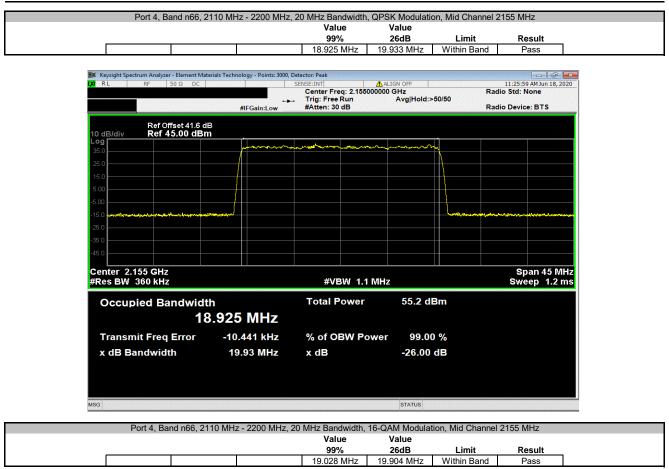


			Value 99%		Value 26dB	Limit		Result
			9.315 MHz	2 9	9.898 MHz	Within Ban	d	Pass
Reysight Spectrum Analyzer - El RL RF 50 S Ref Offse Ref Offse Ref 45.0	Ω DC	logy - Points: 3000, I	Detector: Peak SENSE:INT Center Freq: 2 Trig: Free Run #Atten: 30 dB	1550000	ALIGN OFF 00 GHz Avg Hold:3	>50/50	Radio St	ei Constanti de la constanti 17,2020 d: None evice: BTS
og 35.0 25.0 5.00 5.00 15.0 15.0							de Sandreda (1914-1916)	
50 50 enter 2.155 GHz Res BW 200 kHz			#VBW	620 ki	Hz			Span 25 MH weep 1.2 m
Occupied Band	9.3150		Total Pow		54.8 d			
Transmit Freq Er	rror	110 Hz	% of OBW	Powe	er 99.0	0 %		
x dB Bandwidth	9.8	98 MHz	x dB		-26.00	dB		
ASG			ne dia mandri andre san		STATUS			
Port 4, Band	n66, 2110 MHz -	- 2200 MHz, 1	I0 MHz Bandwid Value	th , 16-	QAM Modula Value	ation, Mid Char	nel 215	5 MHz
			99%		26dB	Limit		Result
	-		9.229 MHz	, (9.822 MHz	Within Ban	ч	Pass

		Value 99%	Value 26dB	Limit	Result
		9.328 MHz	9.881 MHz	Within Band	Pass
📜 Keysight Spectrum Analyzer - Element Mater 🖬 RL RF 50 Ω DC	ials Technology - Points: 3000,	Detector: Peak SENSE:INT	ALIGN OFF		04:33:29 PM Jun 17, 2
	#IFGain:Low	Center Freq: 2.155 Trig: Free Run #Atten: 30 dB		>50/50	io Std: None
Ref Offset 41.6 dB					
10 dB/div Ref 45.00 dBm					
_og 35.0	former		manna m		
25.0					
15.0					
5.00					
.00					
5.0 manuta programmental	monoral			timportante	angunan an angunan angunan angunan angunan angunan angunan ang kang kang kang kang kang kang ka
5.0					
5.0					
45.0					
Center 2.155 GHz			L		Span 25 M
Res BW 200 kHz		#VBW 62	0 KHZ		Sweep 1.2 r
Occupied Bandwidth	1	Total Power	54.6 d	Bm	
9.3	3276 MHz				
Transmit Freq Error	4.105 kHz	% of OBW Po	ower 99.0	0 %	
x dB Bandwidth	9.881 MHz	x dB	-26.00	dB	
ISG			STATUS		
			050 OAM M. 1 1	ALL OL	
Port 4, Band n66, 2110	J MHZ - 2200 MHZ, 1	0 MHz Bandwidth , Value	256-QAM Modula Value	ation, Mid Channe	12155 MHz
		99%	26dB	Limit	Result
		33/0	2000		Result

RL RF 50 Ω DC	erials Technology - Points: 3000,			04:37:44 PM Jun 17, 202
KL KF 50.52 UC	#IFGain:Low	Center Freq: 2.155000	ALIGN OFF 000 GHz Avg Hold: 50/50	Radio Device: BTS
Ref Offset 41.6 dE dB/div Ref 45.00 dBm				
g	man	man harmon	mann	
	/			
.0				
0	and the second		144 (144 and 144 ()	
0				
.0				
.0				
				Span 25 MF Sweep 1.2 m
		#VBW 620 k	HZ	
es BW 200 kHz Occupied Bandwidt		#VBW 620 k Total Power	54.7 dBm	
es BW 200 kHz Occupied Bandwidt	^h 2854 MHz			
es BW 200 kHz Occupied Bandwidt 9.;			54.7 dBm	
tes BW 200 kHz Occupied Bandwidt 9./ Transmit Freq Error	2854 MHz	Total Power	54.7 dBm	
enter 2.155 GHz tes BW 200 kHz Occupied Bandwidt 9.2 Transmit Freq Error x dB Bandwidth	2854 MHz 4.407 kHz	Total Power % of OBW Pow	54.7 dBm er 99.00 %	

		Value 99%	Value 26dB	Limit	Result
		14.126 MHz	14.851 MHz	Within Band	Pass
Keysight Spectrum Analyzer - Element Mater R K L R F 50 Ω D C	ials Technology - Points: 3000, E	Detector: Peak SENSE:INT	ALIGN OFF		09:30:27 AM Jun 18, 20
N 3032 0C	#IFGain:Low	Center Freq: 2.155 Trig: Free Run #Atten: 30 dB		50/50	dio Std: None dio Device: BTS
Ref Offset 41.6 dB 10 dB/div Ref 44.00 dBm					
- og 34.0		m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	/				
24.0					
4.00					
6.00					
16.0 				and the second second second	and a second
36.0					
46.0					
Center 2.155 GHz #Res BW 240 kHz		#VBW 75	0 kHz		Span 35 Mi Sweep 1.2 n
Occupied Bandwidth		Total Power	55.0 di	Зm	
14	.126 MHz				
Transmit Freq Error	-966 Hz	% of OBW Po	ower 99.00) %	
x dB Bandwidth	14.85 MHz	x dB	-26.00	dB	
ISG			STATUS		
Port 4, Band n66, 211	0 MHz - 2200 MHz. 1	5 MHz Bandwidth	16-QAM Modulat	tion. Mid Channe	l 2155 MHz
,,	·····, ·	Value	Value		
		99%	26dB	Limit	Result
· · · · · · · · · · · · · · · · · · ·		14.166 MHz	14.847 MHz	Within Band	Pass


