

No. I14Z45733-SEM01

For

TCT Mobile Limited

HSUPA/HSDPA/UMTS Tri-band/GSM Quad band mobile phone

Model Name: 5038E

With

Hardware Version: Proto

Software Version: 6B13

FCC ID: RAD491

Issued Date: 2014-05-29

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing.

Test Laboratory:

TMC Beijing, Telecommunication Metrology Center of MIIT

No. 52, Huayuan Bei Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2079, Fax:+86(0)10-62304633 Email:welcome@emcite.com. www.emcite.com

Revision Version

Report Number	Revision	Date	Memo
I14Z45733-SEM01	0	2014-04-30	Initial creation of test report
I14Z45733-SEM01	1	2014-05-19	Update the model name and remove the
114243733-3EIVIUT	ı	2014-05-19	marketing name
			1. Update the CM values in section 9.3
I14Z45733-SEM01	2	2014-05-29	on page 21
	2	2014-05-29	on page 21 2. Update the plots of system validation
			from page 71 to 74

TABLE OF CONTENT

1 TEST LABORATORY	5
1.1 TESTING LOCATION	5
1.2 TESTING ENVIRONMENT	
1.3 PROJECT DATA	5
1.4 Signature	5
2 STATEMENT OF COMPLIANCE	6
3 CLIENT INFORMATION	8
3.1 APPLICANT INFORMATION	8
3.2 Manufacturer Information	8
4 EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	9
4.1 ABOUT EUT	9
4.2 Internal Identification of EUT used during the test	
4.3 INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	
5 TEST METHODOLOGY	10
5.1 APPLICABLE LIMIT REGULATIONS	10
5.2 APPLICABLE MEASUREMENT STANDARDS	
6 SPECIFIC ABSORPTION RATE (SAR)	11
6.1 Introduction	11
6.2 SAR Definition	
7 TISSUE SIMULATING LIQUIDS	12
7.1 Targets for tissue simulating liquid	12
7.2 DIELECTRIC PERFORMANCE	
8 SYSTEM VERIFICATION	16
8.1 System Setup	16
8.2 System Verification	
9 MEASUREMENT PROCEDURES	
9.1 Tests to be performed	18
9.2 GENERAL MEASUREMENT PROCEDURE	
9.3 WCDMA MEASUREMENT PROCEDURES FOR SAR	
9.4 BLUETOOTH & WI-FI MEASUREMENT PROCEDURES FOR SAR	21
9.5 POWER DRIFT	21
10 AREA SCAN BASED 1-G SAR	22
10.1 Requirement of KDB	22
10.2 FAST SAR ALGORITHMS	22
11 CONDUCTED OUTDUT DOWED	22

11.1 Manufacturing tolerance	23
11.2 GSM Measurement result	25
11.3 WCDMA MEASUREMENT RESULT	26
11.4 WI-FI AND BT MEASUREMENT RESULT	26
12 SIMULTANEOUS TX SAR CONSIDERATIONS	28
12.1 Introduction	28
12.2 Transmit Antenna Separation Distances	
12.3 SAR MEASUREMENT POSITIONS	
12.4 STANDALONE SAR TEST EXCLUSION CONSIDERATIONS	29
13 EVALUATION OF SIMULTANEOUS	30
14 SAR TEST RESULT	31
14.1 The evaluation of multi-batteries	31
14.2 SAR RESULTS FOR FAST SAR.	32
14.2 SAR RESULTS FOR STANDARD PROCEDURE	37
15 SAR MEASUREMENT VARIABILITY	39
16 MEASUREMENT UNCERTAINTY	40
17 MAIN TEST INSTRUMENTS	44
ANNEX A GRAPH RESULTS	45
ANNEX B S YSTEM VERIFICATION RESULTS	65
ANNEX C SAR MEASUREMENT SETUP	76
ANNEX D POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHANTOM	82
ANNEX E E QUIVALENT MEDIA RECIPES	85
ANNEX F S YSTEM VALIDATION	86
ANNEX G PROBE CALIBRATION CERTIFICATE	87
ANNEX H DIPOLE CALIBRATION CERTIFICATE	98
ANNEY L SDOT CHECK TEST	122

1 Test Laboratory

1.1 Testing Location

Company Name:	TMC Beijing, Telecommunication Metrology Center of MIIT
Address:	No 52, Huayuan beilu, Haidian District, Beijing,P.R.China
Postal Code:	100191
Telephone:	+86-10-62304633
Fax:	+86-10-62304793

1.2 Testing Environment

Temperature:	18°C~25 °C,
Relative humidity:	30%~ 70%
Ground system resistance:	< 0.5 Ω
Ambient noise & Reflection:	< 0.012 W/kg

1.3 Project Data

Project Leader:	Qi Dianyuan
Test Engineer:	Lin Xiaojun
Testing Start Date:	April 4, 2014
Testing End Date:	April 22, 2014

1.4 Signature

Lin Xiaojun

(Prepared this test report)

Qi Dianyuan

(Reviewed this test report)

Xiao Li

Deputy Director of the laboratory (Approved this test report)

2 Statement of Compliance

This EUT is a variant product and the report of original sample is No.I14Z45729-SEM01.

According to the client request, we quote the test results of original sample from table 14.1 to 14.25. The results of spot check are presented in the annex I.

We perform the measurement of new headsets (CCB0005A11C1 and CCB0005A11C6) for each band in the position of having maximum value for body. The results are added in the tables of section 14.

The maximum results of S pecific A bsorption Rate found during testing for TCT Mobile Li mited HSUPA/HSDPA/UMTS Tri-band/GSM Quad band mobile phone 5038E are as follows:

Table 2.1: Highest Reported SAR (1g)

Exposure Configuration	Technology Band	Highest Reported SAR	Equipment Class	
	3	1g (W/Kg)		
	GSM 850	0.65		
Head	PCS 1900	0.39	PCE	
(Separation Distance 0mm)	UMTS FDD 2	0.85	PCE	
(Separation Distance offin)	UMTS FDD 5	0.55		
	WLAN 2.4 GHz	0.25	DTS	
	GSM 850	0.97		
Dadywarn	PCS 1900	1.08	PCE	
Body-worn (Separation Distance 10mm)	UMTS FDD 2	1.19	POE	
(Separation distance formin)	UMTS FDD 5	0.81		
	WLAN 2.4 GHz	0.29	DTS	

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue according to the ANSI C95.1-1999.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal and which provides a minimum separation distance of 10 mm between this device and the body of the user. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output.

The measurement together with the test system set-up is described in annex C of this test report. A detailed description of the equipment under test can be found in chapter 4 of this test report.

The highest reported SAR value is obtained at the case of (Table 2.1), and the values are: 1.19 W/kg (1g).

Table 2.2: The sum of reported SAR values for main antenna and WiFi

	Position	Main antenna	WiFi	Sum
Highest reported	Left hand, Touch cheek	0.85	0.09	0.94
SAR value for Head	Right hand, Touch cheek	0.67	0.25	0.92
Highest reported SAR value for Body	Rear	1.19	0.29	1.48

Table 2.3: The sum of reported SAR values for main antenna and Bluetooth

	Position	Main antenna	BT*	Sum
Highest reported SAR value for Head	Left hand, Touch cheek	0.85	0.29	1.14
Highest reported SAR value for Body	Rear	1.19	0.15	1.34

BT* - Estimated SAR for Bluetooth (see the table 13.3)

According to the above tables, the highest sum of reported SAR values is **1.48 W/kg (1g)**. The detail for simultaneous transmission consideration is described in chapter 13.

3 Client Information

3.1 Applicant Information

Company Name:	TCT Mobile Limited
Address (Deat	5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,
Address /Post:	Pudong Area Shanghai, P.R. China. 201203
City:	Shanghai
Postal Code:	201203
Country:	P.R.China
Contact:	Gong Zhizhou
Email:	zhizhou.gong@tcl.com
Telephone:	0086-21-61460890
Fax:	0086-21-61460602

3.2 Manufacturer Information

Company Name:	TCT Mobile Limited
Address /Deat	5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,
Address /Post:	Pudong Area Shanghai, P.R. China. 201203
City:	Shanghai
Postal Code:	201203
Country:	P.R.China
Contact:	Gong Zhizhou
Email:	zhizhou.gong@tcl.com
Telephone:	0086-21-61460890
Fax:	0086-21-61460602

4 Equipment Under Test (EUT) and Ancillary Equipment (AE)

4.1 About EUT

Description:	HSUPA/HSDPA/UMTS Tri-band/GSM Quad band mobile phone
Model Name:	5038E
Operating mode(s):	GSM 850/900/1800/1900, WCDMA 850/1900/2100, BT, Wi-Fi
	825 – 848.8 MHz (GSM 850)
	1850.2 – 1910 MHz (GSM 1900)
Tested Tx Frequency:	826.4–846.6 MHz (WCDMA850 Band V)
	1852.4–1907.6 MHz (WCDMA1900 Band II)
	2412 – 2462 MHz (Wi-Fi 2.4G)
GPRS/EGPRS Multislot Class:	12
GPRS capability Class:	В
	HSDPA: 10
WCDMA Category:	HSUPA: 6
	HSPA+: 14
	GSM: Rel8
Release Version:	GPRS: Rel5
	UMTS: Rel4
Test device Production information:	Production unit
Device type:	Portable device
Antenna type:	Integrated antenna
Accessories/Body-worn configurations:	Headset
Hotspot mode:	Support simultaneous transmission of hotspot and voice(or data)
Form factor:	132.5 mm × 67.9 mm

4.2 Internal Identification of EUT used during the test

EUT ID*	IMEI	HW Version	SW Version
EUT1	01408300000026	Proto	6B13
EUT2	01408300000018	Proto	6B13

^{*}EUT ID: is used to identify the test sample in the lab internally.

Note1: It is performed to test SAR with the EUT1 and conducted power with the EUT 2.

Note2: The sample information of spot check is presented in the annex I.

4.3 Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer
AE1	Battery	TLi018D1	1	BYD
AE2	Battery	TLi018D2	1	SCUD
AE3	Headset	CCB3160A11C1	1	Juwei
AE4	Headset	CCB3160A11C4	1	Meihao
AE5	Headset	CCB3160A15C1	1	Juwei
AE6	Headset	CCB3160A15C4	1	Meihao
AE7	Headset	CCB0005A11C1	1	Juwei
AE8	Headset	CCB0005A11C6	1	shenghua
AE9	Headset	CCB0005A10C1	1	Juwei
AE10	Headset	CCB0005A10C6	1	shenghua

^{*}AE ID: is used to identify the test sample in the lab internally.

Note: AE3 is same as AE5, so they can use the same results. AE4 is same as AE6, so they can use the same results. AE7 is same as AE9, so they can use the same results. AE8 is same as AE10, so they can use the same results.

5 TEST METHODOLOGY

5.1 Applicable Limit Regulations

ANSI C95.1–1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2 Applicable Measurement Standards

IEEE 1528–2013: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Experimental Techniques.

KDB447498 D01: General RF Exposure Guidance v05r01: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

KDB648474 D04 Handset SAR v01r01: SAR Evaluation Considerations for Wireless Handsets. **KDB941225 D06 Hotspot Mode SAR v01r01:** SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities

KDB248227: SAR measurement procedures for 802.112abg transmitters

KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r01: SAR Measurement

Requirements for 100 MHz to 6 GHz

KDB 865664 D02 RF Exposure Reporting v01r01: RF Exposure Compliance Reporting and Documentation Considerations

6 Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a b iological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, oc cupational/controlled and ge neral po pulation/uncontrolled, ba sed on a per ility to exercise control over his or her exposure. In general, awareness and ab occupational/controlled exposure limits are higher than the limits general population/uncontrolled.

6.2 SAR Definition

The S AR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of tissue and E is the RMS electrical field strength.

However f or ev aluating S AR of I ow pow er t ransmitter, el ectrical field m easurement i s typically applied.

7 Tissue Simulating Liquids

7.1 Targets for tissue simulating liquid

Table 7.1: Targets for tissue simulating liquid

Frequency (MHz)	Liquid Type	Conductivity (σ)	± 5% Range	Permittivity (ε)	± 5% Range
835	Head	0.90	0.86~0.95	41.5	39.4~43.6
835	Body	0.97	0.92~1.02	55.2	52.4~58.0
1900	Head	1.40	1.33~1.47	40.0	38.0~42.0
1900	Body	1.52	1.44~1.60	53.3	50.6~56.0
2450	Head	1.80	1.71~1.89	39.2	37.2~41.2
2450	Body	1.95	1.85~2.05	52.7	50.1~55.3

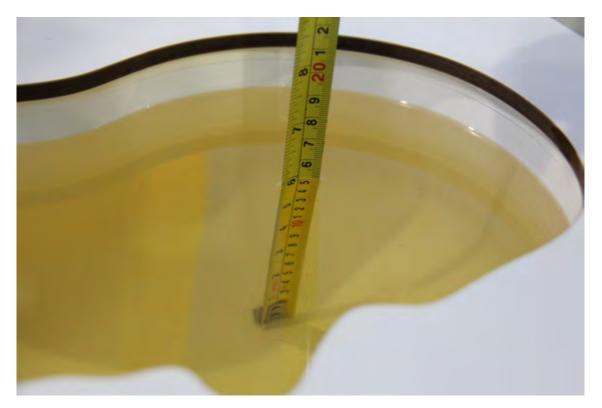
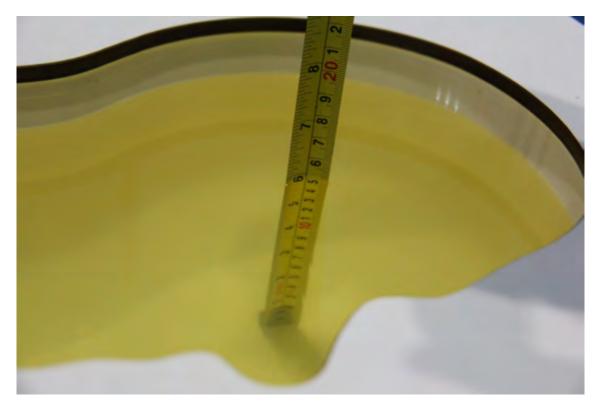

7.2 Dielectric Performance

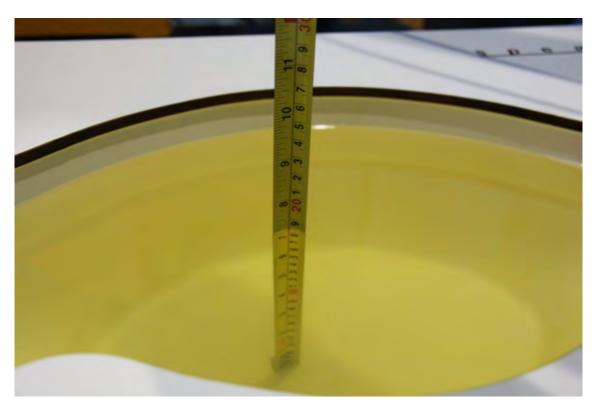
Table 7.2: Dielectric Performance of Tissue Simulating Liquid

Measurement Date	Type	Frequency	Permittivity	Drift	Conductivity	Drift
(yyyy-mm-dd)	Type	rype Frequency ε		(%)	σ (S/m)	(%)
2014-04-04	Head	835 MHz	42.02	1.25	0.918	2.00
2014-04-04	Body	835 MHz	56.59	2.52	0.986	1.65
2014-04-05	Head	1900 MHz	40.44	1.10	1.413	0.93
2014-04-05	Body	1900 MHz	51.87	-2.68	1.502	-1.18
2014-04-06	Head	2450 MHz	38.37	-2.12	1.836	2.00
2014-04-00	Body	2450 MHz	53.77	2.03	1.98	1.54
2014-04-21	Head	835 MHz	40.99	-1.23	0.897	-0.33
2014-04-21	Body	835 MHz	55.73	0.96	0.983	1.34
2014-04-22	Head	1900 MHz	39.23	-1.93	1.406	0.43
2014-04-22	Body	1900 MHz	53.87	1.07	1.539	1.25

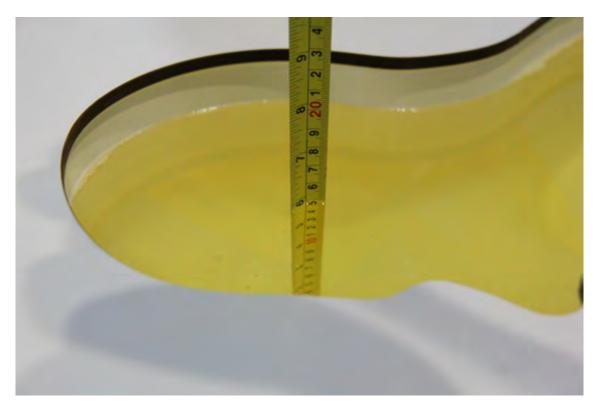
Note: The liquid temperature is 22.0 $^{\circ}\mathrm{C}$



Picture 7-1: Liquid depth in the Head Phantom (835 MHz)



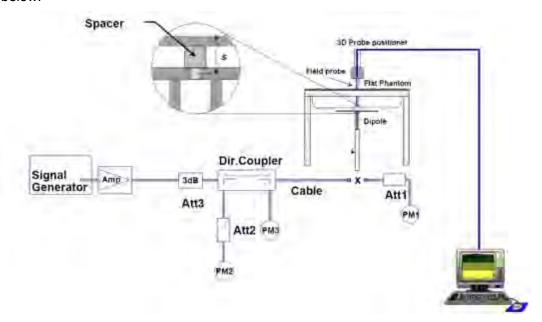
Picture 7-2: Liquid depth in the Flat Phantom (835 MHz)



Picture 7-3: Liquid depth in the Head Phantom (1900 MHz)

Picture 7-4 Liquid depth in the Flat Phantom (1900MHz)

Picture 7-5 Liquid depth in the Head Phantom (2450MHz)


Picture 7-6 Liquid depth in the Flat Phantom (2450MHz)

8 System verification

8.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Picture 8.1 System Setup for System Evaluation

Picture 8.2 Photo of Dipole Setup

8.2 System Verification

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device.

The system verification results are required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR. The details are presented in annex B.

Table 8.1: System Verification of Head

Measurement		Target val	ue (W/kg)	Measured	value (W/kg)	Deviation	
Date	Frequency	10 g	1 g	10 g	1 g	10 g	1 g
(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average
2014-04-04	835 MHz	6.16	9.44	6.28	9.68	1.95%	2.54%
2014-04-05	1900 MHz	21.3	40.4	21.64	40.80	1.60%	0.99%
2014-04-06	2450 MHz	24.9	53.4	24.36	52.40	-2.17%	-1.87%
2014-04-21	835 MHz	6.16	9.44	6.32	9.60	2.60%	1.69%
2014-04-22	1900 MHz	21.3	40.4	21.96	41.20	3.10%	1.98%

Table 8.2: System Verification of Body

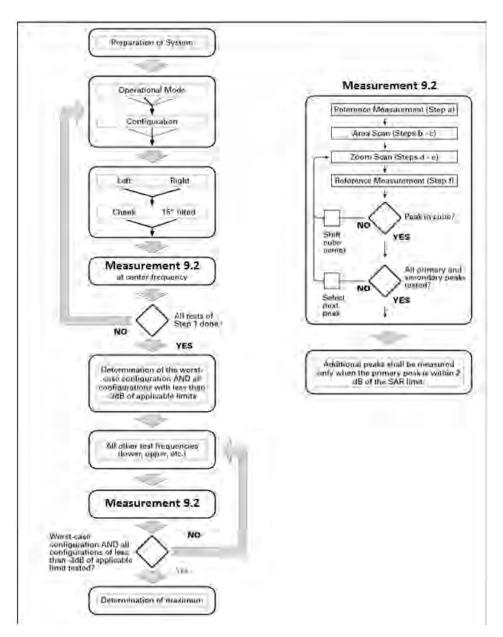
Measurement		Target val	ue (W/kg)	Measured	value (W/kg)	Deviation		
Date	Frequency	10 g	1 g	10 g	1 g	10 g	1 g	
(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average	
2014-04-04	835 MHz	6.20	9.40	6.28	9.56	1.29%	1.70%	
2014-04-05	1900 MHz	21.9	41.3	21.20	40.40	-3.20%	-2.18%	
2014-04-06	2450 MHz	23.4	50.4	23.84	51.60	1.88%	2.38%	
2014-04-21	835 MHz	6.20	9.40	6.08	9.28	-1.94%	-1.28%	
2014-04-22	1900 MHz	21.9	41.3	21.32	40.40	-2.65%	-2.18%	

9 Measurement Procedures

9.1 Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in picture 9.1.

Step 1: The tests described in 9.2 shall be performed at the channel that is closest to the centre of the transmit frequency band (f_c) for:


- a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in annex D),
- b) all configurations for each device position in a), e.g., antenna extended and retracted, and c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.

If more than three frequencies need to be tested according to 11.1 (i.e., $N_c >$ 3), then all frequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests described in 9.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

Picture 9.1 Block diagram of the tests to be performed

9.2 General Measurement Procedure

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2003. The results should be documented as part of the system validation records and may be requested to support test results

when all the measurement parameters in the following table are not satisfied.

