

Test report No: 4398538.53

TEST REPORT

Radio Spectrum Matters (RF)

Identification of item tested	Bluetooth module
Trademark	TRIDONIC
Model and /or type reference	TR003ANANO
FCC ID	2AMXZ-TR003ANANO
Features	3.3 Vdc
Applicant´s name / address	Tridonic GmbH & Co KG. Faerbergasse 15 6851 Dornbirn, Austria
Test method requested, standard	FCC CFR Title 47 Part15 Subpart C Section 15.247; KDB558074 D01v05r02;
Verdict Summary	COMPLIANCE
Tested by (name & signature)	Jazz Liang Jass Gang
Approved by (name & signature)	Jazz Liang Jazz Gang Tim Yan
Date of issue	2024-03-15
Report template No	TRF_EMC 2017-06- FCC_Part15C_247

INDEX

			-
Gene	eral co	nditions	4
Unce	ertainty		4
Envii	onmei	ntal conditions	4
Poss	ible te	st case verdicts	4
Defir	nition o	f symbols used in this test report	5
Abbr	eviatio	ns	5
Docι	iment l	History	5
Rem	arks a	nd Comments	5
1	Gene	ral Information	6
	1.1	General Description of the Item(s)	6
	1.2	Test data	8
	1.3	The environment(s) in which the EUT is intended to be used	8
	1.4	Channel List	8
2	Desc	iption of Test Setup	9
	2.1	Operating mode(s) used for tests	9
	2.2	Support / Auxiliary equipment / unit / software for the EUT	9
	2.3	Test Configuration / Block diagram used for tests	9
	2.4	Measurement procedure	9
3	Verdi	ct summary section	.10
	3.1	Standards	.10
	3.2	Deviation(s) from the Standard(s) / Test Specification(s)	.10
	3.3	Overview of results	.10
4	Trans	mitter Test Results	.11
	4.1	AC Power Line Conducted Emission	.11
	4.2	Emissions in non-restricted frequency bands	.12
	4.3	Emissions in restricted frequency bands	.23
	4.4	Band Edge	.30
	4.5	Duty cycle	.33
	4.6	DTS Bandwidth	.35
	4.7	Fundamental emission output power	.40
	4.8	Power Density	.43
5	Identi	fication of the Equipment Under Test	.45
Anne	ex 1 – I	Measurement Uncertainty	.46
Anne	ex 2 - L	Jsed Equipment	.47

GENERAL CONDITIONS

- 1. This report is only referred to the item that has undergone the test.
- 2. This report does not constitute or imply on its own an approval of the product by the Certification Bodies or Competent Authorities.
- 3. This document is only valid if complete; no partial reproduction can be made without previous written permission of DEKRA.
- 4. This test report cannot be used partially or in full for publicity and/or promotional purposes without previous written permission of DEKRA.
- 5. This report will not be used for social proof function in China market.

UNCERTAINTY

For all measurements where guidance for the calculation of the instrumentation uncertainty of a measurement is specified in EN 55016-4-2 (CISPR 16-4-2), EN/IEC 61000-4 series or a product standard, the measurement instrumentation uncertainty has been calculated and applied in accordance with these standards.

Uncertainties have been calculated according to the DEKRA internal document. The reported expanded uncertainties are based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

ENVIRONMENTAL CONDITIONS

The climatic conditions during the tests are within the limits specified by the manufacturer for the operation of the EUT and the test equipment. The climatic conditions during the tests were within the following limits:

Ambient temperature	15 °C – 35 °C
Relative Humidity air	30% - 60%
Atmospheric pressure	86 kPa – 106 kPa

If explicitly required in the basic standard or applied product / product family standard the climatic values are recorded and documented separately in this test report.

POSSIBLE TEST CASE VERDICTS

Test case does not apply to test object	N/A
Test object does meet requirement	P (Pass) / PASS
Test object does not meet requirement	F (Fail) / FAIL
Not tested	N/T

DEFINITION OF SYMBOLS USED IN THIS TEST REPORT

⊠ Indicates that the listed condition, standard or equipment is applicable for this report/test/EUT.				
Indicates that the listed condition, standard or equipment is not applicable for this report/test/EUT.				
Decimal separator used in this report 🛛 Comma (,) 🔲 Point (.)				

ABBREVIATIONS

For the purposes of the present document, the following abbreviations apply:

EUT	:	Equipment Under Test
QP	:	Quasi-Peak
CAV	:	CISPR Average
AV	:	Average
CDN	:	Coupling Decoupling Network
SAC	:	Semi-Anechoic Chamber
OATS	:	Open Area Test Site
BW	:	Bandwidth
AM	:	Amplitude Modulation
PM	:	Pulse Modulation
HCP	:	Horizontal Coupling Plane
VCP	:	Vertical Coupling Plane
$U_{\rm N}$:	Nominal voltage
Тх	:	Transmitter
Rx	:	Receiver
N/A	:	Not Applicable
N/M	:	Not Measured

DOCUMENT HISTORY

Report nr.	Date	Description
4398538.53	2024-03-15	First release.

REMARKS AND COMMENTS

The equipment under test (EUT) does meet the essential requirements of the stated standard(s)/test(s).

1 **GENERAL INFORMATION**

1.1 General Description of the Item(s)

Description of the item:	Bluetooth module
Trademark:	TRIDONIC
Model / Type number	TR003ANANO
FCC ID	2AMXZ-TR003ANANO
Hardware	Version 1.2
Software	N/A
Firmware	Version 1.0
Ratings	3.3 Vdc
Manufacturer	Tridonic GmbH & Co KG.
	Faerbergasse 15
	6851 Dornbirn, Austria
Factory	Shenzhen FangPeng Technology Co.,Ltd.
	B4 Building, Haosan No.1 Industry Park, Shajing Town, Baoan District,
	Shenzhen, Guangdong, China.

Operating frequency range(s)	2402 MHz – 2480 MHz
Type of Modulation	GFSK
Maximum RF output power	-4.3 dBm
Antenna type	Integral Antenna
Operating Temperature Range:	-40 − 105 °C
BT version	Bluetooth 5.1BLE
Antenna gain	1.3 dBi

Rated power supply	Volta	Voltage and Frequency			Reference poles					
	Volta	ge and riequency	L1	L2	L3	N	PE			
		AC:								
	\square	DC: 3.3V								
		Battery:								
Mounting position:		Table top equipment								
		Wall/Ceiling mounted equipment								
		Floor standing equipment								
		Hand-held equipment								
	\square	Other: Installed on the circuit board								

Intended use of the Equipment Under Test (EUT)

The apparatus as supplied for the test is Bluetooth module which designed to integrated into LED driver, different lighting control applications sensors etc.

According to customer description, the EUT is Wireless modules designed to be integrated into LED drivers, different lighting control applications, sensors etc.

Hence, model TR003ANANO were chosen for full test.

Copy of marking plate:

No provide.

1.2 Test data

	DEKRA Testing and Certification (Shanghai) Ltd. Guangzhou Branch
Test Location	Block 5, No.3, Qiyun Road, Huangpu District, Guangzhou, Guangdong, China
	FCC Designation Number: CN1324;
Date of receipt of test item	2024-02-02
Date (s) of performance of tests	2024-02-02 to 2024-03-08
	Normal sample: TR003ANANO(Lab no.4398538-1),
Test sample	RF conducted sample: TR003ANANO(Lab no.4398538-2),
	RF radiated sample: TR003ANANO(Lab no.4398538-1)

1.3 The environment(s) in which the EUT is intended to be used

The equipment under test (EUT) is intended to be used in the following environment(s):

\boxtimes	Residential (domestic) environment.
\boxtimes	Commercial and light-industrial environment.
\boxtimes	Industrial environment.