RL RF 50 Ω DC	erials Technology - Points: 3000,		IGN OFF	ې 📼 📄 🚽 د د د د د د د د د د د د د د د د د د
	#IFGain:Low	Center Freq: 2.155000000		Radio Device: BTS
Ref Offset 41.6 dl dB/div Ref 46.00 dBn				
>g 6.0			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
5.0	<mark>/</mark>			
i.0				
00				
.0	fuglishment and all		**************************************	ม ^{ุกล} ัสประทั่งสำคัญทางการเหตุสาวที่สารทุกแห่งการการสะบุกัน
0				
.0				
enter 2.155 GHz Res BW 240 kHz	I	#VBW 750 kHz		Span 35 MH Sweep 1.2 m
Occupied Bandwidt	h	Total Power	54.8 dBm	
14	4.166 MHz			
Transmit Freq Error	13.409 kHz	% of OBW Power	99.00 %	
x dB Bandwidth	14.85 MHz	x dB	-26.00 dB	

#Res BW 240 kHz #VBW 750 kHz Sweep 1.2 ms Occupied Bandwidth Total Power 54.9 dBm 14.127 MHz Transmit Freq Error 5.620 kHz % of OBW Power 99.00 % x dB Bandwidth 14.84 MHz x dB -26.00 dB	RE RF 50 Ω DC		14.127 MHz etector: Peak SENSE:INT	14.843 MHz		
Keyzigitt Spectrum Analyzer - Bernent Materials Technology - Points 300, Detector Peak Comparison of the sector Peak Comparison of the sector Peak Points 200, Detector Peak RL RF 50 0 0 CC Comparison of the sector Peak Radio Std: None Radio Std: None Ref Offset 41.6 dB Ref 45.00 dBm Radio Device: BTS Radio Device: BTS Objective Ref offset 41.6 dB Ref 45.00 dBm Radio Device: BTS Radio Device: BTS Objective Ref offset 41.6 dB Ref 45.00 dBm Radio Device: BTS Radio Device: BTS Objective Ref offset 41.6 dB Ref 45.00 dBm Radio Device: BTS Radio Device: BTS Objective Ref offset 41.6 dB Ref 45.00 dBm Radio Device: BTS Radio Device: BTS Objective Ref offset 41.6 dB Ref 45.00 dBm Radio Device: BTS Radio Device: BTS Objective Ref offset 41.6 dB Ref 45.00 dBm Radio Device: BTS Radio Device: BTS Objective Ref offset 41.6 dB Ref 45.00 dBm Span 35 MHz Span 35 MHz State Res BW 240 kHz #VBW 750 kHz Span 35 MHz Sweep 1.2 ms Occupied Bandwidth Total Power 54.9 dBm Att 12 MHz X dB -26.00 dB X dB Bandwidth	RL RF 50Ω DC		etector: Peak SENSE:INT	•		1 400
250 250 250 250 250 250 250 250	.og		Trig: Free Run #Atten: 30 dB	55000000 GHz Avg Hol	1: 50/50	09:37:46 AM Jun 18, 20 dio Std: None
Res BW 240 kHz #VBW 750 kHz Sweep 1.2 ms Occupied Bandwidth Total Power 54.9 dBm 14.127 MHz 14.127 MHz 14.127 MHz Transmit Freq Error 5.620 kHz % of OBW Power 99.00 % x dB Bandwidth 14.84 MHz x dB -26.00 dB	5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0					
14.127 MHz Transmit Freq Error 5.620 kHz % of OBW Power 99.00 % x dB Bandwidth 14.84 MHz x dB -26.00 dB			#VBW	750 kHz		Span 35 MH Sweep 1.2 m
x dB Bandwidth 14.84 MHz x dB -26.00 dB		MHz	Total Powe	er 54.9	dBm	
ISG STATUS						
	ASG			STATUS		el 2155 MHz

RL RF 50 Ω DC		SENSE:INT	AL AL	IGN OFF		09:41:5	7 AM Jun 18, 202
		Center Fre	q: 2.155000000 Run		50/50	Radio Std: N	lone
	#IFGain:Low	#Atten: 30	dB			Radio Devic	e: BTS
dB/div Ref 0ffset 41.6 dE							
g Rei 44.00 dBill		_					
.0	monorm	m-w-n-hartw	man mana				
.0	(I				l		
.0					\		
10	i j				}		
	and the second				State of the state	aniperiologic places of the second second	og franker franker
.0							
.0							
.0							
enter 2.155 GHz							an 35 MF
tes BW 240 kHz		#VE	3W 750 kHz	2		Swe	ep 1.2 m
Occupied Bandwidt	b	Total P	ower	54.8 dE	Rm		
14	.108 MHz						
	13.247 kHz	% of O	BW Power	99.00	%		
Transmit Freq Error				-26.00	dD		
	14 94 MU-						
Transmit Freq Error x dB Bandwidth	14.84 MHz	x dB		20100			
	14.84 MHz	x dB		20100			
	14.84 MHz	x dB					
	14.84 MHz	x dB		20100			

Keysight Spectrum Analyzer - Element Mate	mais recimology - Politis: 5000,		ICH OFF	
RL RF 50 Ω DC		SENSE:INT AL Center Freg: 2.155000000	IGN OFF	11:29:23 AM Jun 18, 20 Radio Std: None
	>	The Free Barry	Avg Hold: 50/50	Radio Sta. Holle
	#IFGain:Low	#Atten: 30 dB		Radio Device: BTS
Ref Offset 41.6 dl	3			
dB/div Ref 46.00 dBn	<u>ا</u>			
g	in my	my my my	ma	
	- And -			
.0				
.0				
00				
0 Andrewskie and the constant of the second states	ubrance .			. Market Market Market Company and Market Market Company
.0				
0				
.0				
enter 2.155 GHz				Span 45 MH
tes BW 360 kHz		#VBW 1.1 MHz		Sweep 1.2 n
		Total Power	55.1 dBm	
Occupied Bandwidt		I otal I owel	55.1 ubm	
19).028 MHz			
Transmit Freq Error	29.398 kHz	% of OBW Power	99.00 %	
x dB Bandwidth	19.90 MHz	x dB	-26.00 dB	
	10.00 11112	X GE	Loto up	
			STATUS	