			≥3 GHz	> 3 GHz
Maximum distance from (geometric center of pro			5 ± 1 mm	½-5·ln(2) ± 0.5 mm
Maximum probe angle from probe axis to phantom surface normal at the measurement location			30°±1°	20°±1°
			\leq 2 GHz \leq 15 mm 2 - 3 GHz: \leq 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}			When the x or y dimension of t measurement plane orientation measurement resolution must be dimension of the test device with point on the test device.	, is smaller than the above, the se < the corresponding x or y
Maximum zoom sean sp	patial resolu	tion: Δx _{Zcom} , Δy _{Zcom}	≤2 GHz: ≤8 mm 2 – 3 GHz: ≤5 mm	3-4 GHz < 5 mm 4-6 GHz < 4 mm
	uniform	zrid: Δz _{Zoom} (n)	≤5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zzep} (1): between 1 st two points closest to phantom surface	≤4 mm	3 – 4 GHz: ≤3 mm 4 – 5 GHz: ≤2.5 mm 5 – 6 GHz: ≤2 mm
grid $ \Delta z_{Z_{DSH}}(n{>}1); \ between \\ subsequent points $		≤1.5-Δa	z _{2rom} (n-1)	
Minimum zoom scan volume	x, y, z	J	≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: 5 is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

9.3 WCDMA Measurement Procedures for SAR

The following procedures are applicable to WCDMA handsets operating under 3GPP Release99, Release 5 and Release 6. The default test configuration is to measure SAR with an established radio I ink between the DUT and a communication test set using a 12.2kbps RMC (reference measurement channel) configured in Test Loop Mode 1. SAR is selectively confirmed for other physical channel configurations (DPCCH & DPDCH_n), HSDPA and HSPA (HSUPA/HSDPA) modes according to output power, exposure conditions and device operating capabilities. Both uplink and downlink should be configured with the same RMC or AMR, when required. SAR for Release 5 HSDPA and Release 6 HSPA are measured using the applicable FRC (fixed reference channel) and E-DCH reference channel configurations. Maximum output power is verified according to applicable versions of 3GPP TS 34.121 and SAR must be measured according to these maximum output conditions. When Maximum Power Reduction (MPR) is not implemented according to Cubic Metric (CM) requirements for Release 6 HSPA, the following procedures do not apply.

^{*} When zoom scan is required and the <u>reported</u> \$AR from the area scan based I-g \$AR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

For Release 5 HSDPA Data Devices:

Sub-test	$oldsymbol{eta}_c$	$oldsymbol{eta}_d$	β_d (SF)	$oldsymbol{eta}_c$ / $oldsymbol{eta}_d$	$oldsymbol{eta}_{hs}$	CM/dB
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15	15/15	64	12/15	24/25	1. 0
3	15/15	8/15	64	15/8	30/15	1. 5
4	15/15	4/15	64	15/4	30/15	1. 5

For Release 6 HSPA Data Devices

Sub-	$oldsymbol{eta_c}$	eta_d	eta_d	eta_c / eta_d	$oldsymbol{eta_{hs}}$	$oldsymbol{eta_{ec}}$	$oldsymbol{eta}_{ed}$	eta_{ed}	$oldsymbol{eta_{ed}}$ (codes)	CM (dB)	MPR (dB)	AG Index	E-TFCI
1	11/15	15/15	64	11/15	22/15	209/225	1039/225	4	1	2.0	2. 0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	12/15	4	1	2.0	2. 0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	eta_{ed1} :47/15 eta_{ed2} :47/15	4	2	2. 0	2. 0	15	92
4	2/15	15/15	64	2/15	4/15	4/15	56/75	4	1	2.0	2. 0	17	71
5	15/15	15/15	64	15/15	24/15	30/15	134/15	4	1	2. 0	2. 0	21	81

9.4 Bluetooth & Wi-Fi Measurement Procedures for SAR

Normal net work oper ating c onfigurations are not s uitable for m easuring the SAR of 802. 11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

9.5 Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Table 14.2 to Table 14.25 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

10 Area Scan Based 1-g SAR

10.1 Requirement of KDB

According to the KDB447498 D01 v05, when the implementation is based the specific polynomial fit algorithm as presented at the 29th Bioelectromagnetics Society meeting (2007) and the estimated 1-g SAR is \leq 1.2 W/kg, a zoom scan measurement is not required provided it is also not needed for any other purpose; for example, if the peak SAR location required for simultaneous transmission SAR test exclusion can be determined accurately by the SAR system or manually to discriminate between distinctive peaks and scattered noisy SAR distributions from area scans.

There must not be any warning or alert messages due to various measurement concerns identified by the SAR system; for example, noise in measurements, peaks too close to scan boundary, peaks are too sharp, spatial resolution and uncertainty issues etc. The SAR system verification must also demonstrate that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR (See Annex B). When all the SAR results for each exposure condition in a frequency band and wireless mode are based on estimated 1-g SAR, the 1-g SAR for the highest SAR configuration must be determined by a zoom scan.

10.2 Fast SAR Algorithms

The approach is based on the area scan measurement applying a frequency dependent attenuation parameter. This attenuation parameter was empirically determined by analyzing a large number of phones. The MOTOROLA FAST SAR was developed and validated by the MOTOROLA Research Group in Ft. Lauderdale.

In the initial study, an approximation algorithm based on Linear fit was developed. The accuracy of the algorithm has been demonstrated across a broad frequency range (136-2450 MHz) and for both 1- and 10-g averaged SAR using a sample of 264 SAR measurements from 55 wireless handsets. For the sample size studied, the root-mean-squared errors of the algorithm are 1.2% and 5.8% for 1- and 10-g averaged SAR, respectively. The paper describing the algorithm in detail is expected to be published in August 2004 within the Special Issue of Transactions on MTT.

In the second step, the same research group optimized the fitting algorithm to an Polynomial fit whereby the frequency validity was extended to cover the range 30-6000MHz. Details of this study can be found in the BEMS 2007 Proceedings.

Both algorithms are implemented in DASY software.

11 Conducted Output Power

11.1 Manufacturing tolerance

Table 11.1: GSM Speech

		•	
	GSI	M 850	
Channel	Channel 251	Channel 190	Channel 128
Target (dBm)	32.3	32.3	32.3
Tune-up (dBm)	33.3	33.3	33.3
	GSN	1 1900	
Channel	Channel 810	Channel 661	Channel 512
Target (dBm)	29.3	29.3	29.3
Tune-up (dBm)	30.3	30.3	30.3

Table 11.2: GPRS and EGPRS

	Ia	GSM 850 GPRS and GSM 850 GPRS (GN		
	Channel	251	190	128
	Target (dBm)	32.3	32.3	32.3
1 Txslot	Tune-up (dBm)	33.3	33.3	33.3
0 T 1 1	Target (dBm)	29.5	29.5	29.5
2 Txslots	Tune-up (dBm)	30.5	30.5	30.5
OT -1-1-	Target (dBm)	27.5	27.5	27.5
3Txslots	Tune-up (dBm)	28.5	28.5	28.5
4 T -1-1-	Target (dBm)	26.5	26.5	26.5
4 Txslots	Tune-up (dBm)	27.5	27.5	27.5
	l	GSM 850 EGPRS (GI	MSK)	
	Channel	251	190	128
1 Tyolot	Target (dBm)	32.3	32.3	32.3
1 Txslot	Tune-up (dBm)	33.3	33.3	33.3
O Tuelete	Target (dBm)	29.5	29.5	29.5
2 Txslots	Tune-up (dBm)	30.5	30.5	30.5
OT:relete	Target (dBm)	27.5	27.5	27.5
3Txslots	Tune-up (dBm)	28.5	28.5	28.5
4 Tuelete	Target (dBm)	26.5	26.5	26.5
4 Txslots	Tune-up (dBm)	27.5	27.5	27.5
		GSM 1900 GPRS (GI	MSK)	
	Channel	810	661	512
1 Txslot	Target (dBm)	29.3	29.3	29.3
1 1 X SIOL	Tune-up (dBm)	30.3	30.3	30.3
2 Tycloto	Target (dBm)	27	27	27
2 Txslots	Tune-up (dBm)	28	28	28
3Txslots	Target (dBm)	25	25	25
STXSIOIS	Tune-up (dBm)	26	26	26
4 Typloto	Target (dBm)	24	24	24
4 Txslots	Tune-up (dBm)	25	25	25

	GSM 1900 EGPRS (GMSK)						
	Channel	810	661	512			
1 Txslot	Target (dBm)	29.3	29.3	29.3			
1 1XSIOL	Tune-up (dBm)	30.3	30.3	30.3			
2 Txslots	Target (dBm)	27	27	27			
2 1 XSIOIS	Tune-up (dBm)	28	28	28			
3Txslots	Target (dBm)	25	25	25			
31 XSIOIS	Tune-up (dBm)	26	26	26			
4 Txslots	Target (dBm)	24	24	24			
4 1 XSIOLS	Tune-up (dBm)	25	25	25			

Table 11.3: WCDMA

Table 11.5. WCDMA									
WCDMA 850 CS									
Channel 4233	Channel 4182	Channel 4132							
22	22	22							
23	23	23							
HSUPA (s	ub-test 1~5)								
Channel 4233	Channel 4182	Channel 4132							
20.2	20.2	20.2							
21.2	21.2	21.2							
WCDMA	1900 CS								
Channel 9538	Channel 9400	Channel 9262							
22	22	22							
23	23	23							
HSUPA (s	ub-test 1~5)								
Channel 9538	Channel 9400	Channel 9262							
19.5	19.5	19.5							
20.5	20.5	20.5							
	WCDM/ Channel 4233 22 23 HSUPA (si Channel 4233 20.2 21.2 WCDM/ Channel 9538 22 23 HSUPA (si Channel 9538 19.5	WCDMA 850 CS Channel 4233							

Table 11.4: Bluetooth

Mode	Target (dBm)	Tune-up (dBm)
Bluetooth	7.5	8.5

Table 11.5: WiFi

Mode	Target (dBm)	Tune-up (dBm)
802.11 b (2.4GHz)	18.5	19.5
802.11 g (2.4GHz) 6Mbps~18Mbps	16	17
802.11 g (2.4GHz) 24Mbps~54Mbps	14.3	15.3
802.11 n HT20 MCS0~MCS3	13.5	14.5
802.11 n HT20 MCS4~MCS7	12	13
802.11 n HT40 MCS0~MCS2	11	12
802.11 n HT40 MCS3~MCS7	8.9	9.9

11.2 GSM Measurement result

During the process of testing, the EUT was controlled via Agilent Digital Radio Communication tester (E5515C) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

Table 11.6: The conducted power measurement results for GSM850/1900

GSM	Conducted Power (dBm)							
	Channel 251(848.8MHz)	Channel 190(836.6MHz)	Channel 128(824.2MHz)					
850MHz	32.90	32.92	33.03					
CCM		Conducted Power (dBm)						
GSM 1900MHz	Channel 810(1909.8MHz)	Channel 661(1880MHz)	Channel 512(1850.2MHz)					
1900MHZ	29.50	29.52	29.49					

Table 11.7: The conducted power measurement results for GPRS and EGPRS

GSM 850		red Power		calculation		ged Power	
GPRS (GMSK)	251	190	128	Carcaration	251	190	128
, ,				0 024D			
1 Txslot	32.80	32.87	32.99	-9.03dB	23.77	23.84	23.96
2 Txslots	30.22	30.20	30.24	-6.02dB	24.20	24.18	24.22
3Txslots	28.20	28.21	28.24	-4.26dB	23.94	23.95	23.98
4 Txslots	27.09	27.10	27.14	-3.01dB	24.08	24.09	24.13
GSM 850	Measu	red Power	(dBm)	calculation	Avera	ged Power	(dBm)
EGPRS (GMSK)	251	190	128		251	190	128
1 Txslot	32.83	32.90	33.01	-9.03dB	23.80	23.87	23.98
2 Txslots	30.23	30.21	30.28	-6.02dB	24.21	24.19	24.26
3Txslots	28.20	28.21	28.25	-4.26dB	23.94	23.95	23.99
4 Txslots	27.10	27.11	27.13	-3.01dB	24.09	24.10	24.12
PCS1900	Meası	red Power	(dBm)	calculation	Averaged Power (dBm)		
GPRS (GMSK)	810	661	512		810	661	512
1 Txslot	29.53	29.52	29.51	-9.03dB	20.50	20.49	20.48
2 Txslots	27.18	27.18	27.24	-6.02dB	21.16	21.16	21.22
3Txslots	25.13	25.11	25.14	-4.26dB	20.87	20.85	20.88
4 Txslots	24.04	24.06	24.09	-3.01dB	21.03	21.05	21.08
PCS1900	Meası	ıred Power	(dBm)	calculation	Avera	Averaged Power (dBm)	
EGPRS (GMSK)	810	661	512		810	661	512
1 Txslot	29.47	29.48	29.46	-9.03dB	20.44	20.45	20.43
2 Txslots	27.16	27.16	27.20	-6.02dB	21.14	21.14	21.18
3Txslots	25.11	25.09	25.12	-4.26dB	20.85	20.83	20.86
			l				

NOTES:

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

¹⁾ Division Factors

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

According to the conducted power as above, the body measurements are performed with 2Txslots for GSM850 and PCS1900.

Note: According to the K DB941225 D 03, "when S AR tests for E DGE or E GPRS mode is necessary, GMSK modulation should be used".

11.3 WCDMA Measurement result

Table 11.8: The conducted Power for WCDMA850/1900

ltam	band		FDDV result			
ltem	ARFCN	4233 (846.6MHz)	4182 (836.4MHz)	4132 (826.4MHz)		
WCDMA	1	22.89	22.92	22.89		
	1	20.03	20.48	20.53		
	2	20.00	19.96	20.02		
HSUPA	3	21.07	20.95	21.02		
	4	19.59	19.48	19.50		
	5	20.65	20.53	20.52		
ltom	band	FDDII result				
Item	ARFCN	9538 (1907.6MHz)	9400 (1880MHz)	9262 (1852.4MHz)		
WCDMA	١	22.81	22.76	22.64		
	1	20.38	20.22	20.14		
	2	19.90	19.73	19.64		
HSUPA	3	20.86	20.76	20.65		
	4	19.38	19.21	19.10		
	5	19.92	20.21	20.12		

Note: HSUPA body SAR for WCDMA850/1900 are not required, because maximum average output power of each RF channel with HSUPA active is not 1/4 dB higher than that measured without HSUPA and the maximum SAR for WCDMA850/1900 are not above 75% of the SAR limit.

11.4 Wi-Fi and BT Measurement result

The output power of BT antenna is as following:

Mode	Conducted Power (dBm)					
ivioue	Channel 0 (2402MHz)	Channel 39 (2441MHz)	Channel 78 (2480MHz)			
Bluetooth	Bluetooth 6.87		8.1			

The average conducted power for Wi-Fi is as following:

802.11b (dBm)

Channel\data rate	1Mbps	2Mbps	5.5Mbps	11Mbps
1	18.23	18.02	18.08	17.58
6	18.26	18.13	18.17	17.76
11	18.52	18.39	18.45	17.83

802.11g (dBm)

Channel\dat	6Mbps	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps
a rate								
1	15.94	15.74	15.54	15.17	14.81	14.06	13.59	13.43
6	16.15	15.97	15.77	15.41	15.06	14.52	13.81	13.65
11	16.31	16.08	15.90	15.55	15.12	14.60	14.08	13.81

802.11n (dBm) - HT20 (2.4G)

Channel\data rate	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
1	13.79	13.37	13.07	12.76	11.98	11.59	11.42	11.24
6	14.12	13.69	13.37	13.04	12.30	11.90	11.71	11.54
11	14.39	14.03	13.69	13.37	12.60	12.19	12.02	11.86

802.11n (dBm) - HT40 (2.4G)

Channel\data rate	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7
3	11.51	10.57	10.06	9.65	9.02	8.55	8.34	7.97
6	11.60	10.74	10.22	9.81	9.18	8.47	8.24	8.13
9	11.71	11.06	10.31	9.89	9.24	8.80	8.57	8.44

12 Simultaneous TX SAR Considerations

12.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g and Bluetooth devices which may simultaneously transmit with the licensed transmitter. For this device, the BT and Wi-Fi can transmit simultaneous with other transmitters.

12.2 Transmit Antenna Separation Distances

Picture 12.1 Antenna Locations

12.3 SAR Measurement Positions

According to the KDB941225 D06 Hot Spot SAR v01, the edges with less than 2.5 cm distance to the antennas need to be tested for SAR.

SAR measurement positions								
Mode Front Rear Left edge Right edge Top edge Bottom edge								
Main antenna	Yes	Yes	Yes Yes Yes		No	Yes		
WLAN	Yes	Yes	Yes	No	Yes	No		

12.4 Standalone SAR Test Exclusion Considerations

Standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied. The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

Table 12.1: Standalone SAR test exclusion considerations

Band/Mode	F(GHz)	Position	SAR test exclusion		utput wer	SAR test exclusion
			threshold (mW)	dBm	mW	
Pluotooth	2.441	Head	9.60	8.1	6.46	Yes
Bluetooth		Body	19.20	8.1	6.46	Yes
2.4GHz WLAN 802.11 b	2.45	Head	9.58	18.52	71.12	No
2.4GHZ WLAN 602.11 D	2.45	Body	19.17	18.52	71.12	No

13 Evaluation of Simultaneous

Table 13.1: The sum of reported SAR values for main antenna and WiFi

	Position	Main antenna	WiFi	Sum
Highest reported	Left hand, Touch cheek	0.85	0.09	0.94
SAR value for Head	Right hand, Touch cheek	0.67	0.25	0.92
Highest reported SAR value for Body	Rear	1.19	0.29	1.48

Table 13.2: The sum of reported SAR values for main antenna and Bluetooth

	Position	Main antenna	BT*	Sum
Highest reported SAR value for Head	Left hand, Touch cheek	0.85	0.29	1.14
Highest reported	Rear	1.19	0.15	1.34
SAR value for Body	Neai	1.18	0.13	1.54

BT* - Estimated SAR for Bluetooth (see the table 13.3)

Table 13.3: Estimated SAR for Bluetooth

Docition	E (CH-)	Dietares (mm)	Upper limi	Estimated _{1g}	
Position	F (GHz)	Distance (mm)	dBm	mW	(W/kg)
Head	2.441	5	8.5	7.08	0.29
Body	2.441	10	8.5	7.08	0.15

^{* -} Maximum possible output power declared by manufacturer

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion

Conclusion:

According to the above tables, the sum of reported SAR values is < 1.6W/kg. So the simultaneous transmission SAR with volume scans is not required.

14 SAR Test Result

It is determined by user manual for the distance between the EUT and the phantom bottom. The distance is 10mm and just applied to the condition of body worn accessory. It is performed for all SAR measurements with area scan based 1-g SAR estimation (Fast SAR). A zoom scan measurement is added when the estimated 1-g SAR is the highest measured SAR in each exposure configuration, wireless mode and frequency band combination or > 1.2W/kg. The calculated SAR is obtained by the following formula:

Reported SAR = Measured SAR $\times 10^{(P_{Target} - P_{Measured})/10}$

Where P_{Target} is the power of manufacturing upper limit;

P_{Measured} is the measured power in chapter 11.

Table 14.1: Duty Cycle

Mode	Duty Cycle
Speech for GSM850/1900	1:8.3
GPRS&EGPRS	1:4
WCDMA & WiFi	1:1

14.1 The evaluation of multi-batteries

We'll perform the head measurement in all bands with the primary battery depending on the evaluation of multi-batteries and retest on highest value point with other batteries. Then, repeat the measurement in the Body test.

Table 14.2: The evaluation of multi-batteries for Head Test

Freque	ency	Mode/Band	Cido	Test	Pottony Typo	SAR(1g)	Power
MHz	Ch.	Mode/Dand	Side	Position	Battery Type	(W/kg)	Drift(dB)
848.8	251	GSM850	Left	Touch	TLi018D1	0.591	0.00
848.8	251	GSM850	Left	Touch	TLi018D2	0.564	0.05

Note: According to the values in the above table, the battery, TLi018D1, is the primary battery. We'll perform the head measurement with this battery and retest on highest value point with others.

Table 14.3: The evaluation of multi-batteries for Body Test

	Frequ	ency	Mode/Band	Test	Spacing	Pattony Typo	SAR(1g)	Power
	MHz	Ch.	Mode/Band	Position	(mm)	Battery Type	(W/kg)	Drift(dB)
	1880	9400	WCDMA1900	Rear	10	TLi018D1	1.13	-0.10
Ī	1880	9400	WCDMA1900	Rear	10	TLi018D2	1.11	-0.18

Note: According to the values in the above table, the battery, TLi018D1, is the primary battery. We'll perform the body measurement with this battery and retest on highest value point with others.