1.4 Channel List

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	14	2430	28	2458
1	2404	15	2432	29	2460
2	2406	16	2434	30	2462
3	2408	17	2436	31	2464
4	2410	18	2438	32	2466
5	2412	19	2440	33	2468
6	2414	20	2442	34	2470
7	2416	21	2444	35	2472
8	2418	22	2446	36	2474
9	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454	-	-
13	2428	27	2456	-	-

The radio module (Bluetooth) operating channels are:

2 DESCRIPTION OF TEST SETUP

2.1 Operating mode(s) used for tests

During the tests the following operating mode(s) has(have) been used.

Operating mode	Operating mode description	Used for	⁻ methos				
mode	Operating mode description	Conducted	Radiated				
1	Transmitting at 1 Mbit/s,	\boxtimes	\boxtimes				
2							
3							
4							
Supplement	Supplemental information:						

2.2 Support / Auxiliary equipment / unit / software for the EUT

Auxiliary equipment / unit / software	Type / Version	Manufacturer	Supplied by					
Laptop	Latitude 5488	DELL	DEKRA					
TELINK BDT(Burning and Debugging tool)	-	-	Client					
nRFgo Studio (soft ware)	V1.21.2.10	-	Client					
Supplemental information:	Supplemental information:							

The EUT has been tested with the following auxiliary equipment / unit / software:

2.3 Test Configuration / Block diagram used for tests

Refer to Annex 3.

2.4 Measurement procedure

The EUT was controlled by a serial PCB(TELINK BDT) which provided by manufacturer which connected to laptop through the com port. After connected, run the software "nRFgo Studio" supplied by manufacturer to control the EUT work in required test mode as below table.

RF Mode	Set_channel(MHz)	Set_channel in software
	2402	0
BLE_1M	2440	19
	2480	39

3 VERDICT SUMMARY SECTION

This chapter presents an overview of standards and results. Refer to the next chapters for details of measured test results and applied test levels.

3.1 Standards

Standard	Year	Description
FCC CFR Title 47 Part 15	2022	Operation within the bands 902–928 MHz, 2400–2483.5 MHz, and
Subpart C Section 15.247		5725–5850 MHz.
KDB 558074 D01 v05r02	2019	Guidance for performing compliance measurements on Digital
		Transmission System (DTS) operating under section 15.247
ANSI C63.10	2013	American National Standard of Procedures for Compliance Testing
		of Unlicensed Wireless Devices

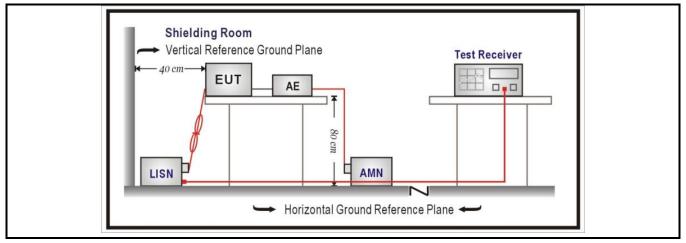
3.2 Deviation(s) from the Standard(s) / Test Specification(s)

The following deviation(s) was / were made from the published requirements of the listed standards: N/A.

3.3 Overview of results

Requirement – Test case	Basic standard(s)	Verdict	Remark	
AC Power Line Conducted Emission	FCC 15.207	N/A	See 1)	
Emissions in non-restricted frequency bands	FCC 15.247(d), FCC 15.209	PASS		
Emissions in restricted frequency bands	FCC 15.247(b)(3)	PASS		
Duty cycle	ANSI C63.10:2013	PASS		
Band Edge	FCC 15.247(d)	PASS		
Fundamental emission output power	FCC 15.247(d), FCC 15.209	PASS		
DTS Bandwidth	FCC 15.247(a)(2)	PASS		
Power Spectral Density	FCC 15.247(e)	PASS		
Antenna Requirement	FCC 15.203	PASS		
Supplementary information:	· · ·			

The measurement result is considered in conformance with the requirement if it is within the prescribed limit, It is not necessary to calculate the uncertainty associated with the measurement result.


4 **TRANSMITTER TEST RESULTS**

4.1 AC Power Line Conducted Emission VERDICT: N/A

Limits

Frequency range [MHz] Limit: QP [dB(μ V) ¹)] Limit: AV [dB(μ V) ¹)] IF BW Detector(s)							
0,15 - 0,50	9 KHz	QP, AV					
0,50 - 5,0	56	46	9 KHz	QP, AV			
5,0 - 30 60 50 9 KHz QP, AV							
¹⁾ At the transition frequency, the lower limit applies. ²⁾ The limit decreases linearly with the logarithm of the frequency.							

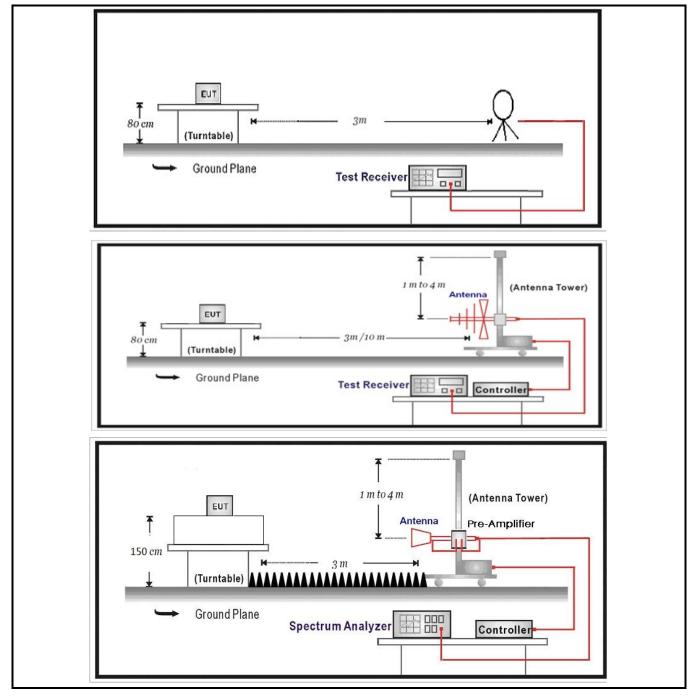
Test Configuration

Performed measurements

Port	Port under test			Terminal							
\boxtimes	AC mains input power				N	\square	L1		L2		L3
	DC input power				Positive (+))		
Test method applied Artificial mains net			work								
			Voltage probe								
Test	Test setup		Table top	Artificial hand applied							
	Eloor standing			Other:							
		Refe	r to the Annex 2 for	test se	etup photo	(s).					
		T									
Operating mode(s) used											
Envirment condition (temperature; humidiry)											
Rem	ark										

4.2 Emissions in non-restricted frequency bands

VERDICT: PASS

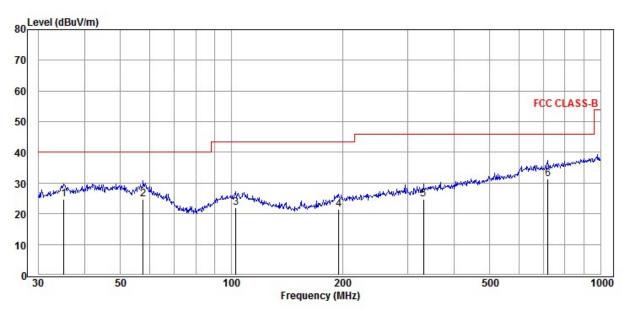

missions Limit 15.209(a)		
Frequency (MHz)	Field strength (µV/m)	Field strength (dBµV/m)	Measurement distance (m)
0.009 - 0.49	2400/F(kHz)	48.5 – 13.8	300 _(Note 1)
0.49 - 1.705	24000/F(kHz)	33.8 - 23	30(Note 1)
1.705 - 30	30	29.5	30(Note 1)
30 - 88	100	40	3 (Note 2)
88 - 216	150	43.5	3(Note 2)
216 - 960	200	46	3(Note 2)
Above 960	500	54	3 (Note 2)

Note 1: At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade).

