

Report No.: TBR-C-202503-0061-9 Page: 1 of 8

Maximum Permissible Exposure Evaluation FCC ID: 2BBRH-KE8

Report No.	:	TBR-C-202503-0061-9				
Applicant	1	Dongguan Puleduo Technology Co., Ltd.				
Equipment Under Te	est (El					
EUT Name	1997	Smart Watch				
Model No.		KE8				
Series Model No.		N/A				
Brand Name	2	EIGIIS				
Sample ID	7	HC-C-202503-0061-01-01				
Receipt Date		2025-03-13				
Test Date	20	2025-03-13 to 2025-03-26				
Issue Date		2025-03-26				
Standards	-	FCC Part 2.1093				
Test Method	202	KDB 447498 D01 General RF Exposure Guidance v06				
Conclusions		PASS				
		In the configuration tested, the EUT complied with the standards specified above.				
Test By	6	: Livly zhang				
Reviewed By	2	: Henry huang St Henry huang				
Approved By	Ø	: WANSU Juan Su				
This report details the	result	ts of the testing carried out on one sample. The results contained in this				

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

CONTENTS

CON	ITENTS	2
1.	GENERAL INFORMATION ABOUT EUT	4
	1.1 Client Information	4
	1.2 General Description of EUT (Equipment Under Test)	4
2.	MEASUREMENT UNCERTAINTY	5
3.	TEST FACILITY	6
4.	SAR TEST EXCLUSION CALCULATIONS	

Report No.: TBR-C-202503-0061-9 Page: 3 of 8

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202503-0061-9	Rev.01	Initial issue of report	2025-03-26
ROW	CUL	TAL MARY	A DU
m - an			
1000	The second	A WARD	100
	1	and and	
	and the second		000
TO A	200	and and	50
E E E	Dur,	and and	- rou
			No Co
- 10D	The second	A LE CODI	0000

1. General Information about EUT

1.1 Client Information

Applicant	Applicant : Dongguan Puleduo Technology Co., Ltd.			
Address		Room 2104, Unit 1, Building 6, Tian'an Digital City, No.1 Jinhuang Road, Nancheng Street, Dongguan, Guangdong,China		
Manufacturer	Manufacturer : Dongguan Puleduo Technology Co., Ltd.			
Address	:	Room 2104, Unit 1, Building 6, Tian'an Digital City, No.1 Jinhuang Road, Nancheng Street, Dongguan, Guangdong,China		

1.2 General Description of EUT (Equipment Under Test)

EUT Name		Smart Watch	Smart Watch			
Models No.	:	KE8	KE8			
Model Different	:	N/A	Ά			
Product Description		Operation Frequency:	Bluetooth&BLE: 2402MHz~2480MHz			
	-	Modulation Type:	Bluetooth&BLE: GFSK, Pi/4-DQPSK, 8DPSK			
		Antenna Gain:	-1.8dBi Conducting Wire Antenna			
Power Rating		USB Input: DC 5V DC 3.8V 250mAh	JSB Input: DC 5V DC 3.8V 250mAh Rechargeable Li-ion battery			
Software Version		904F-T4170-100				
Hardware Version		T4170V1.0				

Remark: The above antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

2. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB
RF Power-Conducted	Level Accuracy: Above 1000MHz	±0.95 dB
Power Spectral Density- Conducted	Level Accuracy: Above 1000MHz	±3dB
Occupied Bandwidth	Level Accuracy: 30MHz to 1000 MHz Above 1000MHz	±3.8%
Unwanted Emission- Conducted	Level Accuracy: 30MHz to 1000 MHz Above 1000MHz	±2.72 dB
Temperature	1	±0.6°C
Humidity	1	±4%
Supply voltages		±2%
Time		±4%

Report No.: TBR-C-202503-0061-9 Page: 6 of 8

3. Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F., Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

4. SAR Test Exclusion Calculations

- 4.1 FCC: According to KDB 447498 D01 v06 Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies v06.
 - (1) Clause 4.3: General SAR test reduction and exclusion guidance Sub clause 4.31: Standalone SAR test exclusion considerations
 - Sub clause 4.31: Standalone SAR test exclusion considerations
 - 1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6GHz at test separation distance≤5 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation, mm)]*[$\sqrt{f_{(GHz)}}$] \leq 3.0 for 1-g SAR