14.2 SAR results for Fast SAR

Table 14.4: SAR Values (GSM 850 MHz Band - Head) - TLi018D1

				Ambient	Temperature	: 22.1 °C L	iquid Tempera	iture: 21.6 °C			
Frequ	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
		Side			Power		SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
848.8	251	Left	Touch	Fig.1	32.90	33.3	0.443	0.49	0.591	0.65	0.00
836.6	190	Left	Touch	/	32.92	33.3	0.379	0.41	0.551	0.60	-0.16
824.2	128	Left	Touch	/	33.03	33.3	0.361	0.38	0.524	0.56	-0.00
848.8	251	Left	Tilt	/	32.90	33.3	0.257	0.28	0.370	0.41	0.10
836.6	190	Left	Tilt	/	32.92	33.3	0.244	0.27	0.351	0.38	-0.03
824.2	128	Left	Tilt	/	33.03	33.3	0.240	0.26	0.344	0.37	0.01
848.8	251	Right	Touch	/	32.90	33.3	0.371	0.41	0.485	0.53	-0.00
836.6	190	Right	Touch	/	32.92	33.3	0.311	0.34	0.457	0.50	0.02
824.2	128	Right	Touch	/	33.03	33.3	0.303	0.32	0.445	0.47	-0.14
848.8	251	Right	Tilt	1	32.90	33.3	0.250	0.27	0.364	0.40	0.04
836.6	190	Right	Tilt	1	32.92	33.3	0.241	0.26	0.350	0.38	-0.08
824.2	128	Right	Tilt	1	33.03	33.3	0.236	0.25	0.342	0.36	-0.00

Table 14.5: SAR Values (GSM 850 MHz Band - Body) - TLi018D1

	A Livit To an analysis of the state of the s												
			An	nbient Ter	mperature: 22	.1°C Liqui	d Temperature	: 21.6 °C					
Frequ	ency	Mode	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power		
		(number of	Position	No.	Power	Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift		
MHz	Ch.	timeslots)	Position	INO.	(dBm)	rowei (ubili)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)		
836.6	190	GPRS (2)	Front	/	30.20	30.5	0.442	0.47	0.628	0.67	0.18		
848.8	251	GPRS (2)	Rear	1	30.22	30.5	0.624	0.67	0.893	0.95	-0.02		
836.6	190	GPRS (2)	Rear	/	30.20	30.5	0.699	0.75	0.906	0.97	0.04		
824.2	128	GPRS (2)	Rear	Fig.2	30.24	30.5	0.705	0.75	0.911	0.97	-0.08		
836.6	190	GPRS (2)	Left	/	30.20	30.5	0.463	0.50	0.685	0.73	-0.05		
836.6	190	GPRS (2)	Right	/	30.20	30.5	0.365	0.39	0.541	0.58	-0.03		
836.6	190	GPRS (2)	Bottom	/	30.20	30.5	0.098	0.11	0.154	0.17	0.13		
824.2	128	EGPRS (2)	Rear	/	30.28	30.5	0.698	0.73	0.905	0.95	-0.00		
824.2	128	Speech	Rear	,	33.03	33.3	0.206	0.20	0.405	0.42	-0.11		
024.2	120	Speech	Headset1	,	33.03	33.3	0.286	0.30	0.405	0.43	-0.11		
824.2	128	Speech	Rear	/	33.03	33.3	0.298	0.32	0.422	0.45	-0.09		
024.2	120	Speech	Headset2	,	33.03	33.3	0.290	0.32	0.422	0.45	-0.09		
824.2	128	Speech	Rear	,	32.72	33.3	0.289	0.33	0.411	0.47	0.18		
024.2	120	Speedil	Headset3	,	32.12	აა.ა	0.209	บ.ออ	0.411	0.47	0.10		
924.2	128	Speech	Rear	,	32.72	33.3	0.263	0.20	0.347	0.40	-0.03		
824.2	120	Speech	Headset4	/	32.12	33.3	0.203	0.30	0.347	0.40	-0.03		

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The H eadset1 is C CB3160A11C1, the H eadset2 is CCB3160A11C4, the H eadset3 is CCB 0005A11C1, the Headset4 is CCB0005A11C6.

Table 14.6: SAR Values (GSM 1900 MHz Band - Head) - TLi018D1

				Ambient	Temperature:	22.1 °C L	iquid Tempera	ture: 21.6 °C			
Freque	ency		Test	Eiguro	Conducted	May tupo up	Measured	Reported	Measured	Reported	Power
	_	Side		Figure	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1909.8	810	Left	Touch	Fig.3	29.50	30.3	0.191	0.23	0.323	0.39	0.16
1880	661	Left	Touch	/	29.52	30.3	0.183	0.22	0.308	0.37	-0.03
1850.2	512	Left	Touch	/	29.49	30.3	0.165	0.20	0.276	0.33	-0.11
1909.8	810	Left	Tilt	/	29.50	30.3	0.075	0.09	0.135	0.16	-0.11
1880	661	Left	Tilt	/	29.52	30.3	0.062	0.07	0.109	0.13	0.07
1850.2	512	Left	Tilt	/	29.49	30.3	0.053	0.06	0.092	0.11	0.14
1909.8	810	Right	Touch	/	29.50	30.3	0.139	0.17	0.227	0.27	0.06
1880	661	Right	Touch	/	29.52	30.3	0.127	0.15	0.208	0.25	0.13
1850.2	512	Right	Touch	/	29.49	30.3	0.104	0.13	0.171	0.21	0.11
1909.8	810	Right	Tilt	1	29.50	30.3	0.096	0.12	0.170	0.20	0.12
1880	661	Right	Tilt	/	29.52	30.3	0.079	0.09	0.140	0.17	0.11
1850.2	512	Right	Tilt	1	29.49	30.3	0.075	0.09	0.129	0.16	0.02

Table 14.7: SAR Values (GSM 1900 MHz Band - Body) - TLi018D1

	Ambient Temperature: 22.1 °C Liquid Temperature: 21.6 °C												
Freque	ency	Mode (number of	Test	Figure	Conducted Power	Max. tune-up	Measured SAR(10g)	Reported SAR(10g)	Measured SAR(1g)	Reported SAR(1g)	Power Drift		
MHz	Ch.	timeslots)	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)		
1880	661	GPRS (2)	Front	/	27.18	28	0.271	0.33	0.447	0.54	-0.05		
1909.8	810	GPRS (2)	Rear	Fig.4	27.18	28	0.499	0.60	0.895	1.08	-0.01		
1880	661	GPRS (2)	Rear	/	27.18	28	0.434	0.52	0.743	0.90	0.04		
1850.2	512	GPRS (2)	Rear	/	27.24	28	0.360	0.43	0.653	0.78	-0.03		
1880	661	GPRS (2)	Left	/	27.18	28	0.102	0.12	0.173	0.21	0.01		
1880	661	GPRS (2)	Right	/	27.18	28	0.083	0.10	0.146	0.18	0.11		
1880	661	GPRS (2)	Bottom	/	27.18	28	0.347	0.42	0.657	0.79	0.06		
1909.8	810	EGPRS (2)	Rear	/	27.16	28	0.492	0.60	0.880	1.07	0.05		
1909.8	810	Speech	Rear Headset1	/	29.50	30.3	0.231	0.28	0.395	0.47	-0.16		
1909.8	810	Speech	Rear Headset2	/	29.50	30.3	0.230	0.28	0.393	0.47	0.05		
1909.8	810	Speech	Rear Headset3	1	29.35	30.3	0.316	0.39	0.573	0.71	0.04		
1909.8	810	Speech	Rear Headset4	/	29.35	30.3	0.229	0.28	0.403	0.50	0.00		

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The H eadset1 is C CB3160A11C1, the H eadset2 is C CB3160A11C4, the H eadset3 is CCB 0005A11C1, the Headset4 is CCB0005A11C6.

Table 14.8: SAR Values (WCDMA 850 MHz Band - Head) - TLi018D1

				Ambient	Temperature:	22.1 °C Li	quid Tempera	ture: 21.6 °C			
Frequ	uency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
	1	Side		_	Power		SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
846.6	4233	Left	Touch	Fig.5	22.89	23	0.405	0.42	0.532	0.55	0.11
836.4	4182	Left	Touch	1	22.92	23	0.331	0.34	0.480	0.49	-0.05
826.4	4132	Left	Touch	1	22.89	23	0.229	0.23	0.433	0.44	0.07
846.6	4233	Left	Tilt	/	22.89	23	0.243	0.25	0.349	0.36	-0.00
836.4	4182	Left	Tilt	/	22.92	23	0.235	0.24	0.337	0.34	0.04
826.4	4132	Left	Tilt	/	22.89	23	0.200	0.21	0.286	0.29	0.02
846.6	4233	Right	Touch	/	22.89	23	0.337	0.35	0.444	0.46	-0.07
836.4	4182	Right	Touch	/	22.92	23	0.285	0.29	0.417	0.42	0.11
826.4	4132	Right	Touch	/	22.89	23	0.251	0.26	0.367	0.38	0.01
846.6	4233	Right	Tilt	1	22.89	23	0.251	0.26	0.363	0.37	0.07
836.4	4182	Right	Tilt	1	22.92	23	0.245	0.25	0.355	0.36	0.06
826.4	4132	Right	Tilt	1	22.89	23	0.208	0.21	0.301	0.31	0.01

Table 14.9: SAR Values (WCDMA 850 MHz Band - Body) - TLi018D1

	Ambient Temperature: 22.1 °C Liquid Temperature: 21.6 °C											
			Ambi	ient Temperatu	ıre: 22.1°C	Liquid Temperature: 21.6 °C						
Frequ	iency	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power		
	<u> </u>		No.	Power	Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift		
MHz	Ch.	Position	INO.	(dBm)	Power (dbill)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)		
836.4	4182	Front	/	22.92	23	0.518	0.53	0.741	0.75	0.09		
846.6	4233	Rear	/	22.89	23	0.517	0.53	0.739	0.76	0.05		
836.4	4182	Rear	Fig.6	22.92	23	0.615	0.63	0.800	0.81	0.02		
826.4	4132	Rear	/	22.89	23	0.451	0.46	0.642	0.66	-0.10		
836.4	4182	Left	/	22.92	23	0.441	0.45	0.651	0.66	-0.03		
836.4	4182	Right	/	22.92	23	0.357	0.36	0.529	0.54	-0.03		
836.4	4182	Bottom	/	22.92	23	0.112	0.11	0.178	0.18	0.00		
836.4	4182	Rear Headset1	1	22.92	23	0.271	0.28	0.397	0.40	0.02		
		Rear										
836.4	4182	Headset2	/	22.92	23	0.244	0.25	0.347	0.35	0.04		
026.4	4400	Rear	,	22.00	22	0.201	0.20	0.557	0.50	0.02		
836.4	4182	Headset3		22.98	23	0.391	0.39	0.557	0.56	-0.03		
836.4	4182	Rear	,	22.98	23	0.411	0.41	0.588	0.59	0.04		
030.4	7102	Headset4	,			0.411	0.41	0.366	0.59	0.04		

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The H eadset1 is C CB3160A11C1, the H eadset2 is C CB3160A11C4, the H eadset3 is CCB 0005A11C1, the Headset4 is CCB0005A11C6.

Table 14.10: SAR Values (WCDMA 1900 MHz Band - Head) - TLi018D1

	Ambient Temperature: 22.1 °C Liquid Temperature: 21.6 °C													
Freque	Frequency		Test	Figure	Conducted	May tupo up	Measured	Reported	Measured	Reported	Power			
		Side	Position	No.	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift			
MHz	Ch.		FUSITION	INO.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)			
1907.6	9538	Left	Touch	Fig.7	22.81	23	0.483	0.50	0.812	0.85	-0.02			
1880	9400	Left	Touch	/	22.76	23	0.357	0.38	0.604	0.64	0.09			
1852.4	9262	Left	Touch	/	22.64	23	0.357	0.39	0.599	0.65	0.14			
1907.6	9538	Left	Tilt	1	22.81	23	0.173	0.18	0.306	0.32	0.02			
1880	9400	Left	Tilt	/	22.76	23	0.134	0.14	0.236	0.25	0.11			
1852.4	9262	Left	Tilt	/	22.64	23	0.121	0.13	0.212	0.23	0.03			
1907.6	9538	Right	Touch	/	22.81	23	0.395	0.41	0.643	0.67	-0.07			
1880	9400	Right	Touch	/	22.76	23	0.320	0.34	0.530	0.56	0.11			
1852.4	9262	Right	Touch	/	22.64	23	0.300	0.33	0.494	0.54	0.14			
1907.6	9538	Right	Tilt	1	22.81	23	0.275	0.29	0.481	0.50	0.01			
1880	9400	Right	Tilt	1	22.76	23	0.217	0.23	0.375	0.40	-0.02			
1852.4	9262	Right	Tilt	1	22.64	23	0.214	0.23	0.367	0.40	0.01			

Table 14.11: SAR Values (WCDMA 1900 MHz Band - Body) - TLi018D1

			Ambie	nt Temperature	e: 22.1 °C	Liquid Tempe	rature: 21.6 °c	С		
Frequ	encv	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
	,			Power	·	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1907.6	9538	Front	1	22.81	23	0.457	0.48	0.744	0.78	0.05
1880	9400	Front	/	22.76	23	0.498	0.53	0.810	0.86	0.07
1852.4	9262	Front	1	22.64	23	0.441	0.48	0.719	0.78	-0.06
1907.6	9538	Rear	1	22.81	23	0.609	0.64	1.04	1.09	0.01
1880	9400	Rear	Fig.8	22.76	23	0.647	0.68	1.13	1.19	-0.10
1852.4	9262	Rear	/	22.64	23	0.588	0.64	1.00	1.09	-0.07
1880	9400	Left	/	22.76	23	0.135	0.14	0.229	0.24	-0.04
1880	9400	Right	/	22.76	23	0.118	0.12	0.209	0.22	-0.01
1907.6	9538	Bottom	/	22.81	23	0.419	0.44	0.763	0.80	-0.08
1880	9400	Bottom	/	22.76	23	0.456	0.48	0.834	0.88	0.11
1852.4	9262	Bottom	/	22.64	23	0.405	0.44	0.737	0.80	0.05
1880	9400	Rear		22.76	00	0.500	0.00	1.04	1.10	0.03
1000	9400	Headset1	/	22.76	23	0.596	0.63	1.04	1.10	0.03
1880	9400	Rear	/	22.76	23	0.584	0.62	1.02	1.08	0.02
1000	9400	Headset2	,	22.70	25	0.564	0.62	1.02	1.00	0.02
1880	9400	Rear	/	22.66	23	0.540	0.58	0.963	1.04	0.11
1000	3400	Headset1	,	22.00	23	0.540	0.50	0.803	1.04	0.11
1880	9400	Rear	/	22.66	23	0.415	0.45	0.703	0.76	0.09
1000	3400	Headset2	,	22.66	25	0.413	U. T U	0.703	0.70	0.03

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The Headset1 is CCB3160A11C1, the Headset2 is CCB3160A11C4, the Headset3 is CCB0005A11C1, the Headset4 is CCB0005A11C6.

Table 14.12: SAR Values (Wi-Fi 802.11b - Head) - TLi018D1

	Ambient Temperature: 22.2 °C Liquid Temperature: 21.7 °C														
Freque	Frequency		Test		Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power				
MHz	Ch.	Side	Position	Position	Position	Position	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
2437	6	Left	Touch	1	18.26	19.5	0.036	0.05	0.069	0.09	-0.03				
2437	6	Left	Tilt	/	18.26	19.5	0.026	0.03	0.051	0.07	0.13				
2437	6	Right	Touch	Fig.9	18.26	19.5	0.088	0.12	0.186	0.25	0.13				
2437	6	Right	Tilt	1	18.26	19.5	0.038	0.05	0.075	0.10	0.17				

Table 14.13: SAR Values (Wi-Fi 802.11b - Body) - TLi018D1

			Amb	pient Tempera	ture: 22.2 °C	Liquid Temperature: 21.7 °C				
Frequ	jencv	Toot	Eiguro	Conducted	May tupo up	Measured	Reported	Measured	Reported	Power
	i i i i i i i i i i i i i i i i i i i	Figure	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift	
MHz	Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
2437	6	Front	1	18.26	19.5	0.032	0.04	0.063	0.08	-0.18
2437	6	Rear	Fig.10	18.26	19.5	0.105	0.14	0.220	0.29	-0.17
2437	6	Left	1	18.26	19.5	0.087	0.12	0.180	0.24	0.11
2437	6	Тор	1	18.26	19.5	0.021	0.03	0.039	0.05	-0.10

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.14: SAR Values (WCDMA 1900 MHz Band - Head) - TLi018D2

	Ambient Temperature: 22.1 °C Liquid Temperature: 21.6 °C												
Frequency		Total		Ciauro	Conducted	May tune un	Measured	Reported	Measured	Reported	Power		
-	Side	Side	Test	Test Figure Position No.	Power Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift			
MHz	Ch.		Position		(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)		
1907.6	9538	Left	Touch	1	22.81	23	0.468	0.49	0.787	0.82	0.04		

Table 14.15: SAR Values (WCDMA 1900 MHz Band - Body) - TLi018D2

	Ambient Temperature: 22.1 °C Liquid Temperature: 21.6 °C											
Frequency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power		
	1	Position		Power	/er	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift		
MHz	Ch.	Position	No.	(dBm) Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)			
1880	9400	Rear	1	22.76	23	0.639	0.68	1.11	1.17	-0.18		

Note1: The distance between the EUT and the phantom bottom is 10mm.

14.2 SAR results for Standard procedure

There is zoom scan measurement to be added for the highest measured SAR in each exposure configuration/band.

Table 14.16: SAR Values (GSM 850 MHz Band - Head) - TLi018D1

					Ambient	Temperature	: 22.1 °C L	iquid Tempera	nture: 21.6 °C			
Fre	eque	ency		Test	Figure	Conducted	May tupo up	Measured	Reported	Measured	Reported	Power
	<u>.</u>		Side		J	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MH	lz	Ch.		Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
848	.8	251	Left	Touch	Fig.1	32.90	33.3	0.443	0.49	0.591	0.65	0.00

Table 14.17: SAR Values (GSM 850 MHz Band - Body) - TLi018D1

			An	nbient Ter	mperature: 22	.1°C Liqui	d Temperature	e: 21.6 °C			
Frequ	encv	Mode	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
	· · · · ·	(number of			Power	·	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	timeslots)	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
836.6	190	GPRS (2)	Rear	Fig.2	30.20	30.5	0.699	0.75	0.906	0.97	0.04

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.18: SAR Values (GSM 1900 MHz Band - Head) - TLi018D1

				Ambient	Temperature:	22.1 °C L	iquid Tempera	ture: 21.6 °C			
Freque	ency		Test	Figure	Conducted	May tupo up	Measured	Reported	Measured	Reported	Power
	Ť	Side		J	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1909.8	810	Left	Touch	Fig.3	29.50	30.3	0.191	0.23	0.323	0.39	0.16

Table 14.19: SAR Values (GSM 1900 MHz Band - Body) - TLi018D1

					•			<u> </u>			
			Ambi	ent Temp	erature: 22.1 °	°C Liquid T	emperature:	21.6°C			
Frequ	encv	Mode	Toot	Eiguro	Conducted	May tupo up	Measured	Reported	Measured	Reported	Power
	1	(number of	Test	Figure	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	timeslots)	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1909.8	810	GPRS (2)	Rear	Fig.4	27.18	28	0.499	0.60	0.895	1.08	-0.01

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.20: SAR Values (WCDMA 850 MHz Band - Head) - TLi018D1

				Ambient	Temperature:	22.1 °C Li	quid Tempera	ture: 21.6 °C			
Frequ	uency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
		Side	Position	No.	Power	Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		FUSILIUII	INO.	(dBm)	Fower (dbill)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
846.6	4233	Left	Touch	Fig.5	22.89	23	0.405	0.42	0.532	0.55	0.11

Table 14.21: SAR Values (WCDMA 850 MHz Band - Body) - TLi018D1

			Ambi	ent Temperatu	ıre: 22.1°C	Liquid Tempe	erature: 21.6°	CC C		
Fregu	iencv	Test	Figure	Conducted	May tung up	Measured	Reported	Measured	Reported	Power
	1		Figure	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
836.4	4182	Rear	Fig.6	22.92	23	0.615	0.63	0.800	0.81	0.02

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.22: SAR Values (WCDMA 1900 MHz Band - Head) - TLi018D1

				Ambient	Temperature:	22.1 °C Li	quid Tempera	ture: 21.6 °C			
Frequ	ency		Test	Figure		Max. tune-up	Measured	Reported	Measured	Reported	Power
	-	Side	Position	No.	Power	Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		1 0310011	140.	(dBm)	1 ower (dBill)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1907.6	9538	Left	Touch	Fig.7	22.81	23	0.483	0.50	0.812	0.85	-0.02

Table 14.23: SAR Values (WCDMA 1900 MHz Band - Body) - TLi018D1

			Ambie	nt Temperature	e: 22.1°C	Liquid Tempe	rature: 21.6°	С		
Frequ	Ch.	Test Position	Figure No.	Conducted Power (dBm)	Max. tune-up Power (dBm)	Measured SAR(10g) (W/kg)	Reported SAR(10g) (W/kg)	Measured SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)
1880	9400	Rear	Fig.8	22.76	23	0.647	0.68	1.13	1.19	-0.10

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table 14.24: SAR Values (Wi-Fi 802.11b - Head) - TLi018D1

								, ,			
				Ambient	Temperature:	22.2°C Li	iquid Tempera	ture: 21.7 °C			
Freque	ency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
		Side			Power	-	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.		Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
2437	6	Right	Touch	Fig.9	18.26	19.5	0.088	0.12	0.186	0.25	0.13

Table 14.25: SAR Values (Wi-Fi 802.11b - Body) - TLi018D1

			Aml	pient Tempera	ture: 22.2 °C	Liquid Temp	erature: 21.7	°C		
Frequ	jencv	Toot	Figure 2	Conducted	May tuna un	Measured	Reported	Measured	Reported	Power
		Test	Figure	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
2437	6	Rear	Fig.10	18.26	19.5	0.105	0.14	0.220	0.29	-0.17

Note1: The distance between the EUT and the phantom bottom is 10mm.