		Value 99%	Value 26dB	Limit	Result
		18.943 MHz	19.966 MHz	Within Band	Pass
Keysight Spectrum Analyzer - Element Mater R L RF 50 Ω DC		Detector: Peak SENSE:INT Center Freq: 2.155	ALIGN OFF	Rac	11:33:34 AM Jun 18, 2 lio Std: None
Ref Offset 41.6 dB	#IFGain:Low	. Trig: Free Run #Atten: 30 dB	Avg Hold:	50/50	lio Device: BTS
0 dB/div Ref 45.00 dBm					
25.0					
5.0					
00					
5.0 Wrankerson and a second	المجدر الارمدان والعرب			harrow was married as a second	triagest gan ^{al} l the standing of the providence of the providence of the standing of the sta
45.0					
Center 2.155 GHz Res BW 360 kHz		#VBW 1.1			Span 50 M Sweep 1.2 r
Occupied Bandwidth		Total Power	55.1 dl	Bm	Sweep 1.21
	.943 MHz				
Transmit Freq Error x dB Bandwidth	8.815 kHz 19.97 MHz	% of OBW Po x dB	ower 99.00 -26.00		
	19.97 MHZ	x ub	-20.00	ub	
ISG			STATUS		
Port 4, Band n66, 211	0 MHz - 2200 MHz, 2	0 MHz Bandwidth, 2	256-QAM Modula	ition, Mid Channe	l 2155 MHz
		Value 99%	Value 26dB	Limit	Result

Keysight Spectrum Analyzer - Element Mate RL RF 50 Ω DC	mals Technology - Points: 300	J, Detector: Peak SENSE:INT	ALIGN OFF		11:37:26 AM Jun 18	
NC N 5032 0C		Center Freq: 2	.155000000 GHz	-1-1- 50/50	Radio Std: None	5,202
	#IFGain:Low	Irig: Free Rur #Atten: 30 dB	AVG H	old: 50/50	Radio Device: BTS	
Ref Offset 41.6 dE						
dB/div Ref 45.00 dBm						
		an management of the state		····		
.0	/					
0						
0						
0						
0				burd dat and a	and an all and a second day of the	
0						
0						
.0						
enter 2.155 GHz					Span 50	
tes BW 360 kHz		#VBW	1.1 MHz		Sweep 1.	2 m
Occupied Bandwidt	h	Total Pov	ver 55.0	0 dBm		
	.958 MHz					
Transmit Freq Error	13.051 kHz	% of OBW	Power 99	9.00 %		
	19.97 MHz	x dB	-26	.00 dB		
	19.97 MHz	x dB	-26	.00 dB		
x dB Bandwidth	19.97 MHz	x dB	-26	.00 dB		
	19.97 MHz	x dB	-26	.00 dB		

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

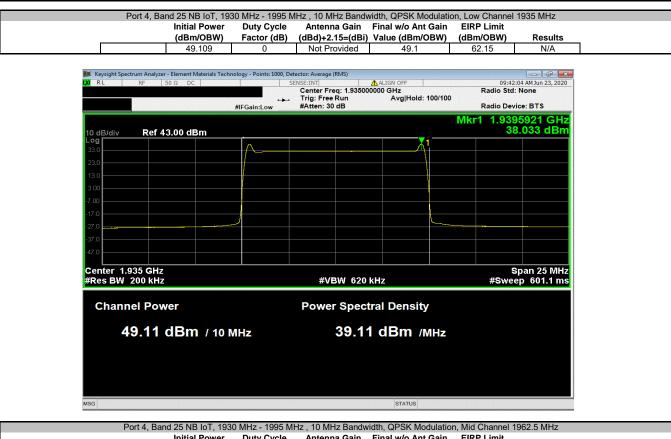
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFL	27-Feb-20	27-Feb-21
Generator - Signal	Keysight	N5171B-506	TEW	2-May-18	2-May-21

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

The method in section 5.2.4.4 of ANSI C63.26 was used to make the measurement. This method uses trace averaging across ON and OFF times of the EUT transmissions in the spectrum analyzer channel power function using an RMS detector. Following the measurement a duty cycle correction was applied by adding [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times.

Per FCC section 24.232(a), the Equivalent Isotopically radiated Power (EIRP) of the transceiver cannot exceed 1640 Watts/MHz.

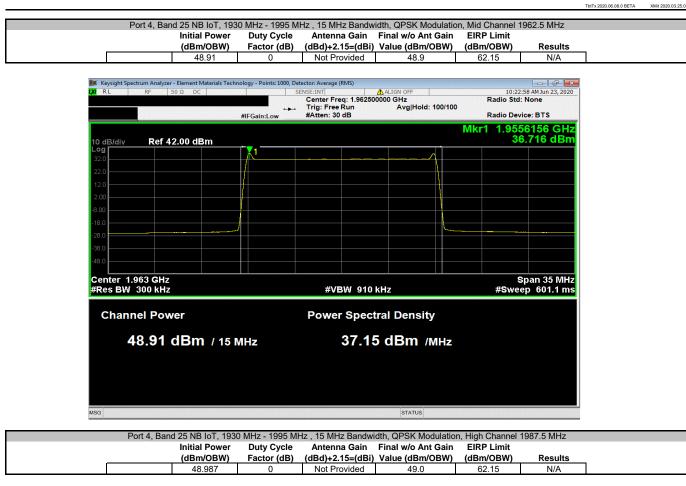

RF conducted emissions testing was performed only on one port. The testing was performed on the same version of hardware (AHFIG) as the original certification test. The AHFIG antenna ports are essentially electrically identical (the RF power variation between antenna ports is small as shown in the original certification testing) and antenna port 4 was selected to perform the testing under this effort as allowed by ANSI C63.26-2015 paragraph 5.7.2i.

Carrier bandwidths of 10, 15, & 20MHz were verified using NB IoT GB carriers under this effort. The LTE modulation type for this testing was set up according to 3GPP TS 36.141 E-UTRA Test Models and is "E-TM 1.1 (QPSK modulation type) with N-TM (narrow band IoT)".

