

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZB-R12-2101700

FCC REPORT

Applicant: HMD global Oy

Address of Applicant: Bertel Jungin aukio 9, 02600 Espoo, Finland

Equipment Under Test (EUT)

Product Name: Smart Phone

Model No.: TA-1370

Trade mark: NOKIA

FCC ID: 2AJOTTA-1370

Applicable standards: FCC CFR Title 47 Part 15 Subpart B

Date of sample receipt: 19 Aug., 2021

Date of Test: 20 Aug., to 28 Aug., 2021

Date of report issued: 30 Aug., 2021

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	30 Aug., 2021	Original

Tested by:	_///cke.uu	Date:	30 Aug., 2021	
	Test Engineer			

Reviewed by:

| Winner Thang | Date: 30 Aug., 2021 | Project Engineer |

Contents

			Page
1	C	OVER PAGE	1
2	VI	ERSION	2
3	C	ONTENTS	3
4		EST SUMMARY	
5		ENERAL INFORMATION	
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST MODE	7
	5.4	Measurement Uncertainty	7
	5.5	DESCRIPTION OF SUPPORT UNITS	8
	5.6	RELATED SUBMITTAL(S) / GRANT (S)	8
	5.7	DESCRIPTION OF CABLE USED	8
	5.8	Additions to, deviations, or exclusions from the method	
	5.9	LABORATORY FACILITY	8
	5.10	LABORATORY LOCATION	8
	5.11	TEST INSTRUMENTS LIST	9
6	TF	EST RESULTS AND MEASUREMENT DATA	10
	6.1	CONDUCTED EMISSION	10
	6.2	RADIATED EMISSION	13
7	TI	EST SETUP PHOTO	19
R	FI	UT CONSTRUCTIONAL DETAILS	19

4 Test Summary

Test Item	Section in CFR 47	Result		
Conducted Emission	Part 15.107	Pass		
Radiated Emission	Part 15.109	Pass		
Remark: 1. Pass: The EUT complies with the essential requirements in the standard. Test Method: ANSI C63.4:2014				

5 General Information

5.1 Client Information

Applicant:	HMD global Oy
Address:	Bertel Jungin aukio 9, 02600 Espoo, Finland
Manufacturer:	HMD global Oy
Address:	Bertel Jungin aukio 9, 02600 Espoo, Finland

5.2 General Description of E.U.T.

Product Name:	Smart Phone					
Model No.:	TA-1370	TA-1370				
Frequency Bands:	Band	TX Frequency (MHz)	RX Frequency (MHz)			
	GSM850:	824~849	869~894			
	GSM1900	1850~1910	1930~1990			
	WCDMA Band II:	1850~1910	1930~1990			
	WCDMA Band IV:	1710~1755	2110~2155			
	WCDMA Band V:	824~849	869~894			
	LTE Band 2:	1850~1910	1930~1990			
	LTE Band 4:	1710~1755	2110~2155			
	LTE Band 5:	824~849	869~894			
	LTE Band 7:	2500~2570	2620~2690			
	LTE Band 12:	699~716	729~746			
	LTE Band 13:	777~787	746~756			
	LTE Band 17:	704~716	734~746			
	LTE Band 38:	2570~2620	2570~2620			
	LTE Band 41:	2496~2690	2496~2690			
	LTE Band 66:	1710~1780	2110~2200			
	LTE Band CA_7C:	2500~2570	2620~2690			
	LTE Band CA_38C:	2570~2620	2570~2620			
	LTE Band CA_41C:	2496~2690	2496~2690			
	NR n2:	1850~1910	1930~1990			
	NR n5:	824~849	869~894			
	NR n7	2500~2570	2620~2690			
	NR n38:	2570~2620	2570~2620			
	NR n41:	2496~2690	2496~2690			
	NR n66:	1710~1780	2110~2200			
	NR n78:	3450~3550	3450~3550			
	Wi-Fi 2.4G	2412~2462	2412~2462			
	Bluetooth	2402~2480	2402~2480			
	Wi-Fi 5G	5150~5850	5150~5850			
	GNSS(GPS+ Galileo + Glonass + Beidou)	1	1599~1610			
	NFC	13.56	13.56			
	FM	1	88~108			
Power supply:	Rechargeable Lithium	ion Polymer Battery DC3.85	5V, 4.85Ah			
AC adapter:	Adapter 1:	TN-050200E3, TN-0502000	004			