15 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Table 15.1: SAR Measurement Variability for Body GSM 850 (1g)

Freque	ency	Toot	Chaoina	Original	First	The	Second
MHz	Ch.	Test Position	Spacing (mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
836.6	190	Rear	10	0.906	0.897	1.01	1

Table 15.2: SAR Measurement Variability for Body GSM 1900 (1g)

Freque	ency	Test	Spacing	Original	First	The	Second
MHz	Ch.	Position	(mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
1909.8	810	Rear	10	0.895	0.889	1.01	1

Table 15.3: SAR Measurement Variability for Body WCDMA 850 (1g)

Frequ	iency	Toot	Test Spacing Original First		First	The	Second
MHz	Ch.	Position	(mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
836.4	4182	Rear	10	0.800	0.792	1.01	1

Table 15.4: SAR Measurement Variability for Head WCDMA 1900 (1g)

Frequ	ency		Test Original First		First	The	Second
MHz	Ch.	Side	Position	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
1907.6	9538	Left	Touch	0.812	0.803	1.01	1

Table 15.5: SAR Measurement Variability for Body WCDMA 1900 (1g)

					,		· · · · · · · · · · · · · · · · · · ·
Frequ	uency	Test	Spacing	Original First		The	Second
MHz	Ch.	Position	(mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
1880	9400	Rear	10	1.13	1.12	1.01	1

16 Measurement Uncertainty

16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

i Measurement O	IIIIai SAK	16212	(3001	VITIZ~	<u> </u>	<u>, </u>			
Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
		value	Distribution		1g	10g	Unc.	Unc.	of
							(1g)	(10g)	freedo
									m
surement system									
Probe calibration	В	5.5	N	1	1	1	5.5	5.5	∞
Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
RF a mbient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞
RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	∞
Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	∞
Probe p ositioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
	•	Test	sample related	ì	•	•	•		
Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
Drift of out put power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
		Phant	tom and set-u	p					
Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
Liquid c onductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
Liquid c onductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
Liquid p ermittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
Liquid p ermittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
	Error Description Surement system Probe calibration Isotropy Boundary effect Linearity Detection limit Readout electronics Response time Integration time RF a mbient conditions-noise RF ambient conditions-reflection Probe positioned mech. restrictions Probe p ositioning with respect to phantom shell Post-processing Test sample positioning Device holder uncertainty Drift of out put power Phantom uncertainty Liquid c onductivity (target) Liquid p ermittivity (target) Liquid p ermittivity (target) Liquid p ermittivity	Error Description Surement system Probe calibration Isotropy B Boundary effect B Linearity B Detection limit B Readout electronics B Response time B Integration time B RF a mbient conditions-noise RF ambient conditions-reflection Probe positioned mech. restrictions Probe p ositioning with respect to phantom shell Post-processing B Test sample positioning With respect to phantom shell Post-processing B Test sample positioning With respect to phantom shell Post-processing B Test sample positioning B Liquid c onductivity (target) Liquid c onductivity (target) Liquid p ermittivity R Liquid p ermittivity	Surement system Probe calibration B 5.5 Isotropy B 4.7 Boundary effect B 1.0 Linearity B 4.7 Detection limit B 1.0 Readout electronics B 0.3 Response time B 0.8 Integration time B 2.6 RF a mbient conditions-noise B 0.8 RF ambient conditions-reflection B 0.4 Probe positioned mech. restrictions B 0.4 Probe p ositioning with respect to phantom shell B 0.9 Post-processing B 1.0 Test sample positioning B 1.0 Test sample positioning B 1.0 Probe p ositioning B 1.0 Test sample positioning B 1.0 Test sample positioning B 1.0 Liquid c onductivity (target) B 3.0 Liquid p ermittivity (target) B 5.0 Liquid p ermittivity (target) B 5.0 Liquid p ermittivity (target) B 5.0 Liquid p ermittivity (target) B 5.0	Error Description	Error Description Type Uncertainty value Div.	Error Description Type Uncertainty value Probably Distribution Probably value Probably Distribution Probably Di	Type Uncertainty Probably Div. C(i) 10g 10g	Type	Probe calibration B S.5 N 1 1 1 1 1 1 1 1 1

(Combined standard uncertainty	u' _c =	$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					9.25	9.12	257
-	anded uncertainty fidence i nterval of	ı	$u_e = 2u_c$					18.5	18.2	
16.	2 Measurement U	ncerta	inty for No	rmal SAR	Tests	(3~6	GHz)	1		T
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
	surement system	1				1 .	1 .	T _		I
1	Probe calibration	В	6.5	N	1	1	1	6.5	6.5	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF a mbient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	∞
11	Probe positioned mech. restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
12	Probe p ositioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	∞
13	Post-processing	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
			Test	sample related	1					
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
16	Drift of out put power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
			Phan	tom and set-u	p					
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
18	Liquid c onductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
19	Liquid c onductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43

20	Liquid p ermittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
21	Liquid p ermittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty	$u_c^{'} =$	$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					10.8	10.7	257
Expanded uncertainty (confidence i nterval of 95 %)		ı	$u_e = 2u_c$					21.6	21.4	

16.3 Measurement Uncertainty for Fast SAR Tests (300MHz~3GHz)

No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Mea	surement system									
1	Probe calibration	В	5.5	N	1	1	1	5.5	5.5	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
9	RF a mbient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. Restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8
12	Probe p ositioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
14	Fast SAR z-Approximation	В	7.0	R	$\sqrt{3}$	1	1	4.0	4.0	8
			Test	sample related	l					
15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
16	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
17	Drift of out put power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
			Phan	tom and set-uj	p					

18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
19	Liquid c onductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
20	Liquid c onductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
21	Liquid p ermittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
22	Liquid p ermittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty	$u_c^{'} =$	$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					10.1	9.95	257
Expanded uncertainty (confidence i nterval o f 95 %)		l	$u_e = 2u_c$					20.2	19.9	

16.4 Measurement Uncertainty for Fast SAR Tests (3~6GHz)

No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedo
										m
Meas	surement system									
1	Probe calibration	В	6.5	N	1	1	1	6.5	6.5	8
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	8
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	8
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
9	RF a mbient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. Restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
12	Probe p ositioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	80
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
14	Fast SAR z-Approximation	В	14.0	R	$\sqrt{3}$	1	1	8.1	8.1	8
			Test s	sample related	l					
15	Test sample	A	3.3	N	1	1	1	3.3	3.3	71

	nogitioning									
	positioning									
16	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
17	Drift of out put power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
			Phan	tom and set-u	p					
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
19	Liquid c onductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
20	Liquid c onductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
21	Liquid p ermittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
22	Liquid p ermittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty	$u_c^{'} =$	$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					13.3	13.2	257
_	inded uncertainty fidence i nterval o f	ı	$u_e = 2u_c$					26.6	26.4	

17 MAIN TEST INSTRUMENTS

Table 17.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period		
01	Network analyzer	E5071C	MY46110673	February 15, 2014	One year		
02	Power meter	NRVD	102083	Contombor 11, 2012	One year		
03	Power sensor	NRV-Z5	100542	September 11, 2013	One year		
04	Signal Generator	E4438C	MY49070393	November 08, 2013	One Year		
05	Amplifier	60S1G4	0331848	No Calibration Requested			
06	BTS	E5515C	MY50263375	January 30, 2014	One year		
07	E-field Probe	SPEAG EX3DV4	3846	September 03, 2013	One year		
08	DAE	SPEAG DAE4	771	November 12, 2013	One year		
09	Dipole Validation Kit	SPEAG D835V2	443	August 29, 2013	One year		
10	Dipole Validation Kit	SPEAG D1900V2	5d101	July 09, 2013	One year		
11	Dipole Validation Kit	SPEAG D2450V2	853	July 08, 2013	One year		

^{***}END OF REPORT BODY***

ANNEX A G raph Results

850 Left Cheek High

Date: 2014-4-4

Electronics: DAE4 Sn771 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.933$ S/m; $\epsilon r = 41.832$; $\rho = 1000$

kg/m³

Ambient Temperature: 22.1°C Liquid Temperature: 21.6°C

Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 - SN3846 ConvF(8.92, 8.92, 8.92)

Cheek High/Area Scan (61x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.612 W/kg

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.179 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.750 W/kg

SAR(1 g) = 0.591 W/kg; SAR(10 g) = 0.443 W/kg

Maximum value of SAR (measured) = 0.611 W/kg

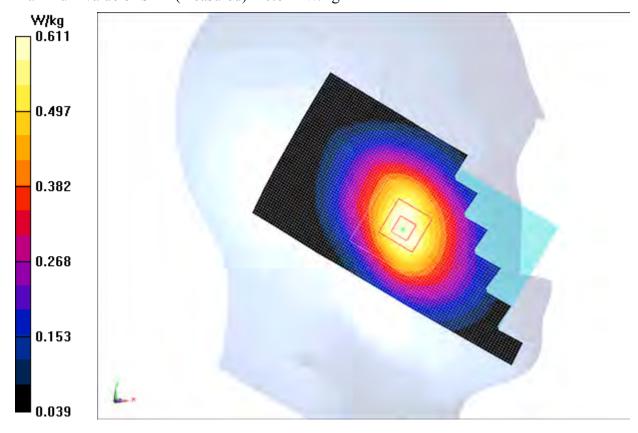


Fig.1 850MHz CH251

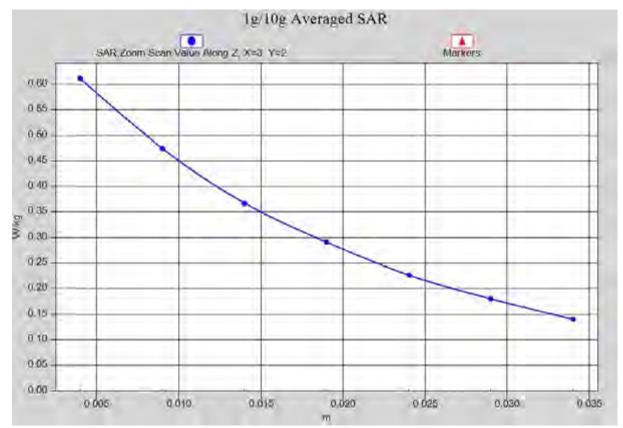


Fig. 1-1 Z-Scan at power reference point (850 MHz CH251)

850 Body Rear Low

Date: 2014-4-4

Electronics: DAE4 Sn771 Medium: Body 850 MHz

Medium parameters used: f = 825 MHz; $\sigma = 0.976$ S/m; $\epsilon r = 56.701$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.1°C Liquid Temperature: 21.6°C

Communication System: GSM 850 EGPRS Frequency: 824.2 MHz Duty Cycle: 1:4

Probe: EX3DV4 - SN3846 ConvF(8.73, 8.73, 8.73)

Rear Low/Area Scan (61x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.974 W/kg

Rear Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 32.057 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 1.11 W/kg

SAR(1 g) = 0.911 W/kg; SAR(10 g) = 0.705 W/kgMaximum value of SAR (measured) = 0.957 W/kg

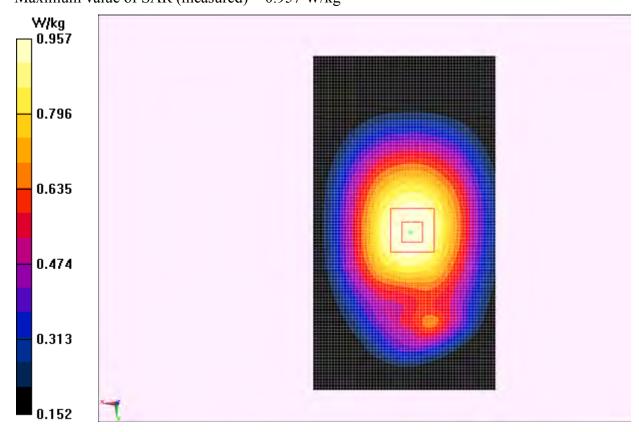


Fig.2 850 MHz CH128

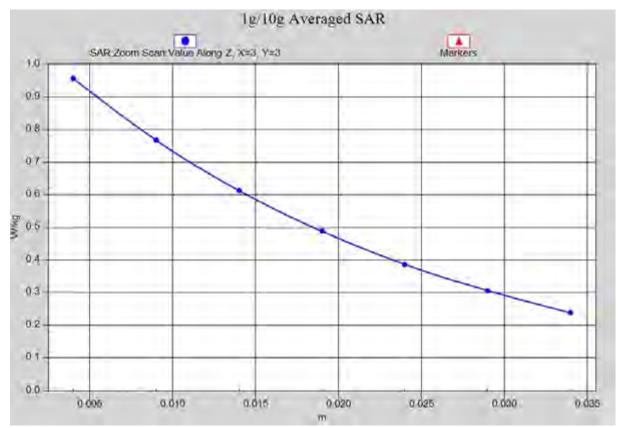


Fig. 2-1 Z-Scan at power reference point (850 MHz CH128)

GSM1900 Left Cheek High

Date: 2014-4-5

Electronics: DAE4 Sn771 Medium: Head 1900 MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.424 \text{ S/m}$; $\epsilon r = 40.437$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.1°C Liquid Temperature: 21.6°C

Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 - SN3846 ConvF(7.57, 7.57, 7.57)

Cheek High/Area Scan (61x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.386 W/kg

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.997 V/m; Power Drift = 0.16 dB Peak SAR (extrapolated) = 0.425 W/kg

SAR(1 g) = 0.323 W/kg; SAR(10 g) = 0.191 W/kgMaximum value of SAR (measured) = 0.378 W/kg

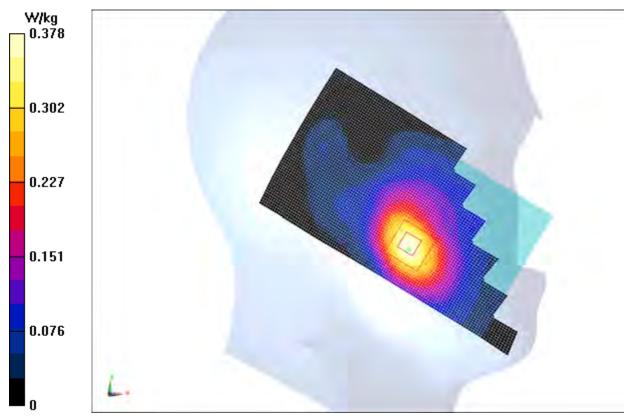


Fig.3 1900 MHz CH810

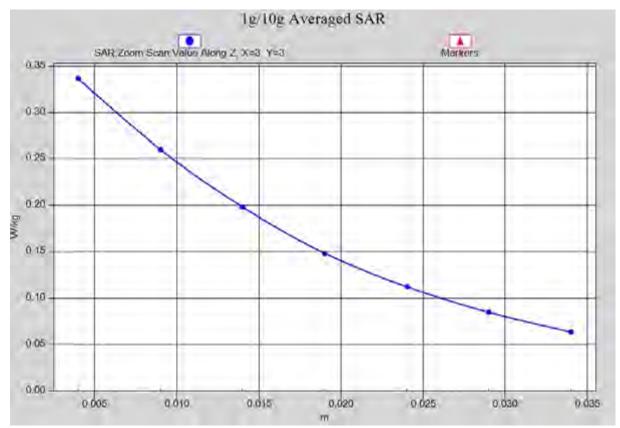


Fig. 3-1 Z-Scan at power reference point (1900 MHz CH810)

GSM1900 Body Rear High

Date: 2014-4-5

Electronics: DAE4 Sn771 Medium: Body 1900 MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.508 \text{ S/m}$; $\epsilon r = 51.817$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.1°C Liquid Temperature: 21.6°C

Communication System: GSM 1900MHz GPRS Frequency: 1909.8 MHz Duty Cycle: 1:4

Probe: EX3DV4 - SN3846 ConvF(7.03, 7.03, 7.03)

Rear High/Area Scan (61x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.04 W/kg

Rear High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 14.905 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.50 W/kg

SAR(1 g) = 0.895 W/kg; SAR(10 g) = 0.499 W/kgMaximum value of SAR (measured) = 1.07 W/kg

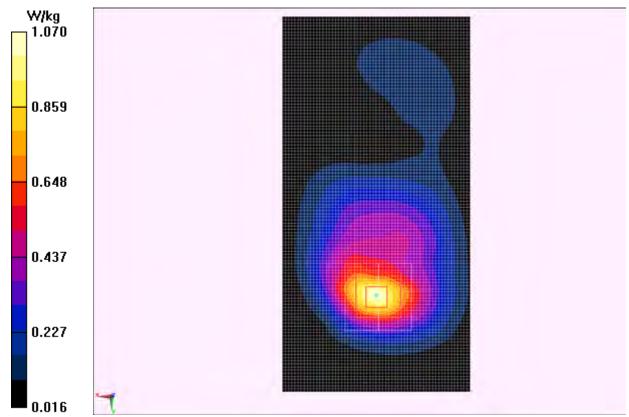


Fig.4 1900 MHz CH810

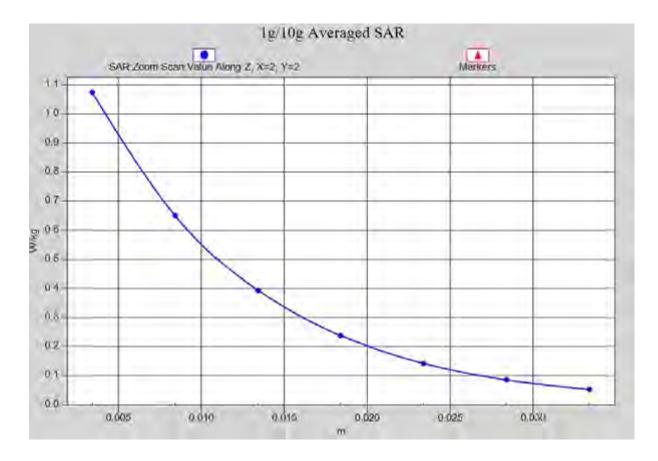


Fig.4-1 Z-Scan at power reference point (1900 MHz CH810)

WCDMA 850 Left Cheek High

Date: 2014-4-4

Electronics: DAE4 Sn771 Medium: Head 850 MHz

Medium parameters us ed (interpolated): f = 846.6 MHz; $\sigma = 0.93$ S/m; $\epsilon r = 41.86$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.1°C Liquid Temperature: 21.6°C

Communication System: WCDMA; Frequency: 846.6 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(8.92, 8.92, 8.92)

Cheek High/Area Scan (61x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.547 W/kg

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.765 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.659 W/kg

SAR(1 g) = 0.532 W/kg; SAR(10 g) = 0.405 W/kg

Maximum value of SAR (measured) = 0.553 W/kg

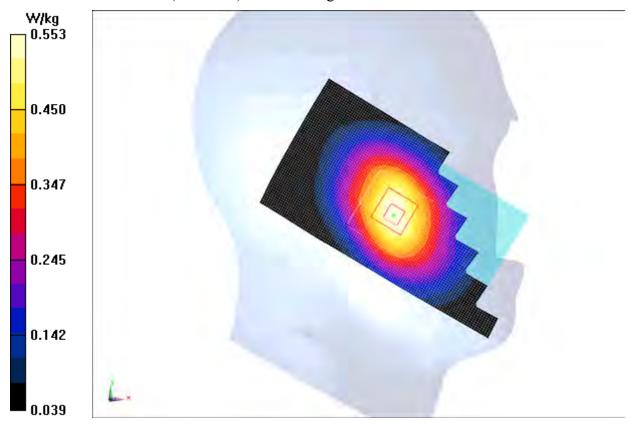


Fig.5 WCDMA 850 CH4233

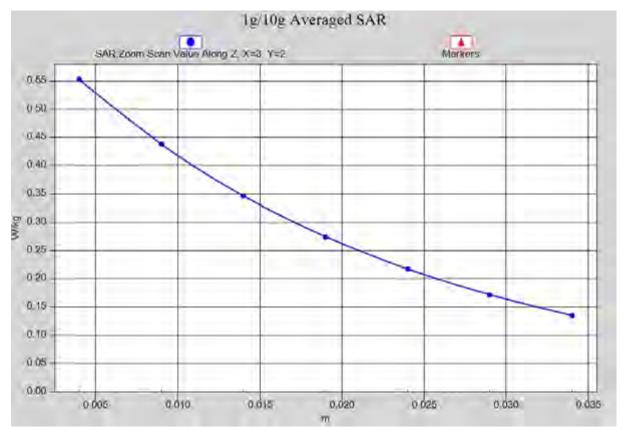


Fig. 5-1 Z-Scan at power reference point (WCDMA 850 CH4233)

WCDMA 850 Body Rear Middle

Date: 2014-4-4

Electronics: DAE4 Sn771 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 836.4 MHz; $\sigma = 0.987$ S/m; $\epsilon r = 56.571$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.1°C Liquid Temperature: 21.6°C

Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(8.73, 8.73, 8.73)

Rear Middle/Area Scan (61x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.818 W/kg

Rear Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 26.677 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.976 W/kg