EUT: AH							Work Order:		
Serial Number: K9								23-Jun-20	
	kia Solutions and Netw						Temperature: 2		
	tchell Hill, John Rattan	avong					Humidity:		
Project: No							Barometric Pres.:		
Tested by: Bra			Power	: 54 VDC			Job Site:	TX05	
EST SPECIFICATION	IS			Test Method					
CC 24E:2020				ANSI C63.26:2015					
OMMENTS									
	losses were accounte	d for in the reference level of	offest including any attenua	tors, filters and DC b	locks. The carrie	r was set to maximu	m for all testing.		
·			• •				•		
EVIATIONS FROM TE	EST STANDARD								
one									
				/					
onfiguration #	6		A	1_1					
onfiguration #	6	Signature	Fing	Jar					
configuration #	6	Signature	Any	Initial Power	Duty Cycle	Antenna Gain	Final w/o Ant Gain	EIRP Limit	
		Signature	And the second s	Initial Power (dBm/OBW)	Duty Cycle Factor (dB)	Antenna Gain (dBd)+2.15=(dBi)	Final w/o Ant Gain Value (dBm/OBW)	EIRP Limit (dBm/OBW)	Results
ort 4, Band 25 NB IoT,	, 1930 MHz - 1995 MHz	Signature	Any						Results
ort 4, Band 25 NB IoT,	, 1930 MHz - 1995 MHz MHz Bandwidth		- And						Results
ort 4, Band 25 NB IoT,	, 1930 MHz - 1995 MHz MHz Bandwidth QPSK Modul	ation	Any	(dBm/OBW)	Factor (dB)	(dBd)+2.15=(dBi)	Value (dBm/OBW)	(dBm/OBW)	
ort 4, Band 25 NB IoT,	, 1930 MHz - 1995 MHz MHz Bandwidth QPSK Modul	ation Low Channel 1935 MHz	Any	(dBm/OBW) 49.109	Factor (dB)	(dBd)+2.15=(dBi) Not Provided	Value (dBm/OBW) 49.11	(dBm/OBW) 62.15	N/A
ort 4, Band 25 NB IoT,	, 1930 MHz - 1995 MHz MHz Bandwidth QPSK Modul	ation Low Channel 1935 MHz Mid Channel 1962.5 MHz	12-5	(dBm/OBW) 49.109 48.935	Factor (dB) 0 0	(dBd)+2.15=(dBi) Not Provided Not Provided	Value (dBm/OBW) 49.11 48.94	(dBm/OBW) 62.15 62.15	N/A N/A
ort 4, Band 25 NB IoT, 10	, 1930 MHz - 1995 MHz MHz Bandwidth QPSK Modul	ation Low Channel 1935 MHz	Any	(dBm/OBW) 49.109	Factor (dB)	(dBd)+2.15=(dBi) Not Provided	Value (dBm/OBW) 49.11	(dBm/OBW) 62.15	N/A
ort 4, Band 25 NB IoT, 10	, 1930 MHz - 1995 MHz MHz Bandwidth QPSK Modul MHz Bandwidth	ation Low Channel 1935 MHz Mid Channel 1962.5 MHz High Channel 1990 MHz	Any	(dBm/OBW) 49.109 48.935	Factor (dB) 0 0	(dBd)+2.15=(dBi) Not Provided Not Provided	Value (dBm/OBW) 49.11 48.94	(dBm/OBW) 62.15 62.15	N/A N/A
ort 4, Band 25 NB IoT, 10	, 1930 MHz - 1995 MHz MHz Bandwidth QPSK Modul MHz Bandwidth QPSK Modul	ation Low Channel 1935 MHz Mid Channel 1962.5 MHz High Channel 1990 MHz ation	- Ang	(dBm/OBW) 49.109 48.935	Factor (dB) 0 0	(dBd)+2.15=(dBi) Not Provided Not Provided Not Provided	Value (dBm/OBW) 49.11 48.94 48.96	(dBm/OBW) 62.15 62.15	N/A N/A N/A
ort 4, Band 25 NB IoT, 10	, 1930 MHz - 1995 MHz MHz Bandwidth OPSK Modul MHz Bandwidth OPSK Modul	ation Low Channel 1935 MHz Mid Channel 1962.5 MHz High Channel 1990 MHz ation Low Channel 1937.5 MHz	Any	(dBm/OBW) 49.109 48.935 48.964 49.183	Factor (dB) 0 0	(dBd)+2.15=(dBi) Not Provided Not Provided	Value (dBm/OBW) 49.11 48.94 48.96 49.18	(dBm/OBW) 62.15 62.15 62.15 62.15	N/A N/A N/A
ort 4, Band 25 NB IoT, 10	, 1930 MHz - 1995 MHz MHz Bandwidth OPSK Modul MHz Bandwidth OPSK Modul	ation Low Channel 1935 MHz Mid Channel 1962.5 MHz High Channel 1990 MHz ation	12-5	(dBm/OBW) 49.109 48.935 48.964	Factor (dB) 0 0 0 0 0	(dBd)+2.15=(dBi) Not Provided Not Provided Not Provided	Value (dBm/OBW) 49.11 48.94 48.96	(dBm/OBW) 62.15 62.15 62.15	N/A N/A N/A
ort 4, Band 25 NB loT, 10	, 1930 MHz - 1995 MHz MHz Bandwidth QPSK Modul MHz Bandwidth QPSK Modul	ation Low Channel 1935 MHz Mid Channel 1962.5 MHz High Channel 1990 MHz ation Low Channel 1937.5 MHz	1	(dBm/OBW) 49.109 48.935 48.964 49.183	Factor (dB) 0 0 0	(dBd)+2.15=(dBi) Not Provided Not Provided Not Provided	Value (dBm/OBW) 49.11 48.94 48.96 49.18	(dBm/OBW) 62.15 62.15 62.15 62.15	N/A N/A N/A N/A
ort 4, Band 25 NB loT, 10	, 1930 MHz - 1995 MHz MHz Bandwidth QPSK Modul MHz Bandwidth QPSK Modul MHz Bandwidth	ation Low Channel 1935 MHz Mid Channel 1962.5 MHz High Channel 1990 MHz ation Low Channel 1937.5 MHz Mid Channel 1962.5 MHz High Channel 1987.5 MHz	Any	(dBm/OBW) 49.109 48.935 48.964 49.183 48.910	Factor (dB) 0 0 0 0 0 0 0 0 0 0 0	(dBd)+2.15=(dBi) Not Provided Not Provided Not Provided Not Provided	Value (dBm/OBW) 49.11 48.94 48.96 49.18 48.91	(dBm/OBW) 62.15 62.15 62.15 62.15 62.15	N/A N/A N/A N/A
ort 4, Band 25 NB IoT, 10	, 1930 MHz - 1995 MHz MHz Bandwidth QPSK Modul MHz Bandwidth QPSK Modul MHz Bandwidth QPSK Modul	ation Low Channel 1935 MHz Mid Channel 1962.5 MHz High Channel 1990 MHz ation Low Channel 1937.5 MHz Mid Channel 1962.5 MHz High Channel 1987.5 MHz	1	(dBm/OBW) 49.109 48.935 48.964 49.183 48.910 48.987	Factor (dB) 0 0 0 0 0 0 0 0 0 0 0	(dBd)+2.15=(dBi) Not Provided Not Provided Not Provided Not Provided Not Provided	Value (dBm/OBW) 49.11 48.94 48.96 49.18 48.91 48.91 48.99	(dBm/OBW) 62.15 62.15 62.15 62.15 62.15	N/A N/A N/A N/A N/A
ort 4, Band 25 NB loT, 10	, 1930 MHz - 1995 MHz MHz Bandwidth QPSK Modul MHz Bandwidth QPSK Modul MHz Bandwidth QPSK Modul	ation Low Channel 1935 MHz Mid Channel 1962.5 MHz High Channel 1990 MHz ation Low Channel 1937.5 MHz Mid Channel 1962.5 MHz High Channel 1987.5 MHz	Any	(dBm/OBW) 49.109 48.935 48.964 49.183 48.910	Factor (dB) 0 0 0 0 0 0 0 0 0 0 0	(dBd)+2.15=(dBi) Not Provided Not Provided Not Provided Not Provided	Value (dBm/OBW) 49.11 48.94 48.96 49.18 48.91	(dBm/OBW) 62.15 62.15 62.15 62.15 62.15	N/A N/A N/A N/A
ort 4, Band 25 NB IoT, 10	1930 MHz - 1995 MHz MHz Bandwidth QPSK Modul MHz Bandwidth QPSK Modul MHz Bandwidth QPSK Modul	ation Low Channel 1935 MHz Mid Channel 1962.5 MHz High Channel 1990 MHz ation Low Channel 1937.5 MHz Mid Channel 1962.5 MHz High Channel 1987.5 MHz	1	(dBm/OBW) 49.109 48.935 48.964 49.183 48.910 48.987	Factor (dB) 0 0 0 0 0 0 0 0 0 0 0	(dBd)+2.15=(dBi) Not Provided Not Provided Not Provided Not Provided Not Provided	Value (dBm/OBW) 49.11 48.94 48.96 49.18 48.91 48.91 48.99	(dBm/OBW) 62.15 62.15 62.15 62.15 62.15 62.15 62.15	N/A N/A N/A N/A N/A