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation, mm)]*[$\sqrt{f_{(GHz)}}$] \leq 7.5.0 for 10-g SAR

4.2 Summary simultaneous transmission for SAR Exclusion

The SAR exemption limits outlined in clause 4.3.2(b) of KDB 447498 have been derived based on an approximate SAR value of 0.4 W/kg using half-wave dipole antennas Footnote 1. As such, when simultaneous transmitter SAR evaluations include transmitters that have been exempt from routine SAR evaluation, the SAR must be estimating based on the ratio between the maximum tune-up tolerance limit of the transmitter that has been exempt and the exemption limit at the specific distance and frequency for that transmitter. This ratio must be multiplied by 0.4 W/kg (2.0 W/kg for controlled use and 1.0 W/kg for limb worn devices) in order to calculate the estimated SAR level.

The estimate SAR value is calculated based the following equation:

(maximum power level including tune-up tolerance for transmitter A / maximum power level of exemption at the same frequency and distance) * 0.4W/kg

1) [(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]·[$\sqrt{f_{(GHz)}/x}$] W/kg, for test separation distances \leq 50 mm;

where x = 7.5 for 1-g SAR and x = 18.75 for 10-g SAR.

 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the *test separation distance* is > 50 mm.³⁷

The [\sum of (the highest measured or estimated SAR for each standalone antenna configuration, adjusted for maximum tune-up tolerance) / 1.6 W/kg] + [\sum of MPE ratios] is \leq 1.0.

The SAR to peak location separation ratios of all simultaneously transmitting antenna pairs operating in portable device exposure conditions are all ≤ 0.04 , and the [\sum of MPE ratios] is ≤ 1.0 .

4.3 Calculation:

610		В	luetooth Mode (GFSK)	TANK T	GUIDE	
Frequency (GHz)	Conducted Power (dBm)	Turn-up Power Tolerance (dB)	Max power of tune up tolerance (dBm)	Max power of tune up tolerance (mw)	Calculation Value	Threshold Value
2.402	5.276	5±1	6	3.981	1.234	3.0
2.441	5.05	5±1	6	3.981	1.244	3.0
2.480	4.862	5±1	6	3.981	1.254	3.0
	Non March	Blue	tooth Mode (Pi/4-DQPS	к)		
Frequency (GHz)	Conducted Power (dBm)	Turn-up Power Tolerance (dB)	Max power of tune up tolerance (dBm)	Max power of tune up tolerance (mw)	Calculation Value	Threshold Value
2.402	5.673	5±1	6	3.981	1.234	3.0

2.441	5.391	5±1	6	3.981	1.244	3.0
2.480	5.136	5±1	6	3.981	1.254	3.0
TANK D		Bluet	tooth Mode (8-DPSK)		and the	

		Di	delootin wode (o-DFSK)			
Frequency (GHz)	Conducted Power (dBm)	Turn-up Power Tolerance (dB)	Max power of tune up tolerance (dBm)	Max power of tune up tolerance (mw)	Calculation Value	Threshold Value
2.402	6.342	6±1	7	5.012	1.554	3.0
2.441	5.942	5±1	6	3.981	1.244	3.0
2.480	5.743	5±1	6	3.981	1.254	3.0

Test separation: 5mm

			Bluetooth LE 1M			1
Frequency (GHz)	Conducted Power (dBm)	Turn-up Power Tolerance (dB)	Max power of tune up tolerance (dBm)	Max power of tune up tolerance (mw)	Calculation Value	Threshold Value
2.402	5.481	5±1	6	3.981	1.234	3.0
2.440	5.029	5±1	6	3.981	1.244	3.0
2.480	4.712	5±1	6	3.981	1.254	3.0

			Bluetooth LE 2M			
Frequency (GHz)	Conducted Power (dBm)	Turn-up Power Tolerance (dB)	Max power of tune up tolerance (dBm)	Max power of tune up tolerance (mw)	Calculation Value	Threshold Value
2.402	5.625	5±1	6	3.981	1.234	3.0
2.440	5.33	5±1	6	3. <mark>9</mark> 81	1.244	3.0
2.480	5.017	5±1	6	3.981	1.254	3.0

The measurement results comply with the FCC Limit per 47 CFR 2.1093 for the uncontrolled RF Exposure and SAR Exclusion Threshold per KDB 447498 D01 v06.

-----END OF THE REPORT-----