SAR(1 g) = 0.800 W/kg; SAR(10 g) = 0.615 W/kg

Maximum value of SAR (measured) = 0.860 W/kg

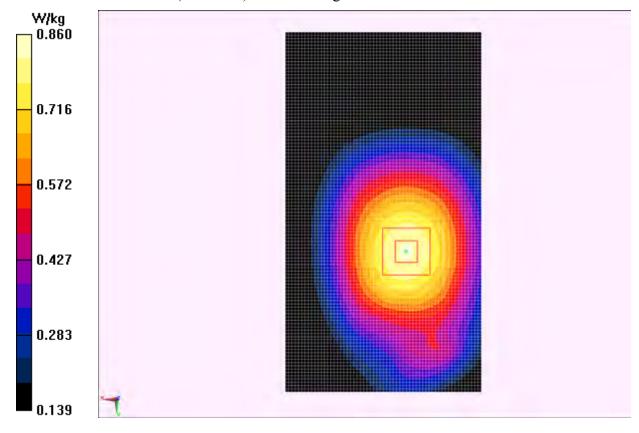


Fig.6 WCDMA 850 CH4182

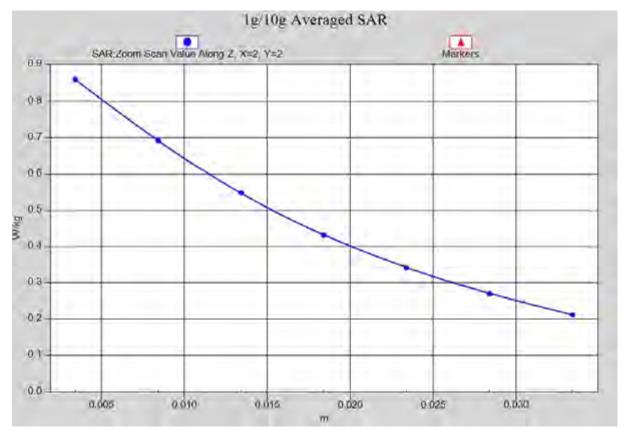


Fig. 6-1 Z-Scan at power reference point (WCDMA850 CH4182)

WCDMA 1900 Left Cheek High

Date: 2014-4-5

Electronics: DAE4 Sn771 Medium: Head 1900 MHz

Medium parameters used (interpolated): f = 1907.6 MHz; $\sigma = 1.421$ S/m; $\epsilon r = 40.439$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.1°C Liquid Temperature: 21.6°C

Communication System: WCDMA 1900 Frequency: 1907.6 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(7.57, 7.57, 7.57)

Cheek High/Area Scan (61x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.901 W/kg

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.743 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.28 W/kg

SAR(1 g) = 0.812 W/kg; SAR(10 g) = 0.483 W/kg

Maximum value of SAR (measured) = 0.846 W/kg

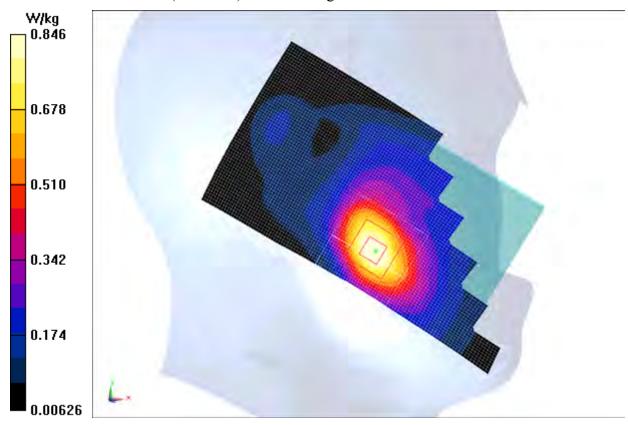


Fig.7 WCDMA1900 CH9538

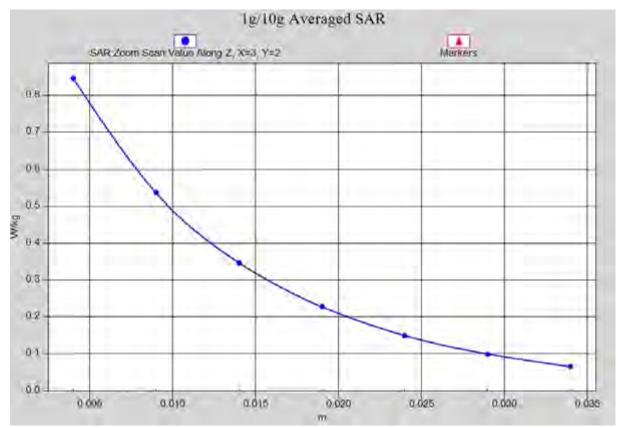


Fig. 7-1 Z-Scan at power reference point (WCDMA1900 CH9538)

WCDMA 1900 Body Rear Middle

Date: 2014-4-5

Electronics: DAE4 Sn771 Medium: Body 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.485 \text{ S/m}$; $\epsilon r = 51.92$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.1°C Liquid Temperature: 21.6°C

Communication System: WCDMA 1900 Frequency: 1880 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(7.03, 7.03, 7.03)

Rear High/Area Scan (61x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.22 W/kg

Rear High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.886 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 1.71 W/kg

SAR(1 g) = 1.13 W/kg; SAR(10 g) = 0.647 W/kg

Maximum value of SAR (measured) = 1.26 W/kg

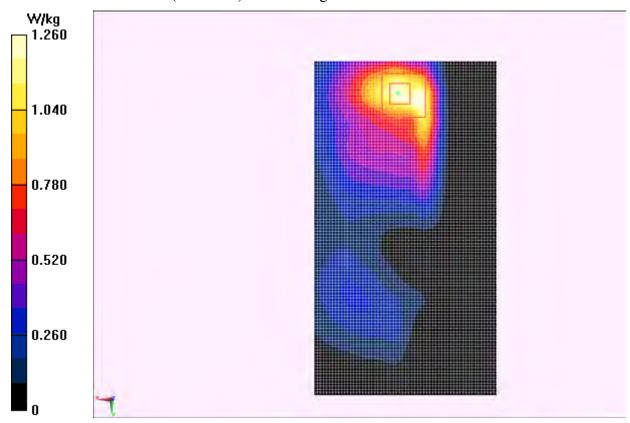


Fig.8 WCDMA1900 CH9400

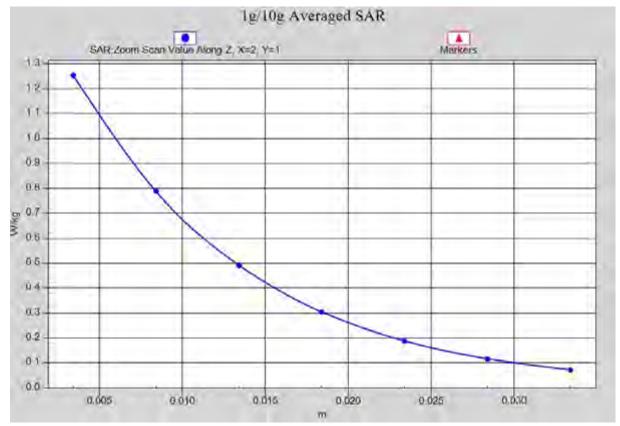


Fig. 8-1 Z-Scan at power reference point (WCDMA1900 CH9400)

Wifi 802.11b Right Cheek Channel 6

Date: 2014-4-6

Electronics: DAE4 Sn771 Medium: Head 2450 MHz

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.823$ S/m; $\varepsilon_r = 38.432$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.2°C Liquid Temperature: 21.7°C

Communication System: WLan 2450 Frequency: 2437 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(6.78, 6.78, 6.78)

Cheek Middle/Area Scan (61x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.190 W/kg

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.696 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.417 W/kg

SAR(1 g) = 0.186 W/kg; SAR(10 g) = 0.088 W/kg

Maximum value of SAR (measured) = 0.208 W/kg

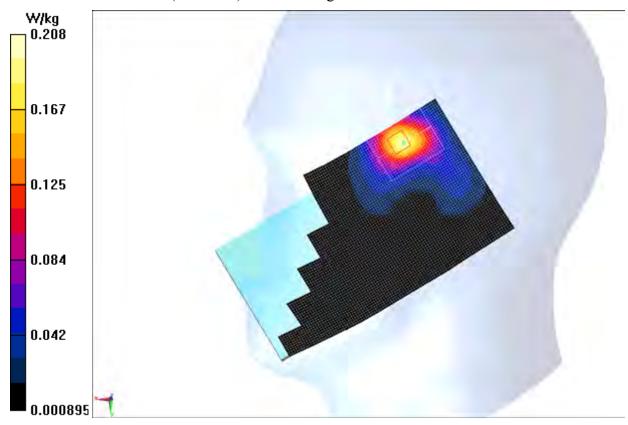


Fig.9 2450 MHz CH6

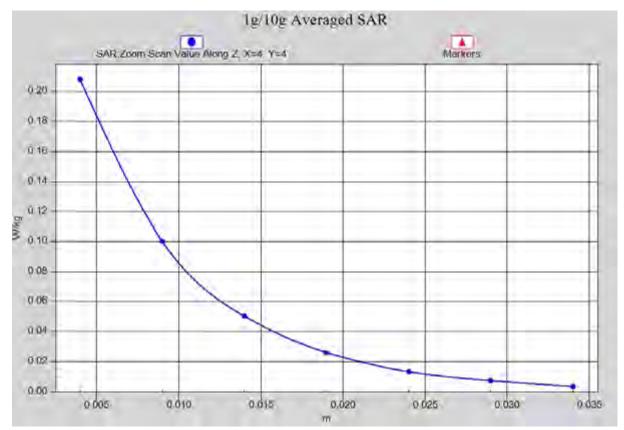


Fig. 9-1 Z-Scan at power reference point (2450 MHz CH6)

Wifi 802.11b Body Rear Channel 6

Date: 2014-4-6

Electronics: DAE4 Sn771 Medium: Body 2450 MHz

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.966$ S/m; $\varepsilon_r = 53.813$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.2°C Liquid Temperature: 21.7°C

Communication System: WLan 2450 Frequency: 2437 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(6.73, 6.73, 6.73)

Rear Middle/Area Scan (61x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.247 W/kg

Rear Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.167 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 0.434 W/kg

SAR(1 g) = 0.220 W/kg; SAR(10 g) = 0.105 W/kg

Maximum value of SAR (measured) = 0.250 W/kg

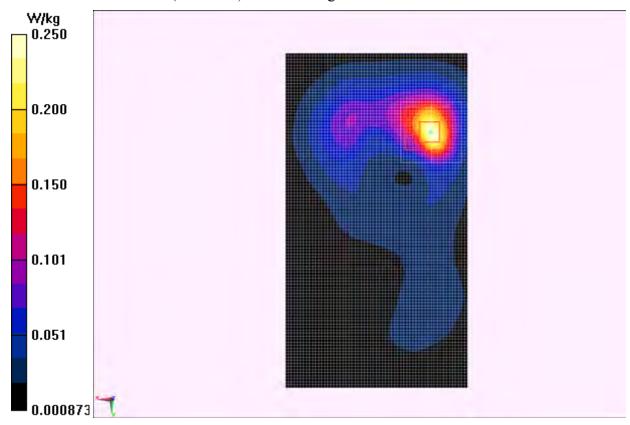


Fig.10 2450 MHz CH6

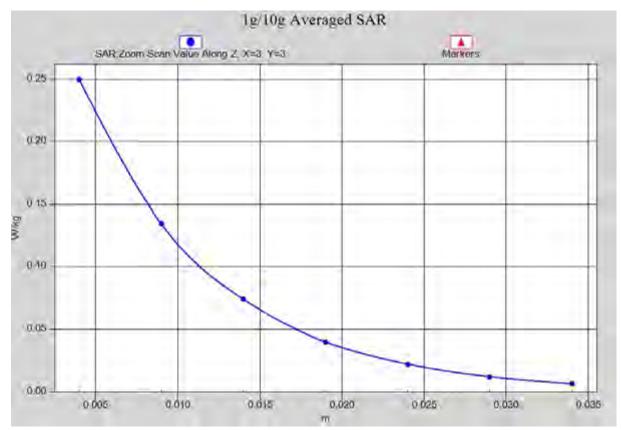


Fig. 10-1 Z-Scan at power reference point (2450 MHz CH6)

ANNEX B System Verification Results

835MHz

Date: 2014-4-4

Electronics: DAE4 Sn771 Medium: Head 850 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.918$ S/m; $\varepsilon_r = 42.02$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.1°C Liquid Temperature: 21.6°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(8.92, 8.92, 8.92)

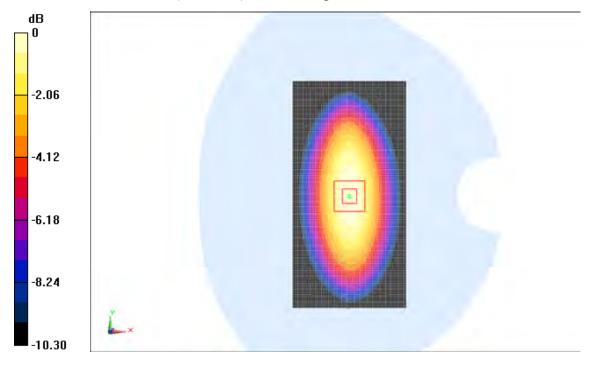
System Validation/Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 54.702 V/m; Power Drift = -0.11 dB

Fast SAR: SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.59 W/kg

Maximum value of SAR (interpolated) = 2.68 W/kg


System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.702 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 3.64 W/kg

SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.57 W/kg

Maximum value of SAR (measured) = 2.66 W/kg

0 dB = 2.68 W/kg = 8.56 dBW/kg

Fig.B.1 validation 835MHz 250mW

Date: 2014-4-4

Electronics: DAE4 Sn771 Medium: Body 850 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.986$ S/m; $\varepsilon_r = 56.59$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.1°C Liquid Temperature: 21.6°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(8.73, 8.73, 8.73)

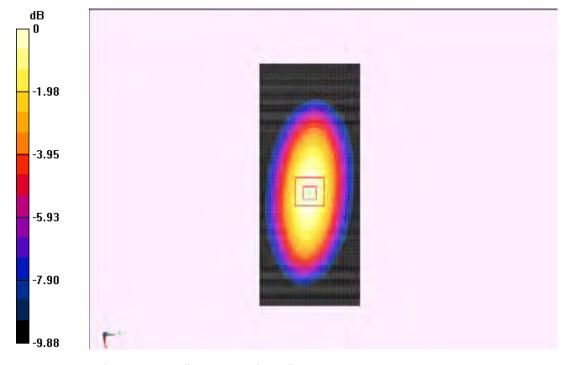
System Validation /Area Scan (81x171x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 51.865 V/m; Power Drift = -0.13 dB

Fast SAR: SAR(1 g) = 2.36 W/kg; SAR(10 g) = 1.55 W/kg

Maximum value of SAR (interpolated) = 2.61 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement g rid: d x=5mm, dy=5mm, dz=5mm

Reference Value = 51.865 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 3.43 W/kg

SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.57 W/kg

Maximum value of SAR (measured) = 2.63 W/kg

0 dB = 2.61 W/kg = 8.33 dBW/kg

Fig.B.2 validation 835MHz 250mW

Date: 2014-4-5

Electronics: DAE4 Sn771 Medium: Head 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.413 \text{ S/m}$; $\varepsilon_r = 40.44$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.1°C Liquid Temperature: 21.6°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(7.57, 7.57, 7.57)

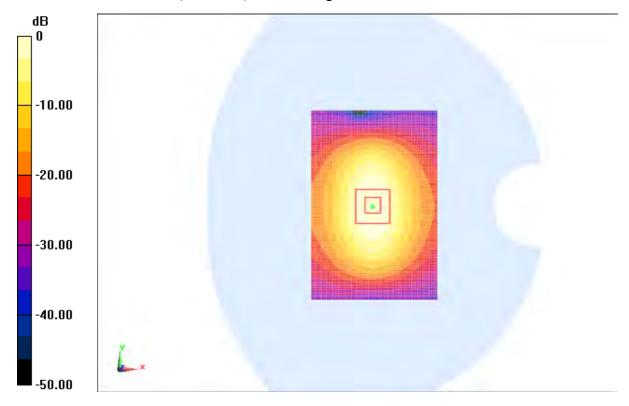
System Validation/Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 99.058 V/m; Power Drift = 0.09 dB

Fast SAR: SAR(1 g) = 10.0 W/kg; SAR(10 g) = 5.23 W/kg

Maximum value of SAR (interpolated) = 11.8 W/kg


System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.058 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 18.21 W/kg

SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.41 W/kg

Maximum value of SAR (measured) = 12.0 W/kg

0 dB = 11.8 W/kg = 21.44 dB W/kg

Fig.B.3 validation 1900MHz 250mW

Date: 2014-4-5

Electronics: DAE4 Sn771 Medium: Body 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.502 \text{ S/m}$; $\varepsilon_r = 51.87$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.1°C Liquid Temperature: 21.6°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(7.03, 7.03, 7.03)

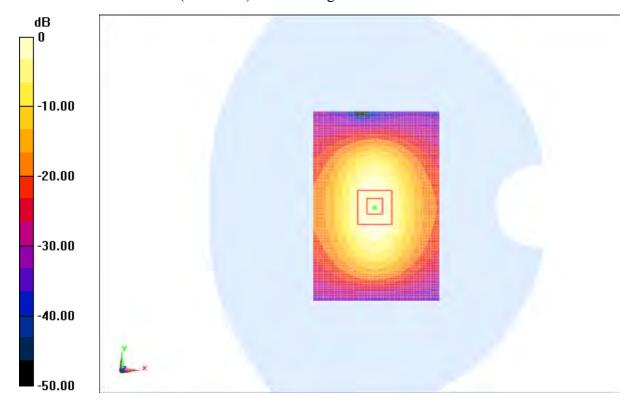
System Validation/Area Scan (81x121x1): Interpolated grid: dx = 1.000 m m, dy=1.000

mm

Reference Value = 78.691 V/m; Power Drift = 0.10 dB

Fast SAR: SAR(1 g) = 9.92 W/kg; SAR(10 g) = 5.12 W/kg

Maximum value of SAR (interpolated) = 11.5 W/kg


System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 78.691 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 16.55 W/kg

SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.30 W/kg

Maximum value of SAR (measured) = 11.7 W/kg

0 dB = 11.5 W/kg = 21.21 dB W/kg

Fig.B.4 validation 1900MHz 250mW

Date: 2014-4-6

Electronics: DAE4 Sn771 Medium: Head 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.836 \text{ S/m}$; $\varepsilon_r = 38.37$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.2°C Liquid Temperature: 21.7°C Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(6.78, 6.78, 6.78)

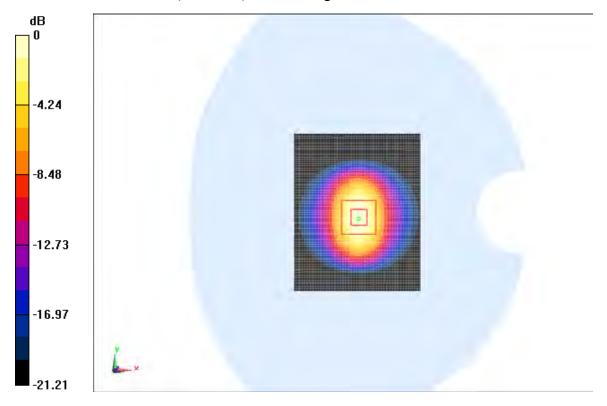
System Validation /Area Scan (81x101x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 91.93 V/m; Power Drift = -0.07 dB

Fast SAR: SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.11 W/kg

Maximum value of SAR (interpolated) = 16.6 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement g rid: d x=5mm, dy=5mm, dz=5mm

Reference Value = 91.93 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 27.82 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.09 W/kg

Maximum value of SAR (measured) = 16.6 W/kg

0 dB = 16.6 W/kg = 24.40 dB W/kg

Fig.B.5 validation 2450MHz 250mW

Date: 2014-4-6

Electronics: DAE4 Sn771 Medium: Body 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.98 \text{ S/m}$; $\varepsilon_r = 53.77$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.2°C Liquid Temperature: 21.7°C Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(6.73, 6.73, 6.73)

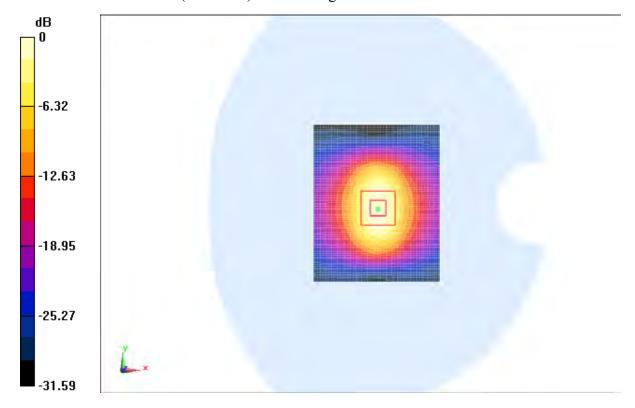
System Validation/Area Scan (81x101x1): Interpolated grid: dx = 1.000 m m, dy=1.000

mm

Reference Value = 91.101 V/m; Power Drift = 0.05 dB

Fast SAR: SAR(1 g) = 12.7 W/kg; SAR(10 g) = 5.80 W/kg

Maximum value of SAR (interpolated) = 14.5 W/kg


System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 91.101 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 25.75 W/kg

SAR(1 g) = 12.9 W/kg; SAR(10 g) = 5.96 W/kg

Maximum value of SAR (measured) = 14.7 W/kg

0 dB = 14.5 W/kg = 23.23 dB W/kg

Fig.B.6 validation 2450MHz 250mW

Date: 2014-4-21

Electronics: DAE4 Sn771 Medium: Head 850 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.897$ S/m; $\varepsilon_r = 40.99$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.1°C Liquid Temperature: 21.6°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(8.92, 8.92, 8.92)