Note 2: At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

Test Configuration

Performed measurements


Port under test	Enclosure port				
Test method applied		Conducted measurement			
	Radiated measurement				
Test setup	Refer to the Annex 3 for test setup photo(s).				
Operating mode(s) used	Mode 1				
	1)The test frequency range, 9kHz~30MHz, 18GHz~26GHz, both of the worst case are at least 20dB below the limits, therefore no data appear in the report.				
Remark					
	2)The EUT are tested in three orientations. The record is the worst orientation which refer to the Annex 3 for test setup photo(s).				

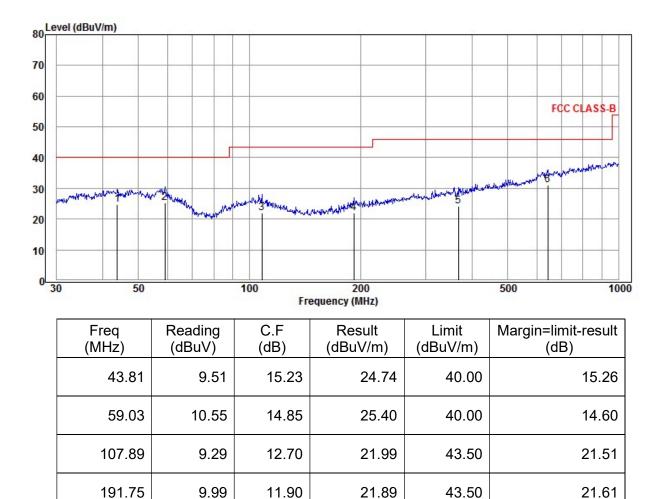
Results of 30 – 1000 MHz

Model	TR003ANANO
Operation Mode	Mode 1 @2402MHz (worst case)
Test voltage	3.3 Vdc

Results Horizontal

Freq (MHz)	Reading (dBuV)	C.F (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin=limit-result (dB)
35.13	10.94	13.77	24.71	40.00	15.29
57.59	9.25	15.40	24.65	40.00	15.35
102.72	9.37	12.73	22.10	43.50	21.40
195.14	9.75	11.77	21.52	43.50	21.98
331.36	9.94	14.75	24.69	46.00	21.31
719.20	10.77	20.50	31.27	46.00	14.73

Remarks:


1) C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

2) Result = Reading + C.F (Correction Factor)

DEKRA Testing and Certification (Shanghai) Ltd. Guangzhou Branch Block 5, No.3, Qiyun Road, Huangpu District, Guangzhou, Guangdong, China Tel +86 20 6661 2000 Fax +86 20 6661 2001 www.dekra.com

Vertical

642.86 Remarks:

368.11

1) C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

15.30

19.85

2) Result = Reading + C.F (Correction Factor)

8.94

11.28

No other significant emissions were measured at the frequency range of interest employing the QP detectors.

24.24

31.13

46.00

46.00

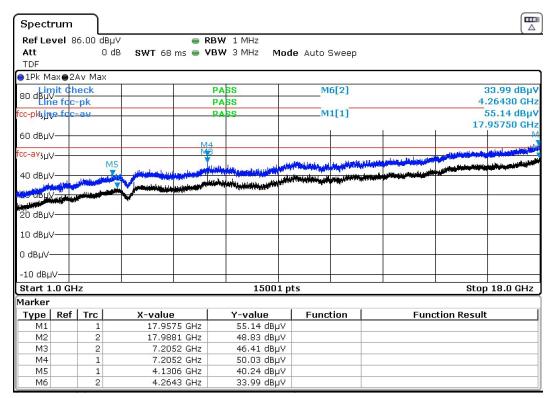
21.76

14.87

Results of 1 – 18 GHz

Model	TR003ANANO
Operation Mode (worst case)	Mode 1 @2402 MHz
Test voltage	3.3 Vdc

Results


Horizontal

Spectrum							
Ref Level 8 Att TDF	6.00 dBµ 0 d		RBW 1 MHz VBW 3 MHz MI	ode Auto S	Sweep		
●1Pk Max●2A	Av Max						
80 dBuV	eck ·pk		PASS PASS	M	3[2]		44.80 dBµV 7.20630 GHz
fcc-pkyjne_foc-	av		PASS	M	1[1]		54.16 dBµV 17.95750 GHz
60 dBµV——							
fcc-av _{3µV}		M5 K	t		n fa da dank da	A DESCRIPTION OF THE OWNER	
40 dBµV	-			AND A CONTRACTOR		A DESCRIPTION OF THE OWNER OF THE	
UBUV-	-						
20 dBµV——							
10 dBµV——							
0 dBµV							
-10 dBµV							
Start 1.0 GH	z		15001	. pts		•	Stop 18.0 GHz
Marker							
Type Ref	Trc	X-value	Y-value	Func	tion	Fur	nction Result
M1	1	17.9575 GHz	54.16 dBµ				
M2	2	17.9881 GHz	47.56 dBµ				
M3	2	7.2063 GHz	44.80 dBµ	· · · · · · · · · · · · · · · · · · ·		[
M4	1	7.2052 GHz	47.87 dBµ				
M5 M6	1	4.8049 GHz 4.8038 GHz	46.26 dBµ 43.86 dBµ				

Remarks: Y-Value = received value + Correction Factor (Antenna factor + Cable loss - Preamp gain)

Vertical

Remarks: Y-Value = received value + Correction Factor (Antenna factor + Cable loss - Preamp gain)

Model	TR003ANANO
Operation Mode (worst case)	Mode 1 @2440 MHz
Test voltage	3.3 Vdc

Results

Horizontal

Spectrum									
Ref Level 9 Att TDF	90.00 dB 10	•	-	SW 1 MHz SW 3 MHz N	1ode Auto	Sweep			
●1Pk Max●2A	Av Max								
Limit Ch			P	ASS	M	5[1]		5	9.18 dBµV
80 dbine ECC	:-рк		P.	ASS				17.9	95330 GHz
Line ECC	C-AV		P	ASS	M	1[1]			1.16 dBµV
FCC-PK _{IV}							7	4.1	38000 GHz
60 dBµV									IVI.
			мз		Labor Laborer and	- Here in state	بتعليم الملقو لعظمتهم بالمحطيطين	A STATE OF THE OWNER	A CONTRACTOR OF THE
FCC-AVIV		M1 Inc.	N.J.	and a state of the second state of the	Constraint of the second second		March 1997	and the state of the second	and in the second second second
40 dBµV	a a la desta d	M2				and a second statements			
30 dB/									
20,000									
10 dBµV									
0 dBµV									
o ubpv									
CF 9.5 GHz				6001	pts			Span	17.0 GHz
Marker									
Type Ref	Trc	X-value	1	Y-value	Func	tion	Fund	tion Result	1
M1	1	4.88	GHz	41.16 dBµʻ					
M2	2	4.88	GHz	31.73 dBµʻ					
M3	1	6.9306	10 10 10 10 10 10 10 10 10 10 10 10 10 1	47.78 dBµʻ					
M4	2	6.9136		39.57 dBµʻ					
M5	1	17.9533		59.18 dBµʻ					
M6	2	17.9703	GHz	50.52 dBµʻ	/]

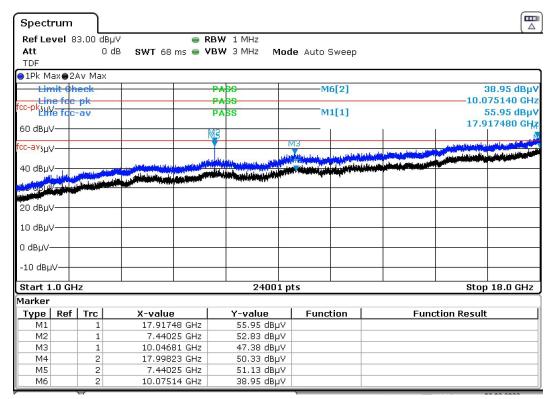
Remarks: Y-Value = received value + Correction Factor (Antenna factor + Cable loss - Preamp gain)