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

	Input: AC100-240V, 50/60Hz, 0.35A
	Output: DC 5.0V, 2.0A 10.0W
	Note: Only the pins are different between different models
	Adapter 2:
	Model: TN-050200U3, TN-050200A3, TN-050200C3A
	Input: AC100-240V, 50/60Hz, 0.35A
	Output: DC 5.0V, 2.0A 10.0W
	Note: Only the pins are different between different models
	Adapter 3:
	Model: AD-010A, AD-010X
	Input: AC100-240V, 50/60Hz, 0.35A
	Output: DC 5.0V, 2.0A 10.0W
	Note: Only the pins are different between different models
Test Sample Condition:	The test samples were provided in good working order with no visible defects.
	_

5.3 Test Mode

Operating mode	Detail description
TM 1 mode	Keep the EUT and PC data exchange (Worst case)
TM 2 mode	Keep the EUT in Charging+Recording mode
TM 3 mode	Keep the EUT in Charging+Playing mode
TM 4 mode	Keep the EUT in FM receiver mode
TM 5 mode	Keep the EUT in GPS receiver mode
TM 6 mode	GSM850 Idle+BT+WLAN +GPS Rx+playing MP4 (SD card)+NFC+adapter
TM 7 mode	WCDMA Band V Idle+BT+WLAN +GPS Rx+playing MP4 (SD card)+NFC+adapter
TM 8 mode	LTE Band 5 Idle+BT+WLAN +GPS Rx+playing MP4 (SD card)+NFC+adapter
TM 9 mode	LTE Band 12 Idle +BT+WLAN +GPS Rx+playing MP4 (SD card)+NFC+adapter
TM 10 mode	LTE Band 13 Idle +BT+WLAN +GPS Rx+playing MP4 (SD card)+NFC+adapter
TM 11 mode	LTE Band 17 Idle +BT+WLAN +GPS Rx+playing MP4 (SD card)+NFC+adapter
TM 12 mode	NR n5 Idle +BT+WLAN +GPS Rx+playing MP4 (SD card)+NFC+adapter
Remark :	 During the test, pre-scan all mode, found TM 1 was worse case mode. The report only reflects the worst mode.

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))		
Conducted Emission (9kHz ~ 30MHz)	±2.62 dB (k=2)		
Radiated Emission (9kHz ~ 30MHz) (3m SAC)	±3.13 dB		
Radiated Emission (30MHz ~ 1000MHz) (3m SAC)	±4.45 dB		
Radiated Emission (1GHz ~ 18GHz) (3m SAC)	±5.34 dB		
Radiated Emission (18GHz ~ 40GHz) (3m SAC)	±5.34 dB		

Note: The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.26-2015. All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: JYTSZB-R12-2101700

5.5 Description of Support Units

Manufacturer	Description	Model	Model Serial Number	
LENOVO	Laptop	SL510	2847A65	DoC
DELL	MOUSE	MS116t1	N/A	DoC
MERCURY	Wireless router	MW150R	12922104015	FCC ID

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Description of Cable Used

Cable Type	Vendor	Model Name	Spec Info	Supplier PN
Detached USB Cable 1	Shenzhen Chuangyitong Technology Co., Ltd.	88806-025	Type-C/2A data cable/1M/AWG2 4/Black/CYT	P103-BVJ130- 010
Detached USB Cable 2	Shenzhen Yihuaxing Electronics CO.,Ltd. T365-011B		Type-C/2A data cable/1M/AWG2 4/Black/YHX	P103-BVJ130- 000
Detached headset cable DongGuan LongTa Xin Electronics Co.,Ltd.		LTX-LH021	3.5 round wire semi-in-ear type/low end with wheat/black 1.2m	P106-BTX130- 000

5.8 Additions to, deviations, or exclusions from the method

No

5.9 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

■ ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

● A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.10 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://www.ccis-cb.com

JianYan Testing Group Shenzhen Co., Ltd.

No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.11 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Management Number	Cal.Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	WXJ001-1	01-19-2021	01-18-2024
BiConiLog Antenna	SCHWARZBECK	VULB9163	WXJ002	03-03-2021	03-02-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	WXJ002-2	03-03-2021	03-02-2022
Pre-amplifier	HP	8447D	WXG001-2	03-07-2021	03-06-2022
Pre-amplifier	SKET	LNPA_0118G-50	WXG001-3	03-07-2021	03-06-2022
EMI Test Receiver	Rohde & Schwarz	ESRP7	WXJ003-1	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP30	WXJ004	03-03-2021	03-02-2022
Signal Generator	Agilent	N5173B	WXJ006-7	03-25-2021	03-24-2022
UXM 5G Wireless Test Platform	KEYSIGHT	E7515B	MY60192444	11-27-2020	11-26-2021
RF Switch Unit	Tonscend	JS0806-F	WXJ089	N	I/A
Test Software	Tonscend	TS+	\	/ersion: 3.0.0.1	