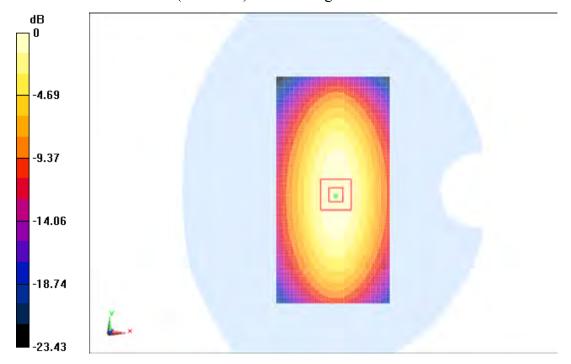
System Validation/Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 54.509 V/m; Power Drift = -0.09 dB

Fast SAR: SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.60 W/kg

Maximum value of SAR (interpolated) = 2.66 W/kg


System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.509 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 3.62 W/kg

SAR(1 g) = 2.40 W/kg; SAR(10 g) = 1.58 W/kg

Maximum value of SAR (measured) = 2.64 W/kg

0 dB = 2.66 W/kg = 8.50 dBW/kg

Fig.B.7 validation 835MHz 250mW

Date: 2014-4-21

Electronics: DAE4 Sn771 Medium: Body 850 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.983$ S/m; $\varepsilon_r = 55.73$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.1°C Liquid Temperature: 21.6°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(8.73, 8.73, 8.73)

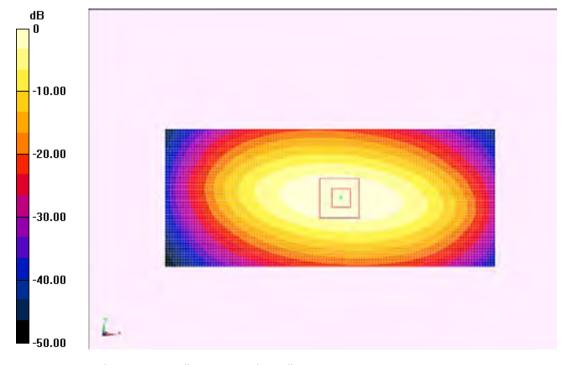
System Validation /Area Scan (81x171x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 51.119 V/m; Power Drift = 0.10 dB

Fast SAR: SAR(1 g) = 2.28 W/kg; SAR(10 g) = 1.50 W/kg

Maximum value of SAR (interpolated) = 2.54 W/kg


System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement g rid: d x=5mm, dy=5mm, dz=5mm

Reference Value = 51.119 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 3.36 W/kg

SAR(1 g) = 2.32 W/kg; SAR(10 g) = 1.52 W/kg

Maximum value of SAR (measured) = 2.56 W/kg

0 dB = 2.54 W/kg = 8.10 dBW/kg

Fig.B.8 validation 835MHz 250mW

1900MHz

Date: 2014-4-22

Electronics: DAE4 Sn771 Medium: Head 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.406 \text{ S/m}$; $\varepsilon_r = 39.23$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.1°C Liquid Temperature: 21.6°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(7.57, 7.57, 7.57)

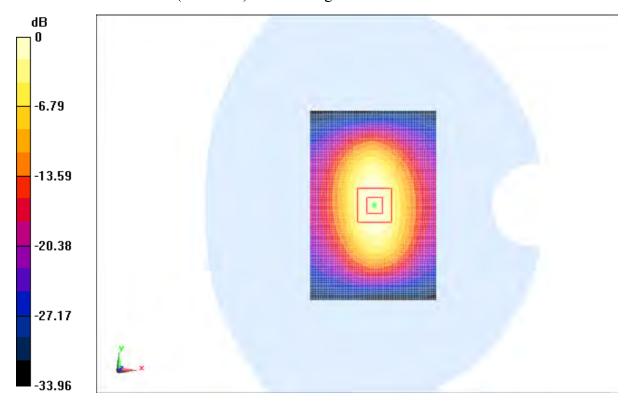
System Validation/Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 99.933 V/m; Power Drift = 0.08 dB

Fast SAR: SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.31 W/kg

Maximum value of SAR (interpolated) = 11.9 W/kg


System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 99.933 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 18.30 W/kg

SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.49 W/kg

Maximum value of SAR (measured) = 12.1 W/kg

0 dB = 11.9 W/kg = 21.51 dB W/kg

Fig.B.9 validation 1900MHz 250mW

1900MHz

Date: 2014-4-22

Electronics: DAE4 Sn771 Medium: Body 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.539 \text{ S/m}$; $\varepsilon_r = 53.87$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.1°C Liquid Temperature: 21.6°C Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(7.03, 7.03, 7.03)

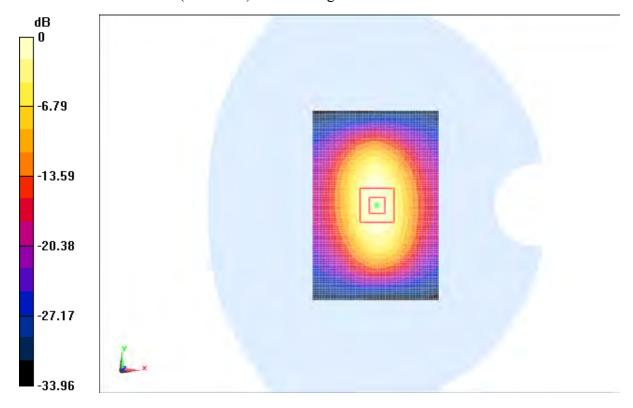
System Validation/Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 78.869 V/m; Power Drift = -0.07 dB

Fast SAR: SAR(1 g) = 9.93 W/kg; SAR(10 g) = 5.15 W/kg

Maximum value of SAR (interpolated) = 11.5 W/kg


System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 78.869 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 16.58 W/kg

SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.33 W/kg

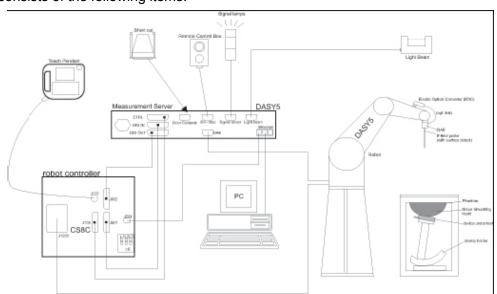
Maximum value of SAR (measured) = 11.7 W/kg

0 dB = 11.5 W/kg = 21.21 dB W/kg

Fig.B.10 validation 1900MHz 250mW

The SAR system verification must be required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR.

Table B.1 Comparison between area scan and zoom scan for system verification


Date	Band	Position	Area scan (1g)	Zoom scan (1g)	Drift (%)
2014-04-04	835	Head	2.45	2.42	1.24
2014-04-04	835	Body	2.36	2.39	-1.26
2014-04-05	1900	Head	10.0	10.2	-1.96
2014-04-05	1900	Body	9.92	10.1	-1.78
2014-04-06	2450	Head	13.1	13.1	0.00
2014-04-06	2450	Body	12.7	12.9	-1.55
2014-04-21	835	Head	2.44	2.40	1.67
2014-04-21	835	Body	2.28	2.32	-1.72
2014-04-22	1900	Head	10.1	10.3	-1.94
2014-04-22	1900	Body	9.93	10.1	-1.68

ANNEX C SAR Measurement Setup

C.1 Measurement Set-up

The Dasy4 or DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture C.1 SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc.
 The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals
 for the digital communication to the DAE. To use optical surface detection, a special version of
 the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY4 or DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

C.2 Dasy4 or DASY5 E-field Probe System

The S AR m easurements w ere c onducted w ith t he dos imetric pr obe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom's urface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 or DASY5 software reads the reflection during a software approach and looks for the maximum using 2nd ord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

Model: E S3DV3, EX3DV4

Frequency 10MHz — 6.0GHz(EX3DV4) Range: 10MHz — 4GHz(ES3DV3)

Calibration: In head and body simulating tissue at

Frequencies from 835 up to 5800MHz

Linearity: ± 0.2 dB(30 MHz to 6 GHz) for EX3DV4

± 0.2 dB(30 MHz to 4 GHz) for ES3DV3

Dynamic Range: 10 mW/kg — 100W/kg

Probe Length: 330 mm

Probe Tip

Length: 20 mm Body Diameter: 12 mm

Tip Diameter: 2.5 mm (3.9 mm for ES3DV3)
Tip-Center: 1 mm (2.0mm for ES3DV3)
Application: SAR Dosimetry Testing

Compliance tests of mobile phones

Dosimetry in strong gradient fields

Picture C.2 Near-field Probe

Picture C.3 E-field Probe

C.3 E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The f ree s pace E -field f rom a mplified pr obe out puts i s det ermined i n a t est c hamber. T his calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed

in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/ cm².

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated br ain t issue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For t emperature correlation calibration a R F t ransparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 Δt = Exposure time (30 seconds),

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

C.4 Other Test Equipment

C.4.1 Data Acquisition Electronics(DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

PictureC.4: DAE

C.4.2 Robot

The SPEAG DASY system uses the high precision robots (DASY4: RX90XL; DASY5: RX160L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchron motors; no stepper motors)
- > Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture C.5 DASY 4

Picture C.6 DASY 5

C.4.3 Measurement Server

The M easurement s erver is bas ed on a P C/104 CPU broad with CPU (dasy4: 166 M Hz, I ntel Pentium; D ASY5: 400 M Hz, I ntel C eleron), chipdisk (DASY4: 32 M B; D ASY5: 128M B), R AM (DASY4: 64 M B, DASY5: 128M B). T he n ecessary c ircuits for communication with t he D AE electronic box, a s w ell a s t he 16 bit AD converter s ystem for o ptical d etection and di gital I /O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

The measurement server performs all real-time data evaluation of field measurements and surface detection, c ontrols r obot m ovements and hand less afety oper ation. The P C operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices f rom any of her supplier could seriously damage the measurement server.

Picture C.7 Server for DASY 4

Picture C.8 Server for DASY 5

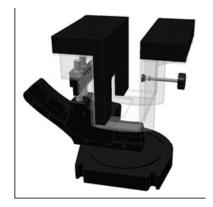
C.4.4 Device Holder for Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss

POM material having the following dielectric


parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.

Picture C.9-1: Device Holder

Picture C.9-2: Laptop Extension Kit

C.4.5 Phantom

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to

Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation

of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

Shell Thickness: 2 ± 0. 2 mm
Filling Volume: Approx. 25 liters

Dimensions: 810 x 1000 x 500 mm (H x L x W)

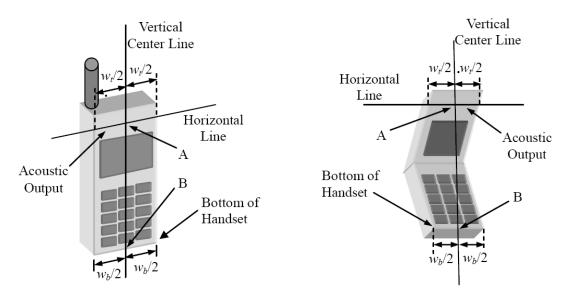
Available: Special

Picture C.10: SAM Twin Phantom

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

Shell Thickness: 2 ± 0. 2 mm Filling Volume: Approx. 30 liters

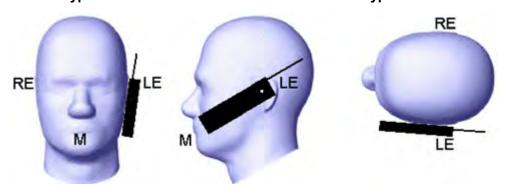
Dimensions: Major axis: 600 mm, Minor axis: 400 mm


Picture C.11: ELI Phantom

ANNEX D Position of the wireless device in relation to the phantom

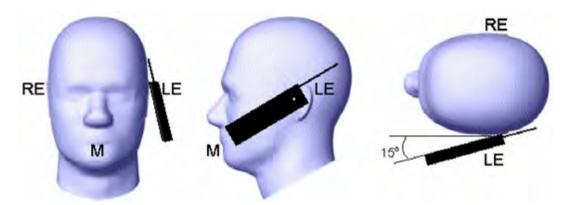
D.1 General considerations

This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.


 W_t Width of the handset at the level of the acoustic

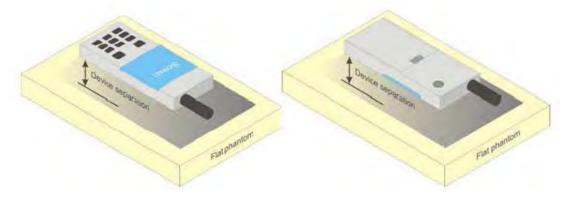
 W_b Width of the bottom of the handset

A Midpoint of the width w_t of the handset at the level of the acoustic output


B Midpoint of the width W_b of the bottom of the handset

Picture D.1-a Typical "fixed" case handset Picture D.1-b Typical "clam-shell" case handset

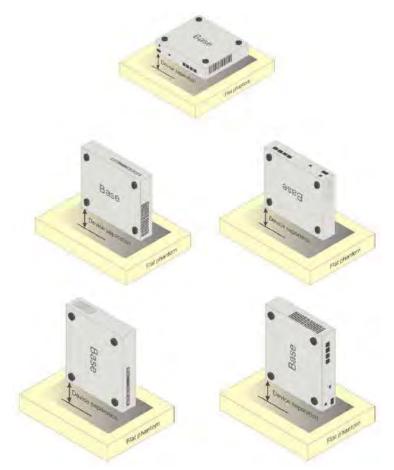
Picture D.2 Cheek position of the wireless device on the left side of SAM



Picture D.3 Tilt position of the wireless device on the left side of SAM

D.2 Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.


Picture D.4 Test positions for body-worn devices

D.3 Desktop device

A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used.

The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.

Picture D.5 Test positions for desktop devices

D.4 DUT Setup Photos

Picture D.6

ANNEX E Equivalent Media Recipes

The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

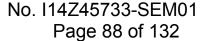
Table E.1: Composition of the Tissue Equivalent Matter

			-					
Frequency	835	835	1900	1900	2450	2450	5800	5800
(MHz)	Head	Body	Head	Body	Head	Body	Head	Body
Ingredients (% by	/ weight)							
Water	41.45	52.5	55.242	69.91	58.79	72.60	65.53	65.53
Sugar	56.0	45.0	\	\	\	\	\	\
Salt	1.45	1.4	0.306	0.13	0.06	0.18	1	\
Preventol	0.1	0.1	\	\	\	\	1	\
Cellulose	1.0	1.0	\	\	\	\	1	\
Glycol	,	\	44.452	29.96	41.15	27.22	,	,
Monobutyl	١	١	44.452	29.90	41.15	21.22	\	\
Diethylenglycol	\	\	\	\	\	,	17.24	17.24
monohexylether	١	١	\	١	١	\	17.24	17.24
Triton X-100	\	\	\	\	\	\	17.24	17.24
Dielectric	ε=41.5	ε=55.2	ε=40.0	ε=53.3	ε=39.2	ε=52.7	ε=35.3	ε=48.2
Parameters	$\sigma = 0.90$	σ=0.97	$\sigma = 1.40$	σ=1.52	σ=1.80	σ=1.95	σ=5.27	σ=6.00
Target Value	0-0.90	0-0.97	0-1.40	0-1.32	0-1.00	0-1.95	0-3.27	0-0.00

ANNEX F S ystem Validation

The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components.

Table F.1: System Validation


		Table F.1: System	validation	
Probe SN.	Liquid name	Validation date	Frequency point	Status (OK or Not)
3846	Head 750MHz	Mar. 06, 2013	750 MHz	OK
3846	Head 850MHz	Mar. 06, 2013	850 MHz	OK
3846	Head 900MHz	Mar. 01, 2013	900 MHz	OK
3846	Head 1750MHz	Mar. 03, 2013	1750 MHz	OK
3846	Head 1810MHz	Mar. 03, 2013	1810 MHz	OK
3846	Head 1900MHz	Mar. 07, 2013	1900 MHz	OK
3846	Head 1950MHz	Mar. 04, 2013	1950 MHz	OK
3846	Head 2000MHz	Mar. 04, 2013	2000 MHz	OK
3846	Head 2100MHz	Mar. 05, 2013	2100 MHz	OK
3846	Head 2300MHz	Mar. 05, 2013	2300 MHz	OK
3846	Head 2450MHz	Mar. 02, 2013	2450 MHz	OK
3846	Head 2550MHz	Mar. 08, 2013	2550 MHz	OK
3846	Head 2600MHz	Mar. 08, 2013	2600 MHz	OK
3846	Head 3500MHz	Mar. 09, 2013	3500 MHz	OK
3846	Head 3700MHz	Mar. 09, 2013	3700 MHz	OK
3846	Head 5200MHz	Mar. 10, 2013	5200 MHz	OK
3846	Head 5500MHz	Mar. 10, 2013	5500 MHz	OK
3846	Head 5800MHz	Mar. 10, 2013	5800 MHz	OK
3846	Body 750MHz	Mar. 06, 2013	750 MHz	OK
3846	Body 850MHz	Mar. 06, 2013	850 MHz	OK
3846	Body 900MHz	Mar. 01, 2013	900 MHz	OK
3846	Body 1750MHz	Mar. 03, 2013	1750 MHz	OK
3846	Body 1810MHz	Mar. 03, 2013	1810 MHz	OK
3846	Body 1900MHz	Mar. 07, 2013	1900 MHz	OK
3846	Body 1950MHz	Mar. 04, 2013	1950 MHz	OK
3846	Body 2000MHz	Mar. 04, 2013	2000 MHz	OK
3846	Body 2100MHz	Mar. 05, 2013	2100 MHz	OK
3846	Body 2300MHz	Mar. 05, 2013	2300 MHz	OK
3846	Body 2450MHz	Mar. 02, 2013	2450 MHz	OK
3846	Body 2550MHz	Mar. 08, 2013	2550 MHz	OK
3846	Body 2600MHz	Mar. 08, 2013	2600 MHz	OK
3846	Body 3500MHz	Mar. 09, 2013	3500 MHz	OK
3846	Body 3700MHz	Mar. 09, 2013	3700 MHz	OK
3846	Body 5200MHz	Mar. 10, 2013	5200 MHz	OK
3846	Body 5500MHz	Mar. 10, 2013	5500 MHz	OK
3846	Body 5800MHz	Mar. 10, 2013	5800 MHz	OK

ANNEX G Probe Calibration Certificate

Probe 3846 Calibration Certificate

Galibration Laboratory of Schmid & Partner Engineering AG Zaughausstrasse 43, 5004 Zunan, Switzerand

Softweizenecher Kallbriernieret Service suisse d'étalgérage C Sarvizio svizzero di tarettire S Swise Californian Survine

Accordington No.: SCS 108

ming by the Swint American Service (SAS)

The Swiss Acceptitation Service is one of the signatories to the EA' Motivateral agreement for the recognition of calibration curtification

Glossary:

CF

NORMX, V.2 ConvF DCP

tissue similating liquid mansitivity in Irea space acnellivity in TSL / NORMX, y.± dinda compression point

crest factor (1/duty_cycle) of the RF signal A B C. D modulation dependent linearization parameters

Poterteatron o sy middling around probe 2009

Polarization il 8 rotation around an exist that is in the plane normal to probe exist (at measurement center).

i.e., 9 = 0 is normal to probe axes

Calibration is Performed According to the Following Standards:

IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices. Measurement Techniquis" Doomber 2003

EC 82209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in blosse proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMILY, Assessed for E-field polarization () = 0 (f s 100 MHz in TEM-cell f > 1800 MHz R22 waveguidn) NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E*-field uncertainty inside TSL (see below ConvF).
- NORM(I) x,y,z = NORMx,y,z * Irequency_maponse (see Frequency Response Charl). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DGPs,y,z: DGP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no luncertainty required). DCP does not depend on frequency nor media.
- PAR PAR is the Peak to inverage Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z. Bx,y,z. Cx,y,z. Dx,y,z. VRx,y,z. A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- GrovF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for t < 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MMz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are med in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMs, v.z. * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Suherical isotropy (3D deviation from leatropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (tri probu axis). No tolerance required.
- Connector Angle: The angle is accessed using the information gained by determining the NORMs (seuncertainty required)

EX3DV4 - SN:3546

September 3, 2013

Probe EX3DV4

SN:3846

Manufactured: Repaired: Calibrated:

October 25, 2011 August 28, 2013 September 3, 2013

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

DODV4-9N.3846

September 1, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3846

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ⁴	0.39	0.43	0.49	±10.1%
DCP (mV) ^s	107.1	101.1	100.8	

Modulation Calibration Parameters

THE	Communication System Name		A dB	B dBõV	C	D dB	VR mV	Unc- (k=2)
D	CW	X	0.0	0.0	1.0	0.00	145.7	±3.3 %
		- Y	0.0	0.0	1.0		152.2	
		2	0.0	0.0	1.0	-	185.8	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

The uncertaint as of Norm), Y,Z do not affect the E^2 -field uncertainty neside TGL (see Pages 5 and 6). Normerical innomination parameter uncertainty not required. Choos minty is determined using the max, deviation from these response applying reclanguar distributions of pages. arear applying reciengular distribution and is expressed for the square of the

EX3DV4 EN-3846

Septembar 5, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3846

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) [≥]	Relative Permittivity	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unet: (k=2)
750	41,9	0.89	9.32	9.32	9.32	0.47	_0,82	± 12.0 %
850	41.5	0.92	9.92	8.92	8.92	0.20	1.19	± 12.0 %
900	41.5	0.97	8.96	8.96	8,96	0.41	08.0	± 12.0.4
1450	40.5	1.20	8.23	8.23	R.23	0.68	0.63	± 12.0 3
1750	40.1	1.37	7.85	7.85	7,85	0.39	0.81	±12.03
1819	-40.0	1.40	7,63	7.53	7.63	0.49	0.72	± 12.0 9
1900	40,0	1.40	7,57	7.57	7.57	0,35	0.87	± 12,0 9
2000	40.0	1.40	7.58	7.58	7:58	0,65	0.04	± 12.0.1
2100	30 B	1.49	7.69	7,68	7.68	0.28	0.93	± 12.0 %
5300	39.5	1.67	7.21	7.21	7.21	0.40	0.79	±12.0 1
2450	39.2	1.80	6.78	B.78	6.78	0,52	0.68	±1205
2600	39.0	1.96	6.68	6.68	6.68	0.37	0.83	± 12.0 1
3500	37.9	2.91	0.67	6.67	0.87	0.59	0.77	± 13.1 5
3700	37.7	3,12	6.37	6.37	6.37	0,43	0.92	± 13.14
5300	36.0	4.66	5.25	5.25	5.25	0.25	1.80	= 13.11
5300	35.9	4.76	5.04	5.04	5.04	0.25	1.80	±13.15
5500	35:6	4.96	4.80	4.80	4.80	0.30	1.80	± 13.1 5
5600	35.5	5.07	4,52	4.52	4.52	0.35	1.80	±13.7 %
5900	35.3	5.27	4.51	4.51	4.51	0.35	1.80	£ 13.1.9

Programmy with the of 50 MHz and, applies for DASY v4.4 and higher (see Page 2), when it is nestricted to ± 50 MHz. The ordertainty is the RSS of the ConvP incentainty at calibration frequency and the experience frequency found.