Vertical

Spectr	um												
Ref Le Att TDF	vel 9				RBW 1 MHz VBW 3 MHz	Mo	le Auto	Sweep	8				
😑 1Pk Ma	xe2A	v Max											
so d bjve	t Che	<u>-PK</u>			PASS PASS			6[2]				17.9	0.45 dBµV 07030 GHz
FCC-PK _{IV} -	FCC	-47			PASS	-	M	1[1]	ĩ		ī		0.07 dBµV. 7720 GHz M
60 dBµV-	-					-	daraa ada			. Marial	It was the second	ر الم	المحمد القدروا أحمد
FCC-AVIV			1339	M3	والمراجع والمراجع والمراجع	فتصبيعاني	فيهلغن أعل				a survey and a second		destates depletes a
40 dBµV-		and the second second	M1 M2			-	مي بندية المي بدارة م						
30 dBuy			and the state of the			_							
20.d84%						_							
10 dBµV-	_					_							
0 dBµV—													
ο ασμν													
CF 9.5 (Hz				600)1 pt:	5				S	span	17.0 GHz
Marker													
Туре	Ref	Trc	X-value		Y-value		Funct	tion		Fund	ction Re	sult	
M1		1	4.87	72 GHz	40.07 di								
M2		2	4.88	57 GHz	31.96 di	BμV							
M3		1	6.92	78 GHz	48.87 di								
M4		2	6.93	34 GHz	40.29 di	BμV							
M5		1	17.95	51 GHz	59.07 di	BμV							
M6		2	17.97	03 GHz	50.45 di	3μV							

Remarks: Y-Value = received value + Correction Factor (Antenna factor + Cable loss - Preamp gain)

Model	TR003ANANO
Operation Mode (worst case)	Mode 1 @2480 MHz
Test voltage	3.3 Vdc


Results Horizontal

Spectrur	n									
Ref Level Att TDF		lBµV DdB SWT 68m	e RBW s e VBW		lode A	uto S	weep			
●1Pk Maxe	2Av Ma	x								
Limit	Check		PA	88		-M5	[2]			47.23 dBµ
Line f	ec pk		PA	88		113-04			7.	439540 GH
fcc-pk3HYe f	dc-av		PA	SS		M1	[1]			53.52 dBµ
									17.	917480 GH
60 dBµV—										P
fcc-av _{3µV} —			MB		M3			2	and all office and all of the	and the left of the
1		10.0	. And .	in the	-	Law Local	A Marketon			
40 dBµV-	المري بالحر	the second states of the second s	And the Party of t							
المواجع والمراجع ووالمراجع والمراجع وواجع وواجم والمراجع وواجع وواجع وواجم والمراجع وواجع وواجع وواجم وواجع وواجع ووا		and the state of the								
il and the second second										
20 dBuV-										
20 0000										
10 dBµV—										_
0 dBµV										
10 dp.37										
-10 dBµV—										
Start 1.0	GHz	I		2400:	1 pts				Sto	p 18.0 GHz
Marker										
Type Re	ef Trc	X-value		Y-value	F	uncti	ion	Fun	ction Resul	t
M1	1	17.91748	GHz	53.52 dBµ	IV.					
M2	1	7,44025	GHz	48.01 dBµ	IV.					
MЗ	1	10.04681	GHz	45.36 dBµ	IV					
M4	2	17.99823	GHz	48.03 dBµ	IV					
M5	2	7.43954	GHz	47.23 dBµ	IV.					
M6	2	10.07514	GHz	39.05 dBµ	IV .					

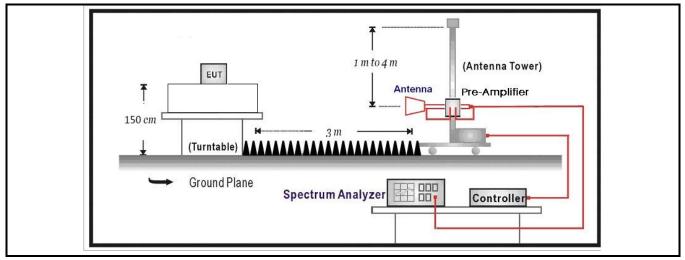
Remarks: Y-Value = received value + Correction Factor (Antenna factor + Cable loss - Preamp gain)

Vertical

Remarks: Y-Value = received value + Correction Factor (Antenna factor + Cable loss - Preamp gain)

4.3 Emissions in restricted frequency bands VERDICT: PASS

Frequency	Frequency	Frequency	Frequency
(MHz)	(MHz)	(MHz)	(GHz)
· · ·	. ,	. ,	· · /
0.090 – 0.110	16.42 – 16.423	399.9 – 410	4.5 – 5.15
0.495 – 0.505	16.69475 –16.69525	608 – 614	5.35 – 5.46
2.1735 – 2.1905	16.80425 – 16.80475	960 – 1240	7.25 – 7.75
4.125 – 4.128	25.5 – 25.67	1300 – 1427	8.025 - 8.5
4.17725 – 4.17775	37.5 – 38.25	1435 – 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 – 74.6	1645.5 – 1646.5	9.3 – 9.5
6.215 – 6.218	74.8 – 75.2	1660 – 1710	10.6 – 12.7
6.26775 - 6.26825	108 – 121.94	1718.8 – 1722.2	13.25 – 13.4
6.31175 – 6.31225	123 – 138	2200 – 2300	14.47 – 14.5
8.291 – 8.294	149.9 – 150.05	2310 – 2390	15.35 – 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 – 21.4
8.37625 - 8.38675	156.7 – 156.9	2690 – 2900	22.01 – 23.12
8.81425 – 8.81475	162.0125 – 167.17	3260 - 3267	23.6 - 24.0
12.29 – 12.293	167.72 – 173.2	3332 - 3339	31.2 – 31.8
12.51975-12.52025	240 – 285	3345.8 – 3358	36.43 - 36.5
12.57675-12.57725	322 – 335.4	3600 - 4400	
13.36 – 13.41			
Restricted Bands of oper	ation for IC		
0.090 - 0.110	13.36 - 13.41	960 - 1427	9.0 - 9.2
0.495 - 0.505	16.42 - 16.423	1435 - 1626.5	9.3 - 9.5
2.1735 - 2.1905	16.69475 - 16.69525	1645.5 - 1646.5	10.6 - 12.7
3.020 - 3.026	16.80425 - 16.80475	1660 - 1710	13.25 - 13.4
4.125 - 4.128	25.5 - 25.67	1718.8 - 1722.2	14.47 - 14.5
4.17725 - 4.17775	37.5 - 38.25	2200 - 2300	15.35 - 16.2
4.20725 - 4.20775	73 - 74.6	2310 - 2390	17.7 - 21.4
5.677 - 5.683	74.8 - 75.2	2483.5 - 2500	22.01 - 23.12
6.215 - 6.218	108 - 138	2655 - 2900	23.6 - 24.0
6.26775 - 6.26825	149.9 - 150.05	3260 - 3267	31.2 - 31.8
6.31175 - 6.31225	156.52475 - 156.52525	3332 - 3339	36.43 - 36.5
8.291 - 8.294	156.7 - 156.9	3345.8 - 3358	Above 38.6
8.362 - 8.366	162.0125 - 167.17	3500 - 4400	
8.37625 - 8.38675	167.72 - 173.2	4500 - 5150	
8.41425 - 8.41475	240 - 285	5350 - 5460	
12.29 - 12.293	322 - 335.4	7250 - 7750	
12.51975 - 12.52025	399.9 - 410	8025 - 8500	
12.57675 - 12.57725	608 - 614		



Restricted Band Emissions Limit											
Frequency (MHz)	Field strength (μV/m)	Field strength (dBµV/m)	Measurement distance (m)								
0.009 - 0.49	2400/F(kHz)	48.5 - 13.8	300(Note 1)								
0.49 - 1.705	24000/F(kHz)	33.8 - 23	30 _(Note 1)								
1.705 - 30	30	29.5	30 (Note 1)								
30 - 88	100	40	3(Note 2)								
88 - 216	150	43.5	3(Note 2)								
216 - 960	200	46	3 (Note 2)								
Above 960	500	54	3 (Note 2)								

Note 1: At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade).