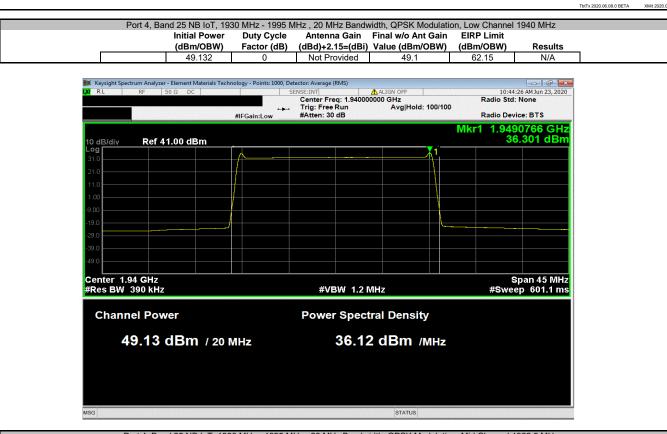
Initial Power	Duty Cycle	Antenna Gain	Final W/o Ant Gain	EIRP LIMIT	
(dBm/OBW)	Factor (dB)	(dBd)+2.15=(dBi)	Value (dBm/OBW)	(dBm/OBW)	Results
48.935	0	Not Provided	48.9	62.15	N/A

	Fechnology - Points: 1000, I						
RF 50 Ω DC		Center Freq: 1.96	2500000 GHz	09:48:56 AM Jun 23, 2020 Radio Std: None			
	#IFGain:Low	. Trig: Free Run #Atten: 30 dB	Avg Hold: 100/100	Radio Device: BTS			
			N	lkr1 1.9579079 GHz			
Ref 43.00 dBm				37.911 dBm			
)63 CH2				Span 25 MHz			
200 kHz		#VBW 6	20 kHz	#Sweep 601.1 ms			
el Power		Power Spe	ectral Density				
48.94 dBm / 10 мнz			38.94 dBm /мнz				
	Ref 43.00 dBm Ref 43.00 dBm 63 GHz 200 kHz	Ref 43.00 dBm #IFGain:Low 063 GHz 200 kHz el Power	Ref 43.00 dBm	RF 50 Ω DC SENSE:INT Center Freq: 1.962500000 GHz #HEGain:Low #Atten: 30 dB			

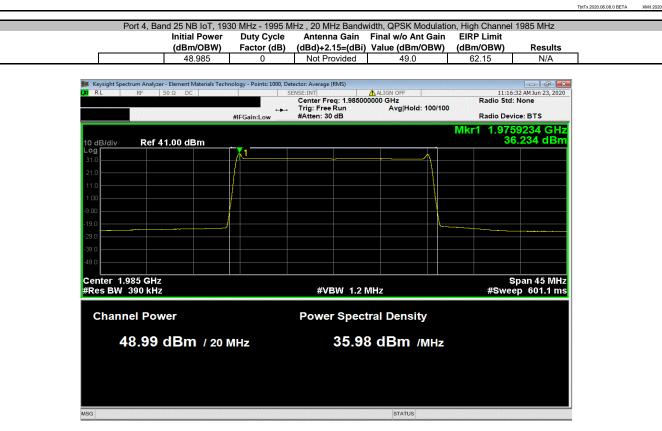


Port 4, Band 25 NB IoT, 1930 MHz - 1995 MHz , 15 MHz Bandwidth, QPSK Modulation, Low Channel 1937.5 MHz									
	Initial Power	Duty Cycle	Antenna Gain	Final w/o Ant Gain	EIRP Limit				
	(dBm/OBW)	Factor (dB)	(dBd)+2.15=(dBi)	Value (dBm/OBW)	(dBm/OBW)	Results			
	49.183	0	Not Provided	49.2	62.15	N/A			

	um Analyzer - Element Material						
RL	RF 50 Ω DC		SENSE:INT Center Freg: 1.937	ALIGN OFF	10:12:00 AM Jun 23, 202 Radio Std: None		
		+	. Trig: Free Run	Avg Hold: 100/100			
		#IFGain:Low	#Atten: 30 dB		Radio Device: BTS		
				N	lkr1 1.9443844 GH		
0 dB/div	Ref 42.00 dBm				36.989 dBn		
og				1			
2.0							
2.0							
2.0							
.00							
.00							
3.0							
3.0 							
8.0							
8.0							
enter 1.93					Span 35 MH		
Res BW 3			#VBW 910) kHz	#Sweep 601.1 m		
Channe	el Power		Power Spec	ctral Density			
Gnanne			i onei oper	Sual Density			
10	9.18 dBm / [,]	15 MII-	37 /	2 dBm /мнz			
43			57.4				
	CTATUS.						