Conducted Emission:											
Test Equipment	Manufacturer	Model No.	Management Number	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)						
EMI Test Receiver	Rohde & Schwarz	ESCI	WXJ003	03-03-2021	03-02-2022						
LISN	Rohde & Schwarz	ENV432	WXJ005-2	04-06-2021	04-05-2022						
LISN	Rohde & Schwarz	ESH3-Z5	WXJ005-1	06-17-2020	06-16-2022						
Coaxial Cable	JYT	JYTCE-1G-NN- 2M	WXG003-1	03-03-2021	03-02-2022						
Simulated Station	Rohde & Schwarz	CMW500	WXJ008-3	06-17-2021	06-16-2022						
UXM 5G Wireless Test Platform	KEYSIGHT	E7515B	MY60192444	11-27-2020	11-26-2021						
RF Switch	Top Precision	RSU0301	WXG003	N/A	N/A						
EMI Test Software	AUDIX	E3	Version: 6.110919b								

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test results and Measurement Data

6.1 Conducted Emission

Test Requirement:	FCC Part 15 B Section 15.107								
Test Frequency Range:	150kHz to 30MHz								
Class / Severity:	Class B								
Receiver setup:	RBW=9kHz, VBW=30kHz								
Limit:	Frequency range (MHz)	Limit (dRu\/)							
	. , , ,	Quasi-peak	Average						
	0.15-0.5	66 to 56*	56 to 46*						
	0.5-5	56	46						
	0.5-30	60	50						
	* Decreases with the logarithm	of the frequency.							
Test setup:	Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	EMI Receiver							
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4(latest version) on conducted measurement. 								
Test Instruments:	Refer to section 5.11 for details								
Test mode:	Refer to section 5.3 for details								
Test results:	Pass								

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Measurement data:

Adapter 1:

Product name:	Smart Phone	Product model:	TA-1370
Test by:	Mike	Test mode:	TM 1 mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
_	MHz	dBu∜	₫B	₫₿	dB	dBu₹	dBu₹	<u>dB</u>	
1	0.253	22.82	10.25	-0.22	0.01	32.86	51.64	-18.78	Average
2	0.373	22.70	10.27	0.25	0.03	33.25	48.43	-15.18	Average
3	0.454	37.52	10.28	-0.01	0.03	47.82	56.80	-8.98	QP
4	0.454	25.93	10.28	-0.01	0.03	36.23	46.80	-10.57	Average
5	0.497	37.64	10.29	-0.32	0.03	47.64	56.05	-8.41	QP
6	0.497	27.55	10.29	-0.32	0.03	37.55	46.05	-8.50	Average
7	0.538	41.82	10.29	-0.36	0.03	51.78	56.00		
5 6 7 8 9	0.541	31.04	10.29	-0.36	0.03	41.00	46.00	-5.00	Average
9	0.617	37.90	10.30	-0.38	0.02	47.84	56.00		
10	0.627	26.60	10.30	-0.38	0.02	36.54	46.00	-9.46	Average
11	0.747	34.34	10.30	-0.24	0.03	44.43	56.00	-11.57	QP
12	0.923	33.77	10.32	0.26	0.04	44.39		-11.61	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Product name:	Smart Phone	Product model:	TA-1370
Test by:	Mike	Test mode:	TM 1 mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Level	Factor	Factor	Loss	Level	Limit	Limit	Remark
-	MHz	dBu₹	₫B	₫B	<u>d</u> B	dBu₹	dBu∜	<u>dB</u>	
1	0.454	20.59	10.27	-0.01	0.03	30.88	46.80	-15.92	Average
2	0.479	32.87	10.28	0.01	0.03	43.19	56.36	-13.17	QP
3	0.513	33.90	10.28	0.03	0.03	44.24	56.00	-11.76	QP
4	0.541	24.59	10.28	0.03	0.03	34.93	46.00	-11.07	Average
1 2 3 4 5 6 7 8 9	0.549	37.37	10.29	0.03	0.02	47.71	56.00	-8.29	QP
6	0.589	33.62	10.29	0.03	0.02	43.96	56.00	-12.04	QP
7	0.627	22.86	10.29	0.04	0.02	33.21	46.00	-12.79	Average
8	0.708	20.49	10.30	0.04	0.03	30.86	46.00	-15.14	Average
9	1.016	33.56	10.31	0.08	0.05	44.00	56.00	-12.00	QP
10	1.032	21.05	10.31	0.08	0.06	31.50	46.00	-14.50	Average
11	1.242	19.56	10.31	0.11	0.10	30.08	46.00	-15.92	Average
12	24.142	28.86	10.89	0.64	0.17	40.56		-19.44	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Remark: All adapter had been tested, but only the worst case data displayed in this report.