Note 2: At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

Test Configuration

Performed measurements

Port under test	Enclo	Enclosure port					
Test method applied		Conducted measurement					
		Radiated measurement					
Test setup	Refe	to the Annex 3 for test setup photo(s).					
Operating mode(s) used	Mode	Mode 1					
Remark							

Model	TR003ANANO
Operation Mode (worst case)	Mode 1 @2402 MHz
Test voltage	3.3 Vdc

Results Horizontal

Spectrum								
		í		W 1 MHz				
Att	10 dE	SWT 32.1 r	ns 😑 VB	W З MHz	Mode Aut	o Swee	p	
TDF								
●1Pk Max●2								
Limit Ch	leck		PA		M	5[1]		An Ag2 dBi
90 denve FCC	C RB 2310	РК	PA					2.40176370 G
80 dBµV	C RB 2310	AV	PA	38	M	1[1]		34.42 dBj
								2.33470370 GI
FCC RB 2310 F	•К							
55 IB 14								
60 dBµV								
FCC RB 2310 A	W							
								- I 🖌 🔟 🔛
40 dBµV		NAT			640-		استناظ معلسون والمحمد لروسوان	
	in the state of the state	a para di seconda de la facto de la composición de la composición de la composición de la composición de la com	marking a barried line	ية كان إلى من من ما كان من الأليس. من من من كان من من ما يك	Promptine Celler	and the second	al para de la compañía	
rso dapo								
20 dBµV								
20 UBHV								
10 dBuV								
0 dBµV								
Start 2.31 G	Hz			3200	1 pts			Stop 2.412 GH
Marker								
Type Ref	Trc	X-value		Y-value	Func	tion	Fi	Inction Result
M1	1	2.3347037	GHz	34.42 dBµ				
M2	2	2.3681366	2 - 10 - 10	32.52 dBµ				
M3	2	2.3682099		32.69 dBµ				
M4	2	2.3340728		33.41 dBµ				
M5	1	2.4017637	GHz	94.22 dBj	1V			

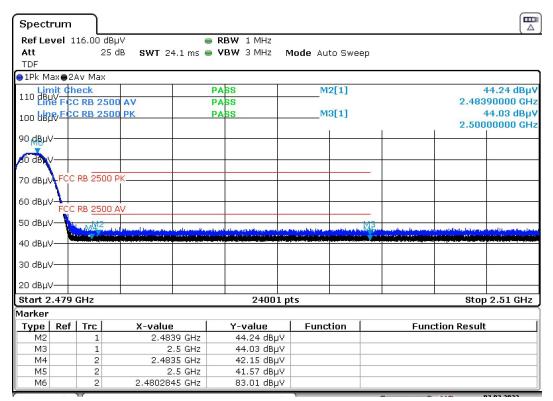
Remarks: Y-Value = received value + Correction Factor (Antenna factor + Cable loss - Preamp gain)

Vertical

Spectrum							
Ref Level 9 Att TDF		/ 3 SWT 32.1 ms	 RBW 1 MHz VBW 3 MHz 	Mode Aut	o Swee	р	,
●1Pk Max●2.	Av Max						
Limit Ch 90 dBHYe FCC 80 dBHV	C RB 2310		PASS PASS PASS		5[1]		83.13 dBµV 2.40%2500 GHz 74.69 dBµV
FCC RB 2310 F							2.33170370 GHz
60 dBµV							
FCC RB 2310 A	W						
and the second sec	a da escal piristeri.		n, alay un albid analasi ka la albid	Man Man		وروامه مخدر مصروب والوالي المرافعا المرافع	And the second sec
		· · · · · · · · · · · · · · · · · · ·					
20 dBµV							
10 dBµV							
0 dBµV							
Start 2.31 G	Hz		3200	1 pts			Stop 2.412 GHz
Marker							
Type Ref	Trc	X-value	Y-value	Func	tion	Fun	ction Result
M1	1	2.3347037 GHz	34.69 dB	μV			
M2	2	2.3681366 GHz					
M3	2	2.3682099 GHz					
M4	2	2.3340728 GHz					
M5	1	2.402025 GHz	83.13 dB	hA I			

Remarks: Y-Value = received value + Correction Factor (Antenna factor + Cable loss - Preamp gain)

Model	TR003ANANO
Operation Mode (worst case)	Mode 1 @2480 MHz
Test voltage	3.3 Vdc


Results Horizontal

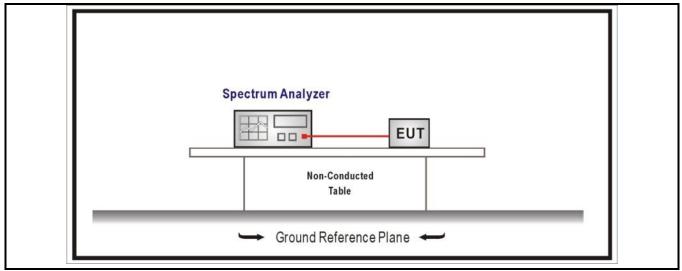
Spectrum								
Ref Level 1 Att			 RBW 1 MHz VBW 3 MHz 	Mode Au	to Sweep)		
TDF								
●1Pk Max●2.								
110 dBuy Line FCC	leck		PASS	M	1[1]			93.87 dBµV
Line FCC	5 RB 23		PASS		1110			128450 GHz 46.22 dBµV
100/18/20/ECC	-88-23		Pass	171	2[1]			50000 GHz
AO dBAV							2.100	
80 dBµV								
70 dBµV- <mark>FCC</mark>	RB 250	0 PK				-		
60 dBµV	RB 250	0.01/						
50 dBµV—	M2_				0	43		
	Maker .	and a second	الارد ويحمد وراداف أحمد المافي	ومرواف فيتلوا فيطعون	and the states of the second		فاستحد والرحر ويتحرا وأصرابه	والأروية ويتحربوا لخريته
40 dBμV								
30 dBµV								
20 dBuV								
Start 2.479	CHZ		2400	1 nts			Stor) 2.51 GHz
Marker	3112		2400	1 pt3			3.01	72.01 012
Type Ref	Trc	X-value	Y-value	Func	tion	Fun	ction Result	1
M1	1	2,4802845 GHz				7 011	iscion Result	
M2	1	2.4835 GHz						
M3	1	2.5 GHz	44.46 dB	VL VL				
M4	2	2.4835 GHz						
M5	2	2.5 GHz						
M6	2	2.4802845 GHz	93.87 dBµ	VL				

Remarks: Y-Value = received value + Correction Factor (Antenna factor + Cable loss - Preamp gain)

Vertical

Remarks: Y-Value = received value + Correction Factor (Antenna factor + Cable loss - Preamp gain)

4.4 Band Edge

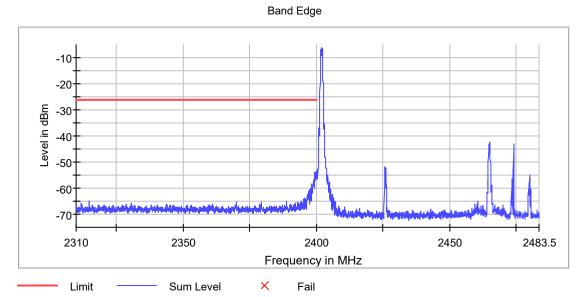

VERDICT: PASS

Standard	oh 15.247(d)	
RF Output power (Detection methods)		Limit(dB)
RF Outpu	t power(Average detector)	30dBc(Note1)
RF Out	put power(PK detector)	20dBc(Note2)

then the peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at by LEast 30 dB relative to the maximum in-band peak PSD by LEvel in 100 kHz (i.e., 30 dBc).