At experience below 3 GHz, the validity of tosse parameters (c and of can be released to ± 10% if found compensation formula is approximated to a 20% if found compensation formula is approximated to a 20% of the converse of the RSS of the ConvP uncertainty to included larged travel insure parameters.

F1010V4= SN:3846

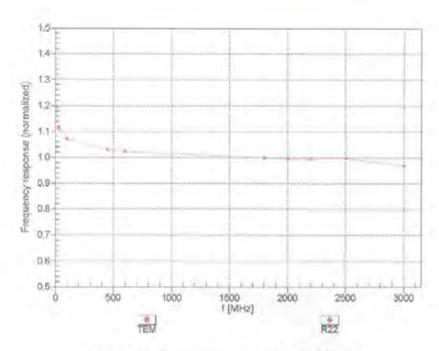
Sopromour a, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3846

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) C	Relative Permittivity	Conductivity (5/m)	ConvFX	ConvF Y	ConvFZ	Alpha	Depth (mm)	Uncil.
750	55.5	0.96	8.96	8:96	8.96	0.38	0.91	± 12.0 9
850	55.2	0.99	8,73	8.73	8.73	0.80	0.61	± 12.09
900:	55.0	1.05	8,71	8.71	8.71	0.80	0.59	± 12.0 9
1450	54.0	1.30	7.82	7.82	7.82	0.80	0.59	± 12.0 1
1750	53.4	1.49	7.58	7.56	7.56	0.71	0.65	± 12.0 1
1810	53.3	1.52	7.27	7.27	7.27	0.47	0.83	± 12.0 1
1900	53,3	1.52	7.02	7.03	7.03	0.30	1.04	± 12.01
2000	53.3	1.52	7.52	7.52	7,52	0.38	0.90	± 12.0 9
2100	53.2	1.62	7.54	7.54	7.54	0.43	0.82	±12.09
2300	52.9	1.81	7.00	7,00	7.00	0.76	0.61	± 12.0.5
2450	52.7	1.85	6.73	6.73	B.73	0.80	0.56	± 12,0 9
2600	52.5	2,16	6.59	6.59	6,59	0.80	0.50	±12.0 9
3500	51.3	3.31	6,18	6.18	6.18	0.38	1.06	±13.1 9
3700	51.0	3.55	5.99	5.99	5.99	0.43	1.02	± 13.1 %
5200	49.0	5.30	4,36	4,36	4,36	0.40	1,90	± 13.1 5
5300	48.9	5.42	4.17	4.17	4.17	0.40	1.90	x 13.1 9
5500	48.6	5.65	3.81	3.81	3.81	0.45	1.90	£ 13.1 5
5600	48.5	5.77	3.77	3.77	3.77	0.35	T.90	± 13.1 9
5800	48.2	6.00	3.94	3.94	3.94	0.45	1.90	±18.1 %

Firequency validity of ± 100 MHz two applies for DASY vii.4 and higher (see Page 2), one it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty is calcinously and the uncertainty for the indicated brequency land.

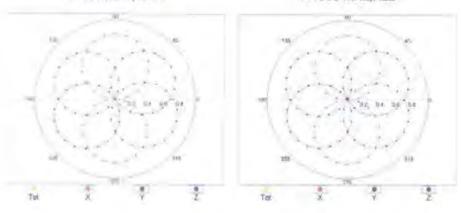

All frequencies below 3 GHz. The validity of finance represents (a and a) one be released to ± 10% of cooperation formula: a applied to the uncertainty of the uncertainty of the uncertainty of the RSS of the ConvF uncertainty to the uncertainty is the RSS of the ConvF uncertainty to the uncertainty is the uncertainty.

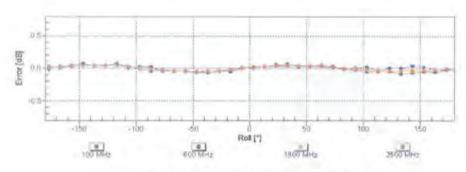
EX3DV4-SN:3B46

September 3, 2013

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

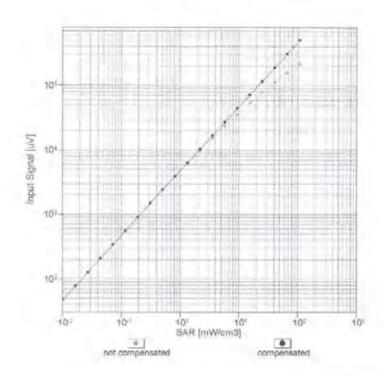
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

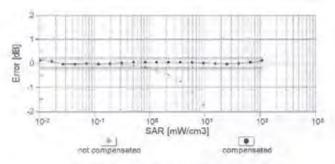

EX3DV4- SN:3846


September 3, 2013

Receiving Pattern (6), 9 = 0°

f=1800 MHz,R22

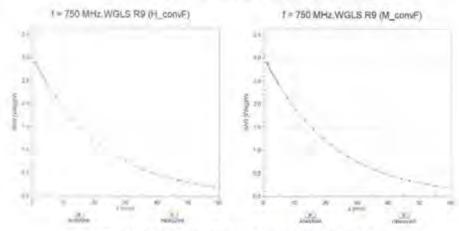

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)



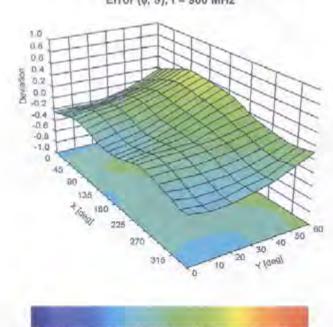
EX3DV4-SN:3846

September 3, 2013

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)



Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (¢, 3), f = 900 MHz

0.6 0.8

EX3DV4- SN:3846

Seplember 3, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3846

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (*)	3.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tlp Lengthy	mm e
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point.	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Dipole Calibration Certificate ANNEX H

835 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client TMC-BJ (Auden)

Accreditation No.: SCS 108

Certificate No: D835V2-443 Aug13

Object	D835V2 - SN: 44	3	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits at	pove 700 MHz
Calibration date:	August 29, 2013		
		onal standards, which realize the physical i robability are given on the following pages	
		ry facility: environment temperature (22 \pm 3	°C and humidity < 70%.
Calibration Equipment used (M&		ry facility: environment temperature (22 ± 3 Cal Date (Certificate No.))°C and humidity < 70%. Scheduled Calibration
Calibration Equipment used (M&	TE critical for calibration)		
Calibration Equipment used (M& Primary Standards Power mater EPM-442A	TE critical for calibration)	Cai Date (Certificate No.)	Scheduled Calibration Oct-13 Oct-13
Calibration Equipment used (M& Primary Standards Power mater EPM-442A Power sensor HP 8481A	TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k)	Cai Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736)	Scheduled Calibration Oct-13 Oct-13 Apr-14
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327	Cai Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01739)	Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205	Cai Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12)	Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327	Cai Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01739)	Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14
Calibration Equipment used (M& Primary Standards Power mater EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205	Cai Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12)	Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13
Calibration Equipment used (M& Primary Standards Power mater EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 801	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13)	Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A.	TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601	Cai Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house)	Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	TE critical for calibration) ID # GB37480704 US37292783 SN. 5058 (20k) SN. 5047.3 / 06327 SN. 3205 SN. 801 ID # MY41092317	Cai Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house)	Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13
All calibrations have been condu- Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A. RF generator R&S SMT-06 Network Analyzer HP 8753E	TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3206 SN: 801 ID # MY41092317 100005 US37390585 S4206	Cai Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-12)	Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3206 SN: 801 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-12) Function	Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3206 SN: 801 ID # MY41092317 100005 US37390585 S4206	Cai Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-12)	Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13

Calibration Laboratory of Schmid & Partner Engineering AG

Schweizerischer Kallbrierdienst Service sulase d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilalaral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as

Extrapolation Advanced Extrapolation Phantom Modular Flat Phantom Distance Dipole Center - TSL 15 mm	
Distance Dipole Center - TSL 15 mm	
	with Spacer
Zoom Scan Resolution dx, dy, dz = 5 mm	
Frequency 835 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.5 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	bess	-

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.44 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.56 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.16 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.4 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	****	****

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.43 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.40 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.59 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.20 W/kg ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.4 Ω - 7.6 jΩ	
Return Loss	- 22.3 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.0 Ω - 9.5 jΩ
Return Loss	- 20.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.386 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 26, 2001

DASY5 Validation Report for Head TSL

Date: 29.08.2013

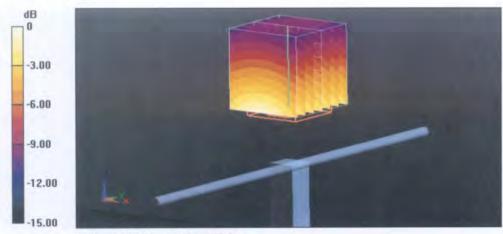
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 443

Communication System: UID 0 - CW; Frequency: 835 MHz

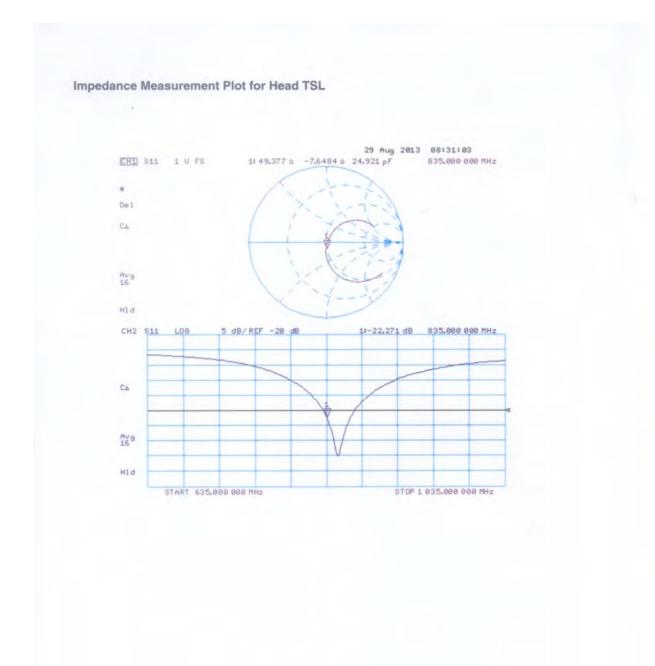
Medium parameters used: f = 835 MHz; $\sigma = 0.92 \text{ S/m}$; $\varepsilon_r = 41.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section


Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.05, 6.05, 6.05); Calibrated: 28.12.2012;
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.828 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.63 W/kg SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.56 W/kg Maximum value of SAR (measured) = 2.81 W/kg

0 dB = 2.81 W/kg = 4.49 dBW/kg

DASY5 Validation Report for Body TSL

Date: 29.08.2013

Test Laboratory: SPEAG, Zurich, Switzerland

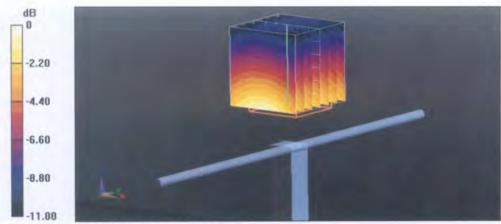
DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 443

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.01 \text{ S/m}$; $\varepsilon_r = 54.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

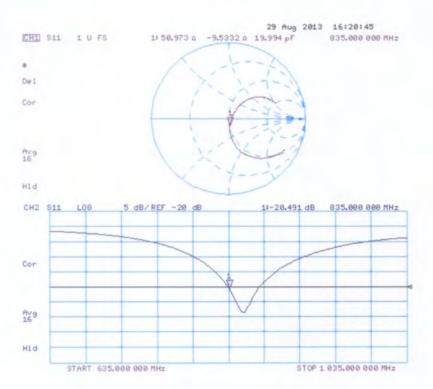
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)


DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.04, 6.04, 6.04); Calibrated: 28.12.2012;
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.828 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 3.57 W/kg SAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.59 W/kg


SAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.59 W/kgMaximum value of SAR (measured) = 2.82 W/kg

0 dB = 2.82 W/kg = 4.50 dBW/kg

1900 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 1004 Zurich, Switzerland

S Schweizerischer Kallbrierdiens C Service suisse d'étalonnage Servizie svizzere di taratura S Swiss Callbration Service

Acceptabled by the Swiss Accreditation Service (GAS)
The Swiss Accreditation Service is one of the signatories to

Accreditation No.: SCS 108

ALIBRATION	CERTIFICATE		
ijed!	Disposition Black		
	D1900V2 - SN; 56	d101	
айргибоп ргосовити(6).	QA CAL-05.v9 Calibration proces	dure for dipole validation kits ab	ove 700 MHz
mile reimella	July 09, 2013		
limity Standards	M&TE critical for calibration)	Cai Dale (Cerificale No.)	Schooled Calibration
ower mater EPM-442A	GB37480704	01-Nov-12 (No. 217-01540)	Oct-13
wer sensor HF B481A	US3729783	01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736)	Apr.14
elerence 20 dB Allumuator	SN: 5058 (20K) SN: 5047.3 / 06327	04-Apr-13 (No. 217-01739)	Apo14
rpe-N mismuteti combinatio Minnece Probe ES3DV9	SN: 3205	28-Dec-12 (No. ES3-3205_Dec12)	Dec-13
A64	5N: 001	25-Apr-13 (No. DAE4-601_Apr13)	Apr-14
econdary Standards	10 0	Check Date (in house)	Scheduled Check
owat sensor HP 8481A	MY41092317	19-Oct-02 (in house check Oct-11)	in house check: Oct-13
F generator R&S-SMT-09	100006	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
	US37390585 \$4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13
ntwork Analysm HP 8753E			
elwork Analyses HP N753F	Name	Function	Signature
	Name Lat Krymen	Function Laboratory Technician	Signature -P * Fati-
etwork Analyses HP 87536	Narrie (J. ed Yryman		Seaf My

Calibration Laboratory of Schmid & Panner Engineering AG Zeognausstrass 45, 9004 Eurich, Switzenand

S Schweizerfacher Kalibrierdienst
C Service autue d'étalonnage
Servizée evizzero di faratura
S Swiee Colibration Service

Accreditation No.: SCS 108

Assumed by the Sweet Astronomian Server (SAS).

The Swiss Accreditation Service is one of the signatures to the SA
Mullilatural Agreement for the recognition of calibration certificates.

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standarda:

 ii) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)".

February 2005

c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Paga 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52,87
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations wern applied.

	Temperature	Permittivity	Conductivity
flominal Head TSL parameters	22.0 °C	40,0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38,9±6%	1.36 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	-	_

SAR result with Head TSL

SAR averaged over 1 cm2 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.0 W/kg
SAR for nominal Head TSL parameters	normalized to (W	40.4 W/kg = 17.0 % (k=2)

SAR averaged over 10 cm ² (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.9 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C.	53.3	1 52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.4±6%	1.49 mho/m ± 6 %
Body TSL temperature change during text	< 0.5 °C	-	-

SAR result with Body TSL

SAR averaged over 1 cm7 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.2 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	41.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ² (10 g) of Body TSL	condition	
SAR minasured	250 mW input power	5.43 W/kg
SAR (or nominal Body TSL parameters	normalized to 1VV	21.9 W/kg ± 16.5 % (km2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.0 A + 6.0 JA
Return Loss	-24.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.7 \(\Omega + 6.5 \)	
Fleturn Loss	- 22.5 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1,203 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 28, 2008

DASY5 Validation Report for Head TSL.

Date: 09.07.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d101

Communication System: UID 0 - CW; Frequency: 1900 MHz

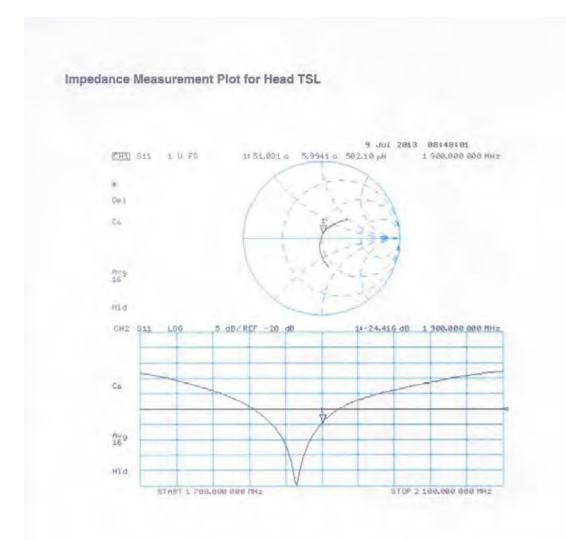
Medium parameters used: $\Gamma = 1900 \text{ MHz}$; $\sigma = 1.36 \text{ S/m}$; $\epsilon_r = 38.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.98, 4.98, 4.98); Calibrated: 28.12.2012;
- · Sensor-Surface; 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.435 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 18.2 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.28 W/kg Maximum value of SAR (measured) = 12.2 W/kg

0 dB = 12.2 W/kg = 10.86 dBW/kg

DASY5 Validation Report for Body TSL

Date: 09.07.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DLT: Dipole 1900 MHz; Type; D1900V2; Serial: D1900V2 - SN: 5d101

Communication System: UID 0 - CW ; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\alpha = 1.49 \text{ S/m}$; $\epsilon_i = 53.4$; $p = 1000 \text{ kg/m}^3$

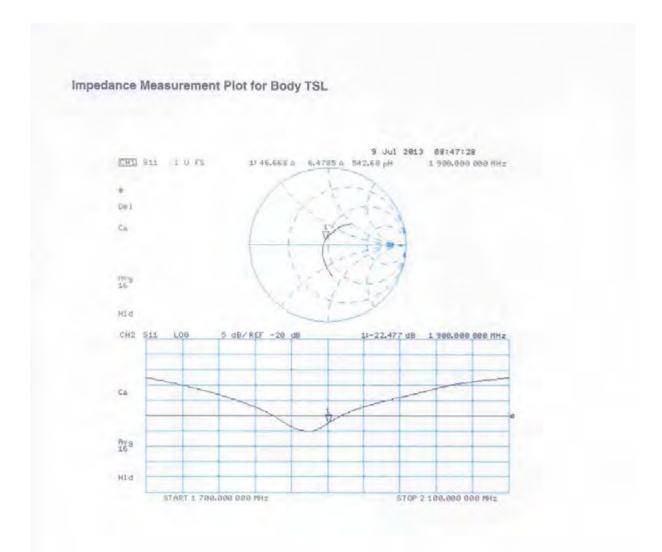
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63,19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.6, 4.6, 4.6); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.435 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 17.4 W/kg SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.43 W/kg

Maximum value of SAR (measured) = 12.7 W/kg

0 dB = 12.7 W/kg = 11.04 dBW/kg

2450 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst Service sulese d'étalonnage Servizio svizzaro di taratura Swiss Calibration Service

Accredited by the Swee, Accreditation Service (SAS)

The Swee Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates.

Client

TMC-BJ (Auden)

Accreditation No.: SCS 108

Certificate No: D2450V2-853 Jul13

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 853

Calibration procedure(tr)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date

July 08, 2013.

This calibration cardinate documents the traceability to national standards, which realize the physical units of measurements (6i).
The measurements and this uncertainties with confidence probability are given on the following pages and are part of the certificate.