ieysight Spectrum Analyzer - Element Material R L RF 50 Ω DC	, i omen tee	SENSE:INT		IGN OFF		10:30:5	👝 🛛 🗗 📕
	#IFGain:Low		q: 1.987500000 Run		0/100	Radio Std: None Radio Device: BTS	
dB/div Ref 42.00 dBm					M	kr1 1.980 36	6156 GH 912 dBi
	<u></u>						
,	/						
	/						
)							
) <u> </u>					L		
)							
nter 1.988 GHz es BW 300 kHz		#VB	W 910 kHz			SI #Swee	oan 35 MH p 601.1 m
Channel Power		Power	Spectral	Density			
48.99 dBm /	15 MHz	;	37.23 d	Вт /м	Hz		



	Port 4, Band 25 NB IoT, 1930 MHz - 1995 MHz , 20 MHz Bandwidth, QPSK Modulation, Mid Channel 1962.5 MHz										
Initial Power Duty Cycle Antenna Gain Final w/o Ant Gain EIRP Limit											
		(dBm/OBW)	Factor (dB)	(dBd)+2.15=(dBi)	Value (dBm/OBW)	(dBm/OBW)	Results				
		48.948	0	Not Provided	48.9	62.15	N/A				

Keysight Spectrum Analyzer - Element Materials 1	Technology - Points: 10						
RL RF 50Ω DC	#IFGain:Low	SENSE:INT Center Fr Trig: Free #Atten: 3	eq: 1.9625000 Run	ALIGN OFF 000 GHz Avg Hold: 10	00/100	10:56:2 Radio Std: Radio Devi	
dB/div Ref 41.00 dBm					Μ	kr1 1.953 36	4234 GH .081 dBr
	1						
0							
0							
0							
					·		_
nter 1.963 GHz es BW 390 kHz		#V	BW 1.2 M	Hz		S #Swee	pan 45 MH p 601.1 m
Channel Power		Powe	r Spectr	al Density			
48.95 dBm / 2		35.94	dBm /м	Hz			

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

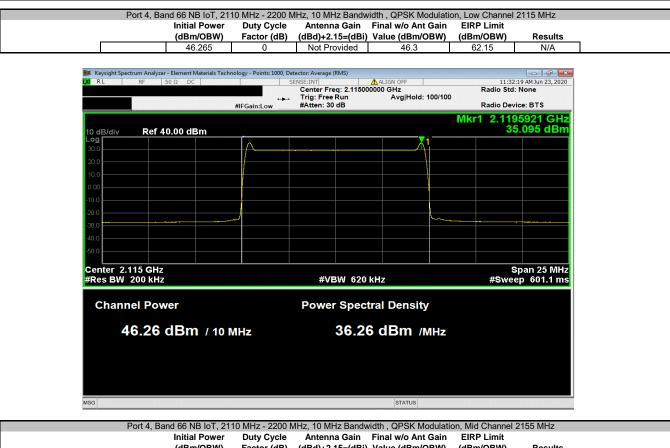
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFL	27-Feb-20	27-Feb-21
Generator - Signal	Keysight	N5171B-506	TEW	2-May-18	2-May-21

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

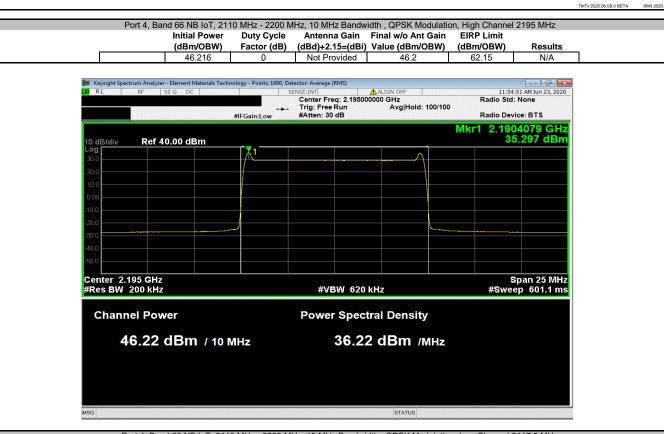
The method in section 5.2.4.4 of ANSI C63.26 was used to make the measurement. This method uses trace averaging across ON and OFF times of the EUT transmissions in the spectrum analyzer channel power function using an RMS detector. Following the measurement a duty cycle correction was applied by adding [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times.

Per section 27.50(d)(2)(ii), the Equivalent Isotropically Radiated Power (EIRP) of the transceiver cannot exceed 1640 W/MHz. EIRP as defined by the FCC is the total power output from the cell site antenna.


RF conducted emissions testing was performed only on one port. The testing was performed on the same version of hardware (AHFIG) as the original certification test. The AHFIG antenna ports are essentially electrically identical (the RF power variation between antenna ports is small as shown in the original certification testing) and antenna port 4 was selected to perform the testing under this effort as allowed by ANSI C63.26-2015 paragraph 5.7.2i.

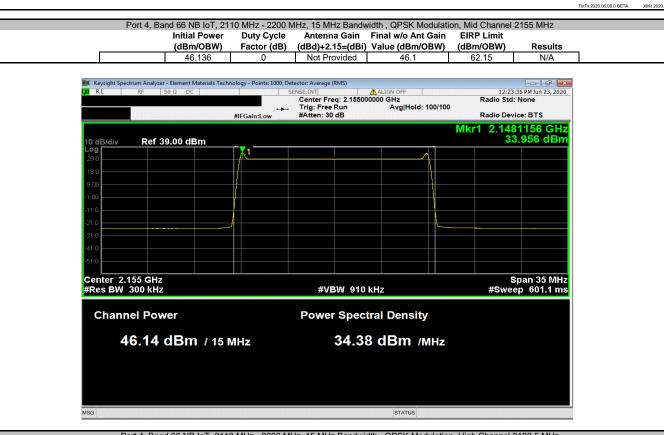
Carrier bandwidths of 10, 15, & 20MHz were verified using NB IoT GB carriers under this effort. The LTE modulation type for this testing was set up according to 3GPP TS 36.141 E-UTRA Test Models and is "E-TM 1.1 (QPSK modulation type) with N-TM (narrow band IoT)".