Note 2: If the maximum peak conducted output power procedure was used, then the peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at by least 20 dB relative to the maximum in-band peak PSD by level in 100 kHz (i.e., 20 dBc).

Test Configuration

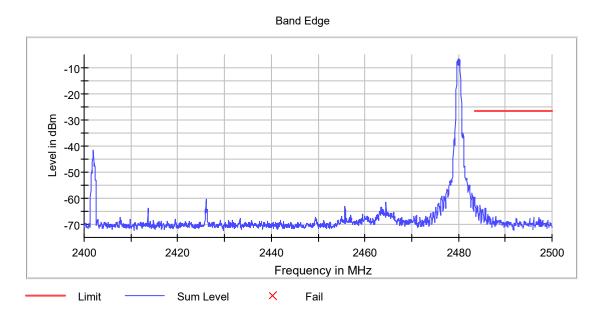


Performed measurements

Port under test	Antenna port		
Test method applied	\square	Conducted measurement	
		Radiated measurement	
Test setup	Refer	Refer to the Annex 3 for test setup photo(s).	
Operating mode(s) used	Mode	1	
Remark			

Results of mode 1 @2402 MHz

Inband Peak


Frequency	Level
(MHz)	(dBm)
2402.0000	-6.1

Measurements

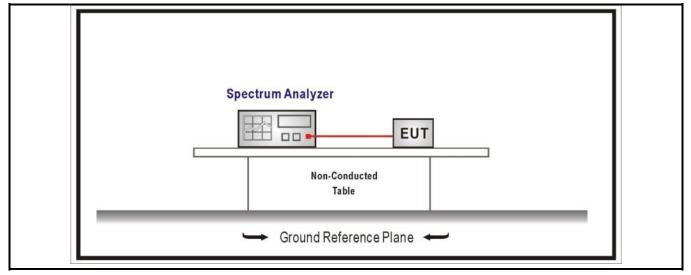
Frequency	Level	Margin	Limit	Result
(MHz)	(dBm)	(dB)	(dBm)	
2399.975000	-53.7	27.6	-26.1	PASS
2399.525000	-54.0	28.0	-26.1	PASS
2399.475000	-54.2	28.1	-26.1	PASS
2399.575000	-54.2	28.2	-26.1	PASS
2399.925000	-54.4	28.3	-26.1	PASS
2399.625000	-54.7	28.6	-26.1	PASS
2399.425000	-54.8	28.7	-26.1	PASS
2399.675000	-55.0	29.0	-26.1	PASS
2399.875000	-55.6	29.6	-26.1	PASS
2399.725000	-55.9	29.8	-26.1	PASS
2399.375000	-56.6	30.5	-26.1	PASS
2399.775000	-56.8	30.7	-26.1	PASS
2398.975000	-57.0	30.9	-26.1	PASS
2398.925000	-57.0	30.9	-26.1	PASS
2399.825000	-57.1	31.0	-26.1	PASS

Results of mode 1 @2480 MHz

Inband Peak

Frequency	Level
(MHz)	(dBm)
2480.0000	-6.5

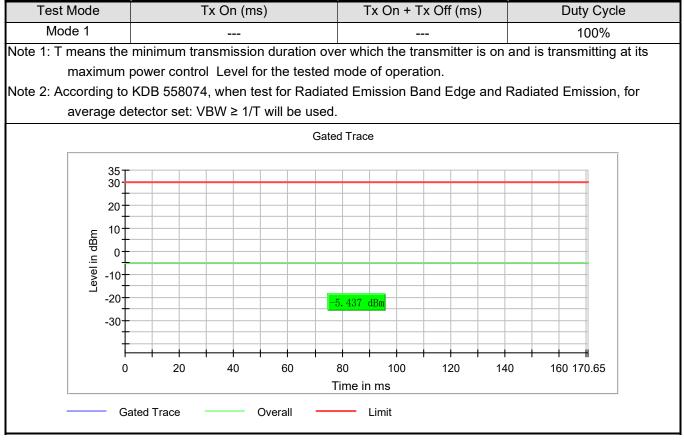
Measurements


Frequency	Level	Margin	Limit	Result
(MHz)	(dBm)	(dB)	(dBm)	
2483.525000	-59.8	33.3	-26.5	PASS
2483.975000	-62.6	36.0	-26.5	PASS
2484.025000	-62.6	36.1	-26.5	PASS
2484.625000	-62.6	36.1	-26.5	PASS
2483.575000	-62.6	36.1	-26.5	PASS
2484.575000	-62.9	36.4	-26.5	PASS
2484.675000	-63.0	36.4	-26.5	PASS
2484.075000	-63.4	36.9	-26.5	PASS
2484.125000	-63.4	36.9	-26.5	PASS
2485.775000	-63.8	37.3	-26.5	PASS
2485.725000	-63.9	37.4	-26.5	PASS
2483.625000	-63.9	37.4	-26.5	PASS
2483.925000	-64.0	37.5	-26.5	PASS
2485.125000	-64.2	37.7	-26.5	PASS
2485.175000	-64.3	37.8	-26.5	PASS

4.5 Duty cycle

VERDICT: PASS

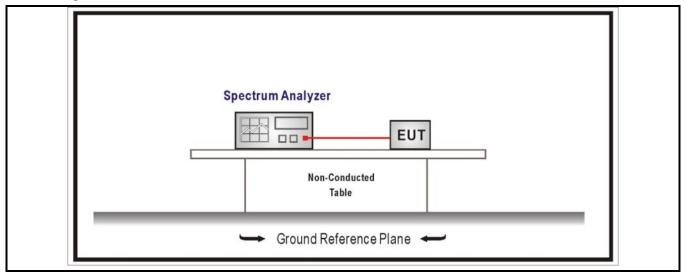
Test Configuration



Performed measurements

Port under test	Antenna port
Test method applied	Conducted measurement
	Radiated measurement
Test setup	Refer to the Annex 3 for test setup photo(s).
Operating mode(s) used	Mode 1
Remark	