All cultivations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%

Cannation Equationit used (MSTE critical for cautiration)

Primary Standards	101.4	Car Date (Camficete No.)	Scheduled Calaration
Puwer meler EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Dc1-13
Power sensor HP 6481A	U537292783	01-Nov-12 (No. 217-01640)	Oct-18
Reference 20 dB Altenuator	SN 5088 (20k)	04-Apr-13 (No. 217-01736)	Apr-14
Type-N mismusen combination	SNL 5047-3 / 06027	01-Apr-13 (No. 217-01739)	Apr-14
Reterence Probe ES3DV3	SN: 3205	28-Dec-12 (No. ES3-3205 Dec12)	Dec-13
DAE4	SN: 801	25-Apr-13 (No. DAE4-601_Apr13)	Apr-14
Secondary Standards	liow.	Check Date (in house)	Suheduled Check
Pawer sensor HP 8481A	MY41002317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-98 (in house check Oct-11)	In house check: Oct-10
Network Analyzer HP 8753E	US37300585 94708	1H-Oct-01 (in house check Oct-12)	In house check: Oct-13
	Name	Puriotion	Signature
Cultorated by.	Jeton Kantrali	Laboratory Technician	F-19-
		Technical Manager	

This calibration carrificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Pariner Engineering AG Zeughausstraum 45, 6004 Zurien, Switzerland

S Schweizerischer Kallbrandiums
Smyles sulaxe d'élalormage
Servizio svizzero di fareture
S Swiss Calibration Service

According No.: SCS 108

A In J h II + Swir | Ar In Friend (BAS)

The Swine Accessifiation Service is one of the argustimes to the EA Multitalized Agreement for the resountion of calibration certificales.

Glossary:

TSL lissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) IEC 62208-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)".

February 2005

c) Federal Communications Commission Office of Engineering & Technology (FCC DET). Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end.
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled pharitom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the
 mominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

OASY system configuration, as far as not given on page 1.

DASY Version	DASYS	V52 B.7
Extrapolation	Advanced Extrapolation	
Phanlom	Modular Flat Phaniom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0°C	39.2	1.90 mna/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8±6%	1.81 mho/m ± 8 %
Head TSL temperature change during test	< 0.5°C		natura (

SAR result with Head TSL

SAR averaged over 1 cm ² (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.5 W/kg
SAR for reminal Head TSL parameters.	Wt at besilsmon	53.4 W/kg = 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.9 W/kg = 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.5 ± fl %	2.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	_	

SAR result with Body TSL

SAR averaged over 1 cm2 (1 g) of Body TSL	Condition	
SAR measured	250 mW Input power	12.9 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50,4 W/kg ± 17.0 % (kw2)

SAR averaged over 10 cm2 (10 g) of Body TSL	condition	
SAR measured	255 mW input power	5.93 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.4 W/kg ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54,8 Ω + 3.4 μΩ	
Fleturn Loss	-25,0 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.6 \(\Omega + 4.7 \) \(\Omega \)	
Relum Loss	-26.6 dB	

General Antenna Parameters and Design

	T.
Electrical Delay (one direction)	1.162 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxeal cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No expessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	November 10, 2009	

DASY5 Validation Report for Head TSL

Date: 08.07.2013

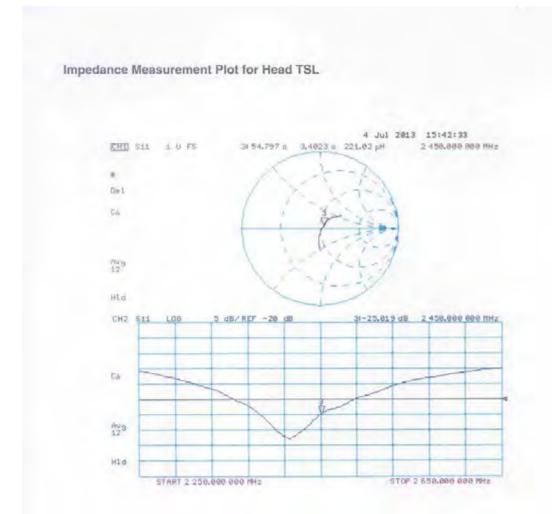
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 853

Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.81$ S/m; $\epsilon_r = 37.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard; DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.52, 4.52, 4.52); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics; DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
 - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.672 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 28.1 W/kg SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.28 W/kg Maximum value of SAR (measured) = 17.7 W/kg

0 dB = 17.7 W/kg = 12.48 dBW/kg

DASY5 Validation Report for Body TSL

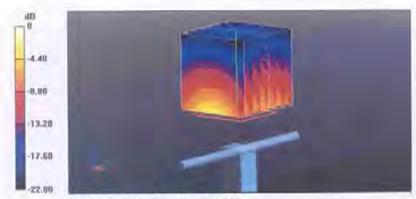
Date: 05.07.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 853

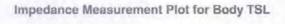
Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; n = 2.01 S/m; $\epsilon_r = 50.5$; $\rho = 1000$ kg/m³

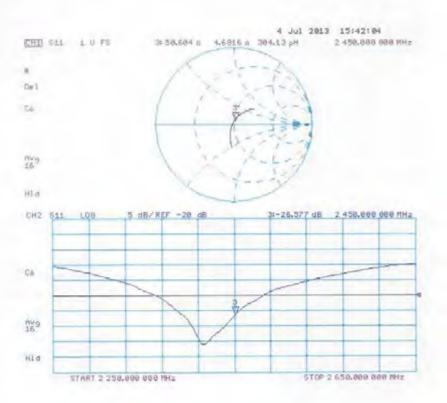
Phantom section: Flat Section


Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.42, 4.42, 4.42); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated; 25.04.2013
- Phantom; Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.672 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 27.2 W/kg SAR(1 g) = 12.9 W/kg; SAR(10 g) = 5.93 W/kg Maximum value of SAR (measured) = 16.9 W/kg

0 dB = 16.9 W/kg = 12.28 dBW/kg

ANNEX I SPOT CHECK TEST

As the test lab for 5038E from TCT Mobile Limited, we, TMC Beijing, declare on our sole responsibility that, according to "Declaration of changes" provided by applicant, only the Spot check test should be performed. The test results are as below.

I.1 Internal Identification of EUT used during the spot check test

EUT ID*	IMEI	HW Version	SW Version
EUT1	864658020000170	Proto	6B13

^{*}EUT ID: is used to identify the test sample in the lab internally.

I.2 Conducted power of selected case

Table I.1: The conducted power results for GSM850/1900

CCM	Conducted Power (dBm)					
GSM 850MHz	Channel 251(848.8MHz)	Channel 190(836.6MHz)	Channel 128(824.2MHz)			
OSUMINZ	32.50	1	32.72			
GSM	Conducted Power (dBm)					
	Channel 810(1909.8MHz)	Channel 661(1880MHz)	Channel 512(1850.2MHz)			
1900MHz -	29.35	1	1			

Table I.2: The conducted power results for GPRS

GSM 850	Measured Power (dBm)			
GPRS (GMSK)	251	190	128	
2 Txslots	\	\	30.14	
PCS1900	Mea	sured Power (d	Bm)	
GPRS (GMSK)	810	661	512	
2 Txslots	27.06	\	1	

Table I.3: The conducted power results for WCDMA

Item	band		FDD V result			
item	ARFCN	4233 (846.6MHz)	4182 (836.4MHz)	4132 (826.4MHz)		
WCDMA	١	22.76	22.98	1		
ltom	band	FDD II result				
Item	ARFCN	9538 (1907.6MHz)	9400 (1880MHz)	9262 (1852.4MHz)		
WCDMA	١	22.71	22.66	1		

I.3 Measurement results

SAR Values (GSM 850 MHz Band - Head)

Freque	ency	Side	Test	Pattony Typo	SAR(1	lg) (W/kg)
MHz	Ch.	Side	Position	Battery Type	Original data	Spot check data
848.8	251	Left	Touch	TLi018D1	0.591	0.444

SAR Values (GSM 850 MHz Band - Body)

Freque	ency		Toot	Specina	Pottom	SAR(1	g) (W/kg)
MHz	Ch.	Mode/Band	Test Position	Spacing (mm)	Battery Type	Original data	Spot check data
824.2	128	GPRS	Rear	10	TLi018D1	0.911	0.832

SAR Values (PCS 1900 MHz Band - Head)

Freque	ency	Side	Test	Pattony Type	SAR(1	lg) (W/kg)
MHz	Ch.	Side	Position	Battery Type	Original data	Spot check data
1909.8	810	Left	Touch	TLi018D1	0.323	0.280

SAR Values (PCS 1900 MHz Band - Body)

Freque	ncy		Toot	Spacing	Pattory	SAR(1	g) (W/kg)
MHz	Ch.	Mode/Band	Test Position	Spacing (mm)	Battery Type	Original data	Spot check data
1909.8	810	GPRS	Rear	10	TLi018D1	0.895	0.817

SAR Values (WCDMA 850 MHz Band - Head)

Frequency		Side	Test	Pottom, Typo	SAR(1g) (W/kg)	
MHz	Ch.	Side	Position	Battery Type	Original data	Spot check data
846.6	4233	Left	Touch	TLi018D1	0.532	0.514

SAR Values (WCDMA 850 MHz Band - Body)

Frequ	equency Test		Spacing	Pottomy Type	SAR(1g) (W/kg)	
MHz	Ch.	Position	(mm)	Battery Type	Original data	Spot check data
836.4	4182	Rear	10	TLi018D1	0.800	0.779

SAR Values (WCDMA 1900 MHz Band - Head)

Frequency		Side	Test	Pottom, Type	SAR(1g) (W/kg)	
MHz	Ch.	Side	Position	Battery Type	Original data	Spot check data
1907.6	9538	Left	Touch	TLi018D1	0.812	0.691

SAR Values (WCDMA 1900 MHz Band - Body)

Frequency		quency Test		Bottom: Time	SAR(1g) (W/kg)	
MHz	Ch.	Position	(mm)	Battery Type	Original data	Spot check data
1880	9400	Rear	10	TLi018D1	1.13	1.09

I.4 Reported SAR Comparison

- Fyranger		Reported SAR	Reported SAR
Exposure	Technology Band	1g (W/Kg):	1g (W/Kg):
Configuration		original	spot check
Lload	GSM 850	0.65	0.53
Head (Separation Distance	PCS 1900	0.39	0.35
(Separation Distance 0mm)	UMTS FDD 2	0.85	0.74
Offiliti)	UMTS FDD 5	0.55	0.54
Dadywan	GSM 850	0.97	0.90
Body-worn	PCS 1900	1.08	1.01
(Separation Distance 10mm)	UMTS FDD 2	1.19	1.18
TOTTIIII)	UMTS FDD 5	0.81	0.78

I.5 Graphic results

850 Left Cheek High

Date: 2014-4-21

Electronics: DAE4 Sn771 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.912$ S/m; $\epsilon r = 40.802$; $\rho = 1000$

kg/m³

Ambient Temperature: 22.1°C Liquid Temperature: 21.6°C

Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 - SN3846 ConvF(8.92, 8.92, 8.92)

Cheek High/Area Scan (61x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.461 W/kg

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.378 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.538 W/kg

SAR(1 g) = 0.444 W/kg; SAR(10 g) = 0.341 W/kg

Maximum value of SAR (measured) = 0.466 W/kg

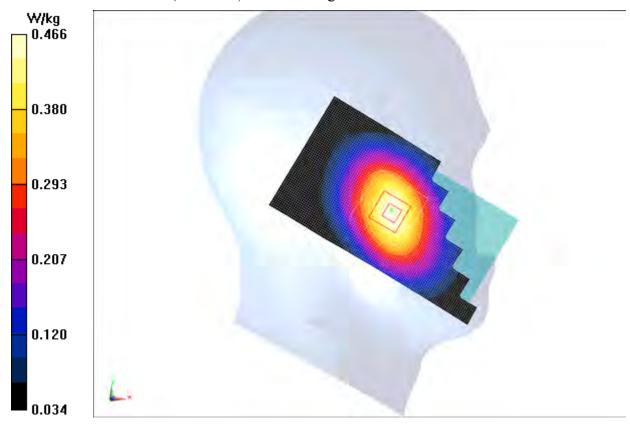


Fig.I.1 850MHz CH251

850 Body Rear Low

Date: 2014-4-21

Electronics: DAE4 Sn771 Medium: Body 850 MHz

Medium parameters used: f = 825 MHz; $\sigma = 0.973$ S/m; $\epsilon r = 55.841$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.1°C Liquid Temperature: 21.6°C

Communication System: GSM 850 EGPRS Frequency: 824.2 MHz Duty Cycle: 1:4

Probe: EX3DV4 - SN3846 ConvF(8.73, 8.73, 8.73)

Rear Low/Area Scan (61x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.871 W/kg

Rear Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 30.015 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.01 W/kg

SAR(1 g) = 0.832 W/kg; SAR(10 g) = 0.643 W/kgMaximum value of SAR (measured) = 0.869 W/kg

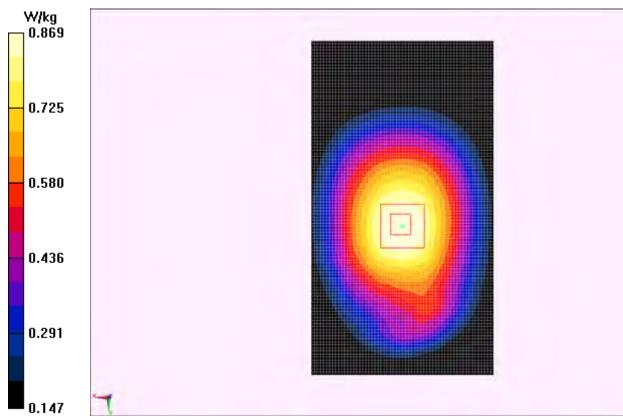


Fig.I.2 850 MHz CH128

GSM1900 Left Cheek High

Date: 2014-4-22

Electronics: DAE4 Sn771 Medium: Head 1900 MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.417 \text{ S/m}$; $\epsilon r = 39.227$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.1°C Liquid Temperature: 21.6°C

Communication System: GSM 1900MHz Frequency: 1909.8 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 - SN3846 ConvF(7.57, 7.57, 7.57)

Cheek High/Area Scan (61x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.303 W/kg

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.845 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 0.392 W/kg

CAR(1) 0.200 NV/L CAR(10) 0.172

SAR(1 g) = 0.280 W/kg; SAR(10 g) = 0.173 W/kgMaximum value of SAR (measured) = 0.292 W/kg

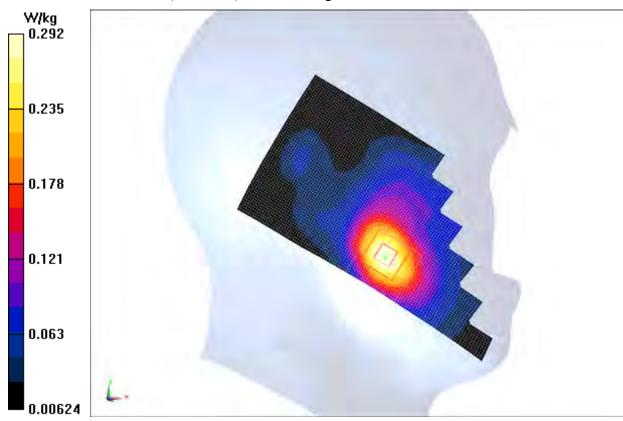


Fig.I.3 1900 MHz CH810

GSM1900 Body Rear High

Date: 2014-4-22

Electronics: DAE4 Sn771 Medium: Body 1900 MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.545 \text{ S/m}$; $\epsilon r = 53.817$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.1°C Liquid Temperature: 21.6°C

Communication System: GSM 1900MHz GPRS Frequency: 1909.8 MHz Duty Cycle: 1:4

Probe: EX3DV4 - SN3846 ConvF(7.03, 7.03, 7.03)

Rear High/Area Scan (61x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.896 W/kg

Rear High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.169 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 1.25 W/kg

SAR(1 g) = 0.817 W/kg; SAR(10 g) = 0.466 W/kgMaximum value of SAR (measured) = 0.967 W/kg

Fig.I.4 1900 MHz CH810

WCDMA 850 Left Cheek High

Date: 2014-4-21

Electronics: DAE4 Sn771 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 846.6 MHz; $\sigma = 0.909$ S/m; $\epsilon r = 40.83$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.1°C Liquid Temperature: 21.6°C

Communication System: WCDMA; Frequency: 846.6 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(8.92, 8.92, 8.92)

Cheek High/Area Scan (61x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.542 W/kg

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.392 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.656 W/kg

SAR(1 g) = 0.514 W/kg; SAR(10 g) = 0.392 W/kg

Maximum value of SAR (measured) = 0.542 W/kg

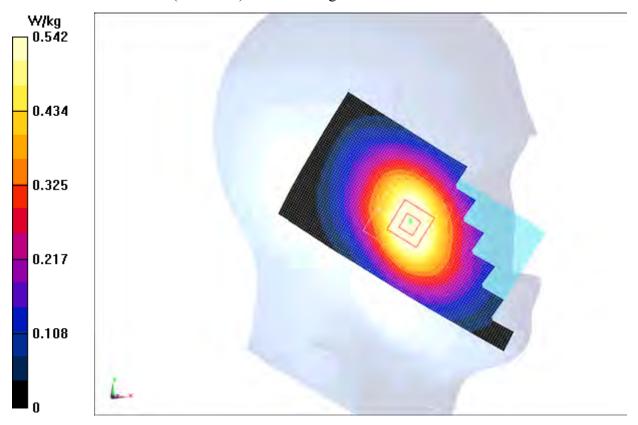


Fig.I.5 WCDMA 850 CH4233

WCDMA 850 Body Rear Middle

Date: 2014-4-21

Electronics: DAE4 Sn771 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 836.4 MHz; $\sigma = 0.984$ S/m; $\epsilon r = 55.711$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.1°C Liquid Temperature: 21.6°C

Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(8.73, 8.73, 8.73)

Rear Middle/Area Scan (61x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.816 W/kg

Rear Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 30.013 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.949 W/kg

SAR(1 g) = 0.779 W/kg; SAR(10 g) = 0.599 W/kg

Maximum value of SAR (measured) = 0.817 W/kg

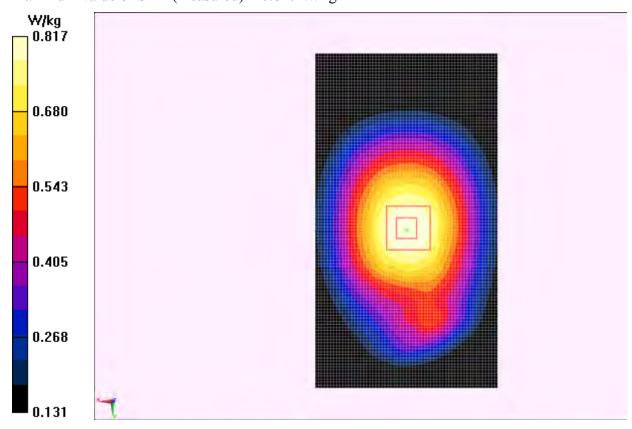


Fig.I.6 WCDMA 850 CH4182

WCDMA 1900 Left Cheek High

Date: 2014-4-21

Electronics: DAE4 Sn771 Medium: Head 1900 MHz

Medium parameters used (interpolated): f = 1907.6 MHz; $\sigma = 1.414$ S/m; $\epsilon r = 39.229$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.1°C Liquid Temperature: 21.6°C

Communication System: WCDMA 1900 Frequency: 1907.6 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(7.57, 7.57, 7.57)

Cheek High/Area Scan (61x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.773 W/kg

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.150 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.991 W/kg

SAR(1 g) = 0.691 W/kg; SAR(10 g) = 0.423 W/kg

Maximum value of SAR (measured) = 0.720 W/kg

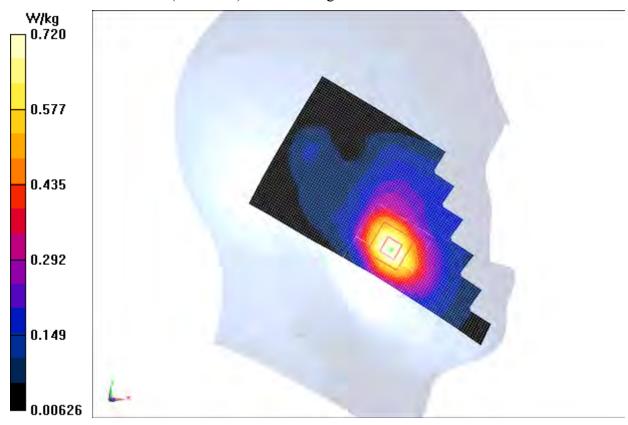


Fig.I.7 WCDMA1900 CH9538

WCDMA 1900 Body Rear Middle

Date: 2014-4-21

Electronics: DAE4 Sn771 Medium: Body 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.522 \text{ S/m}$; $\epsilon r = 53.92$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.1°C Liquid Temperature: 21.6°C

Communication System: WCDMA 1900 Frequency: 1880 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(7.03, 7.03, 7.03)

Rear Middle/Area Scan (61x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.17 W/kg

Rear Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.616 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 1.65 W/kg

SAR(1 g) = 1.09 W/kg; SAR(10 g) = 0.632 W/kg

Maximum value of SAR (measured) = 1.26 W/kg

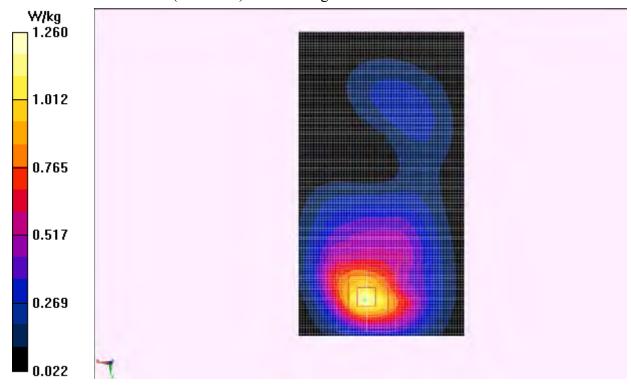


Fig.I.8 WCDMA1900 CH9400