	AHFIG						Work Order:		
Serial Number:								23-Jun-20	
	: Nokia Solutions and Networks						Temperature:	22.5 °C	
Attendees:	Mitchell Hill, John Ratta	navong					Humidity:		
Project:							Barometric Pres.:		
	by: Brandon Hobbs Power: 54 VDC						Job Site:	TX05	
EST SPECIFICAT	IONS			Test Method					
CC 27:2020				ANSI C63.26:2015					
OMMENTS		ed for in the reference level of							
EVIATIONS FROM	M TEST STANDARD								
one	I LOI STANDARD								
lone				/					
onfiguration #	6	Signature	Ant	Jar					
			Ang	Initial Power (dBm/OBW)	Duty Cycle Factor (dB)	Antenna Gain (dBd)+2.15=(dBi)	Final w/o Ant Gain Value (dBm/OBW)	EIRP Limit (dBm/OBW)	Results
	loT, 2110 MHz - 2200 MHz		Ang						Results
		z	Ant			(dBd)+2.15=(dBi)	Value (dBm/OBW)		
	IoT, 2110 MHz - 2200 MH: 10 MHz Bandwidth	z Jlation Low Channel 2115 MHz	Any	(dBm/OBW) 46.265		(dBd)+2.15=(dBi) Not Provided	Value (dBm/OBW) 46.27	(dBm/OBW) 62.15	N/A
	IoT, 2110 MHz - 2200 MH: 10 MHz Bandwidth	z Jlation Low Channel 2115 MHz Mid Channel 2155 MHz	1	(dBm/OBW) 46.265 46.156	Factor (dB) 0 0	(dBd)+2.15=(dBi) Not Provided Not Provided	Value (dBm/OBW) 46.27 46.16	(dBm/OBW) 62.15 62.15	N/A N/A
	loT, 2110 MHz - 2200 MH: 10 MHz Bandwidth QPSK Modu	z Jlation Low Channel 2115 MHz	Ang	(dBm/OBW) 46.265	Factor (dB)	(dBd)+2.15=(dBi) Not Provided	Value (dBm/OBW) 46.27	(dBm/OBW) 62.15	N/A
	IoT, 2110 MHz - 2200 MH: 10 MHz Bandwidth	z Jation Low Channel 2115 MHz Mid Channel 2155 MHz High Channel 2195 MHz	Ang	(dBm/OBW) 46.265 46.156	Factor (dB) 0 0	(dBd)+2.15=(dBi) Not Provided Not Provided	Value (dBm/OBW) 46.27 46.16	(dBm/OBW) 62.15 62.15	N/A N/A
	IoT, 2110 MHz - 2200 MH 10 MHz Bandwidth QPSK Modu 15 MHz Bandwidth	z Jation Low Channel 2115 MHz Mid Channel 2155 MHz High Channel 2195 MHz	Ang	(dBm/OBW) 46.265 46.156	Factor (dB) 0 0	(dBd)+2.15=(dBi) Not Provided Not Provided	Value (dBm/OBW) 46.27 46.16	(dBm/OBW) 62.15 62.15	N/A N/A
	IoT, 2110 MHz - 2200 MH 10 MHz Bandwidth QPSK Modu 15 MHz Bandwidth	z Jlation Low Channel 2115 MHz Mid Channel 2155 MHz High Channel 2195 MHz Jlation	And	(dBm/OBW) 46.265 46.156 46.216	Factor (dB) 0 0 0 0 0	(dBd)+2.15=(dBi) Not Provided Not Provided Not Provided	Value (dBm/OBW) 46.27 46.16 46.22	(dBm/OBW) 62.15 62.15 62.15	N/A N/A N/A
	IoT, 2110 MHz - 2200 MH 10 MHz Bandwidth QPSK Modu 15 MHz Bandwidth	z Jation Low Channel 2115 MHz Mid Channel 2155 MHz High Channel 2195 MHz Jation Low Channel 2117.5 MHz	Ang	(dBm/OBW) 46.265 46.156 46.216 46.216	Factor (dB) 0 0 0 0 0 0 0 0	(dBd)+2.15=(dBi) Not Provided Not Provided Not Provided	Value (dBm/OBW) 46.27 46.16 46.22 46.30	(dBm/OBW) 62.15 62.15 62.15 62.15	N/A N/A N/A N/A
ort 4, Band 66 NB	IoT, 2110 MHz - 2200 MH 10 MHz Bandwidth QPSK Modu 15 MHz Bandwidth	z Jation Low Channel 2115 MHz Mid Channel 2155 MHz High Channel 2195 MHz Jation Low Channel 2117.5 MHz Mid Channel 2155 MHz High Channel 2192.5 MHz	A	(dBm/OBW) 46.265 46.156 46.216 46.302 46.302 46.136	Factor (dB) 0 0 0 0 0 0 0 0 0	(dBd)+2.15=(dBi) Not Provided Not Provided Not Provided Not Provided	Value (dBm/OBW) 46.27 46.16 46.22 46.30 46.14	(dBm/OBW) 62.15 62.15 62.15 62.15 62.15	N/A N/A N/A N/A
ort 4, Band 66 NB	IoT, 2110 MHz - 2200 MH 10 MHz Bandwidth QPSK Modu 15 MHz Bandwidth QPSK Modu 20 MHz Bandwidth	z Jation Low Channel 2115 MHz Mid Channel 2155 MHz High Channel 2195 MHz Jation Low Channel 2117.5 MHz Mid Channel 2155 MHz High Channel 2192.5 MHz	Ang	(dBm/OBW) 46.265 46.156 46.216 46.302 46.302 46.136	Factor (dB) 0 0 0 0 0 0 0 0 0	(dBd)+2.15=(dBi) Not Provided Not Provided Not Provided Not Provided	Value (dBm/OBW) 46.27 46.16 46.22 46.30 46.14	(dBm/OBW) 62.15 62.15 62.15 62.15 62.15	N/A N/A N/A N/A
ort 4, Band 66 NB	IoT, 2110 MHz - 2200 MH 10 MHz Bandwidth QPSK Modu 15 MHz Bandwidth QPSK Modu 20 MHz Bandwidth	z Jation Low Channel 2115 MHz High Channel 2155 MHz High Channel 2195 MHz Jation Low Channel 2117.5 MHz Mid Channel 2155 MHz High Channel 2192.5 MHz Jation	A	(dBm/OBW) 46.265 46.156 46.216 46.302 46.136 46.258	O O	(dBd)+2.15=(dBi) Not Provided Not Provided Not Provided Not Provided Not Provided	Value (dBm/OBW) 46.27 46.16 46.22 46.30 46.14 46.26	(dBm/OBW) 62.15 62.15 62.15 62.15 62.15 62.15 62.15	N/A N/A N/A N/A N/A