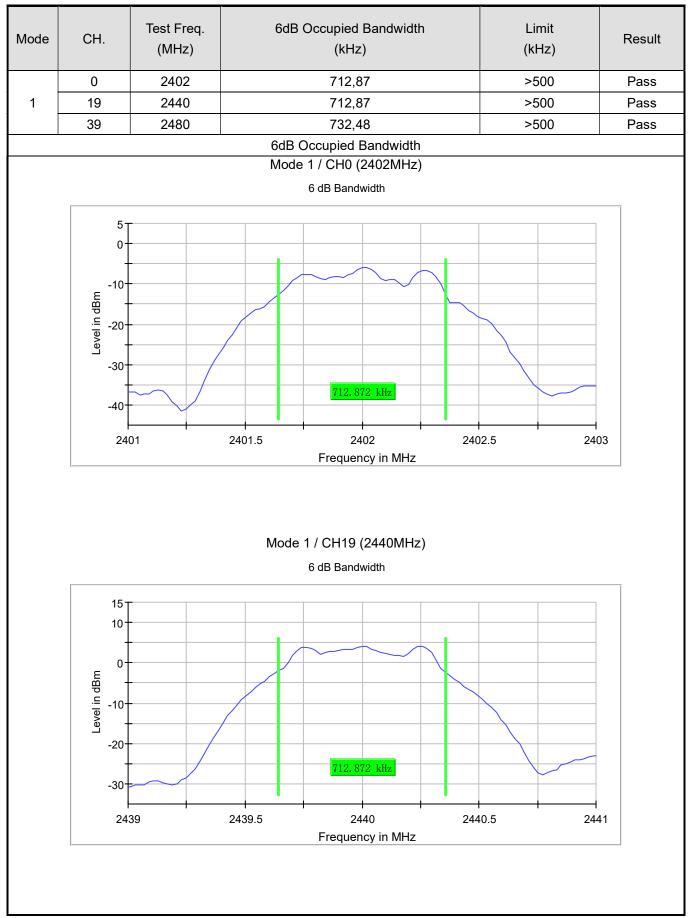
Results



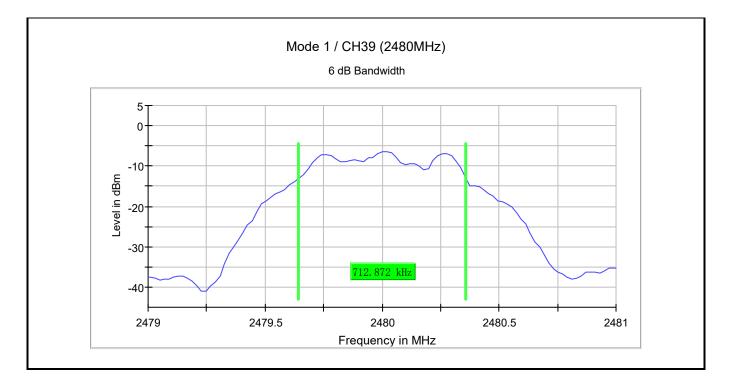
4.6 DTS Bandwidth VERDICT: PASS

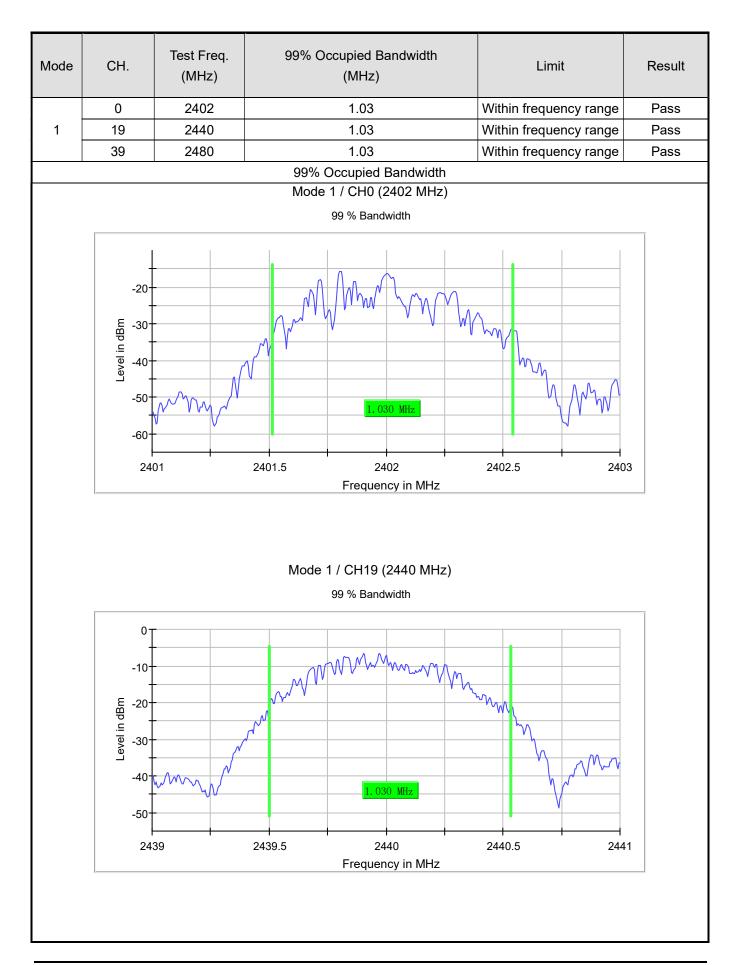
Standard	FCC Part 15 Subpart C Paragraph 15.247 (a)(2)
Systems using digital modulat shall be at by least 500 kHz	ion techniques operate in the 2400-2483.5 MHz .The minimum 6 dB bandwidth

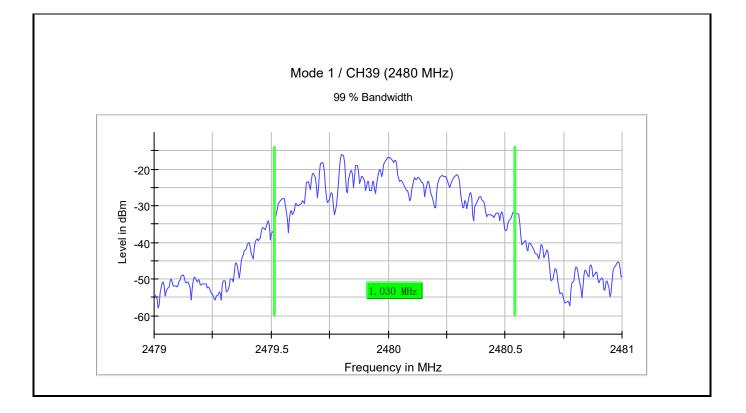
Test Configuration

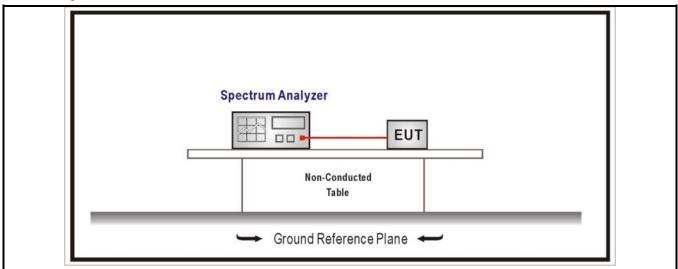


Performed measurements


Port under test	Antenna port
Test method applied	Conducted measurement
	Radiated measurement
Test setup	Refer to the Annex 3 for test setup photo(s).
Operating mode(s) used	Mode 1
Remark	


Results



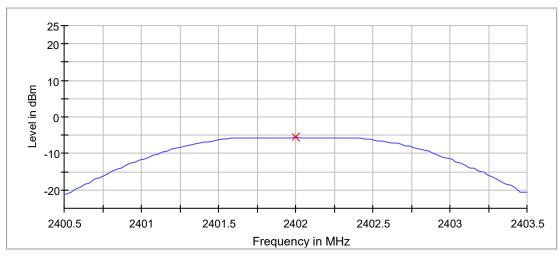


4.7 Fundamental emission output power VERDICT: PASS

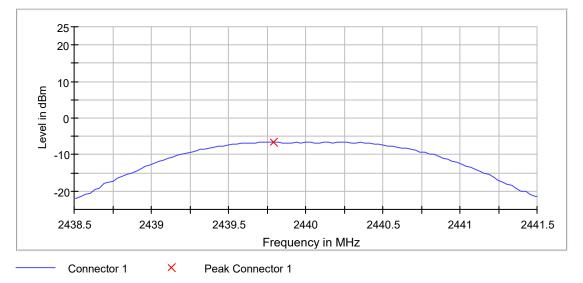
Stan	Standard FCC Pa		FCC Pa	art 15 Subpart C Paragraph 15.247 (b)(3)			
\boxtimes	GTX ·	<6dBi		Pout≤30dBm			
	GTX 🕽	≥6dBi					
		Non-Fix point-point		Pout≤30-(GTX -6)			
		Fix point-point		Pout≤30-[(GTX-6)]/3			
		Point-to-multipoint		Pout≤30-(GTX-6)			
		Overlap Beams		Pout≤30-[(GTX-6)]/3			
	Aggregate power transmitted simultaneously on all beams		eously	Pout≤30-[(GTX-6)]/3			
	singby LE directional beam		I	Pout≤30-[(GTX-6)]/3+8dB			
Note ⁻	Note 1 : GTX directional gain of transmitting antennas.						
Note 2	2 : Po	ut is maximum peak	conduc	ted output power .			