6.2 Padiated Emission

6.2 Radiated Emission										
Test Requirement:		FCC Part 15 B Section 15.109								
Test Frequency Range:	30MHz to 6000M	Hz								
Test site:	Measurement Dis	stance: 3m	Sem	i-Anechoic (Chamber)					
Receiver setup:	Frequency	Detecto	RBW	VBW	Remark					
	30MHz-1GHz	Quasi-pe	ak	120kHz	300kHz	Quasi-peak Value				
	Above 1GHz	Peak		1MHz	3MHz	Peak Value				
		RMS	Line	1MHz	3MHz	Average Value				
Limit:		Frequency Limit (dBuV/m @3m) Remark 30MHz-88MHz 40.0 Quasi-peak Value								
	88MHz-216			43.5		Quasi-peak Value				
	216MHz-960			46.0		Quasi-peak Value				
	960MHz-10			54.0		Quasi-peak Value				
				54.0		Average Value				
	Above 1G	HZ		74.0		Peak Value				
Test setup:	Below 1GHz Turn Table Ground Plane Above 1GHz	4m		RF 7 Rece						
	AE		3m		Antenna Tower					
Test Procedure:	ground at a 3 r degrees to dete 2. The EUT was s which was mou 3. The antenna h ground to dete	meter semi- ermine the page 3 meters unted on the eight is vari rmine the m	aneclositions aware top et of et o	hoic camber on of the hig by from the in of a variable om one mete um value of	The table The table	e-receiving antenna, ntenna tower. neters above the				

	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.11 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	All of the observed value above 6GHz ware the niose floor , which were no recorded

Measurement Data:

Below 1GHz:

Product Name:	Smart Phone	Product Model:	TA-1370
Test By:	Mike	Test mode:	TM 1 mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

QP Detector

Suspe	Suspected List											
NO.	Freq. [MHz]	Level [dBµV/ m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity				
1	30.0000	25.59	-23.94	40.00	14.41	233	327	Vertical				
2	41.4483	33.56	-22.89	40.00	6.44	205	17	Vertical				
3	59.2999	32.77	-22.23	40.00	7.23	364	98	Vertical				
4	117.8996	23.60	-22.90	43.50	19.90	173	175	Vertical				
5	173.3947	25.90	-23.74	43.50	17.60	306	227	Vertical				
6	289.0418	26.52	-19.01	46.00	19.48	385	17	Vertical				

Remark:

- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Page 15 of 19

Product Name:	Smart Phone	Product Model:	TA-1370
Test By:	Mike	Test mode:	TM 1 mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

QP Detector

Suspe	Suspected List											
NO.	Freq. [MHz]	Level [dBµV/ m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity				
1	39.5079	33.83	-22.94	40.00	6.17	153	349	Horizontal				
2	60.0760	31.75	-22.26	40.00	8.25	171	330	Horizontal				
3	73.0766	29.90	-24.04	40.00	10.10	136	156	Horizontal				
4	112.4665	28.01	-22.72	43.50	15.49	307	233	Horizontal				
5	154.1848	29.58	-24.39	43.50	13.92	205	17	Horizontal				
6	285.3551	32.27	-19.12	46.00	13.73	187	52	Horizontal				

Remark:

- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Page 16 of 19

Above 1GHz:

Product Name:	Smart Phone	Product Model:	TA-1370
Test By:	Mike	Test mode:	TM 1 mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Suspe	Suspected List							
NO.	Freq. [MHz]	Level [dBµV /m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	1270.3135	33.25	-30.58	74.00	40.75	263	313	Vertical
2	1699.5850	24.71	-28.64	54.00	29.29	272	99	Vertical
3	3638.5319	38.07	-23.32	74.00	35.93	205	62	Vertical
4	6197.1599	33.94	-13.35	54.00	20.06	163	9	Vertical
5	14057.5029	47.27	2.85	54.00	6.73	372	282	Vertical
6	16401.9201	58.19	2.39	74.00	15.81	311	322	Vertical

Remark

- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Smart Phone	Product Model:	TA-1370
Test By:	Mike	Test mode:	TM 1 mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

★ PK Detector
★ AV Detector

Suspe	Suspected List							
NO.	Freq. [MHz]	Level [dBµV /m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	1295.8148	32.38	-30.45	74.00	41.62	178	201	Horizontal
2	1456.4728	23.84	-29.60	54.00	30.16	164	209	Horizontal
3	2779.9890	35.95	-25.36	74.00	38.05	172	237	Horizontal
4	4633.9317	31.11	-19.37	54.00	22.89	206	9	Horizontal
5	13370.6685	57.12	2.42	74.00	16.88	211	84	Horizontal
6	13379.1690	47.21	2.48	54.00	6.79	384	222	Horizontal

Remark:

- 3. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

7 Test Setup Photo

Reference to the test setup photos: 15B-Test Setup Photo

8 EUT Constructional Details

Reference to the External Photo and Internal Photo

-----End of report-----