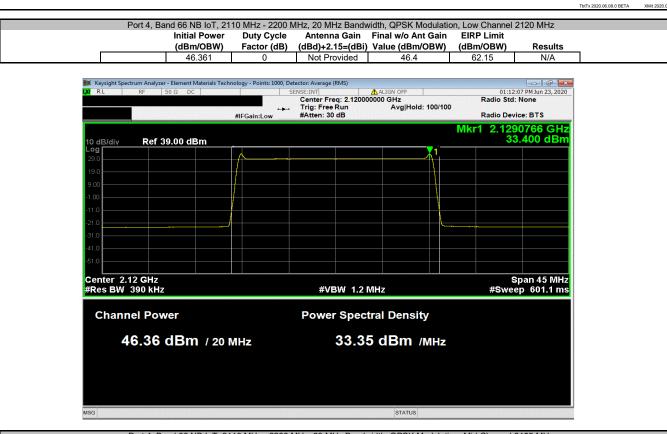
r ort 4, band oo No for, 21 to winz - 2200 winz, to winz bandwidth, Qr ort wooddiation, wid Granner 2100 winz										
	Initial Power	Duty Cycle	Antenna Gain	Final w/o Ant Gain	EIRP Limit					
	(dBm/OBW)	Factor (dB)	(dBd)+2.15=(dBi)	Value (dBm/OBW)	(dBm/OBW)	Results				
	46.156	0	Not Provided	46.2	62.15	N/A				

RL RF 50 Ω DC		SENSE:INT	ALIGN OFF	11:45:51 AM Jun 23, 202
	#IFGain:Low	Center Freq: 2.15500		Radio Std: None Radio Device: BTS
dB/div Ref 40.00 dBm			Ν.	lkr1 2.1504079 GH 35.147 dBr
) .0				
).0				
0.0				
00				
).0				
).0				
).0				
enter 2.155 GHz Res BW 200 kHz		#VBW 620	kHz	Span 25 MH #Sweep 601.1 m
Channel Power		Power Spect		
46.16 dBm / 1	0 MHz	36.16		



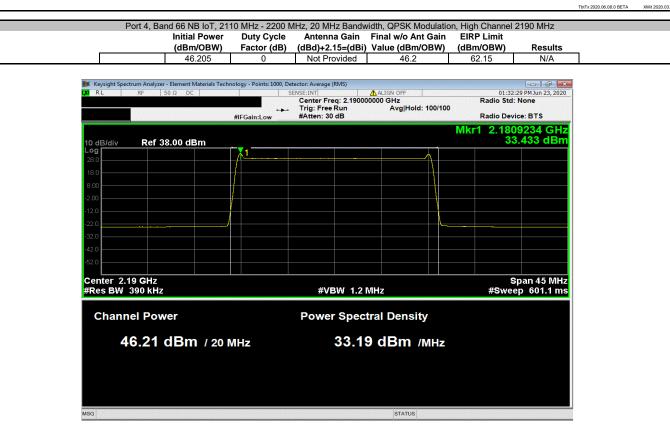
Port 4, Band 66 NB IoT, 2110 MHz - 2200 MHz, 15 MHz Bandwidth , QPSK Modulation, Low Channel 2117.5 MHz								
		Initial Power	Duty Cycle	Antenna Gain	Final w/o Ant Gain	EIRP Limit		
		(dBm/OBW)	Factor (dB)	(dBd)+2.15=(dBi)	Value (dBm/OBW)	(dBm/OBW)	Results	
		46.302	0	Not Provided	46.3	62.15	N/A	

Keysight Spectrum Analyzer - Element Materia RL RF 50 Ω DC	is reennology Points: 1000, t	SENSE:INT	ALIG			12:09:23 PM Jun 23, 202
	#IFGain:Low	Center Freq	: 2.117500000 G un		0	io Std: None io Device: BTS
dB/div Ref 39.00 dBm					Mkr1 2	.1243493 GH 33.976 dBr
g				1		
0						
10						
0						
0						
0						
0						
0						
enter 2.118 GHz tes BW 300 kHz		#VB\	№ 910 kHz		#	Span 35 MH Sweep 601.1 m
Channel Power		Power				
46.30 dBm /	15 MHz	3	34.54 d	Bm /мнz		



Port 4, Band 66 NB IoT, 2110 MHz - 2200 MHz, 15 MHz Bandwidth , QPSK Modulation, High Channel 2192.5 MHz								
		Initial Power	Duty Cycle	Antenna Gain	Final w/o Ant Gain	EIRP Limit		
		(dBm/OBW)	Factor (dB)	(dBd)+2.15=(dBi)	Value (dBm/OBW)	(dBm/OBW)	Results	
		46.258	0	Not Provided	46.3	62.15	N/A	

📕 Keysight Spectrum Analyzer - Element I				
LX/ RL RF 50Ω DC		Center Freq: 2.1925000		12:36:38 PM Jun 23, 2020 Radio Std: None
	#IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Hold: 100/100	Radio Device: BTS
			Μ	kr1 2.1856156 GHz
10 dB/div Ref 39.00 dl	3m			34.168 dBm
29.0				
19.0	/			
9.00				
-1.00				
-11.0				
-21.0				
-31.0				
-41.0				
-51.0				
Center 2.193 GHz				Span 35 MHz
#Res BW 300 kHz		#VBW 910 k	Hz	#Sweep 601.1 ms
Channel Power		Power Spectr		
46.26 dBm	1 / 15 MHz	34.50		



Port 4, Band 66 NB IoT, 2110 MHz - 2200 MHz, 20 MHz Bandwidth, QPSK Modulation, Mid Channel 2155 MHz									
	Initial Power	Duty Cycle	Antenna Gain	Final w/o Ant Gain	EIRP Limit				
	(dBm/OBW)	Factor (dB)	(dBd)+2.15=(dBi)	Value (dBm/OBW)	(dBm/OBW)	Results			
	46.128	0	Not Provided	46.1	62.15	N/A			

Keysight Spectrum Analyzer - Element Materials	rechnology - Points: 100						
RL RF 50 Ω DC		SENSE:INT	eq: 2.15500000	ALIGN OFF		01:23:2 Radio Std:	7 PM Jun 23, 202
	+ #IFGain:Low	Trig: Free #Atten: 30	Run	Avg Hold: 10	00/100	Radio Std: I	
dB/div Ref 38.00 dBm					M	kr1 2.145 33	9234 GH .238 dBr
a	1						
.0							
.0							
00	<mark>/</mark>						
00					-\		
.0					_		
.0							
.0							
.0							
.0							
.0							
enter 2.155 GHz tes BW 390 kHz		#VI	BW 1.2 MH	z			oan 45 MH p 601.1 m
Channel Power		Powe	r Spectra	I Density			
46.13 dBm / 2	0 MHz		33.12	dBm /м	Hz		