Test Configuration

Performed measurements

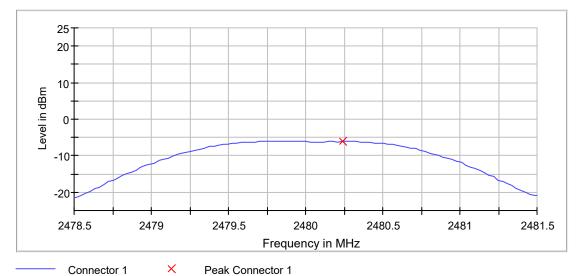

Port under test	Anter	nna port			
Test method applied		Conducted measurement			
		Radiated measurement			
Test setup	Refe	Refer to the Annex 3 for test setup photo(s).			
Operating mode(s) used	Mode	9 1			
Remark					

Results


Mode	Channel	Test Frequency (MHz)	Power Output (dBm)	Limit (dBm)	EIRP (dBm)	EIRP Limit (dBm)	Result
	0	2402	-5,6	≤30	-4,3	≤36	Pass
Mode 1	19	2440	-6,6	≤30	-5,3	≤36	Pass
	39	2480	-6,1	≤30	-4,8	≤36	Pass

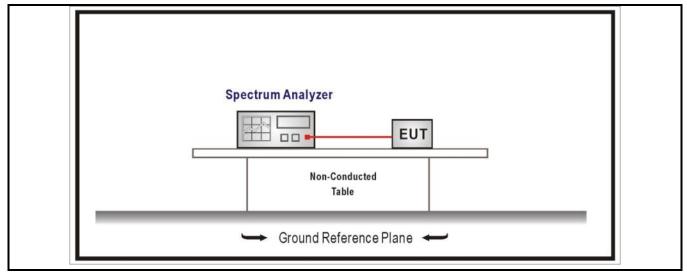
Data of Mode 1 Peak Power

Connector 1 × Peak Connector 1



DEKRA Testing and Certification (Shanghai) Ltd. Guangzhou Branch Block 5, No.3, Qiyun Road, Huangpu District, Guangzhou, Guangdong, China Tel +86 20 6661 2000 Fax +86 20 6661 2001 www.dekra.com

Peak Power



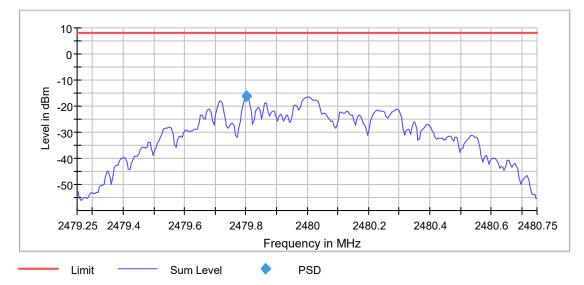
4.8 Power Density VERDICT: PASS

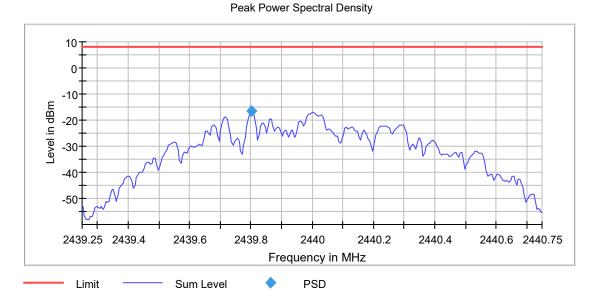
Standard	FCC Part 15 Subpart C Paragraph 15.247 (b)(3)
Power Spectral Density≤8dBm	/3kHz

Test Configuration

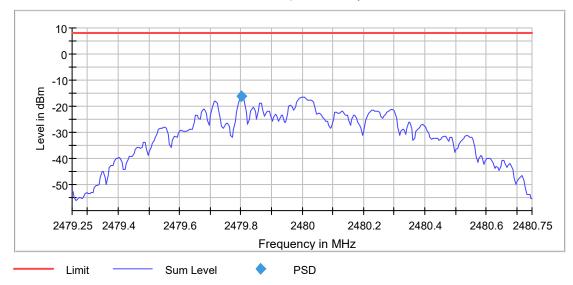
Performed measurements

Port under test	Antenna port				
Test method applied	\square	Conducted measurement			
		Radiated measurement			
Test setup	Refer to the Annex 3 for test setup photo(s).				
Operating mode(s) used	Mode 1				
Remark					


Results


Mode	Channel Frequency (MHz) (MHz)		Limit (dBm/3kHz)	Result	
	0	2402	-15,55	≤8	Pass
Mode 1	19	2440	-16,49	≤8	Pass
	39	2480	-15,97	≤8	Pass




Data of Mode 1

Peak Power Spectral Density

5 **IDENTIFICATION OF THE EQUIPMENT UNDER TEST**

The photographs show the tested device.

Refer to documents External photo and Internal photo.

ANNEX 1 – MEASUREMENT UNCERTAINTY

Test Item	Uncertainty
Occupied Channel Bandwidth	±0,7%
RF Output power, conducted	±0,6dB
Power Spectral Density, Conducted	±0,6dB
Unwanted Emissions, Conducted	±0.7dB
Spurious (30-1000MHz)	±4,4dB
Spurious (1-12,75GHz)	±4,4dB

ANNEX 2 - USED EQUIPMENT

Continuous disturbances conducted (150 kHz to 30 MHz)

Item	Instrumentation	Manufacturer	Model No.	Serial No.	DEKRA No.	Cal. Due date
1	EMI Receiver	R&S	ESCI	101206	G/L858	2024/07/21
2	LISN	R&S	ENV216	101336	G/L859	2024/07/21
3	Shielding Room	Changzhou Feite	/	/	G/L861	2024/06/17

Emissions in non-restricted frequency bands/ Emissions in restricted frequency bands

Item	Instrumentation	Manufacturer	Model No.	Serial No.	DEKRA No.	Cal. Due date
1	EMI receiver	R&S	ESCI	101205	G/L857	2024/07/21
2	Antenna (30MHz-3GHz)	SCHWARZBECK	VULB9163	506	G/L864	2024/10/26
3	Chamber	ETS	/	/	G/L856	2024/06/10
4	Antenna (1GHz-18GHz)	R&S	HF907	102306	G/L1236	2025/02/23
5	Horn antenna preamplifier	Schwarzbeek	SCU-18	102234	G/L1236-1	2025/02/21
6	Spectrum analyzer	R&S	FSV	SN101012	G/L1235	2025/01/17
7	HF antenna (18 – 26.5 GHz)	ETS	3160-09	00164643	G/L1237	2025/01/16
8	High frequency antenna preamplifier (18 – 26.5 GHz)	Schwarzbeck	SCU-26	1879064	G/L1237-1	2025/01/10
9	Broadband horn antenna (15 – 40 GHz)	Schwarzbeck	BBHA9170	00908	GZ1901	2025/05/06
10	High frequency antenna preamplifier (18 – 26.5 GHz)	Schwarzbeck	SCU-26	1879064	G/L1237-1	2025/01/10
11	Annular magnetic field antenna	TESEQ	HLA6121	540045	GZ1905	2025/05/12

Duty cycle/Band Edge/Fundamental emission output power/DTS Bandwidth/Power Spectral Density

ltem	Instrumentation	Manufacturer	Model	Serial no.	DEKRA No.	Cal Due date
1	Spectrum analyzer	R&S	FSV	SN101012	G/L1235	2025/01/17
2	Chamber	ETS	/	/	G/L856	2025/06/10
3	OSP	R&S	OSP 150	101907	GZ1894	2025/04/27

ANNEX 3 - TEST PHOTOS

Refer to document Test setup.

--- END ---